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Abstract

Rule-based languages lie at the core of several areas of cen-
tral importance to databases and artificial intelligence such as
deductive databases and knowledge representation and rea-
soning. Disjunctive existential rules (a.k.a. disjunctive tuple-
generating dependencies in the database literature) form such
a prominent rule-based language. The goal of this work is to
pinpoint the expressive power of disjunctive existential rules
in terms of insightful model-theoretic properties. More pre-
cisely, given a collection C of relational structures, we show
that C is axiomatizable via a finite set Σ of disjunctive exis-
tential rules (i.e., C is precisely the set of models of Σ) iff
C enjoys certain model-theoretic properties. This is achieved
by using the well-known property of criticality, a refined ver-
sion of closure under direct products, and a novel property
called diagrammatic compatibility that relies on the method
of diagrams. We further establish analogous characterizations
for the well-behaved classes of linear and guarded disjunctive
existential rules by adopting refined versions of diagrammatic
compatibility that consider the syntactic restrictions imposed
by linearity and guardedness; this illustrates the robustness of
diagrammatic compatibility. We finally exploit diagrammatic
compatibility to rewrite a set of guarded disjunctive existen-
tial rules into an equivalent set that falls in the weaker class
of linear disjunctive existential rules, if one exists.

1 Introduction
Model theory is the study of the interaction between sen-
tences in some logical formalism and their models, that is,
structures that satisfy the sentences. There are two directions
in this interaction: from syntax to semantics and from se-
mantics to syntax. The first direction aims to identify proper-
ties that are satisfied by all models of sentences having com-
mon syntactic features, i.e., the syntax of a logical formalism
is introduced first and then the properties of the mathemati-
cal structures that satisfy sentences of that formalism are ex-
plored. The second direction aims to characterize sentences
in terms of their model-theoretic properties, i.e., given a set
of properties, the goal is to determine whether or not these
properties characterize some logical formalism. In general,
establishing results in the second direction is much harder
than establishing results in the first. In other words, obtain-
ing model-theoretic characterizations of logical formalisms
is a far greater challenge than identifying properties enjoyed
by all models of sentences from a certain formalism.

In this work, we are concerned with the second direction
of the interaction between logical sentences and their mod-
els. More precisely, we are interested in model-theoretic re-
sults of the following form. For a logical formalism L, given
a collection C of structures, the following are equivalent:

1. There exists a finite set Φ of sentences from L such that C
is precisely the set of models of Φ, in which case we say
that C is finitely axiomatizable by L.1

2. C enjoys certain model-theoretic properties.

Such results are welcome as they pinpoint the absolute ex-
pressive power of a logical formalism in terms of insightful
model-theoretic properties. In other words, they equip us
with model-theoretic tools that allow us to prove or disprove
that a set of sentences Φ from some logical formalism can
be equivalently rewritten as a finite set of sentences from L.
Indeed, by showing that the collection of models of Φ enjoy
the properties listed in item (2), then Φ is logically equiva-
lent to a finite set Φ′ of sentences from L; otherwise, we can
safely conclude that such Φ′ does not exist.

Two classical results in model theory of the above form
are the characterizations of when a collection C of struc-
tures is (finitely) axiomatizable by first-order sentences via
the property of closure under isomorphisms, and the more
sophisticated closure properties under ultraproducts and ul-
trapower factors; the definitions of those notions are not es-
sential for our discussion. In particular, we know that a col-
lection C of structures over a schema (a.k.a. signature) S is
axiomatizable by first-order sentences iff C is closed under
isomorphisms, ultraproducts, and ultrapower factors. More-
over, we know that C is finitely axiomatizable by first-order
sentences iff both C and the complement of C, which collects
all the structures over S that are not in C, are closed under
isomorphisms, ultraproducts, and ultrapower factors.

1.1 Characterizations for Rule-based Formalisms
Interesting characterizations have been also established for
rule-based formalisms, expressed in suitable fragments of
first-order logic, that have been used in numerous areas of
central importance to databases and knowledge representa-
tion and reasoning. A prominent such formalism, which has

1Note that one can also talk about the notion of axiomatizability
by L, where the set of sentences Φ from L might be infinite.
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attracted considerable attention during the last decades, is
that of existential rules (a.k.a. tuple-generating dependen-
cies in the database literature) that are first-order sentences

∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

where φ and ψ are conjunctions of atoms. Existential rules
have been originally introduced as a framework for database
constraints (Abiteboul, Hull, and Vianu 1995). Later on,
they have been deployed in the study of data exchange (Fa-
gin et al. 2005) and data integration (Lenzerini 2002). More
recently, they have been used for knowledge representation
purposes, in fact, for modeling ontologies intended for data-
intensive tasks such as ontology-based data access (Calı̀ et
al. 2010; Mugnier and Thomazo 2014).

Early characterizations of axiomatizability and finite ax-
iomatizability by full existential rules (i.e., existential rules
without existentially quantified variables) have been estab-
lished by Makowsky and Vardi in the 1980s (Makowsky and
Vardi 1986). Moreover, ten Cate and Kolaitis obtained anal-
ogous characterizations for source-to-target existential rules,
which have been used to formalize data exchange between
a source schema and a target schema (ten Cate and Kolaitis
2009). More recently, Console, Kolaitis and Pieris charac-
terized finite axiomatizability by arbitrary existential rules,
as well as existential rules from central guarded-based sub-
classes, that is, linear, guarded and frontier-guarded existen-
tial rules (Console, Kolaitis, and Pieris 2021).

To the best of our knowledge, the above results are the
only known results in the literature concerning characteriza-
tions of axiomatizability and finite axiomatizability by rule-
based formalisms. Having said that, let us stress that several
preservation results can be found in the literature. When the
target is a preservation result, one considers two formalisms
L and L′, where L′ is typically a proper fragment of L, and
the goal is to obtain characterizations of the following form:
a set Φ of sentences from L is logically equivalent to a set of
sentences from L′ iff the models of Φ enjoy certain model-
theoretic properties. A prototypical example of such a re-
sult is the Łos-Tarski Theorem (Chang and Keisler 1992),
which states that a set Φ of first-order sentences is equiv-
alent to a set of universal first-order sentences iff the col-
lection of models of Φ is closed under substructures. Such
results for rule-based formalisms have been obtained in the
context of description logics by Lutz et al. (Lutz, Piro, and
Wolter 2011) and of existential rules by Zhang et al. (Zhang,
Zhang, and Jiang 2020).

1.2 Disjunctive Existential Rules
The extension of existential rules with the feature of dis-
junction in the right-hand side of the implication, originally
proposed in (Deutsch and Tannen 2003), leads to the central
rule-based formalism of disjunctive existential rules that are
first-order sentences of the form

∀x̄∀ȳ

(
φ(x̄, ȳ) →

k∨
i=1

∃z̄i ψi(x̄i, z̄i)

)
.

Disjunctive existential rules have also found numerous ap-
plications in several areas such as data exchange (Fagin et

al. 2008), expressive database query languages (Eiter, Gott-
lob, and Mannila 1997), and knowledge representation and
reasoning (Alviano et al. 2012), to name a few.

Despite the characterizations concerning existential rules
discussed above, similar characterizations for disjunctive ex-
istential rules have remained largely unexplored so far. The
main objective of this work is to change this state of affairs
by focusing on finite axiomatizability. Our results towards
this end can be summarized as follows:

• We establish that a collection of structures C is finitely ax-
iomatizable by disjunctive existential rules with at most
n universally quantified variables, at most m existen-
tially quantified variables, and at most ` disjuncts iff C is
critical, closed under repairable direct products, and dia-
grammatically (n,m, `)-compatible. Criticality is a stan-
dard property, which has been used in several works (see,
e.g., (Console, Kolaitis, and Pieris 2021)), and states that,
for each integer κ > 0, C contains a structure Iκ with κ
domain elements, and each relation of Iκ contains all the
tuples that can be formed using those κ elements. Clo-
sure under repairable direct products is a new property ob-
tained by carefully refining the standard property of clo-
sure under direct products since it is easy to show that
disjunctive existential rules violate closure under direct
products. Finally, diagrammatic (n,m, `)-compatibility,
which is actually the main innovation of our characteriza-
tion, relies on the method of diagrams.

• Diagrammatic (n,m, `)-compatibility turns out to be
quite flexible. It can be tailored to other classes of disjunc-
tive existential rules, so that it gives rise to the refined no-
tions of linear-diagrammatic and guarded-diagrammatic
(n,m, `)-compatibility. By exploiting these refined prop-
erties, we obtain characterizations of finite axiomatizabil-
ity by linear and guarded disjunctive existential rules.

• Finally, we study the problem of rewriting a finite set of
guarded disjunctive existential rules into an equivalent set
that falls in the weaker class of linear disjunctive existen-
tial rules, whenever one exists. We provide an algorithm
for this non-trivial problem, which heavily exploits the
notion of linear-diagrammatic compatibility, that gener-
alizes existing rewritings for non-disjunctive guarded ex-
istential rules presented in (Console, Kolaitis, and Pieris
2021; Zhang, Zhang, and Jiang 2020).

2 Preliminaries
Let C and V be disjoint countably infinite sets of constants
and variables, respectively. For an integer n > 0, we may
write [n] for the set of integers {1, . . . , n}.

Relational Structures. A (relational) schema S is a finite
set of relation symbols (or predicates) with positive arity;
we write ar(R) for the arity of the relation symbol R. A
(relational) structure I over a schema S = {R1, . . . , Rn},
or S-structure, is a tuple (dom(I), RI1, . . . , R

I
n), where

dom(I) ⊆ C is a (finite or infinite) domain and RI1, . . . , R
I
n

are relations over dom(I), i.e., RIi ⊆ dom(I)ar(Ri) for each
i ∈ [n]. We say that I is a finite structure if dom(I) is fi-
nite. A fact of I is an expression of the form Ri(c̄), where
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c̄ ∈ RIi , and we denote by facts(I) the set of facts of I . The
active domain of a structure I , denoted adom(I), is the set
of elements of dom(I) that occur in at least one fact of I . For
an S-structure J = (dom(J), RJ1 , . . . , R

J
n), we write J ⊆ I

if facts(J) ⊆ facts(I). We say that J is a substrucure of I ,
denoted J � I , if dom(J) ⊆ dom(I) and RJ = RI|dom(J)

for each R ∈ S with RI|dom(J) being the restriction of RI

over dom(J), i.e., the relation
{
c̄ ∈ RI | c̄ ∈ dom(J)ar(R)

}
.

Note that J � I implies J ⊆ I , but the other direc-
tion does not necessarily hold. A homomorphism from I
to J is a function h : dom(I) → dom(J) such that, for
each i ∈ [n], c̄ = (c1, . . . , cm) ∈ RIi implies h(c̄) =
(h(c1), . . . , h(cm)) ∈ RJi . We write h : I → J for the
fact that h is a homomorphism from I to J . Let h(facts(I))
be the set {R(h(c̄)) | R(c̄) ∈ facts(I)}. Finally, we say that
I and J are isomorphic, written I ' J , if there is a bijective
homomorphism from I to J such that h−1 : J → I .

Extended Structures. An extended schema is a pair (S,F),
where S = {R1, . . . , Rn} is a relational schema and F =
{f1, . . . , fm} is a set of 0-ary function symbols. A structure
I over (S,F) is a tuple (dom(I), RI1, . . . , R

I
n, f

I
1 , . . . , f

I
m),

where dom(I) ⊆ C, RI1, . . . , R
I
n are relations over dom(I),

and f I1 , . . . , f
I
m are constants of dom(I). Given a relational

schema S and a finite non-empty set C = {c1, . . . , cm} of
constants from C, we denote by S[C] the extended schema
(S, {fc1 , . . . , fcm}). Furthermore, given an S-structure I =
(dom(I), RI1, . . . , R

I
n), we denote by I[C] the structure over

S[C] defined as (dom(I) ∪ C,RI1, . . . , RIn, f Ic1 , . . . , f
I
cm),

where f Icj = cj for each j ∈ [m].2

By abuse of notation, we may write down first-order for-
mulas that mention a constant c ∈ C, which is actually the 0-
ary function symbol fc. For example, ∃x(R(c, x, d)∧¬(x =
d)), where c, d ∈ C and x ∈ V, is essentially the sentence
∃x(R(fc, x, fd) ∧ ¬(x = fd)) over the extended schema
({R}, {fc, fd}). Now, by abuse of terminology, given a
structure I over a schema S and a first-order sentence Φ that
mentions relation symbols of S and constants (not necessar-
ily from dom(I)) of C, we may say that I satisfies Φ, de-
noted I |= Φ. With C ⊆ C being the set of constants occur-
ring in Φ, I |= Φ essentially denotes the fact that I[C] |= Φ,
that is, the structure I[C] over the extended schema S[C]
satisfies Φ under the standard first-order semantics.

Disjunctive Existential Rules. An atom over a schema S is
an expression of the form R(v̄), where R ∈ S and v̄ is an
ar(R)-tuple of variables from V. A disjunctive existential
rule (dexr) σ over a schema S is a constant-free sentence

∀x̄∀ȳ

(
φ(x̄, ȳ) →

k∨
i=1

∃z̄i ψi(x̄i, z̄i)

)
,

where k > 0, x̄, ȳ, x̄1, . . . , x̄k, z̄1, . . . , z̄k are tuples of vari-
ables of V, the variables of x̄i occur in x̄ for i ∈ [k], each
variable of x̄ occurs in x̄i for some i ∈ [k], φ(x̄, ȳ) is a (pos-
sibly empty) conjunction of atoms over S, and ψi(x̄i, z̄i) is a

2The additional notions defined above for relational structures
(such as subset, substructure, homomorphism, and isomorphism)
are not needed in the paper for structures over extended schemas.

non-empty conjunction of atoms over S for each i ∈ [k]. For
brevity, we write σ as φ(x̄, ȳ) →

∨k
i=1 ∃z̄i ψi(x̄i, z̄i) and

use comma instead of ∧ for joining atoms. When φ(x̄, ȳ) is
empty, σ is essentially the sentence

∨k
i=1 ∃z̄i ψi(z̄i). We re-

fer to φ(x̄, ȳ) and
∨k
i=1 ψi(x̄i, z̄i) as the body and head of σ,

denoted body(σ) and head(σ), respectively. By abuse of no-
tation, we may treat a tuple of variables as a set of variables
and a conjunction of atoms as a set of atoms. Assuming that
φ(x̄, ȳ) is non-empty, an S-structure I satisfies σ if the fol-
lowing holds: whenever there exists a function h : x̄ ∪ ȳ →
dom(I) such that h(φ(x̄, ȳ)) ⊆ facts(I) (as usual, we write
h(φ(x̄, ȳ)) for the set {R(h(v̄)) | R(v̄) ∈ φ(x̄, ȳ)}), then
there exists an integer i ∈ [k] and an extension h′ of h such
that h′(ψi(x̄i, z̄i)) ⊆ facts(I). When φ(x̄, ȳ) is empty, an
S-structure I satisfies σ if there exists i ∈ [k] and a function
h : z̄i → dom(I) such that h(ψi(z̄i)) ⊆ facts(I). We write
I |= σ for the fact that I satisfies σ. The S-structure I sat-
isfies a set Σ of dexrs over S, written I |= Σ, in which case
we say that I is a model of Σ, if I |= σ for each σ ∈ Σ

Finite Axiomatizability. Let C be a collection of structures
over a schema S. We say that C is finitely axiomatizable by
dexrs if there exists a finite set Σ of dexrs over S such that
I ∈ C iff I |= Σ, that is, C is precisely the set of models of
Σ. Henceforth, since dexrs cannot distinguish isomorphic
structures, we implicitly assume that collections C of struc-
tures are closed under isomorphisms, i.e., if I ∈ C and J is
a structure such that I ' J , then J ∈ C.

3 Model-theoretic Properties
We now introduce three model-theoretic properties of col-
lections of structures that will play a crucial role in our char-
acterizations. Fix an arbitrary schema S = {R1, . . . , Rr}.

3.1 Criticality
An S-structure I = (dom(I), RI1, . . . , R

I
r) is κ-critical, for

κ > 0, if |dom(I)| = κ andRIi = dom(I)ar(Ri) for each i ∈
[r]. We can now lift criticality to collections of structures.
Definition 1. A collection C of S-structures is κ-critical, for
κ > 0, if it contains a κ-critical S-structure. We further say
that C is critical if it is κ-critical for each κ > 0.

It is easy to show the following lemma:
Lemma 2. A collection C of structures that is finitely axiom-
atizable by dexrs is critical.

3.2 Closure Under Repairable Direct Products
Consider two S-structures I = (dom(I), RI1, . . . , R

I
r) and

J = (dom(J), RJ1 , . . . , R
J
r ). Their direct product, denoted

I ⊗ J , is the S-structure K = (dom(K), RK1 , . . . , R
K
r ),

where dom(K) = dom(I)× dom(J) and

RKi =
{(

(a1, b1), . . . , (aar(Ri), bar(Ri))
)
|(

a1, . . . , aar(Ri)

)
∈ RIi and

(
b1, . . . , bar(Ri)

)
∈ RJi

}
,

for each i ∈ [r]. A collection of structures C is closed un-
der direct products if, for every I, J ∈ C, the direct prod-
uct of I and J belongs to C. Closure under direct products

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

198



is a well-known property that has been extensively used in
model theory. However, it is not appropriate towards a char-
acterization of finite axiomatizability by dexrs.
Example 1. Consider the set Σ consisting of the single dexr

R(x) → S(x) ∨ T (x)

and the structures I1 and I2 with facts(I1) = {R(a), S(a)}
and facts(I2) = {R(a), T (a)}, and thus, facts(I1 ⊗ I2) =
{R(aa)}. Clearly, I1 |= Σ and I2 |= Σ, but I1 ⊗ I2 6|= Σ.

The above example essentially tells us that a collection
of structures that is finitely axiomatizable by dexrs is not
necessarily closed under direct products, and thus, we need
to revisit the standard notion of direct product. To this end,
we define the function πK : dom(K)→ dom(I) as follows:
for every (aI , aJ) ∈ dom(K), πK((aI , aJ)) = aI . It is
clear that πK is a homomorphism from K to I , which we
call the projective homomorphism for K. Now, a repairable
direct product of the S-structures I and J is an S-structure L
such that (1) I ⊗ J ⊆ L, and (2) there exists an extension h
of πK that is a homomorphism from L to I . We now define
the following novel model-theoretic property:
Definition 3. A collection C of S-structures is closed un-
der repairable direct products if, for every two S-structures
I, J ∈ C, there exists an S-structure in C that is a repairable
direct product of I and J .

Coming back to Example 1, it is easy to verify that the
structure L with facts(L) = {R(aa), S(aa)} is a repairable
direct product of I1 and I2; indeed, I1⊗I2 ⊆ L and πI1⊗I2 is
a homomorphism from L to I1. We can show the following:
Lemma 4. A collection C of structures that is finitely axiom-
atizable by dexrs is closed under repairable direct products.

3.3 Diagrammatic Compatibility
We now introduce our new property of collections of struc-
tures, which in turn relies on the notion of relative diagram
of a finite structure. We first introduce relative diagrams and
then define the new model-theoretic property of interest.

Relative Diagrams. Consider a structure I over a schema S
and a finite structureK ⊆ I with dom(K) = adom(K). We
are interested in the so-called (m, `)-diagrams of K relative
to I for integers m, ` ≥ 0, which we define below. To this
end, let AK,m be the set of all atomic formulas of the form
R(ū) that can be formed using predicates from S, constants
from dom(K), and m distinct variables y1, . . . , ym from V,
i.e., R ∈ S and ū ∈ (dom(K) ∪ {y1, . . . , ym})ar(R). Fur-
thermore, let CK,m be the set of all conjunctions of atomic
formulas from AK,m. Observe that both AK,m and CK,m
are finite sets since dom(K) is finite. Let

N I
K,m = {γ(ȳ) ∈ CK,m | I 6|= ∃ȳ γ(ȳ)},

which is clearly finite since CK,m is finite. For a set of for-
mulas G ⊆ N I

K,m, the G-diagram of K relative to I , de-
noted ∆I

K,G, is defined as the first-order sentence∧
α∈facts(K)

α

︸ ︷︷ ︸
Ψ1

∧
∧

c,d∈dom(K),
c 6=d

¬(c = d) ∧
∧

γ(ȳ)∈G

¬ (∃ȳ γ(ȳ))

︸ ︷︷ ︸
Ψ2

.

Note that Ψ1 and Ψ2 might be empty (i.e., they have no con-
juncts). In particular, Ψ1 is empty ifK is empty, whereas Ψ2

is empty if I is 1-critical, which means that |dom(K)| = 1
and I |= ∃ȳ γ(ȳ) for each γ(ȳ) ∈ CK,m, and thus, G = ∅.
When Ψ1 and Ψ2 are empty, ∆I

K,G is the truth value true,
i.e., a tautology. Intuitively, ∆I

K,G provides a witness for
the fact that a dexr, whose head-disjuncts belong to G, is
violated by the structure I due to the structure K ⊆ I .

Definition 5. Consider an S-structure I and a finite struc-
ture K ⊆ I with dom(K) = adom(K). An (m, `)-diagram
of K relative to I , for m, ` ≥ 0, is a G-diagram of K rela-
tive to I , where G ⊆ N I

K,m and |G| ≤ `.

Let ΦIK,G(x̄) be the formula obtained from ∆I
K,G by re-

placing each constant c ∈ dom(K) with a new variable
xc ∈ V \ {y1, . . . , ym}. If ∆I

K,G is empty, then ΦIK,G is
the truth value true, i.e., a tautology. It is easy to verify the
following lemma, which will be used in our proofs:

Lemma 6. It holds that I |= ∃x̄ΦIK,G(x̄).

The Property. Consider a collection C of structures over a
schema S and an S-structure I . For n,m, ` ≥ 0, we say that
C is diagrammatically (n,m, `)-compatible with I if, for ev-
ery K � I with dom(K) = adom(K) and |dom(K)| ≤ n,
and every (m, `)-diagram ∆I

K,G of K relative to I , where
G ⊆ N I

K,m, there is J ∈ C such that J |= ∆I
K,G. Roughly,

this states that no matter how a dexr σ with a bounded num-
ber of variables (at most n universally quantified and at most
m existentially quantified variables) and a bounded number
of disjuncts in its head (at most ` disjuncts) is violated by the
structure I , there is always a structure J ∈ C that violates σ
for the same reason. The new property of interest follows.

Definition 7. A collection C of S-structures is diagrammat-
ically (n,m, `)-compatible, for n,m, ` ≥ 0, if, for every
S-structure I , the following holds: C is diagrammatically
(n,m, `)-compatible with I implies I ∈ C.

The next lemma establishes that collections of structures
that are finitely axiomatizable by dexrs are diagrammati-
cally compatible. Actually, it shows a stronger claim since
it relates the integers n,m and ` that witness diagrammatic
(n,m, `)-compatibility with the number of universally quan-
tified variables, existentially quantified variables, and head-
disjuncts, respectively, occurring in the dexrs. A dexr is
called (n,m, `)-dexr, for n,m ≥ 0, with n + m > 0, and
` > 0, if it mentions at most n universally quantified vari-
ables in its body, at mostm existentially quantified variables
in each disjunct of its head, and at most ` disjuncts in its
head. Note that we require n+m > 0 since, by definition, a
dexr has at least one variable that is either universally or ex-
istentially quantified. Furthermore, we require ` > 0 since,
by definition, a dexr has at least one disjunct in its head.

Lemma 8. For n,m ≥ 0, with n+m > 0, and ` > 0, every
collection C of structures that is finitely axiomatizable by
(n,m, `)-dexrs is diagrammatically (n,m, `)-compatible.

Proof. Let Σ be a finite set of (n,m, `)-dexrs with I ∈ C iff
I |= Σ. Consider a structure I and assume that C is diagram-
matically (n,m, `)-compatible with I . We proceed to show
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that I ∈ C, or, equivalently, I |= Σ. Consider a dexr σ ∈ Σ

of the form φ(x̄, ȳ)→
∨k
i=1 ∃z̄i ψi(x̄i, z̄i). We assume that

φ(x̄, ȳ) is non-empty; the case where φ(x̄, ȳ) is empty is
treated similarly. Assume that there exists a function h :
x̄ ∪ ȳ → dom(I) such that h(φ(x̄, ȳ)) ⊆ facts(I). We need
to show that there exists i ∈ [k] such that λ(ψi(x̄i, z̄i)) ⊆
facts(I) with λ being an extension of h. By contradiction,
assume that such i ∈ [k] does not exist. This means that,
for every i ∈ [k], I |= ¬∃z̄i ψ′i(z̄i), where ψ′i(z̄i) is obtained
from ψi(x̄i, z̄i) by replacing each variable x of x̄i with h(x).
Let K be the structure (dom(K), RK1 , . . . , R

K
r ), where

dom(K) is the set of constants occurring in h(φ(x̄, ȳ)), and,
for each i ∈ [r], RKi = RIi |K . It is clear that K � I with
dom(K) = adom(K) and |adom(K)| ≤ n since φ(x̄, ȳ)
mentions at most n variables. LetG = {ψ′i(z̄i)}i∈[k]. Since,
for each i ∈ [k], ψi(x̄i, z̄i) mentions at most m existen-
tially quantified variables and k ≤ `, it is easy to see that
G ⊆ N I

K,m and |G| ≤ `. Therefore, ∆I
K,G, that is, the

G-diagram of K relative to I is an (m, `)-diagram of K rel-
ative to I . Since C is diagrammatically (n,m, `)-compatible
with I , we get that there exists J ∈ C that satisfies ∆I

K,G.
The latter implies that h(φ(x̄, ȳ)) ⊆ facts(J), but there is
no extension λ of h such that λ(ψi(x̄i, z̄i)) ⊆ facts(J) for
some i ∈ [k]. Consequently, J 6|= σ, and thus, J 6|= Σ. But
this contradicts the fact that J ∈ C, which is equivalent to
say that J |= Σ, and the claim follows.

4 Finite Axiomatizability by Disjunctive
Existential Rules

We proceed to characterize when a collection C of structures
is finitely axiomatizable by dexrs. More precisely, the goal
of this section is to establish the following result:

Theorem 9. For a collection C of structures and n,m ≥ 0,
with n+m > 0, and ` > 0, the following are equivalent:

1. C is finitely axiomatizable by (n,m, `)-dexrs.
2. C is critical, closed under repairable direct products, and

diagrammatically (n,m, `)-compatible.

It is clear that the direction (1) ⇒ (2) immediately fol-
lows from Lemmas 2, 4 and 8. The rest of this section is
devoted to discussing the proof of (2) ⇒ (1). To this end,
we need to introduce disjunctive dependencies.

Disjunctive Dependencies. A disjunctive dependency (dd)
δ over a schema S is a constant-free sentence of the form

∀x̄

(
φ(x̄) →

k∨
i=1

ψi(x̄i)

)
,

where k ≥ 0, x̄ is a (possibly empty) tuple of variables of
V, the expression φ(x̄) is a (possibly empty) conjunction of
atoms over S, and, assuming k > 0, for each i ∈ [k], x̄i ⊆
x̄ and the expression ψi(x̄i) is either an equality formula
y = z with x̄i = {y, z}, or a formula ∃ȳiχi(x̄i, ȳi) with
ȳi being a tuple of variables from V \ x̄ and χi(x̄i, ȳi) a
(non-empty) conjunction of atoms over S. When k = 0,
there are no disjuncts in the conclusion of δ. In this case, if

φ(x̄) is empty, then δ is interpreted as the truth value false,
i.e., a contradiction; otherwise, δ is essentially the sentence
∀x̄ (φ(x̄)→ false) ≡ ¬(∃x̄ φ(x̄)). Now, when k > 0 and
φ(x̄) is empty, δ is essentially the sentence

∨k
i=1 ψi. If k >

0 and, for each i ∈ [k], ψi(x̄i) is an equality formula, then δ
is called a disjunctive equality rule (deqr).

Assuming that k = 0 and φ(x̄) is non-empty, an S-
structure I satisfies δ if there is no function h : x̄→ dom(I)
such that h(φ(x̄)) ⊆ facts(I). Assume now that k > 0.
If φ(x̄) is non-empty, then δ is satisfied by an S-structure I
if, whenever there exists a function h : x̄ → dom(I) such
that h(φ(x̄)) ⊆ facts(I), then there is i ∈ [k] such that, if
ψi(ȳi) is y = z, then h(y) = h(z); otherwise, if ψi(x̄i)
is ∃ȳi χi(x̄i, ȳi), then there is an extension h′ of h such
that h′(χi(x̄i, ȳi)) ⊆ facts(I). In case φ(x̄) is empty, then
δ =

∨
i∈[k] ∃ȳi χi(ȳi) is satisfied by I if there is i ∈ [k] and

a function h : ȳi → dom(I) such that h(χi(ȳi)) ⊆ facts(I).
We write I |= δ for the fact that I satisfies δ. The structure
I satisfies a set Σ of dds, written I |= Σ, in which case we
say that I is a model of Σ, if I |= δ for each δ ∈ Σ.

For a schema S, let DDS
n,m,`, for integers n,m, ` ≥ 0, be

the set of dds over S of the form

∀x̄

(
φ(x̄) →

k∨
i=1

ψi(x̄i)

)
,

where k ≥ 0, such that
1. x̄ consists of at most n distinct variables,
2. if k ≥ 1, then, for each i ∈ [k], if ψi(x̄i) is a formula of

the form ∃ȳi χi(x̄i, ȳi) with χi(x̄i, ȳi) being a non-empty
conjunction of atoms, then ȳi consists of at most m dis-
tinct variables, and

3. if k ≥ 1, then it holds that

|{i ∈ [k] | ψi(x̄i) is not an equality formula}| ≤ `,

i.e., at most ` disjuncts are a non-empty conjunction of
atoms (i.e., not an equality formula).

Note that DDS
n,m,` is a finite set (up to variable renaming)

since S is finite, and the number of variables and number of
disjuncts in each element of DDS

n,m,` is finite.

4.1 Proving the Direction (2)⇒ (1)

We now have all the ingredients needed for discussing the
proof of the direction (2) ⇒ (1) of Theorem 9. Consider
a collection C of structures over a schema S that is criti-
cal, closed under repairable direct products, and diagram-
matically (n,m, `)-compatible for integers n,m ≥ 0, with
n+m > 0, and ` > 0. We proceed to show that C is finitely
axiomatizable by (n,m, `)-dexrs in three steps:

1. We first define a finite set Σ∨ of dds from DDS
n,m,` such

that, for every S-structure I , I ∈ C iff I |= Σ∨. This
exploits the fact that C is 1-critical (since it is critical) and
diagrammatically (n,m, `)-compatible.

2. We then show that there is a finite set Σ∃,= of (n,m, `)-
dexrs and n-deqrs (i.e., deqrs with at most n universally
quantified variables with the corner case of 0-deqr being
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the value true) over S such that Σ∨ ≡ Σ∃,=; in fact, Σ∃,=

is the set of dexrs and deqrs occurring in Σ∨. This exploits
the fact that C is closed under repairable direct products.

3. We finally argue that Σ∃,= consists only of dexrs, which
implies that C is finitely axiomatizable by (n,m, `)-dexrs.
This exploits the fact that C is critical.

We proceed to give further details for the above three steps.

Step 1: The finite set Σ∨ of dds

Let Σ∨ be the set of all dds from DDS
n,m,` that are satisfied

by every structure of C, that is,

Σ∨ =
{
δ ∈ DDS

n,m,` | for each I ∈ C, we have I |= δ
}
.

Clearly, the set Σ∨ is finite (up to variable renaming) since
Σ∨ ⊆ DDS

n,m,`. We proceed to show that C is precisely the
set of S-structures that satisfy Σ∨.
Lemma 10. For every S-structure I , I ∈ C iff I |= Σ∨.

Proof. The (⇒) direction holds by construction. We pro-
ceed with the non-trivial direction (⇐). Consider an S-
structure I such that I |= Σ∨. We are going to show that C is
diagrammatically (n,m, `)-compatible with I , which in turn
implies that I ∈ C since C is diagrammatically (n,m, `)-
compatible. Consider an arbitrary substructure K of I with
dom(K) = adom(K) and |dom(K)| ≤ n, and an arbitrary
(m, `)-diagram ∆I

K,G of K relative to I , where G ⊆ N I
K,m.

We need to show that there exists J ∈ C that satisfies ∆I
K,G.

To this end, we first establish the following auxiliary claim:

Claim 11. There is δ ∈ DDS
n,m,` with δ ≡ ¬∃x̄ΦIK,G(x̄).

Let δ ∈ DDS
n,m,` be the dd provided by Claim 11 such that

δ ≡ ¬∃x̄ΦIK,G(x̄). We claim that δ 6∈ Σ∨. By contradic-
tion, assume that δ ∈ Σ∨. This implies that I |= δ, which
cannot be the case since, by Lemma 6, I |= ∃x̄ΦIK,G(x̄).
The fact that δ 6∈ Σ∨ implies that there exists an S-structure
L ∈ C such thatL 6|= δ, which means thatL |= ∃x̄ΦIK,G(x̄).
Therefore, there is an S-structure J such that J ' L and
J |= ∆I

K,G. Since C is closed under isomorphisms, we can
conclude that J ∈ C, and the claim follows.

Step 2: The finite set Σ∃,= of dexrs and deqrs

It is clear that Σ∨ |= Σ∃,=, that is, each model of Σ∨ is a
model of Σ∃,=, since Σ∃,= ⊆ Σ∨. It remains to show that
Σ∃,= |= Σ∨. By contradiction, assume that Σ∃,= 6|= Σ∨.
This implies that there exists a dd δ ∈ Σ∨ such that Σ∃,= 6|=
δ. Clearly, δ is neither a dexr nor a deqr. Thus, δ can be
written as a sentence of the form

∀x̄

(
φ(x̄) →

k1∨
i=1

(zi = wi) ∨
k2∨
i=1

∃ȳi χi(x̄i, ȳi)

)
,

where k1, k2 ≥ 1. Let δ= be the deqr

∀x̄

(
φ(x̄) →

k1∨
i=1

(zi = wi)

)
.

Since Σ∃,= 6|= δ, we can conclude that Σ∨ 6|= δ=; otherwise,
δ= ∈ Σ∃,= which cannot be the case. Therefore, we get
that there exists an S-structure I= ∈ C such that I= 6|= δ=.
Analogously, with δ∃ being the dexr

∀x̄

(
φ(x̄) →

k2∨
i=1

∃ȳi χi(x̄i, ȳi)

)
,

we can show that there exists an S-structure I∃ ∈ C such that
I∃ 6|= δ∃. We now proceed, by exploiting the structures I=
and I∃, to show that there is an S-structure J such that J ∈ C
and J 6|= δ, which leads to a contradiction. Since C is closed
under repairable direct products, we get that there exists an
S-structure J ∈ C that is a repairable direct product of I∃
and I=, which means that (i) I∃⊗ I= ⊆ J , and (ii) there ex-
ists an extension hI∃⊗I= of πI∃⊗I= that is a homomorphism
from J to I∃. It remains to show that J 6|= δ.

Since I= 6|= δ=, we get that there exists a function
h= : x̄ → dom(I=) such that h=(φ(x̄)) ⊆ facts(I=) and
h=(zi) 6= h=(wi), for each i ∈ [k1]. Similarly, since I∃ 6|=
δ∃, we get that there exists a function h∃ : x̄ → dom(I∃)
such that h∃(φ(x̄)) ⊆ facts(I∃) and there is no extension
h′∃ of h∃ such that h′∃(χi(x̄i, ȳi)) ⊆ facts(I∃), for each i ∈
[k2]. Let L∃φ be the structure with dom(L∃φ) = h∃(x̄) and
facts(L∃φ) = h∃(φ(x̄)). Analogously, let L=

φ be the struc-
ture with dom(L=

φ ) = h=(x̄) and facts(L=
φ ) = h=(φ(x̄)).

It is easy to verify that there exists a function h : x̄ →
dom(L∃φ ⊗ L=

φ ) such that h(φ(x̄)) ⊆ facts(L∃φ ⊗ L=
φ ); in

particular, for each x ∈ x̄, h(x) = (h∃(x), h=(x)). We
show that h witnesses the fact that J 6|= δ.

Clearly, L∃φ ⊗ L=
φ ⊆ I∃ ⊗ I= ⊆ J , which implies that

h(φ(x̄)) ⊆ facts(J). It remains to show that (i) for each
i ∈ [k1], h(zi) 6= h(wi), and (ii) for each i ∈ [k2], there is no
extension h′ of h such that h′(χi(x̄i, ȳi)) ⊆ facts(J). Con-
cerning item (i), we observe that h=(zi) 6= h=(wi) since h=

witnesses the fact that I= 6|= δ=. Therefore, by definition of
h, we get that h(zi) 6= h(wi), as needed. Concerning item
(2), by contradiction, assume that there exists i ∈ [k2] and
an extension h′ of h such that h′(χi(x̄i, ȳi)) ⊆ facts(J). Let
h′′ = hI∃⊗I= ◦ h′. By definition of h, we get that h′′(x) =
h∃(x) for each x ∈ x̄. Moreover, by composition, we get
that h′′(χi(x̄,ȳi)) ⊆ facts(I∃). The latter implies that h′′
is an extension of h∃ such that h′′(χ(x̄i, ȳi)) ⊆ facts(I∃),
which contradicts the fact that h∃ witnesses I∃ 6|= δ∃.

Step 3: The set Σ∃,= consists only of dexrs
By contradiction, assume that a deqr δ of the form

∀x̄

(
φ(x̄) →

k∨
i=1

(zi = wi)

)
,

where k ≥ 1, occurs in Σ∃,=. Since C is critical, there exists
a |x̄|-critical structure I ∈ C, where |x̄| is the number of
distinct variables in x̄, and a function h : x̄→ dom(I) such
that h(φ(x̄)) ⊆ facts(I) and h(zi) 6= h(wi) for each i ∈ [k].
This implies that I 6|= δ, which contradicts the fact that every
dd of Σ∃,= is satisfied by every structure of C.
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4.2 Diagrammatic Compatibility vs Locality
As discussed in Section 1, a characterization similar to The-
orem 9 for existential rules (i.e., the special case of dis-
junctive existential rules where the head consists of exactly
one disjunct) has been established in (Console, Kolaitis, and
Pieris 2021) by exploiting a model-theoretic property called
locality; for our discussion, the formal definition of locality
is not crucial and is omitted. More precisely, it was shown
that, for a collection C of structures and n,m ≥ 0, with
n+m > 0, the following are equivalent:

1. C is finitely axiomatizable by existential rules with at most
n universally and m existentially quantified variables.

2. C is critical, closed under direct products, and (n,m)-
local.

The question that comes up is whether we could use the no-
tion of locality, instead of introducing the new property of
diagrammatic compatibility, for achieving the characteriza-
tion for dexrs stated in Theorem 9. It turns out, as shown
below, that this is not the case, which justifies the introduc-
tion of diagrammatic compatibility that can be understood as
a refined notion of locality that explicitly takes into account
the number of disjuncts in the head of a rule.

Proposition 12. Consider a collection C of structures. For
every n,m ≥ 0, with n + m > 0, and ` > 0, C is diagram-
matically (n,m, `)-compatible implies C is (n,m)-local.

The above proposition implies that every collection of
structures that is finitely axiomatizable by (n,m, `)-dexrs
is (n,m)-local. This means that (n,m)-locality is not pow-
erful enough to distinguish between classes of structures C
and C′ such that C is finitely axiomatizable by (n,m, `)-
dexrs and C′ is finitely axiomatizable by (n,m, `′)-dexrs, for
` 6= `′. To further illustrate this fact, let us consider again
the set Σ of dexrs from Example 1 consisting of the dexr
R(x)→ S(x) ∨ T (x) and let CΣ be the set of models of Σ.
By definition, CΣ is finitely axiomatizable by (1, 0, 2)-dexrs.
Therefore, CΣ is diagrammatically (1, 0, 2)-compatible (by
Theorem 9) and (1, 0)-local (by Proposition 12). Moreover,
by Proposition 12, we get that every collection of structures
that is finitely axiomatizable by (1, 0, 1)-dexrs is also (1, 0)-
local. However, by exploiting our characterization, we can
show that CΣ is not finitely axiomatizable by (1, 0, 1)-dexrs.

5 Finite Axiomatizability by Guarded-based
Disjunctive Existential Rules

The goal here is to establish a result analogous to Theorem 9
for the two main members of the guarded family of dexrs:

• A dexr is linear if it has at most one atom in its body.

• A dexr is guarded if its body is empty or has an atom that
mentions all the universally quantified variables.

Interestingly, to achieve the desired characterizations for the
above classes of dexrs, we simply need to replace the dia-
grammatic compatibility property in Theorem 9 with a re-
fined version of it that takes into account the syntactic prop-
erty underlying linear and guarded dexrs. We start our anal-
ysis with linear dexrs, and then proceed with guarded dexrs.

5.1 Linear Disjunctive Existential Rules
A structure J is called linear if |facts(J)| ≤ 1. Consider a
collection C of S-structures and an S-structure I . For inte-
gers n,m, ` ≥ 0, we say that C is linear-diagrammatically
(n,m, `)-compatible with I if, for every linear structure
K ⊆ I with dom(K) = adom(K) and |dom(K)| ≤ n,
and every (m, `)-diagram ∆I

K,G of K relative to I , where
G ⊆ N I

K,m, there exists J ∈ C such that J |= ∆I
K,G.

Definition 13. A collection C of S-structures is linear-
diagrammatically (n,m, `)-compatible, for n,m, ` ≥ 0,
if, for every S-structure I , C is linear-diagrammatically
(n,m, `)-compatible with I implies I ∈ C.

It is important to observe that linear-diagrammatic com-
patibility implies diagrammatic compatibility as this will be
crucial for obtaining our main characterization.

Lemma 14. Consider a collection C of S-structures that is
linear-diagrammatically (n,m, `)-compatible, for integers
n,m ≥ 0, with n + m > 0, and ` > 0. It holds that C
is diagrammatically (n,m, `)-compatible.

The characterization of interest for linear dexrs follows:

Theorem 15. For a collection C of structures and n,m ≥ 0,
with n+m > 0, and ` > 0, the following are equivalent:

1. C is finitely axiomatizable by linear (n,m, `)-dexrs.
2. C is critical, closed under repairable direct products, and

linear-diagrammatically (n,m, `)-compatible.

To establish the above characterization, we first show a
technical lemma, called Linearization Lemma, which is in-
teresting in its own right as it characterizes when a collection
of structures that is finitely axiomatizable by dexrs is finitely
axiomatizable by linear dexrs. To this end, the property of
linear-diagrammatic compatibility plays a central role.

Lemma 16. Consider a collection C of structures that
is finitely axiomatizable by (n,m, `)-dexrs, for integers
n,m ≥ 0, with n + m > 0, and ` > 0. For every inte-
ger `′ > 0, the following are equivalent:

1. C is finitely axiomatizable by linear (n,m, `′)-dexrs.
2. C is linear-diagrammatically (n,m, `′)-compatible.

The proof of the direction (1)⇒ (2) of the Linearization
Lemma is analogous to the proof of Lemma 8, whereas the
direction (2) ⇒ (1) is shown by following the same strat-
egy as in the proof of the direction (2)⇒ (1) of Theorem 9.
Having the Linearization Lemma in place, it is now not dif-
ficult to prove the characterization provided by Theorem 15:

Proof of Theorem 15. The direction (1)⇒ (2) follows from
Lemmas 2, 4, and 16 (direction (1)⇒ (2)). For (2)⇒ (1),
since C is linear-diagrammatically (n,m, `)-compatible, by
Lemma 14 we get that C is also diagrammatically (n,m, `)-
compatible. Since C is critical and closed under repairable
direct products, we get from Theorem 9 that C is finitely
axiomatizable by (n,m, `)-dexrs. This allows us to apply
Lemma 16 (direction (2) ⇒ (1)), and get that C is finitely
axiomatizable by linear (n,m, `)-dexrs, as needed.
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5.2 Guarded Disjunctive Existential Rules
Let us now proceed with guarded dexrs and perform a sim-
ilar analysis as for linear dexrs. As one might suspect, the
refined notion of diagrammatic compatibility with a struc-
ture I is defined as diagrammatic compatibility with I with
the key difference that only guarded substructures K of I
are considered. Formally, a structure J is guarded if either
facts(J) = ∅, or there is R(c1, . . . , cr) ∈ facts(J) such that
adom(J) = {c1, . . . , cr}. Consider now a collection C of
structures over a schema S and an S-structure I . For inte-
gers n,m, ` ≥ 0, we say that C is guarded-diagrammatically
(n,m, `)-compatible with I if, for every guarded substruc-
ture K of I with dom(K) = adom(K) and |dom(K)| ≤ n,
and every (m, `)-diagram ∆I

K,G of K relative to I , where
G ⊆ N I

K,m, there exists J ∈ C such that J |= ∆I
K,G. The

refined model-theoretic property follows.

Definition 17. A collection C of S-structures is guarded-
diagrammatically (n,m, `)-compatible, for n,m, ` ≥ 0,
if, for every S-structure I , C is guarded-diagrammatically
(n,m, `)-compatible with I implies I ∈ C.

As for linear-diagrammatic compatibility, it is straightfor-
ward to show the following, which will be used later:

Lemma 18. Consider a collection C of S-structures that
is guarded-diagrammatically (n,m, `)-compatible, for inte-
gers n,m ≥ 0, with n + m > 0, and ` > 0. It holds that C
is diagrammatically (n,m, `)-compatible.

The characterization of interest for guarded dexrs follows:

Theorem 19. For a collection C of structures and n,m ≥ 0,
with n+m > 0, and ` > 0, the following are equivalent:

1. C is finitely axiomatizable by guarded (n,m, `)-dexrs.
2. C is critical, closed under repairable direct products, and

guarded-diagrammatically (n,m, `)-compatible.

To establish the above characterization, we first show a
technical lemma in the spirit of the Linearization Lemma,
called Guardedization Lemma, which characterizes when
a collection of structures that is finitely axiomatizable by
dexrs is finitely axiomatizable by guarded dexrs. To this end,
guarded-diagrammatic compatibility plays a crucial role.

Lemma 20. Consider a collection C of structures that
is finitely axiomatizable by (n,m, `)-dexrs, for integers
n,m ≥ 0, with n + m > 0, and ` > 0. For every inte-
ger `′ > 0, the following are equivalent:

1. C is finitely axiomatizable by guarded (n,m, `′)-dexrs.
2. C is guarded-diagrammatically (n,m, `′)-compatible.

The proof of the direction (1) ⇒ (2) of the Guardediza-
tion Lemma is analogous to the proof of Lemma 8, whereas
the direction (2) ⇒ (1) is shown by following the same
strategy as in the proof of the direction (2) ⇒ (1) of The-
orem 9. The Guardedization Lemma allows us to prove the
characterization provided by Theorem 19:

Proof of Theorem 19. The direction (1) ⇒ (2) follows
from Lemmas 2, 4, and 20 (direction (1) ⇒ (2)). For

(2) ⇒ (1), since C is guarded-diagrammatically (n,m, `)-
compatible, by Lemma 18 we get that C is also diagrammati-
cally (n,m, `)-compatible. Since C is critical and closed un-
der repairable direct products, we get from Theorem 9 that
C is finitely axiomatizable by (n,m, `)-dexrs. Thus, we can
apply Lemma 20 (direction (2) ⇒ (1)), and get that C is
finitely axiomatizable by guarded (n,m, `)-dexrs.

6 From Guarded to Linear Disjunctive
Existential Rules

The goal of this last section is to understand whether our new
diagrammatic compatibility property can be used to solve
the non-trivial problem of rewriting a set of guarded dexrs
into an equivalent set of dexrs that falls in the weaker class
of linear dexrs rules. Formally, we are interested in the fol-
lowing algorithmic problem:

PROBLEM : G-to-L
INPUT : A finite set Σ of guarded dexrs.
OUTPUT : A finite set Σ′ of linear dexrs such that

Σ ≡ Σ′, if one exists; otherwise, fail.

Our goal is to show that:
Theorem 21. G-to-L is computable in elementary time.

6.1 Bounded Linearization Lemma
To obtain an algorithm that solves our rewritability problem,
we need a stronger version of the Linearization Lemma, es-
tablished in the previous section (see Lemma 16), that al-
lows us to bound the number of variables and the number of
head-disjuncts occurring in the linear dexrs of the equivalent
set, which in turn allows us to focus on finitely many linear
dexrs. More precisely, we need a result that allows us to con-
clude the following: given a set Σ of dexrs, there is a set Σ′

of linear dexrs that is equivalent to Σ iff there is one consist-
ing of linear dexrs with a bounded number of variables and
a bounded number of head-disjuncts. This is achieved by
the following result, dubbed Bounded Linearization Lemma.
For a schema S, we write ar(S) for the maximum arity over
all predicates of S, that is, the integer maxR∈S ar(R).
Lemma 22. Consider a collection C of structures over a
schema S that is finitely axiomatizable by (n,m, `)-dexrs,
for integers n,m ≥ 0, with n + m > 0, and ` > 0. Let
`′ = `·|S|·(n+m+1)m·ar(S). The following are equivalent:

1. C is finitely axiomatizable by linear dexrs.
2. C is linear-diagrammatically (n,m, `′)-compatible.

Remark. To establish a Bounded Linearization Lemma, one
could simply let `′ = 2|S|·(n+m)ar(S)

. Indeed, with n + m
variables, we can construct at most |S| · (n+m)ar(S) atoms
that mention a predicate of S and any subset of those atoms
may give rise to a conjunction of atoms that can appear in
a head-disjunct. However, we would like to obtain an op-
timal bound on the number of head-disjuncts, whereas the
naive double-exponential bound discussed above is clearly
suboptimal. The Bounded Linearization Lemma established
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Algorithm 1: Rewrite
Input: A set Σ of guarded (n,m, `)-dexrs over S, for

n,m ≥ 0, with n+m > 0, and ` > 0.
Output: A set Σ′ of linear (n,m, `′)-dexrs, where

`′ = ` · |S| · (n+m)ar(S)·(n+1), such that
Σ ≡ Σ′, if one exists; otherwise, fail.

`′ := ` · |S| · (n+m)ar(S)·(n+1)

Σ′ := {σ |
σ is a linear (n,m, `′)-dexr over S and Σ |= σ}

if Σ′ 6= ∅ and Σ′ |= Σ then
return Σ′

else
return fail

above provides an exponential bound, which significantly
improves the naive bound, by exploiting the fact that the col-
lection C of S-structures is finitely axiomatizable by dexrs
with at most ` head-disjuncts. The question whether we can
establish a stronger version of the Bounded Linearization
Lemma, which provides a polynomial bound on the number
of disjuncts, remains an interesting open problem.

6.2 The Rewriting Algorithm
Let Σ be a finite set of guarded dexrs over S. Clearly, there
are integers n,m ≥ 0, with n + m > 0, and ` > 0, such
that Σ consists only of (n,m, `)-dexrs. By the Bounded Lin-
earization Lemma, we get that the following are equivalent:

• There is a finite set Σ′ of linear dexrs over S with Σ ≡ Σ′.

• There is a finite set Σ′ of linear (n,m, `′)-dexrs, where
`′ = ` · |S| · (n+m+ 1)m·ar(S), over S with Σ ≡ Σ′.

This means that, even though there are infinitely many finite
sets of linear dexrs over S, it suffices to search only for linear
dexrs over S that mention at most n universally quantified
variables, at mostm existentially quantified variables, and at
most `′ head-disjuncts, which are finitely many, to find a set
Σ′ that is equivalent to Σ. This leads to the simple algorithm
depicted in Algorithm 1. It first collects in Σ′ all the linear
(n,m, `′)-dexrs over S that are entailed by the input set Σ
of guadred dexrs, and then checks whether Σ′ is non-empty
and entails Σ; the latter is actually done by checking whether
Σ′ |= σ, for each σ ∈ Σ. We proceed to show that Rewrite
runs in elementary time, which will imply Theorem 21.

We first observe that the number of linear (n,m, `′)-dexrs
over the schema S is bounded by the integer

|S| · nar(S)︸ ︷︷ ︸
≥ # of linear bodies

·
`′∑
i=1

(
H

i

)
︸ ︷︷ ︸
≥ # of heads

,

where H = 2|S|·(n+m)ar(S)

. Therefore, one can enumerate
all the linear (n,m, `′)-dexrs over S in elementary time (in
fact, in triple-exponential time). It remains to analyze the
complexity of deciding whether a set of guarded dexrs en-
tails a linear dexr (needed in the construction of Σ′), and

the complexity of deciding whether a set of linear dexrs en-
tails a guarded dexr (needed for checking whether Σ′ |= Σ).
Given a set Σ of dexrs and a single dexr σ of the usual form
φ(x̄, ȳ)→

∨k
i=1 ∃z̄i ψi(x̄i, z̄i), it is not difficult to show that

the following statements are equivalent:
1. Σ |= σ.
2. φ(ρ(x̄), ρ(ȳ)) ∧ Σ |= ∃z̄i ψi(ρ(x̄i), z̄i), for some i ∈ [k],

where ρ is a renaming function that replaces each variable
u in φ(x̄, ȳ) with a new constant ρ(u).

The problem of deciding whether φ(ρ(x̄), ρ(ȳ)) ∧ Σ |=
∃z̄i ψi(ρ(x̄i), z̄i), for some i ∈ [k], if Σ is a set of guarded
(and thus, linear) dexrs is decidable in elementary time (in
particular, in double-exponential time); the latter is imme-
diately inherited from (Bourhis et al. 2016) that analyzes
the problem of conjunctive query answering under guarded
dexrs. Putting everything together, we get that the algorithm
Rewrite runs in elementary time and Theorem 21 follows.

At this point, let us stress that a more refined complex-
ity analysis allows us to conclude that G-to-L is computable
in triple-exponential time, whereas the best that we can
hope for is double-exponential time since already the prob-
lem of deciding whether a set of guarded existential rules
(i.e., dexrs with only one head-disjunct) can be rewritten as
an equivalent set of linear existential rules is 2EXPTIME-
hard (Console, Kolaitis, and Pieris 2021). More precisely,
from the proof of the Bounded Linearization Lemma, we
can conclude that whenever the collection C of S-structures
is finitely axiomatizable by linear dexrs where each head-
disjunct mentions at most p > 0 atoms, then it is finitely ax-
iomatizable by linear (n,m, `′)-dexrs with the same bound
on the number of atoms in each head-disjunct. Therefore,
the integer H in the above analysis can be set to

p∑
i=1

(
|S| · (n+m)ar(S)

i

)
≤

p∑
i=1

(
|S| · (n+m)ar(S)

)i
,

which implies that we need to consider double-exponentially
many linear dexrs. This in turn allows us to argue, by using
results on the complexity of the satisfiability problem for the
guarded fragment of first-order logic (Grädel 1999), that our
rewriting algorithm runs in triple-exponential time.

Remark. As said above, it remains open whether a stronger
version of the Bounded Linearization Lemma that provides
a polynomial bound on the number of head-disjuncts can
be established. Let us remark that having such a stronger
version of the Bounded Linerization Lemma in place, we
can show that our problem G-to-L is computable in double-
exponential time, which is the best that we can hope for.

7 Future Work
We would like to perform a similar analysis that goes beyond
finite axiomatizability by dexrs. In particular, we are plan-
ning to consider finite axiomatizability by dexrs, disjunctive
equality rules, and denial constraints. Moreover, it is inter-
esting to prove a stronger version of the Bounded Lineariza-
tion Lemma (see the last remark of Section 6), which will
allow us to establish that G-to-L is computable in double-
exponential time, which is worst-case optimal.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

204



Acknowledgements
This work was funded by the European Union - Next Gener-
ation EU under the MUR PRIN-PNRR grant P2022KHTX7
“DISTORT”.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Alviano, M.; Faber, W.; Leone, N.; and Manna, M. 2012.
Disjunctive datalog with existential quantifiers: Semantics,
decidability, and complexity issues. Theory Pract. Log. Pro-
gram. 12(4-5):701–718.
Bourhis, P.; Manna, M.; Morak, M.; and Pieris, A. 2016.
Guarded-based disjunctive tuple-generating dependencies.
ACM Trans. Database Syst. 41(4):27:1–27:45.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
LICS, 228–242.
Chang, C. C., and Keisler, H. J. 1992. Model theory, Third
Edition. North-Holland.
Console, M.; Kolaitis, P. G.; and Pieris, A. 2021. Model-
theoretic characterizations of rule-based ontologies. In
PODS, 416–428.
Deutsch, A., and Tannen, V. 2003. Reformulation of XML
queries and constraints. In ICDT, 225–241.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
datalog. ACM Trans. Database Syst. 22(3):364–418.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor.
Comput. Sci. 336(1):89–124.
Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W. C. 2008.
Quasi-inverses of schema mappings. ACM Trans. Database
Syst. 33(2):11:1–11:52.
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