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Abstract

Explainable AI has garnered considerable attention in recent
years, as understanding the reasons behind decisions made
by AI systems is crucial for their successful adoption. Ex-
plaining classifiers’ behavior is one prominent problem. Work
in this area has proposed notions of both local and global
explanations, where the former are concerned with explaining
a classifier’s behavior for a specific instance, while the latter
are concerned with explaining the overall classifier’s behavior
regardless of any specific instance. In this paper, we focus
on global explanations, and explain classification in terms of
“minimal” necessary conditions for the classifier to assign a
specific class to a generic instance. We carry out a thorough
complexity analysis of the problem for natural minimality cri-
teria and important families of classifiers considered in the
literature.

1 Introduction
Explainable AI (XAI) has become a very active research
area in the latest years. Being able to explain AI systems’
behavior is crucial for their successful adoption, and this
becomes even more important in critical domains, such as
healthcare and finance, where AI decisions impact people’s
life. Among different interesting problems in XAI, explain-
ing classifiers’ decisions has attracted significant attention
(Baehrens et al. 2010; Marques-Silva and Ignatiev 2022;
Marques-Silva 2024).

Work in this area has proposed notions to explain classi-
fiers’ behavior on a specific feature vector (instance), provid-
ing so-called local explanations, as well as notions to explain
the overall classifier behavior regardless of any particular
instance, providing so-called global explanations. For both
notions, a key issue is to analyze the computational complex-
ity of the problems at hand, to understand how to approach
the development of algorithmic solutions and their inherent
limits. In XAI, there has been an extensive body of work
addressing complexity issues (Bassan, Amir, and Katz 2024;
Ordyniak, Paesani, and Szeider 2023; Arenas et al. 2023;
Cooper and Marques-Silva 2023; Cooper and Amgoud 2023;
Carbonnel, Cooper, and Marques-Silva 2023; Huang et al.
2022; Audemard et al. 2022b; de Colnet and Marquis 2022;
Barceló et al. 2020a; Marques-Silva et al. 2020).

This paper falls within this ongoing research stream.
Specifically, we deal with global explanations, and focus

on so-called global necessary reasons, defined as conditions
that instances must satisfy in order to be classified with a
class of interest.

This notion has been considered by Ignatiev, Narodytska,
and Marques-Silva (2019b), where an interesting relationship
with another kind of global explanation is shown. However,
this is all we know about global necessary reasons, from a
technical point of view. 1

On the other hand, global necessary reasons offer critical
insights into classifiers’ behavior for diverse purposes. When
the class of interest is a desired outcome, a global necessary
reason identifies conditions that must be necessarily met by
any instance to achieve the desired prediction. Conversely, if
the class is undesirable, a global necessary reason indicates
how to avoid that class, as violating the condition provided
by the global necessary reason always leads to a different
classification. Global necessary reasons also help discover
biases in the classifier, e.g., a global necessary reason stating
that a person must be male to obtain a loan unveils a bias.

Thus, the goal of this paper is to deepen the study of global
necessary reasons, making several steps forward. Specifically,
we start by introducing a logic-based language to express
global necessary reasons, as logic offers formal guarantees
of rigor and has proven to be well-suited for explainability
purposes—see, e.g., (Marques-Silva 2022; Marques-Silva
and Ignatiev 2022; Darwiche 2023; Marques-Silva 2024).

As different global necessary reasons may convey different
amount of information, we consider a notion of “minimality”
to identify the most informative global necessary reasons.

We then provide a systematic complexity analysis of key
problems related to global necessary reasons. In particular,
given a classifier M, a class c of interest, and a logical ex-
pression ϕ, we study the problems of checking whether ϕ is
an arbitrary (resp., minimal) global necessary reason for why
M classifies instances with c. We analyze the complexity of
such problems for important families of classifiers, namely,
binary decision diagrams (BDDs) and their subclass of de-
cision trees (DTs), perceptrons, and multilayer perceptrons
(MLPs), (see, e.g., Barceló et al. 2020a), and common min-

1We point out that another notion of “global necessary reason”
has been considered by Bassan, Amir, and Katz (2024), who have
also provided a complexity analysis. However, their notion is fun-
damentally different from the one we consider, as we thoroughly
discuss in Section 5.
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imality criteria, namely, cardinality and set-inclusion (see,
e.g., Cooper and Marques-Silva 2023). The classifiers above
are frequently mentioned in the literature as being at the ex-
tremities of the interpretability spectrum, and form the basis
of more advanced classifiers. Indeed, these classifiers have
been the focus of other foundational works—e.g., see (Bas-
san, Amir, and Katz 2024), (Arenas et al. 2021), and (Barceló
et al. 2020a).

The complexity results we derive provide several interest-
ing insights into (minimal) global necessary reasons. Some-
what surprisingly, the two minimality criteria (namely, car-
dinality and set-inclusion) turned out to lead to the same
family of explanations, regardless of the considered classi-
fiers. As a consequence, the complexity does not change
across the two minimality criteria for all classifier families
here considered. Moreover, the complexity does not increase
when minimality is taken into account for perceptrons, DTs,
and BDDs, while minimality increases the complexity for
MLPs. More precisely, the problems we consider are in L
(i.e., solvable in logarithmic space) for perceptrons and DTs,
and NL-complete for BDDs. On the other hand, for MLPs,
we show co-NP-completeness and DP-completeness for ar-
bitrary (i.e., not necessarily minimal) and minimal global
necessary reasons, respectively.

Besides being interesting in their own right, the above
complexity results also allow us to draw key insights on the
complexity of computing minimal global necessary reasons.
In particular, we show that (1) computing minimal global
necessary reasons is at least as hard as the decision problem
for minimal global necessary reasons, and (2) minimal global
necessary reasons can be computed efficiently, i.e., in polyno-
mial time, given access to a subroutine (a.k.a. oracle) solving
the decision problem for arbitrary global necessary reasons.
Such results are significant in that they imply minimal global
necessary reasons can be computed very efficiently for per-
ceptrons, DTs, and BDDs, since the decision problem for
arbitrary global necessary reasons is in L for perceptrons and
DTs, and NL-complete for BDDs, and thus can be solved on
highly-parallel machines—see, e.g., (Arora and Barak 2009;
Greenlaw, Hoover, and Ruzzo 1995). Furthermore, in the
case of MLPs, our complexity results imply that minimal
global necessary reasons can be computed by resorting to
SAT solvers, which have proven to be very efficient at solving
computationally hard problems (even co-NP-complete and
DP-complete ones) concerning the computation of classifiers’
explanations (Marques-Silva 2022). Moreover, since com-
puting minimal global necessary reasons is at least as hard as
the decision version of the problem that we consider, which
is DP-hard for MLPs, minimal global necessary reasons can-
not be computed more efficiently in polynomial time (unless
PTIME = NP).

Because of the implications discussed above, we believe
this paper is a first foundational step towards a full under-
standing and the adoption of global necessary reasons to
explain classification.

2 Preliminaries
Classification In this paper, n denotes the number of fea-
tures of the instance domain, hence n is assumed to be a

(strictly) positive integer. An n-instance is an n-dimensional
binary vector x = (x1, . . . , xn) ∈ {0, 1}n. We denote
by x[i] the value xi from x, for 1 ≤ i ≤ n. An n-fea-
ture (binary) classifier M can be modeled by a function
M : {0, 1}n → {0, 1} mapping n-instances x to the binary
class M(x). Restricting the analysis to binary classifiers
makes our framework cleaner, while still covering several
relevant practical scenarios. While our hardness results imme-
diately apply to more general settings, such as those involving
instances over the real numbers, a precise characterization of
the associated complexity needs a dedicated analysis, which
we leave as a interesting direction for future work.

We study the following key families of classifiers.

Binary Decision Diagram (BDD) and Decision Tree (DT)
A (free) n-feature binary decision diagram, or n-BDD for
short, is defined by a rooted directed acyclic graph (DAG)
G = (V,E, λ, η), where λ and η are node- and edge-labeling
functions, respectively. We recall that in a rooted DAG, there
is a single node without incoming edges, which is the root,
and the nodes without outgoing edges are called sinks. The
n-BDD G is such that:
• each sink of G is labeled with either 1 or 0;
• each internal node (i.e., a node that is not a sink) is labeled

with an element from {1, . . . , n};
• each internal node has two outgoing edges, one labeled

with 1 and the other labeled with 0;
• no two internal nodes on a path of G originating from the

root have the same label.
G classifies an n-instance x as c, denoted G(x) = c, iff there
is a path u1, . . . , um from the root of G to a sink of G such
that um is labeled with c, and, for each i with 1 ≤ i ≤ m−1,
if ui is labeled with j, then the edge (ui, ui+1) of G is labeled
with x[j]; note that by definition, if G(x) = c there always
exists exactly one path witnessing this. We use BDD to
denote the family of all n-BDDs, for all n > 0.

An n-feature decision tree, or n-DT for short, is a special
case of an n-BDD where the underlying DAG is a tree. We
use DT to denote the family of all n-DTs, for all n > 0.

Perceptron An n-feature perceptron S, or n-perceptron
for short, is defined by a pair S = (w, b), where w =
(w1, . . . , wn) ∈ Qn and b ∈ Q are the perceptron’s weights
and bias, respectively. Then, S classifies an n-instance x as
‘1’, denoted by S(x) = 1, iff x ·w+ b ≥ 0; otherwise S clas-
sifies x by ‘0’, which is denoted as S(x) = 0. Equivalently,
S can be seen as an object which receives as input the values
(x1, . . . , xn), weighed via the weights (w1, . . . , wn), and
outputs the value S(x) = step(x ·w + b), where step(·) is
the Heaviside step function, which is defined as step(x) := 0
if x < 0, and step(x) := 1 if x ≥ 0. We use PRC to denote
the family of all n-perceptrons, for all n > 0.

Multilayer Perceptron (MLP) An n-feature multilayer
perceptron N , or n-MLP for short, is defined by a tuple
N = (W1, . . . ,Wk,b1, . . . ,bk, f1, . . . , fk), where k > 0
is the number of layers of N . Moreover, for each layer i with
1 ≤ i ≤ k, assuming di denotes the number of neurons on
the i-th layer, and d0 = n is the size of the input of N :
• Wi ∈ Qdi−1×di is the i-th layer weight matrix of N ;
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• bi ∈ Qdi is the i-th layer bias vector of N ;
• f i : Qdi → Qdi is the i-th layer (di-dimensional) activa-

tion function of N .
Since we deal with binary classifiers, here dk = 1. We as-
sume that the activation function of the non-output neurons
(i.e., the function f i, with 1 ≤ i ≤ k − 1) is the ReLU func-
tion2 relu(x) := max (0, x), whereas the activation function
fk of the single output neuron is the Heaviside step function
(see, e.g., Barceló et al.; Marques-Silva 2020b; 2022).

Given an n-instance x, we inductively define

hi := f i(hi−1Wi + bi), for each i, with 1 ≤ i ≤ k,

where h0 := x. Then, N classifies an n-instance x as c,
denoted by N (x) = c, iff hk = c. We use MLP to denote
the family of all n-MLPs, for all n > 0.

We point out that, in this paper, we do not deal with the task
of training classifiers. Instead, we are interested in explaining
the behavior of (already learned) classifiers—explanations in
this setting are often called “post-hoc” explanations. For this
reason, the classifiers will be assumed to be given as input
with all the (already trained) parameters characterizing them.

Computational Complexity We briefly recall the complex-
ity classes that we encounter. PTIME and L are the classes of
all decision problems that can be decided in polynomial time
and logarithmic space, respectively, by a deterministic Turing
machine (the space constraint is over the work tape). NP and
NL are the classes of all decision problems that can be de-
cided in polynomial time and logarithmic space, respectively,
by a nondeterministic Turing machine. co-NP is the com-
plement class of NP, where ‘yes’ and ‘no’ answers are inter-
changed. We recall that L, NL, and PTIME are closed under
complement. The class DP = NP ∧ co-NP is the class of all
decision problems that are the intersection of a problem in NP
and a problem in co-NP. The inclusion relationships (which
are all currently believed to be strict) between the above com-
plexity classes are: L ⊆ NL ⊆ PTIME ⊆ NP, co-NP ⊆ DP.

We refer the reader to any textbook on the topic, such as
(Arora and Barak 2009), for a broader introduction.

3 Global Necessary Reasons
In this section, we consider the notion of a global necessary
reason as a way to explain classifiers’ behavior. Intuitively,
for a classifier and a class of interest, the idea is to provide a
condition that must be necessarily satisfied (by any instance)
for the classifier to assign the class. Additionally, in order
to identify the most informative global necessary reasons,
we will be interested in “minimal” ones, as defined later on.
This section also introduces the (decision) problems whose
complexity will be analyzed in the rest of the paper.

To express global necessary reasons, we use the logical
language defined below. Let L[n] denote the set of all expres-
sions, called conditions, of the form

∧m
i=1 ℓi, where m ≥ 0,

each ℓi is a literal of the form t ♢ t′, with ♢ ∈ {=, ̸=}, and

2As for the impact of this choice on our results, our upper bounds
hold as far as evaluating the MLP over an instance is feasible in
polynomial time, while the lower bounds immediately hold for many
other activation functions that simply generalize ReLUs.

t, t′ are terms from the set {0, 1} ∪ {vi | 1 ≤ i ≤ n}, where
each vi is a Boolean variable, i.e., over the values {0, 1},
associated to the i-th feature. Notice that a condition can be
empty (i.e., m = 0); we use ⊤ to denote such a condition.

Thus, conditions are conjunctions of (in)equalities. As
customary when designing a formal language, we strove for
a balance between expressiveness and complexity, and our
choice is based on the following considerations.

Conjunctions are widely deemed easy to interpret—indeed,
most related work employs (even simpler forms of) con-
junctions to express explanations (cf. Section 5). However,
slight extensions to the language can make it much less in-
terpretable. Arguably, a natural extension is to allow dis-
junctions, leading to a more expressive language which even
enables to precisely characterize a classifier’s behavior. That
is, for an n-feature classifier M and a class c ∈ {0, 1} of
interest, if x1, . . . ,xm are all the n-instances classified with
c by M, one can always devise the Boolean expression of the
form ϕ1 ∨ · · · ∨ ϕm, where each ϕi is a condition encoding
xi. Clearly, an n-instance x is classified with c by M iff x
satisfies the above expression. It is clear that this high level
of expressiveness comes at the cost of providing complex
expressions (e.g., unavoidably exponentially large) which
would be hard to understand for a user, and at the same time
it poses computational challenges.

Hence, we designed our language so that it goes beyond
simple conjunctions of feature-value pairs adopted by Ig-
natiev, Narodytska, and Marques-Silva (2019b)3, but at the
same time supports a richer set of logical constructs that
help better explain classifiers’ behaviour without hindering
interpretability and computational complexity. In fact, our
language can express relationships among features by means
of (in)equalities between feature variables, which is usually
deemed as an important feature for explaining classifiers.
From the technical point of view, (in)equalities between vari-
ables allow for a controlled form of disjunction, such as
specifying alternatives between values assigned to features—
e.g., v1 = v2 expresses the two alternatives v1 = v2 = 0
and v1 = v2 = 1. Computationally, as already mentioned in
the introduction, the complexity results we derive justify the
choice of the language also in terms of practical applicability.
From a syntactical perspective, standard propositional logic
might be used to express conditions. However, we chose
to employ a dedicated syntax, as this allows us to express
formulas that are more concise and easier to interpret.

We now proceed by introducing some notions related to our
language, and then define global necessary reasons. Given an
n-instance x and a condition ϕ ∈ L[n], let ϕ[x] denote the
condition obtained from ϕ by replacing every vi in ϕ with
x[i]. We say that x satisfies ϕ, denoted by x |= ϕ, iff ϕ[x] is
true under the usual semantics of comparison operators and
Boolean logical connectives—in such a case, we also say that
x is a model of ϕ. When ϕ = ⊤, every n-instance trivially
satisfies ϕ. We further define JϕK = {x ∈ {0, 1}n | x |= ϕ},
i.e., the set of all n-instances satisfying ϕ. Moreover, for two
conditions ϕ, ψ ∈ L[n], we say that ϕ entails ψ, denoted as

3To the best of our knowledge, this is the only work considering
the same notion of explanation we consider.
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ϕ |= ψ, iff JϕK ⊆ JψK.
As mentioned, for a classifier M, and a class c ∈ {0, 1},

a global necessary reason must provide a condition that is
satisfied by every instance that is classified with c by M.

Definition 1 (Global necessary reasons). Let M be an n-fea-
ture classifier, and let c ∈ {0, 1} be a class. A global neces-
sary reason for c w.r.t. M is a condition ϕ ∈ L[n] where

∀x ∈ {0, 1}n, (M(x) = c) → (x |= ϕ) .

For an n-feature classifier M and a class c ∈ {0, 1}, with
an abuse of notation, we let JM, cK be the set of all n-in-
stances x such that M(x) = c. Clearly, a condition ϕ is a
global necessary reason for c w.r.t. M iff JM, cK ⊆ JϕK. The
latter implies that a conjunction of global necessary reasons
for c w.r.t. M is a global necessary reason for c w.r.t. M.

Different global necessary reasons might convey different
amounts of information. As an example, ⊤ is always a global
necessary reason, but it does not provide useful information.
In this regard, we point out that every global necessary reason
ϕ for a class c w.r.t. a classifier M “over-approximates” the
assignment of c by M in that JM, cK ⊆ JϕK. Thus, a crite-
rion to identify the most informative global necessary reasons
should select the ones for which such over-approximation
is as small as possible. Such most informative global nec-
essary reasons are the “minimal” ϕ such that JM, cK ⊆ JϕK.
Formally, minimality is defined w.r.t. an arbitrary preorder
≼, i.e., a reflexive and transitive binary relation, over L[n];
ϕ ≺ ϕ′ denotes that ϕ ≼ ϕ′ and ϕ′ ̸≼ ϕ. Then, minimal
global necessary reasons are naturally defined as follows.

Definition 2 (Minimal global necessary reason). Let M be
an n-feature classifier, and let c ∈ {0, 1} be a class. A global
necessary reason ϕ ∈ L[n] for c w.r.t. M is ≼-minimal iff
there is no global necessary reason ϕ′ ∈ L[n] for c w.r.t. M
such that ϕ′ ≺ ϕ.

We consider two concrete common preorders (see, e.g.,
Cooper and Marques-Silva 2023), which we use to compare
conditions w.r.t. their models:

• Model cardinality (≤): Given two conditions ϕ and ϕ′, we
write ϕ ≤ ϕ′ iff |JϕK| ≤ |Jϕ′K|.

• Model subset (⊆): Given two conditions ϕ and ϕ′, we
write ϕ ⊆ ϕ′ iff JϕK ⊆ Jϕ′K (or, equivalently, ϕ |= ϕ′).

As a simple example, for the two conditions ϕ := (v1 =
1 ∧ v2 = v3) and ϕ′ := (v1 = 1), we have that both ϕ ≤ ϕ′

and ϕ ⊆ ϕ′ hold. Obviously, ϕ makes a more specific state-
ment than ϕ′ by additionally requiring v2 and v3 to assume
the same value, and we consider such statements more infor-
mative (as long as they are global necessary reasons).

An interesting property is that, for each ≼ ∈ {≤,⊆},
any two ≼-minimal global necessary reasons ϕ and ϕ′ for a
class c w.r.t. a classifier M have the same set of models, i.e.,
JϕK = Jϕ′K. If this were not the case, then the conjunction
ϕ∧ϕ′ would also be a global necessary reason preceding both
ϕ and ϕ′ w.r.t. ≼, i.e., both ϕ∧ϕ′ ≺ ϕ and ϕ∧ϕ′ ≺ ϕ′ would
hold. Thus, any two ≼-minimal global necessary reasons for
a class c w.r.t. a classifier M have the same set of models,
but can be (syntactically) different.

ISNECESSARY ISMINNECESSARY

PRC DT BDD MLP PRC DT BDD MLP

in L in L NL co-NP in L in L NL DP ≤
in L in L NL DP ⊆

Table 1: Summary of the complexity of ISNECESSARY[C] and
of ISMINNECESSARY[C,≼], for each family of classifiers C ∈
{PRC,DT,BDD,MLP}, and preorder ≼ ∈ {≤,⊆}. All non-“in”
entries are completeness results.

As customary in complexity analysis, we focus on deci-
sion problems—then, in Section 4.4, we will show how our
results provide insights into the complexity of the problem of
computing minimal global necessary reasons. In particular,
for a family C ∈ {PRC,DT,BDD,MLP} of classifiers, and
a preorder ≼ ∈ {≤,⊆}, we study the following problem:

Problem : ISMINNECESSARY[C,≼]
Input : An n-feature classifier M ∈ C,

a class c ∈ {0, 1}, and
a condition ϕ ∈ L[n].

Question : Is ϕ a ≼-minimal global necessary
reason for c w.r.t. M?

As we will see in the following, to study the complexity
of the problem above, we will also need to focus on the com-
plexity of deciding whether a condition is a global necessary
reason (i.e., not necessarily minimal) for a class c w.r.t. a
classifier M. We hence define the following problem (notice
how this problem is not parametric in the preorder):

Problem : ISNECESSARY[C]
Input : An n-feature classifier M ∈ C,

a class c ∈ {0, 1}, and
a condition ϕ ∈ L[n].

Question : Is ϕ a global necessary reason for
c w.r.t. M?

Remarks: In the rest of the paper, to streamline the pre-
sentation, we implicitly assume, unless specified otherwise,
that classifiers are over n > 0 features, instances and classes
are from {0, 1}n and {0, 1}, respectively, and conditions and
literals are from L[n]. Finally, if ϕ is a global necessary
reason for a class c w.r.t. to a classifier M, and M and c are
clear from the context, we may refer to ϕ simply as a global
necessary reason, without mentioning M and c. Finally, as
customary, we assume that rationals are encoded as pairs of
coprime integers.

4 Complexity of Global Necessary Reasons
In this section, we study the complexity of ISNECESSARY[C]
and ISMINNECESSARY[C,≼], for each family of classifiers
C ∈ {PRC,DT,BDD,MLP}, and preorder ≼ ∈ {≤,⊆}. A
summary of the complexity results obtained in this paper is
reported in Table 1.

We start by carrying out some observations regarding the
problem ISMINNECESSARY[C,≼]. Given a classifier M, a
class c, and a condition ϕ, an obvious procedure deciding
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whether ϕ is a ≼-minimal global necessary reason is to first
check that ϕ is a global necessary reason, and then verify that
ϕ is ≼-minimal. The latter can naively be checked by iterating
over every possible condition ψ and checking, whenever
ψ ≺ ϕ, that ψ is not a global necessary reason.

The main issue with the above procedure is that in order
to verify that ϕ is ≼-minimal, the procedure iterates over
all the possible conditions ψ, which are exponentially many
in n. In addition, for each such condition ψ, the procedure
must check whether ψ ≺ ϕ, which in turn may require to
iterate over the (possibly) exponentially many instances x
such that x |= ψ. We are however able to provide the next
characterization, enabling us to greatly simplify the process
of checking whether a global necessary reason ϕ is ≼-mini-
mal; this also enables us to pinpoint the exact complexity of
ISMINNECESSARY[C,≼] by deriving tight upper bounds.

Lemma 3. Let M be a classifier, let c be a class, and let
ϕ be a global necessary reason. Then, for each preorder
≼ ∈ {≤,⊆}, ϕ is not ≼-minimal iff there exists a literal ℓ
such that ϕ ̸|= ℓ and ℓ is a global necessary reason.

Proof. (⇒). We show that if ϕ is not ≼-minimal, then there
is a literal ℓ with ϕ ̸|= ℓ and ℓ is a global necessary reason.

Assume that ψ is a global necessary reason for c w.r.t. M
such that ψ ≺ ϕ, and consider the condition Γ = ϕ ∧ ψ.

We start by proving that: (i) Γ is also a global necessary
reason for c w.r.t. M, and (ii) JΓK ⊊ JϕK. Regarding (i),
since both ϕ and ψ are global necessary reasons for c w.r.t.
M, JM, cK ⊆ JϕK and JM, cK ⊆ JψK. By this, we have that
JM, cK ⊆ JϕK∩ JψK. Since JΓK = Jϕ∧ψK = JϕK∩ JψK, we
can conclude that Γ is a global necessary reason for c w.r.t.
M. Regarding (ii), since Γ = ϕ∧ψ, we have that JΓK ⊆ JϕK
and JΓK ⊆ JψK. Moreover, regardless of ≺ actually being
< or ⊊, from ψ ≺ ϕ it follows that |JψK| < |JϕK|. The
latter, together with JΓK ⊆ JψK and JΓK ⊆ JϕK, imply that
the inclusion JΓK ⊆ JϕK is actually strict, i.e., JΓK ⊊ JϕK.

We now claim that there must be a literal ℓ in ψ such
that ϕ ̸|= ℓ. Indeed, if this were not the case, i.e., if every
literal ℓ in ψ were such that ϕ |= ℓ, then it would mean that
JΓK = Jϕ ∧ ψK = JϕK, which cannot be the case, since we
have proved that JΓK ⊊ JϕK (see above).

Consider now such a literal ℓ. Since ℓ belongs to ψ, and
since Γ = ϕ ∧ ψ, we have that JΓK ⊆ JℓK. Since we proved
that Γ is a global necessary reason for c w.r.t. M, then ℓ is
also a global necessary reason for c w.r.t. M. Thus, ℓ is a
literal such that ϕ ̸|= ℓ and ℓ is a global necessary reason.

(⇐). We show that if there is a literal ℓ such that ϕ ̸|= ℓ
and ℓ is a global necessary reason, then ϕ is not ≼-minimal.

Since ϕ and ℓ are both global necessary reasons for c w.r.t.
M, we have that JM, cK ⊆ JϕK and JM, cK ⊆ JℓK. Because
Jϕ∧ℓK = JϕK∩JℓK, it must be the case that JM, cK ⊆ Jϕ∧ℓK,
which implies that ϕ ∧ ℓ is a global necessary reason for c
w.r.t. M. Moreover, since ϕ ̸|= ℓ, there is an instance in
JϕK that does not belong to JℓK. The latter, together with the
facts that Jϕ ∧ ℓK ⊆ JϕK and Jϕ ∧ ℓK = JϕK ∩ JℓK, imply that
Jϕ∧ℓK ⊊ JϕK. Hence, we conclude that ψ = ϕ∧ℓ is a global
necessary reason for c w.r.t. M such that JψK ⊊ JϕK, by
which ϕ is not ⊆-minimal. Observe that JψK ⊊ JϕK implies
|JψK| < |JϕK|, and hence ϕ is also not ≤-minimal.

Algorithm 1: A generic algorithm deciding whether a
condition is a ≤-/⊆-minimal global necessary reason

Input: An n-feature classifierM, a class c ∈ {0, 1}, and a
condition ϕ ∈ L[n]

Output: accept, if ϕ is a ≼-minimal global necessary
reason for c w.r.t.M; reject, otherwise

Procedure MinNecessary(M, c, ϕ):
1 if ϕ is not a global necessary reason for c w.r.t.M then

return reject
2 foreach literal ℓ ∈ L[n] do
3 if ϕ ̸|= ℓ then
4 if ℓ is a global necessary reason for c w.r.t.M

then return reject

5 return accept

Very interestingly, Lemma 3 implies that ≤- and ⊆-mini-
mal global necessary reasons are actually equivalent notions—
notice that the property stated in the lemma does not distin-
guish between the two minimality criteria. Clearly, every ≤-
minimal global necessary reason is also a ⊆-minimal global
necessary reason. The more interesting question is why every
⊆-minimal global necessary reason ϕ is also a ≤-minimal
global necessary reason. Assume, towards a contradiction,
that this is not the case. Then there would be a global nec-
essary reason ψ with strictly fewer models than ϕ. Notice
that ψ ∧ ϕ (i) is a global necessary reason, (ii) has strictly
fewer models than ϕ, (iii) its models are a subset of those of
ϕ. This means that ψ ∧ ϕ is a global necessary reason and its
models are a proper subset of those of ϕ (this is implied by
(ii) and (iii)), contradicting that ϕ was a ⊆-minimal global
necessary reason. Note that (ii) and (iii) hold for any log-
ical language encoding conditions, while (i) holds as long
as the language we employ to encode conditions is closed
under logical conjunction, i.e., given two conditions ψ and
ϕ, then ψ ∧ ϕ is still a condition. Since our language L[n] is
closed under logical conjunction, we obtain the equivalence.
Hence, closure under logical conjunction is the property that
guarantees equivalence of the two notions.

As already observed, a conjunction of global necessary
reasons is a global necessary reason. Thus, the conjunction
ϕ of all literals that are individually global necessary reasons
is a global necessary reason. A consequence of Lemma 3
is that ϕ is indeed a ≼-minimal global necessary reason.
The above observations provide useful insights on how to
compute ≼-minimal global necessary reasons, as we will
discuss in Section 4.4.

Furthermore, Lemma 3 suggests a simple procedure to
check whether a condition ϕ is a ≼-minimal global necessary
reason (see Algorithm 1): first, we check that ϕ is a global
necessary reason, and then we check that ϕ is ≼-minimal
by verifying that there is no literal ℓ for which ϕ ̸|= ℓ and
such that ℓ is a global necessary reason; by what we observed
above, notice how the algorithm does not depend on the
preorder ≤ or ⊆.

Algorithm 1 provides a generic framework to analyze the
complexity of ISMINNECESSARY[C,≼], for C ∈ {PRC,
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DT,BDD,MLP} and ≼ ∈ {≤,⊆}. Observe that, with n
features, there are only O(n2) literals to consider at line 2.
Thus, the algorithm’s complexity is essentially related to the
complexity of checking whether a given condition or literal
is or is not a global necessary reason (lines 1 and 4), and
checking, for a given condition ϕ and a literal ℓ, whether
ϕ ̸|= ℓ (line 3).

Notice that the complexity of deciding whether ϕ or ℓ are
global necessary reasons depends on the specific family of
classifiers considered, whereas the complexity of deciding
ϕ ̸|= ℓ does not. We hence focus first on the latter problem,
and we will study the former in the next sections, where we
will consider each family of classifiers in turn. We now show
that deciding ϕ ̸|= ℓ is an easy task, i.e., feasible in logspace.

Theorem 4. Let ϕ be a condition, and let ℓ be a literal.
Deciding whether ϕ |= ℓ (or ϕ ̸|= ℓ) is in L.

The above complexity result is obtained by reducing in
logspace the problem of deciding whether ϕ |= ℓ to the prob-
lem of deciding the satisfiability of 2CNF formulas of a re-
stricted form. This simpler form, which guarantees that 2CNF
formulas have a certain symmetry property, allows us to adapt
the existing satisfiability algorithm for arbitrary 2CNF for-
mulas and obtain an algorithm executing in logspace.

With the above result in place, in the following we study
the complexity of deciding whether a condition is a global
necessary reason, and show how this analysis, together with
Theorem 4, allows us to obtain the results in Table 1.

4.1 The Case of Perceptrons
We start considering the family of classifiers based on percep-
trons. As already discussed in the previous section, we first
need to understand the complexity of ISNECESSARY[PRC].

Theorem 5. ISNECESSARY[PRC] is in L.

As the complexity class L is closed under complement,
we obtain the result above by showing membership in L of
the complement problem ISNOTNECESSARY[PRC]: for a
perceptron S , a class c, and condition ϕ, decide whether ϕ is
not a global necessary reason. The condition ϕ can be shown
not being a global necessary reason by finding an instance x
such that S(x) = c and x ̸|= ϕ. Intuitively, we show that the
latter can be achieved by encoding within S the opposite of a
literal from ϕ, and by then showing that for such a modified
perceptron there exists an instance classified as c.

Remember now that the generic Algorithm 1 decides
ISMINNECESSARY[C,≼] also for C = PRC, and for each
≼ ∈ {≤,⊆}. Since by Theorem 5 and Theorem 4, lines 1, 3
and 4 of Algorithm 1 are feasible in logspace, and each literal
ℓ considered in each iteration can be stored in logarithmic
space, the entire procedure can be carried out in logspace,
when considering perceptrons. The next result follows.

Theorem 6. ISMINNECESSARY[PRC,≼] is in L, for each
≼ ∈ {≤,⊆}.

4.2 The Case of BDDs and DTs
In this section we first consider the family of classifiers based
on BDDs, and then focus on its subclass consisting of DTs.

The Case of BDDs As already done for perceptrons, we
first analyze the complexity of checking whether a given
condition is a global necessary reason. We focus on the com-
plement problem, which we call ISNOTNECESSARY[BDD],
as the complexity result pertains NL, which is closed under
complement.

More specifically, we pinpoint an interesting characteriza-
tion for the conditions from L[n] that are not global necessary
reasons, when focusing on BDDs. This property allows to
devise a nondeterministic procedure with low space usage,
i.e., logarithmic, which we report as Algorithm 2, and that
decides whether a condition is not a global necessary reason
for a BDD. We discuss this next.

Let G = (V,E, λ, η) be a BDD, and let Π(G, c) denote the
set of all paths from the root of G to a sink of G labeled with
the class c. For a path π = u1, . . . , um ∈ Π(G, c), intuitively
we define ϕπ as the condition assigning to each feature fi,
labeling a node ui of π, the value ai that the path π assigns
to fi—remember that this value ai is the label of the edge
connecting ui to ui+1 in π. More formally,

ϕπ =
m−1∧
i=1

(vfi = ai),

where, for each i with 1 ≤ i ≤ m − 1, fi = λ(ui), and
ai = η((ui, ui+1)). Our characterization follows.
Lemma 7. A condition ϕ is not a global necessary reason
for a class c w.r.t. a BDD G iff there exists a path π ∈ Π(G, c)
and a literal ℓ such that ϕπ ̸|= ℓ and ϕ |= ℓ.

Proof. Recall that JG, cK is the set of all instances x such that
G(x) = c. By definition of BDDs, we have that the set of all
instances that G classifies as c coincides with the set of all
instances that agree with any of the paths in G leading to a
node labeled with c; by this, JG, cK =

⋃
π∈Π(G,c)JϕπK.

Hence, ϕ is not a global necessary reason for c w.r.t. G iff
there exists a path π ∈ Π(G, c) such that JϕπK ̸⊆ JϕK, which
is ϕπ ̸|= ϕ. Observe that the latter is equivalent to cl(ϕπ) ̸⊇
cl(ϕ), where, for a condition ψ, cl(ψ) is the set of all literals
ℓ such that ψ |= ℓ. Hence, ϕ is not a global necessary reason
for c w.r.t. G iff there exists a path π ∈ Π(G, c) and a literal ℓ
such that ϕπ ̸|= ℓ and ϕ |= ℓ, as needed.

With the above characterization in place, we are now ready
to discuss how ISNOTNECESSARY[BDD] is decided by the
non-deterministic procedure Algorithm 2. In what follows, a
literal is said to be trivially true if it is of the form (0 = 0),
(1 = 1), (1 ̸= 0), (0 ̸= 1), or (vi = vi), for some 1 ≤ i ≤ n.
Moreover, since Algorithm 2 is nondeterministic, when we
say the procedure accepts its input we mean that there is
a way for the procedure to carry out the guesses such that
“accept” is returned. We now argue that the procedure is
correct; its space complexity will be discussed afterwards.
Correctness. Consider an n-feature BDD G = (V,E, λ, η),
and a class c ∈ {0, 1}. We observe that for any path
π ∈ Π(G, c), the condition ϕπ contains only literals of the
form (vi = a), with a ∈ {0, 1}, and where each Boolean
variable appears at most once. Thus, there is a straightfor-
ward approach to test whether ϕπ ̸|= ℓ, for some arbitrary
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Algorithm 2: A nondeterminisic algorithm deciding
whether a condition is not a global necessary reason
for a BDD

Input: An n-feature classifier G ∈ BDD, a class
c ∈ {0, 1}, and a condition ϕ ∈ L[n]

Output: accept, if ϕ is not a global necessary reason for c
w.r.t. G; reject, otherwise

Procedure NotNecessaryBDD(G, c, ϕ):
1 ℓ← guess a literal from L[n]
2 if ϕ ̸|= ℓ then return reject
3 u← the root of G
4 while u is not a sink of G do
5 e← guess an edge (u, u′) in G
6 f ← λ(u)
7 a← η(e)
8 Replace each occurrence of vf in ℓ, if any, with a
9 u← u′

10 if λ(u) = c and ℓ is not trivially true then
11 return accept

12 else return reject

literal ℓ = (t ♢ t′) having t, t′ ∈ {vi | 1 ≤ i ≤ n} ∪ {0, 1}
and ♢ ∈ {=, ̸=}. In fact, it suffices to replace within ℓ the
term t (resp., t′) with the value a if the literal (t = a) (resp.,
(t′ = a)) appears in ϕπ . If the resulting literal is not a trivially
true literal, then ϕπ ̸|= ℓ.

The algorithm’s correctness follows from the fact that it es-
sentially implements the characterization of Lemma 7, where
the check ϕπ ̸|= ℓ is carried out as discussed above. In
particular, the algorithm non-deterministically searches for
a literal ℓ such that ϕ |= ℓ (lines 1 and 2) and then non-
deterministically searches for a path π in G such that ϕπ ̸|= ℓ.
More specifically, the path π is non-deterministically guessed
one node at the time in the while loop (in order not to use
more than logarithmic space). Each time an edge is traversed,
the feature identifier f is read out from the edge’s source
node label (line 6), and f ’s value a is read out from the edge
label (line 7). These two together form one literal vf = a of
the condition ϕπ corresponding to the path being traversed.
Then, in ℓ every occurrence of vf is replaced with a.

When the whole path has been traversed, by Lemma 7 and
the above discussion, it should now be clear that ϕ is not a
global necessary reason for c w.r.t. G iff the last visited node
is labeled with c and the literal ℓ is not trivially true, which is
what the procedure checks in line 10. Observe moreover that
each nondeterministic branch of the algorithm’s execution
terminates, because G is a DAG, and hence it cannot be the
case that an execution branch gets stuck in a loop of G, i.e.,
each execution branch reaches a sink of G at some point.
Space Usage. Regarding the algorithm’s space complexity,
the procedure only needs to keep in memory, overall, the
literal ℓ, the currently visited node u, its label f , the guessed
edge e = (u, u′), and its label a. All these elements can be
encoded in binary, and thus requiring logarithmically many
bits in the input size. Finally, the procedure needs to check
whether a condition entails a literal (line 2) which, by Theo-
rem 4, can be done in deterministic logspace.

With the above analysis, we can prove the following result.

Theorem 8. ISNECESSARY[BDD] is NL-complete, and the
hardness holds even when the condition is a single literal.

The upper bound of Theorem 8 follows from the fact that
ISNOTNECESSARY[BDD] is in NL, as shown above, and the
fact that NL is closed under complement.

The lower bound of Theorem 8 is shown via a reduction
from the following intermediate NL-hard problem, which we
define next. We say that a directed graph G is uniform if each
node has either 0 or exactly 2 outgoing edges.

The UNIFORMROOTEDACYCLICREACH problem is de-
fined as follows: given a uniform, rooted directed acyclic
graph (RDAG) G = (V,E), a sink of G, and an outgoing
edge e of the root of G, decide whether there exists a path in
G from its root to the given sink that traverses e.

We can show that UNIFORMROOTEDACYCLICREACH
is NL-hard. Finally, we reduce such problem to
ISNOTNECESSARY[BDD] in logspace. This implies that
also the problem ISNECESSARY[BDD] is NL-hard, since NL
is closed under complement.

The complexity of ISMINNECESSARY[BDD,≼], for each
≼ ∈ {≤,⊆}, can now be shown.

Theorem 9. ISMINNECESSARY[BDD,≼] is NL-complete,
for each ≼ ∈ {≤,⊆}.

The upper bound of Theorem 9 is obtained by exhibiting a
nondeterministic machineN deciding this problem and work-
ing in logspace. This machine N is designed so to execute
the procedure MinNecessary(M, c, ϕ) of Algorithm 1
by suitably integrating two nondeterministic logspace ma-
chines capable of deciding whether a condition, or a literal,
is, or is not, a global necessary reason for the BDD as input;
the existence of these two machines is guaranteed by the fact
that ISNECESSARY[BDD] is in NL (see Theorem 8), and so
its complement (by NL being closed under complement).

The lower bound of Theorem 9 is shown by proving that
the complement of ISMINNECESSARY[BDD,≼] is NL-hard,
which in turn is shown via a non-trivial adaptation of the
reduction from UNIFORMROOTEDACYCLICREACH to the
complement of ISNECESSARY[BDD] shown for Theorem 8.
Here the challenge is to guarantee that when there is no path
from the root of the uniform RDAG to a sink going via a
given edge, then not only the constructed condition ϕ is a
global necessary reason, but also that no literal ℓ such that
ϕ ̸|= ℓ becomes a global necessary reason.

The Case of DTs We can exploit Lemma 7 again to obtain
complexity results for the family of DTs as well. In par-
ticular, we prove that the problems ISNECESSARY[DT] and
ISMINNECESSARY[DT,≼] are in L, for each ≼ ∈ {≤,⊆}.

Theorem 10. ISNECESSARY[DT] is in L.

Proof. We show that the complement of ISNECESSARY[DT]
is in L, which implies that ISNECESSARY[DT] is in L. By
Lemma 7, to check that a condition ϕ is not a global necessary
reason for a class c w.r.t. a DT T , it suffices to try all pairs of
a literal ℓ with ϕ |= ℓ and of a path π from the root of T to
a leaf of T labeled with c, and check whether ϕπ ̸|= ℓ. We
can easily iterate over all literals ℓ with ϕ |= ℓ in logarithmic
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space, since for each literal we only need to store at most two
variables (using two numbers i, j ∈ [n] encoded in binary)
and we can reuse the space at each iteration, while ϕ |= ℓ can
be checked in logarithmic space by Theorem 4.

The crucial part is to iterate over each path π from the root
of T to a leaf of T labeled with c, and to verify that ϕπ ̸|= ℓ,
all without using more than logarithmic space. This can be
achieved by iterating over each leaf v of T , and if v is labeled
with c, then traversing the (unique) path π connecting the
root of T to v, by iteratively following the parents backwards.
While traversing the path π, the literal ℓ is modified as done
for BDDs in Algorithm 2. When the root of T is reached, the
shape of ℓ, i.e., whether it is not trivially true, will determine
if ϕπ ̸|= ℓ, again as done for BDDs. We conclude that the
complement of ISNECESSARY[DT] is in L, which implies
ISNECESSARY[DT] is in L as well.

For each preorder ≼ ∈ {≤,⊆}, we can show that
ISMINNECESSARY[DT,≼] is in L by using the same argu-
ment used for showing that ISMINNECESSARY[PRC,≼] is
in L (cf. the discussion before Theorem 6).

Theorem 11. ISMINNECESSARY[DT,≼] is in L, for each
≼ ∈ {≤,⊆}.

4.3 The Case of MLPs
In this section we consider the family of classifiers based on
MLPs. As usual, we first analyze the complexity of checking
whether a given condition is a global necessary reason.

Theorem 12. ISNECESSARY[MLP] is co-NP-complete, and
the hardness holds even when the condition is a single literal.

Proof. (Membership). We show that the problem is in co-NP
by means of a simple polynomial-time guess and check pro-
cedure deciding the complement of ISNECESSARY[MLP].
Given an MLP N , a class c, and a condition ϕ, we can decide
whether ϕ is not a global necessary reason by guessing an
instance x, which is of polynomial size in n, and by then
checking that N (x) = c and x ̸|= ϕ. Checking N (x) = c
can be carried out in polynomial time in the size of x and
N , as it suffices to compute the result of each layer of N
via matrix multiplications. Finally, checking x ̸|= ϕ requires
computing ϕ[x] and verifying that the latter evaluates to false.

(Hardness). We show the co-NP-hardness of the prob-
lem via a polynomial-time reduction from the UNSAT prob-
lem: given a 3CNF Boolean formula ψ, decide whether ψ
is unsatisfiable. The reduction constructs an MLP Nψ start-
ing from ψ by exploiting a result by Barceló et al. [2020b,
Lemma 13] showing that any Boolean formula can be en-
coded as an MLP, which can be obtained in polynomial time
in the size of the formula. Together with Nψ, the reduction
constructs the class c = 1 and the condition ϕ = (1 = 0).

Now, if ψ is unsatisfiable, by Barceló et al.’s result, for
every instance x, Nψ(x) = 0 ̸= c, hence JNψ, cK = ∅ ⊆ JϕK,
and thus ϕ is a global necessary reason for c w.r.t. Nψ . If ψ is
satisfiable, by Barceló et al.’s result, there exists an instance x̃
with Nψ(x̃) = 1 = c, and thus JNψ, cK ̸= ∅, while JϕK = ∅.
Hence, ϕ is not a global necessary reason for c w.r.t. Nψ .

We can now exploit Theorem 12 to prove the complexity
of ISMINNECESSARY[MLP,≼], for each ≼ ∈ {≤,⊆}.

Theorem 13. ISMINNECESSARY[MLP,≼] is DP-complete,
for each ≼ ∈ {≤,⊆}, and the hardness holds even when the
condition is a single literal.

Proof. (Membership). Consider again the generic procedure
MinNecessary(M, c, ϕ) reported as Algorithm 1. As-
sume the input classifier M to the procedure is an MLP N .

The procedure MinNecessary(M, c, ϕ) is character-
ized by two distinct phases, where the second is executed
only if the first succeeds, and both phases need to succeed in
order to accept the input. The first phase (line 1) succeeds
iff ϕ is a global necessary reason for c w.r.t. M. The second
phase (from line 2 to line 4) succeeds iff ϕ is ≼-minimal.

By Theorem 12, the computation carried out to success-
fully complete the first phase is in co-NP. To prove the DP

upper bound, we need to show that the computation carried
to successfully complete the second phase is in NP.

Remember that, by Lemma 3, the ≼-minimality of ϕ can
be tested by checking, for every literal ℓ ∈ L[n] (line 2) for
which ϕ ̸|= ℓ (line 3), that ℓ is not a global necessary reason
for c w.r.t. M (line 4). Observe now that the number of
distinct literals ℓ ∈ L[n] explored at line 2 is O(n2), and the
test at line 3 can be carried out in logspace (see Theorem 4),
and hence in polynomial time. Focus now on line 4. In
order to accept at line 5, the entire second phase needs to
complete successfully. This requires that all tests at line 4
have to fail, i.e., every literal ℓ for which ϕ ̸|= ℓ must not be
a global necessary reason: checking this is feasible in NP
(see Theorem 12). Therefore, the overall computation in the
second phase is in NP.

(Hardness (sketch)). Hardness is shown via a polynomial-
time reduction from the DP-hard problem SAT-UNSAT:
given a pair (γ, δ) of 3CNF Boolean formulas, decide
whether γ is satisfiable and δ is unsatisfiable. We point
out that such a reduction, which, given (γ, δ), builds an MLP
N , a class c, and a condition ϕ, is more complex than the
reduction to show that ISNECESSARY[MLP] is co-NP-hard,
because the two formulas γ and δ must be encoded together
into a single MLP N that needs to enjoy two properties at
the same time: the condition ϕ is a global necessary reason
for c w.r.t. N , and ϕ is ≼-minimal.

4.4 Computing Minimal Global Necessary
Reasons

We discuss how the complexity results for ISNECESSARY
and ISMINNECESSARY allow us to study the complexity of
computing a minimal global necessary reason.

For a family C of classifiers, and a preorder ≼ ∈ {≤
,⊆}, FINDMINNECESSARY[C,≼] denotes the problem of
computing, given a classifier M ∈ C and a class c ∈ {0, 1},
a ≼-minimal global necessary reason ϕ for c w.r.t. M.

Lower Bounds We observe that the complexity of
FINDMINNECESSARY[C,≼] is no lower than that of
ISMINNECESSARY[C,≼], which is shown by reducing the
latter to the former in polynomial time. That is, we show that
ISMINNECESSARY[C,≼] can be solved in polynomial time
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using an oracle for the problem FINDMINNECESSARY[C,≼].
Recall that any two ≼-minimal global necessary reasons have
the same models. Consider a classifier M ∈ C, a class
c ∈ {0, 1}, and a condition ϕ. To decide whether ϕ is a ≼-
minimal global necessary reason for c w.r.t. M, it is enough
to compute a ≼-minimal global necessary reason ψ using
the oracle for FINDMINNECESSARY[C,≼], and then verify
that ϕ and ψ have the same models by checking that they
entail exactly the same set of literals. The latter can be done
in polynomial time since there are O(n2) literals to check,
and by the fact that entailment of a literal can be checked in
logarithmic space, by Theorem 4.

Upper Bounds We now show that the problem
FINDMINNECESSARY[C,≼] can be solved in polyno-
mial time using an oracle for the problem ISNECESSARY[C].
Consider a classifier M ∈ C, and a class c ∈ {0, 1}. Recall
that the conjunction of all literals that are individually global
necessary reasons is a ≼-minimal global necessary reason.
Thus, to compute a ≼-minimal global necessary reason, we
can simply iterate over all literals, identify those that are
global necessary reasons, and construct their conjunction.
Checking whether a literal is a global necessary reason can
be accomplished via the oracle for ISNECESSARY[C], while
the number of oracle calls is polynomial since there are
O(n2) literals to consider.

From the above discussions we conclude that for each
preorder ≼ ∈ {≤,⊆}:
• FINDMINNECESSARY[C,≼], with C ∈ {PRC,DT,
BDD}, can be solved efficiently, i.e., in polynomial time,
since ISNECESSARY[PRC] and ISNECESSARY[DT] are
in L, and ISNECESSARY[BDD] is in NL (cf. Theorem 5,
Theorem 10, and Theorem 8).

• FINDMINNECESSARY[MLP,≼] can be solved in poly-
nomial time with a polynomial number of calls to a
co-NP oracle, since ISNECESSARY[MLP] is in co-NP
(cf. Theorem 13). Moreover, the above upper bound
cannot be significantly improved (i.e., reduced to poly-
nomial time), unless PTIME = NP, since the prob-
lem FINDMINNECESSARY[MLP,≼] is at least as hard as
ISMINNECESSARY[MLP,≼], which is DP-hard (cf. The-
orem 13), and thus FINDMINNECESSARY[MLP,≼] is
DP-hard as well.

5 Related Work
Explaining global classifiers’ decisions has been considered
in previous work in different forms.

Ignatiev, Narodytska, and Marques-Silva (2019b) pro-
posed two notions of global explanations: an absolute expla-
nation (resp., counterexample) for a class c w.r.t. a classifier
M is a subset-minimal set E of feature-value pairs (fi, ci),
where no feature occurs twice in E , such that every instance
x matching E (i.e., the instance has value ci on feature fi,
for every feature fi in E) is such that M(x) = c (resp.,
M(x) ̸= c). Thus, the “negation” of a counterexample can
be seen as a global necessary reason for c, whose form is
a disjunction of literals. Our explanations are expressed in
terms of conjunctions, which is a widely adopted form—most

of the work discussed in this section employs this form. Fur-
thermore, our language goes beyond simple conjunctions of
feature-value pairs, as already discussed in Section 3. Im-
portantly, we deepen the study of global necessary reasons
by providing a complexity analysis for concrete families of
classifiers and consider different minimality criteria.

Izza, Ignatiev, and Marques-Silva (2022) generalize two
local notions of explanations, namely weak abductive ex-
planations (Cooper and Marques-Silva 2023; Ignatiev, Nar-
odytska, and Marques-Silva 2019a)4 and weak contrastive
explanations (Miller 2019; Ignatiev et al. 2020). The gen-
eralization is done using so-called generalized explanation
functions. More specifically, a generalized explanation func-
tion takes as input an instance and returns either 0 or 1,
can be parameterized on a selected set of features Z ⊆ F
(where F is the set of all features), as well as other pa-
rameters, and is denoted as ξ(x,Z, . . . ). Then, a weak ab-
ductive explanation is a set of features Z ⊆ F such that
∀x ∈ {0, 1}n, (ξ(x,Z, . . . ) = 1) → (M(x) = c) . A weak
contrastive explanation is a set of features Z ⊆ F such
that ∃x ∈ {0, 1}n, (ξ(x,F \ Z, . . . ) = 1) ∧ (M(x) ̸= c) .
Such notions are different from ours. Also, Izza, Ignatiev,
and Marques-Silva (2022) focus on DTs only, using general-
ized explanation functions that are conjunctions of conditions
along a path in a decision tree.

Bassan, Amir, and Katz (2024) introduced a notion of
“global necessary reason” where both concepts of necessity
and globality have fundamentally different meanings from
ours. In (Bassan, Amir, and Katz 2024), necessity applies
to a single feature i of an instance x, and means that i must
belong to all local sufficient reasons for x.5 Equivalently,
a feature i is locally necessary for x if changing the value
of i in x changes the class that the classifiers assigns to x.
Similarly, in (Bassan, Amir, and Katz 2024), globality applies
to a single feature i, and means that i is a local necessary
reason for all instances. Thus, a global necessary reason,
according to the definition proposed by (Bassan, Amir, and
Katz 2024), focuses only on whether changing the value of
a feature changes the class, and it does not take any specific
class of interest into account, while doing so. In contrast, our
notion of “necessity” is rooted in logic: in the implication
A→ B, B is necessary for A to hold, because if B does not
hold, A cannot hold either. Accordingly, for us, a formula
ϕ is a necessary reason for a class c w.r.t. a classifier M
if, for all instances x, (M(x) = c) → (x |= ϕ), that is,
if x does not satisfy ϕ, then M does not classify x with c.
Finally, in our case, by “globality” we mean the ability of
an explanation (in our case, a condition) to best describe
the family of instances classified with a specific class of
interest, using a logic language in our case. Employing
logic formulas to characterize conditions that are necessary
(and/or sufficient) for classifiers’ decisions has been adopted

4These are also referred to as sufficient reasons (Darwiche and
Hirth 2020) or PI (prime implicant) explanations (Shih, Choi, and
Darwiche 2018).

5A local sufficient reason for x is a set S ⊆ {1, . . . , n} of
features such that the class of every instance y having y[i] = x[i],
for i ∈ S, coincides with the class of x.
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by different works, although only for local explanations—
e.g., see the recent tutorial by Darwiche (2023).

Notions of “necessary” explanations have been proposed
by Darwiche and Hirth; Audemard et al.; Audemard et
al. (2020; 2022a; 2021), but they are all “locally” defined
w.r.t. a specific instance, and thus differ from ours.

The works discussed below focus on sufficient properties
for a classifier to assign a certain class, and thus differ from
our approach in that we adopt necessary properties. Further-
more, the works below do not provide a complexity analysis.
Wang et al. (2017) learn a rule set model, which is a set of
rules, i.e., conjunctions of conditions. Rule set models pre-
dict that an observation is in the positive class when at least
one of the rules is satisfied. Setzu et al.; Setzu et al. (2019;
2021) proposed approaches to derive a global explanation
from local ones, where both are expressed as decision rules.
Rawal and Lakkaraju (2020) use general recourse rules,
which are if-then statements saying which changes should be
applied under certain conditions to obtain a prediction.

Global explanations with aims very different from ours
have been considered to explain agent behavior (Huber et
al. 2021) and graph neural networks (Huang et al. 2023), to
extract surrogate decision trees exploiting ontologies (Con-
falonieri et al. 2021), to compute top-k words with the high-
est global impact in document data (Mor, Belinkov, and
Kimelfeld 2024), and to transform a decision tree into if-
then statements (Huang and Marques-Silva 2023).

While there has been an extensive body of work on local
explanations, its goal is clearly different from ours, as local
explanation tries to capture a property of a single instance
(which is given) while a global explanation tries to capture
a property shared among a set of instances (which are not
explicitly given). Among other things, this difference may
affect the complexity of reasoning tasks, such as deciding
whether an expression is a local or a global explanation. In
the former case, the instance for which the property needs to
be verified is given; in the latter case, no instance is given,
and this can be a source of complexity.

Although there is a substantial body of work on local ex-
planations, their objective differs fundamentally from ours.
Local explanations aim to characterize a property of a single
given instance, whereas global explanations seek to identify
a property common to a set of instances, which are not explic-
itly provided. This distinction has important implications—
for example, it can influence the complexity of reasoning
tasks, such as determining whether a given expression qual-
ifies as a local or global explanation. In the local case, the
relevant instance is available, simplifying verification. In
contrast, the absence of such an instance in the global case
can significantly increase complexity.

Among approaches on local explanations, Rudin and Sha-
poshnik; Geng, Schleich, and Suciu (2023; 2022) proposed
notions with some sort of “global consistency”, meaning that
a local explanation must be coherent with the prediction of a
restricted set of instances. Gorji and Rubin (2022) consider
local and sufficient reasons in the presence of constraints
that allow only certain instances to be valid. Their work and
ours adopt two significantly different approaches to explain
classifiers’ decision in that they consider local and sufficient

explanations while we consider global and necessary ones.
We conclude by mentioning that there has been work fo-

cusing on defining more abstract explainability frameworks
which can be specialized to define concrete explanability
notions. One prominent example is the work by Arenas et
al. (2021), which defines a formal language, dubbed FOIL,
to express different “explainability queries”. FOIL is flexi-
ble enough to encode different notions of explanations (both
local and global) from the literature, but cannot encode the
global necessary reasons of our paper, because FOIL is not
able to reason about individual features of the instances.

6 Future Work

A natural next step is the development of classifier-specific
algorithms for computing minimal global necessary reasons,
along with an experimental evaluation. Another avenue for
future work is to carry out complexity analyses for other
families of classifiers, as well as considering other important
notions proposed in the literature where a systematic study is
still lacking. For instance, it would be interesting to carry out
a complexity analysis of global sufficient reasons along the
lines of what we have done in this paper, that is, considering
different “optimality” criteria and distinguishing different
classifier families. Global sufficient reasons are the logical
dual of global necessary reasons. In particular, a global
sufficient reason for a class c w.r.t. a classifier M is a formula
ϕ such that, for each instance x, (x |= ϕ) → (M(x) = c).
This notion then coincides with the absolute explanation by
Ignatiev, Narodytska, and Marques-Silva (2019b) and the
(generalized) weak abductive explanation by Izza, Ignatiev,
and Marques-Silva (2022).
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Barceló, P.; Monet, M.; Pérez, J.; and Subercaseaux, B.
2020a. Model interpretability through the lens of compu-
tational complexity. In Proc. NeurIPS.
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