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Abstract

Given a relational specification between inputs and outputs as
a logic formula, the problem of functional synthesis is to au-
tomatically synthesize a function from inputs to outputs satis-
fying the relation. Recently, a rich line of work has emerged
tackling this problem for specifications in different theories,
from Boolean to general first-order logic. In this paper, we
launch an investigation of this problem for the theory of Pres-
burger Arithmetic, that we call Presburger Functional Synthe-
sis (PFnS). We show that PFnS can be solved in EXPTIME
and provide a matching exponential lower bound. This is un-
like the case for Boolean functional synthesis (BFnS), where
only conditional exponential lower bounds are known. Fur-
ther, we show that PFnS for one input and one output variable
is as hard as BFnS in general. We then identify a special nor-
mal form, called PSyNF, for the specification formula that
guarantees poly-time and poly-size solvability of PFnS. We
prove several properties of PSyNF, including how to check
and compile to this form, and conditions under which any
other form that guarantees poly-time solvability of PFnS can
be compiled in poly-time to PSyNF. Finally, we identify a
syntactic normal form that is easier to check but is exponen-
tially less succinct than PSyNF.

1 Introduction

Automated synthesis, often described as a holy grail of
computer science, deals with the problem of automatically
generating correct functional implementations from rela-
tional specifications. Specifications are typically presented
as relations, encoded as first-order logic (FOL) formulas
over a set of free variables that are partitioned into in-
puts and outputs. The goal of automated functional syn-
thesis is to synthesize a function from inputs to outputs
such that for every valuation of the inputs, if it is possi-
ble to satisfy the specification, then the valuation of out-
puts produced by the function also satisfies it. The existence
of such functions, also called Skolem functions, is well-
known from the study of first-order logic (Enderton 1972;
Huth and Ryan 2004). However, it is not always possible
to obtain succinct representations or efficiently executable
descriptions of Skolem functions (Chakraborty and Akshay
2022). This has motivated researchers to study the complex-
ity of functional synthesis in different first-order theories,
and investigate specific normal forms for specifications that
enable efficient functional synthesis.
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In the simplest setting of Boolean (or propositional)
specifications, Boolean functional synthesis (henceforth
called BFnS) has received significant attention in the recent
past (John et al. 2015; Rabe and Seshia 2016; Fried, Taba-
jara, and Vardi 2016; Chakraborty et al. 2018; Golia, Roy,
and Meel 2020; Akshay, Chakraborty, and Jain 2023; Lin,
Tabajara, and Vardi 2024) among others. Even for this re-
stricted class, functional synthesis cannot be done efficiently
unless long-standing complexity theoretic conjectures are
falsified (Akshay et al. 2021). Nevertheless, several practical
techniques have been developed, including counter-example
guided approaches (John et al. 2015; Akshay et al. 2021; Go-
lia, Roy, and Meel 2020; Golia et al. 2021), input-output sep-
aration based approaches (Chakraborty et al. 2018), machine
learning driven approaches (Golia, Roy, and Meel 2020;
Golia et al. 2021), BDD and ZDD based approaches (Fried,
Tabajara, and Vardi 2016; Lin, Tabajara, and Vardi 2022;
Lin, Tabajara, and Vardi 2024). Researchers have also stud-
ied knowledge representations or normal forms for specifi-
cations that guarantee efficient BFnS (Akshay et al. 2021;
Akshay et al. 2019; Akshay, Chakraborty, and Jain 2023;
Akshay, Chakraborty, and Shah 2024), with (Shah et al.
2021) defining a form that precisely characterizes when
BFnS can be solved in polynomial time and space.

Compared to BFnS, work on functional synthesis in the-
ories beyond Boolean specifications has received far less at-
tention, even though such theories are widely applicable in
real-life specifications. One such important extension is to
theories of linear arithmetic over reals and integers. The
work of (Kuncak et al. 2010; Kuncak et al. 2013) deals
with complete functional synthesis for quantifier-free lin-
ear real arithmetic (QF_LRA) and linear integer arithmetic
(QF_LIA). Similarly, (Jiang 2009) goes beyond Boolean
specifications, and points out that Skolem functions may not
always be expressible as terms in the underlying theory of
the specification, necessitating an extended vocabulary. For
specifications in QF_LIA, (Fedyukovich and Gupta 2019;
Fedyukovich, Gurfinkel, and Gupta 2019) build tools for
synthesizing (or extracting) Skolem functions as terms.

In this paper, our goal is to study functional synthesis
from specifications in Presburger arithmetic (PrA for short),
that extends QF_LIA with modular constraints. PrA has
been extensively studied in the literature (see (Haase 2018)
for a survey) and admits multiple interpretations, including
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geometric and logic-based interpretations; see, e.g. (Chis-
tikov 2024). Recent work has shown significant improve-
ments in the complexity of quantifier elimination for PrA;
see e.g. (Haase et al. 2024; Chistikov, Mansutti, and Star-
chak 2024). Since PrA admits effective quantifier elimina-
tion, it follows from (Chakraborty and Akshay 2022) that for
every PrA specification, Skolem functions for all outputs can
be synthesized as halting Turing machines. Unfortunately,
this does not give good complexity bounds on the time re-
quired to compute Skolem functions. Our focus in this paper
is to fill this gap by providing optimal complexity results for
PEnS as well as normal forms for tractable synthesis.
Before we proceed further, let us see an example of a
PrA specification, and an instance of PFnS. Consider a
factory with two machines M7 and Ms. Suppose M; must
pre-process newly arrived items before they are further pro-
cessed by Ms. Suppose further that M; can start pre-
processing an item at any integral time instant & (in appro-
priate time units), and takes one time unit for pre-processing.
M, on the other hand, can start processing an item only at
every 2nd unit of time, and takes one time unit to process.
Suppose items Iy, ..., I, arrive at times tq,...,%, respec-
tively, and we are told that the job schedule must satisfy
three constraints. First, M/; must finish pre-processing each
item exactly 1 time unit before M5 picks it up for process-
ing; otherwise, the item risks being damaged while waiting
for M. In general, this requires delaying the start-time of
pre-processing I; by 6; (> 0) time units so that the end-time
of pre-processing aligns with one time instant before 2r, for
some r € N. Second, the (pre-)processing windows for
different items must not overlap. Third, the total weighted
padded delay must not exceed a user-provided cap A, where
the weight for item ¢ is ¢. Formalizing the above constraints
in PrA, we obtain the specification ¢ = 1 A Y2 A @3,
where o1 = A, (i + 0, + 1 = 1 (mod 2)), g2 =
/\1§i<j§n ((ti+6i+1 < tj-‘r(slj)\/(tj—F(Sj-‘rl < ti+5i))s
03 = N\l (6; > 0) A (X0, i.6; < A). Here, ty,...,t,
and A are input variables, while 61, ..., d, are output vari-
ables. The functional synthesis problem then asks us to
synthesize the delays, i.e., functions fi,..., f, that take
t1,...,tn, A as inputs and produce values of d1,...,d,
such that ¢ is satisfied, whenever possible.
Our contributions. As a first step, we need a representation
for Skolem functions, for which we propose Presburger cir-
cuits, constructed by composing basic Presburger “gates”.
We identify a (minimal) collection of these gates such that
every Presburger-definable function (closely related to those
defined in (Ibarra and Leininger 1981)) can be represented
as a circuit made of these gates. Using Presburger circuits as
representations for Skolem functions, we examine the com-
plexity of PFnS and develop knowledge representations that
make PFnS tractable. Our main contributions are:

1. We provide a tight complexity-theoretic characterization
for PFnS. Specifically:

(a) We show that for every PrA specification ¢(Z, ), we
. | |<’)(1) . . .
can construct in (’)(2 @ ) time a Presburger circuit

of size (9(2“'”'0(1)) that represents a Skolem function
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for y. This exponential upper bound significantly im-
proves upon earlier constructions (Cherniavsky 1976;
Ibarra and Leininger 1981) for which we argue that the
resulting Presburger circuits would be of at least triply-
or even quadruply-exponential size, respectively.

(b) We show that the exponential blow-up above is un-
avoidable, by exhibiting a family (g, ), >0 of PrA spec-
ifications of size polynomial in n, such that any Pres-
burger circuit for any Skolem function for x,, must have
size at least 2(") | This unconditional lower bound for
PFnS stands in contrast to the Boolean case (BFnS),
where lower bounds are conditional on long-standing
conjectures from complexity theory.

(¢) We show that PFnS from one-input-one-output spec-
ifications is already as hard as BFnS in general. As
a corollary, unless NP C P/poly, the size of Skolem
functions for one-input-one-output specifications must
grow super-polynomially in the size of the specification
in the worst-case.

2. The above results imply that efficient PFnS algorithms do
not exist, and so, we turn to knowledge representations,
i.e., studying normal forms of PrA specifications that ad-
mit efficient Skolem function synthesis.

(a) For one-output PrA specifications, we define the no-
tion of modulo-tameness, and prove that every y-
modulo tame specification ¢(Z, y) admits polynomial-
time synthesis of Presburger circuits for a Skolem func-
tion.

(b) We lift this to PrA specifications with multiple output
variables, and provide a semantic normal form called

PSyNF that enjoys the following properties:

i. PSyNF is universal: every PrA specification can be
compiled to PSyNF in worst-case exponential time
(unavoidable by our hardness results above).

ii. PSyNF is good for existential quantification and syn-
thesis: Given any specification in PSyNF, we can
effectively construct Presburger circuits for Skolem
functions in time polynomial in the size of the speci-
fication. Additionally, we can also existentially quan-
tify output variables in polytime.

iii. PSyNF is effectively (in the sense of recursion theory)
checkable, and with reasonable complexity: Given
any PrA specification, deciding if it is in PSyNF is
coNP-complete.

As a byproduct of independent interest, we obtain that
the (truth problem for the) 3*V fragment of (Z; +, <
,0,1) is NP-complete.

iv. PSyNF is optimal for one output: For every univer-
sal normal form of single-output PrA specifications
that admits polynomial-time existential quantification
of the output, we can compile formulas in that form to
PSyNF in polynomial time.

(c) We provide a syntactic normal form for PrA specifica-
tions, called PSySyNF, that is universal and efficiently
checkable (in time linear in the size of the formula), but
is exponentially less succinct than PSyNF.
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Structure. The paper is organized as follows. In Section 2,
we start with preliminaries and define the problem statement
and representations in Section 3. Our main complexity re-
sults for PFnS are in Section 4. We present our semantic
normal forms in Section 5 and syntactic forms in Section 6
and conclude in Section 7. Many proofs and details, omit-
ted here due to space restrictions, can be found in the full
version at (Akshay et al. 2025).

Related Work. A circuit representation similar to ours, but
using a slightly different set of gates, was (implicitly) stud-
ied in (Ibarra and Leininger 1981, Theorem 6) in the con-
text of representing Presburger-definable functions. How-
ever, their formalism is closely tied to the setting of natural
numbers, making it somewhat cuambersome in the setting of
integers, for which our circuit representation appears more
natural. In addition, specialized programming languages for
describing Presburger-definable functions have been studied
in the literature, examples being SL (Gurari and Ibarra 1981)
and L, (Cherniavsky 1976), among others. However, be-
cause of the loopy nature of these programming languages,
such programs do not guarantee as efficient evaluation of the
functions as circuits do.

The problem of functional synthesis is intimately related
to that of quantifier elimination, and our work leverages re-
cent advances in quantifier elimination for PrA (Haase et al.
2024; Chistikov, Mansutti, and Starchak 2024). However,
being able to effectively eliminate quantifiers does not auto-
matically yield an algorithm for synthesizing Presburger cir-
cuits. Hence, although our work bootstraps on recent results
in quantifier elimination for PrA, and draws inspiration from
knowledge representation for Boolean functional synthesis,
the core techniques for synthesizing Skolem functions are
new. In fact, our knowledge compilation results yield a
new alternative approach to quantifier elimination from PrA
formulas, that can result in sub-exponential (even polyno-
mial) blow-up in the size of the original formula, if the for-
mula is in a special form. This is in contrast to state-of-
the-art quantifier elimination techniques (Haase et al. 2024;
Chistikov, Mansutti, and Starchak 2024) that always yield
an exponential blow-up.

2 Preliminaries

Presburger Arithmetic: Presburger arithmetic (PrA) is the
first-order theory of the structure (Z, +, <, 0, 1). Presburger
arithmetic is well-known to admit quantifier elimination, as
originally shown by Mojzesz Presburger in 1929 (Presburger
1929) (see (Haase 2018) for a modern survey). That is, ev-
ery formula in PA with quantifiers can be converted into an
equivalent one without quantifiers, at the cost of introduc-
ing modulo constraints, which are constraints of the form
S aix; =1 (mod M), where 1, ..., x, are variables,
and aq,...,a,,r, M are integer constants with 0 < r < M.
The constraint Y ;- , a;z; = r (mod M) is semantically
equivalentto 3k € Z : Y ., a;x; = kM + r. We say M
is the modulus of the constraint, and r its residue. For no-
tational convenience, we sometimes use 2111 a;T; =p T
for Y I" | a;z; = r (mod M). Hence, technically, we are
working over the structure (Z, +, <, (=a)mez,0,1). For
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[31’ -2> 0] [49:+5y =2 (mod 3)]

[—2x+5y+7 > 0] [y =5 (mod 6)]

Figure 1: Tree representation of a Presburger formula

variables Z = (x1,...,%,) and vectors ¥ = (r1,...,7y) of
constants 11, . .., 7, € [0, M — 1], we will use the shorthand
z=7 (mod M) tomean \|_, z; =r; (mod M).

A linear inequality is a formula of the form ayxy + -+ - +
anxy+b > 0 (orequivalently, a1 x1+- - -+an,z,+b+1 > 0)
for variables x1,...,x, and constants ai,...,a,,b € Z.
An atomic formula is either a linear inequality or a mod-
ulo constraint. Note that every quantifier-free formula over
(Z,+,<,(=m)mez,0,1) is simply a Boolean combination
of atomic formulas. Throughout this paper, we assume that
all constants appearing in formulas are encoded in binary.
We use variables with a bar at the top, viz. Z, to denote a
tuple of variables, such as (z1, . .., z,). With abuse of nota-
tion, we also use Z to denote the underlying set of variables,
when there is no confusion.

A quantifier-free PrA formula ¢(Z) is said to be in nega-
tion normal form (NNF) if no sub-formulas other than
atomic sub-formulas, are negated in ¢. By applying DeMor-
gan’s rules, a quantifier-free PrA formula can be converted
to NNF in time linear in the size of the formula. Therefore,
we assume all quantifier-free PrA formulas are in NNF. We
represent such a formula as a tree in which each internal
node is labeled by A or V, and each leaf is labeled by a lin-
ear inequality of the form > ;_, axzy +b > 0, or by a
modulo constraint of the form >_;'_; axzy > r (mod M),
where 1 € {=,#}, a1,...,a,, b, r and M are integers,
and 0 < r < M. We identify every node v in the tree with
the sub-formula of ¢ represented by the sub-tree rooted at
v. Specifically, the root of the tree is identified with the for-
mula ¢. The size of a quantifier-free PrA formula ¢, de-
noted ||, is the sum of the number of nodes in the tree rep-
resentation of ¢, the number of variables, and the number
of bits needed to encode each constant in the atomic for-
mulas in the leaves. As an example, Fig. 1 shows a tree
representing the formula ((3z — 2 > 0) A (4z + 5y = 2
(mod 3))) V ((—2z 4+ 5y +7 > 0) A (y = 5 (mod 6))).
This tree has 7 nodes, 2 variables and uses 37 bits to repre-
sent all constants in the atomic formulas in binary. binary.

3 Presburger Functional Synthesis

The central problem in this paper is Presburger functional
synthesis (PFnS). Intuitively, we have a tuple of input vari-
ables z and a tuple of output variables 3, with each variable
ranging over Z. In addition, we are also given a quantifier-
free PrA formula ©(Z,y) that we interpret as a relational
specification between the inputs and outputs. Our task is to
find (and represent) a function f with inputs Z and outputs



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

y such that the specification ¢ is satisfied by this function,
whenever possible. Such a function is called a Skolem func-
tion. More formally:

Definition 3.1. Let (T, §) be a quantifier-free PrA formula,
where T denotes (x1,...,2,) and § denotes (y1,. .., Ym)-
A function f: Z™ — Z™ is called a Skolem function for the
existentially quantified variables (%) in VZ3y: ¢(Z, ) if for
every value u € 7™ of T, 3y: p(u,y) holds if and only if
o(a, f(w)) holds.

A syntax for Skolem functions Since our goal is to syn-
thesize Skolem functions, we need a syntax to represent
them. We introduce such a syntax, called Presburger cir-
cuits, which are a variant of a syntax studied implicitly by
Ibarra and Leininger (1981). The notion of Presburger cir-
cuits is designed to achieve two key properties:

1. Efficient evaluation: Given a Presburger circuit for a func-
tion f: Z" — Z™ and a vector u € Z", one can compute
f (@) in polynomial time.

2. Completeness: Every Presburger formula has a Skolem
function defined by some Presburger circuit.

Let us describe Presburger circuits in detail. A Presburger
circuit consists of a set of gates, each of which computes a
function from a set of atomic functions. The atomic func-
tions are

1. linear functions with integer coefficients, i.e. Z" — Z,
n
(ul,...,un) = ag +Zi:1 a;u; for ag,...,a, € 7Z.

2. the maximum function max: Z X Z — Z.

3. the equality check function, i.e. E: Z x Z — Z with
E(z,y) =yifx =0and E(x,y) =0if z # 0.

4. division functions div,, : « — |2/m] form € N\ {0}.

More formally, a Presburger circuit is a collection of gates,
each labeled either with an atomic function or with an input
variable x;, 7 = 1,...,n. If a gate g is labeled by an atomic
function f: 7% — 7, then there are n edgesey,..., ek, each
connecting some gate g; to g. Intuitively, these edges pro-
vide the inputs to the gate g. Hence, g1, . . ., gi are called the
input gates of g. Finally, there is a list of m distinguished
output gates go1, - - -, §o,m that compute the output vector
€ Z™ of the Presburger circuit.

A Presburger circuit must be acyclic, meaning the edges
between gates form no cycle. This acyclicity allows us to
evaluate a Presburger circuit for a given input (uq, . .., uy):
First, the gates labeled by input variables evaluate to the re-
spective values. Then, a gate labeled with an atomic function
f:Z" — Z evaluates to f(uq,...,up), where u; is the re-
sult of evaluating the ¢-th input gate of g. Finally, the output
of the Presburger circuit is the output (i.e. evaluation result)
of the distinguished output gates. Overall, the Presburger
circuit computes a function Z" — Z™.

To simplify terminology, Presburger circuits that compute
Skolem functions will also be called Skolem circuits.

Properties of Presburger circuits First, it is obvious that
a Presburger circuit can be evaluated in polynomial time.
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Moreover, we will show that Presburger circuits are expres-
sively complete for Skolem functions in Presburger arith-
metic. Indeed, the following is a direct consequence of The-
orem 4.1, which will be shown in Section 4:

Theorem 3.2. For every quantifier-free formula o(Z,7),
there exists a Skolem circuit for the existentially quantified
variables in Vz3y: ©(Z, 7).

Equivalently, Presburger circuits describe exactly those
functions that can be defined in Presburger arithmetic. For-
mally, a function f: Z™ — Z™ is Presburger-definable if
there exists a Presburger formula ¢(Z, §), & = (21, ..., %),
g =(y1,-.-,Ym), such that for all = € Z"™ and v € Z™, we
have ¢(@, 0) if and only if f(@) = ©. The following is an
alternative characterization:

Theorem 3.3. A function 2" — Z™ is computable by a
Presburger circuit if and only if it is Presburger-definable.

Note that Theorem 3.3 follows directly from Theorem 3.2:
If a function f: Z™ — Z™ is Presburger-definable by some
Presburger formula ¢(Z, 3), then clearly f is the only pos-
sible Skolem function in VZ3y: »(Z,y). Hence, the cir-
cuit provided by Theorem 3.2 must compute f. Conversely,
given a Presburger circuit C, it is easy to construct a Pres-
burger formula that defines the function C computes.
Remark 3.4. In the full version (Akshay et al. 2025), we
also show that if we restrict the division functions to those
of the form div,, for primes p, then (i) one can still express
the same functions and (ii) the set of atomic functions is
minimal. This means, removing any of the functions max,
E, or div,, will result in some Presburger-definable function
being not representable as a Presburger circuit.

Presburger functional synthesis, formally We are ready
to state our main problem of interest. Presburger functional
synthesis (PFnS) is the following task:

Given A quantifier-free Presburger formula ¢(Z, %) repre-
senting a relational specification between  and .

Output A Presburger circuit C that computes a Skolem
function for the existentially quantified variables in
Vz3y: (2, 9).

Intuitively, for every possible value & € Z"™ of Z, a
Skolem circuit C produces C(u) € Z™ with the following
guarantee: The relational specification (@, C(@)) is true iff
there is some v € Z™ for which ¢(u,?) is true. Hence,
the value of C(@) matters only when 37 : (@, ) holds. If,
however, there is no o € Z™ with (4, ?), then any value
produced by C(a) is fine.

Remark 3.5. Every Presburger specification admits a

Presburger-definable function as a Skolem function.

See the full version (Akshay et al. 2025) for a proof.

4 Presburger Functional Synthesis for
General Formulas

In this section, we consider Presburger functional synthe-
sis for arbitrary quantifier-free relational specifications. Our
main results here are an exponential upper bound, as well as
an exponential lower bound.
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An exponential upper bound Our first result is an expo-
nential upper bound for Presburger functional synthesis.

Theorem 4.1. Given a quantifier-free formula p(z, ), there
exists a Skolem circuit for the existentially quantified vari-
ables in VZ3y: o(Z,y). Moreover, this circuit can be con-
structed in time 2191°" .

This exponential upper bound result significantly im-
proves on existing methods related to constructing Pres-
burger Skolem functions. The two related lines of work that
we are aware of, namely, Presburger functions defined by
Ibarra and Leininger (Ibarra and Leininger 1981) and trans-
lation of Presburger-definable functions into L -programs
by Cherniavsky (Cherniavsky 1976, Thm. 5) would yield,
respectively, quadruply-exponential and triply-exponential
upper bounds. See the full version (Akshay et al. 2025) for
an analysis.

Theorem 4.1 can also be deduced from our normal form
results, presented in later sections (i.e. by using Theorem 5.3
and either Theorem 5.4, or Theorem 6.2). However, we find
it instructive to provide a direct proof without conversion
into normal forms.

We now present a sketch of the construction of Theo-
rem 4.1. The details can be found in the full version (Akshay
et al. 2025). The crux of our approach is to use the geomet-
ric insight underlying a recent quantifier elimination tech-
nique in (Haase et al. 2024). This geometric insight refines
solution bounds to systems AZ < b of linear inequalities.
Standard bounds provide a solution that is small compared
to ||A| and ||b||. The bound from (Haase et al. 2024) even
applies when ||| itself cannot be considered small. Instead,
the result provides a solution that is “not far from b”: The
solution can be expressed as an affine transformation of b
with small coefficients. To state the result, we need some
notation. For a rational number r € Q, its fractional norm
[|7||frac is defined as |a| + [b|, where ¢ = r is the unique
representation with co-prime a,b. The fractional norm of
vectors and matrices, written || A||frac and ||Z||frac, is then the
maximum of the fractional norms of all entries. The geo-
metric insight is the following, which appeared in (Haase et
al. 2024, Prop. 4.1).

Proposition 4.2. Let A € Z*™ and b € 7, and let A be an
upper bound on the absolute values of the subdeterminants
of A. If the system Az < b has an integral solution, then
it has an integral solution of the form Db + d, where D €
@nxl’ d € Q" with HDHfraC7 Hd”frac < nAZ

Crucially, the bound nA? only depends on A, not on b. By
the Hadamard bound for the determinant (Hadamard 1893),
this means the number of bits in the description of D and d
is polynomial in the number of bits in A.

Proof sketch of Theorem 4.1. (A detailed proof can be
found in the full version (Akshay et al. 2025).) To apply
Proposition 4.2, we first remove modulo constraints in ¢,
in favor of new output variables. For example, a constraint
21 = a mod b is replaced with x1 = by’ + a, where 3y’ is a
fresh output variable. These new output variables can just be
ignored in the end, to yield a circuit for the original formula.
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By bringing ¢ into DNF, we may assume that ¢ is a dis-
junction of r-many systems of inequalities A;§ < B;Z + ¢;.
Here, r is at most exponential, and each A;, B;, and ¢; has
at most polynomially many bits.

Now for each i € [1,r], Proposition 4.2 yields s-many
candidate pairs (D; ;, d; ;) for solutions g to A;y < B;T +
¢;. Here, s is at most exponential, and we know that if the
system has a solution for a given Z, then it has one of the
form D; ;(B;,Z + &) + d; j forsome j =1,...,s.

Our circuit works as follows. The idea is to try for
each (7,7), in lexicographical order, whether o; ;(Z) =
D; ;(B;x + ¢;) + d; ; is an integral solution to A;j <
B;Z + ¢;. In this case, let us say that (¢, j) is a solution. If
(4,7) is a solution, then our circuit outputs o; ;(Z). In order
to check if (i, 7) is a solution, we need to check two things:
whether (a) o; ;(Z) is an integer vector and (b) whether it
satisfies A;0; ;(Z) < B,T + ¢;. Note that (a) is neces-
sary because D; ; and d; ; are over the rationals. How-
ever, we can check integrality of o; ;(Z) by way of div gates.
To check (b), our circuit computes all entries of the vector
B,z +¢; — Aiam»(j:). Using summation, max, and E gates,
it then computes the number of entries that are > 0. If this
number is exactly the dimension of the vector (which can be
checked with an E gate), (4, j) is a solution.

To implement the lexicographic traversal of all (i, j), we
have for each (4, j) € [r, s] a circuit that computes the func-
tion F; ;(Z), which returns 1 if and only if (i) (4, j) is a solu-
tion, and (ii) for all (r, s) that are lexicographically smaller
than (i, 7), the pair (r, s) is not a solution. Based on this, we
can compute the function S; ;(Z), which returns o; ;(Z) if
(¢,7) is a solution, and zero otherwise. Note that .S; ;(Z) is
non-zero for at most one pair (¢, j). Finally, we define f(z)
to sum up S; ;(Z) over all (4, 5) € [1,7] x [1, s]. Then, f is
clearly a Skolem function for . O

Remark 4.3. Our construction even yields a circuit of poly-
nomial depth, and where all occurring coefficients (in linear
combination gates) have at most polynomially many bits.

An exponential lower bound The second main result of
this section is a matching exponential lower bound.

Theorem 4.4. There are quantifier-free formulas (tin)n>0
such that any Skolem circuit for ji,, has size at least 2°4™)

Let us point out that usually it is extremely difficult to
prove lower bounds for the size of circuits. Indeed, proving
an (unconditional) exponential lower bound for the size of
circuits for Boolean functional synthesis is equivalent to one
of the major open problems in complexity theory—whether
the class NP is included in P/poly (which, in turn, is closely
related to whether P equals NP):

Observation 4.5. The following are equivalent: (i) Every
Boolean relational specification ¢ has a Skolem function
computed by a Boolean circuit of size polynomial in |y|.

(ii) NP C P/poly.

Here, P/poly is the class of all problems solvable in
polynomial time with a polynomial amount of advice (see
e.g., (Arora and Barak 2009)). The implication “(i)=-(ii)”
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had been shown in (Akshay et al. 2021, Theorem 1). We
prove “(ii)=>(i)” in the full version (Akshay et al. 2025).

Nevertheless, we will prove an exponential lower bound
for circuits for Presburger functional synthesis.

Proof sketch exponential lower bound For space rea-
sons, we can only provide a rough sketch—with proof de-
tails in the full version (Akshay et al. 2025). Following a
construction from (Haase et al. 2024, Section 6), we choose
Wy, = Vz: 3g: ¥, (x, ) so that the formula 3y: ¥, (z,y)
defines a subset S C Z whose minimal period is doubly ex-
ponential. Here, the minimal period of S, is the smallest p
such that for all but finitely many u, we have u + p € S
if and only if u € S. Moreover, we show that if u,, had a
Skolem function with a Presburger circuit C,, with e,,-many
div-gates, and M is the least common multiple of all divi-
sors occurring in that gate, then p must divide M°». This
proves that e,, is at least exponential, hence C,, must contain
an exponential number of div-gates.

Hardness for one input, one output We now show that
synthesizing Skolem functions for Presburger specifications
with even just one input and one output variable is as hard
as the general Boolean functional synthesis problem:

Observation 4.6. Suppose every one-input one-output
quantifier-free Presburger formula has a polynomial size
Skolem circuit. Then every Boolean formula has a polyno-
mial size Skolem circuit—impossible unless NP C P /poly.

The proof uses the “Chinese Remaindering” technique, by
which one can encode an assignment of n Boolean variables
in a single integer: in the residues modulo the first n primes.
See the full version (Akshay et al. 2025) for details.

5 Semantic Normal Form for PFnS

We now present a normal form for PrA specifications, called
PSyNF, that guarantees efficient Skolem function synthe-
sis. The normal form definition has two key ingredients,
(i) modulo-tameness, and (ii) local quantification. Since the
definition involves semantic conditions, we call it a semantic
normal form.

Ingredient I: Modulo-tameness Recall that we represent
quantifier-free PrA formulas as trees. A A-labeled node in
the tree representing ¢ is said to be a maximal conjunction
if there are no A-labeled ancestors of the node in the tree. A
subformula is maximal conjunctive if it is the sub-formula
rooted at some maximal conjunction.

Definition 5.1. A quantifier-free PrA formula o(Z,y) is
called y-modulo-tame, if it is in NNF, and for every maxi-
mal conjunctive sub-formula 1) of p, there is an integer M"¥
such that all modulo constraints involving y in 1) are of the
formy =r (mod MVY) for somer € [0, M¥ — 1].

Hence, the definition admits y = r1 (mod M) and y =
ro (mod M) in the same maximal conjunctive sub-formula,
even if 71 # ro. It does not admit y = r; (mod M;) and
y = ro (mod Ms) in a maximal conjunctive sub-formula,
if M7 # Ms. The value of M can vary from one max-
imal conjunctive sub-formula to another; so the definition
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admits y = r1 (mod M;) and y = 7o (mod My) in sub-
trees rooted at two different maximal conjunctions.

As an example, the formula represented in Fig. 1 is not
y-modulo tame. This is because the maximal conjunctive
sub-formula to the left of the root has the atomic formula
4x + 5y = 2 (mod 3), which is not of the form y = r
(mod M). If we replace 4= + 5y = 2 (mod 3) by the
semantically equivalent formula ((y =0 (mod 3) A 4z =
2 (mod 3))V(y =1 (mod 3) Adx =0 (mod 3))V(y =
2 (mod 3) A 4z = 1 (mod 3))), then the new formula
satisfies the condition of Definition 5.1. Hence, the resulting
semantically equivalent formula is y-modulo tame.

Checking if a given formula p(Z, y) is y-modulo-tame is
easy: look at each maximal conjunction in the tree repre-
sentation of ¢ and check if all modulo constraints involving
y are of the form y = r (mod M) for the same modulus
M. Furthermore, this form is universal: any formula can be
made y-modulo tame for any y.

Proposition 5.2. Given a quantifier-free formula ¢(Z,y),
let M be the set of all moduli appearing in modular con-
straints involving y. We can construct an equivalent y-
modulo-tame formula in O (|]. (] 1con M)) time.

Since the moduli M’s in ¢ are represented in binary,
Proposition 5.2 implies an exponential blow-up in the for-
mula size, when making it y-modulo tame. This blow-up is
however unavoidable, by virtue of the hardness result in Ob-
servation 4.6 and a key result of this section (Theorem 5.7).

Ingredient II: Local quantification For PSyNF, we also
need the concept of local quantification, which we introduce
now. For a quantifier-free ©(Z,y) in NNF and y-modulo-
tame, we define 3!y : ¢ (Z, ) as the formula obtained by
replacing each atomic subformula in ¢ that mentions y with
T. Clearly, Jy: ©(Z,y) implies 3°?ly: o(z, y).

Definition of PSyNF Suppose ¢(Z,y) is a quantifier-
free Presburger formula in NNF with free variables z =
(1,...,2n) and § = (y1,...,Ym). We define ¢ fo be
in PSyNF w.rt. the ordering y3 =< -+ =X Ym, if (1) @
is y;-modulo-tame for each ¢ € [1,m] and (ii) for every
i € [1,m — 1], the formula

Hlocal

VVyi,. .. yYm* @(f7ﬂ)_>

yYm: 90(3127))

7in( Yit1s---

Fit1,--- (1)

denoted cp(i), holds. Note that the implication in the reverse
direction holds trivially; hence ¢(*) can be equivalently writ-
ten using <> in place of —. In the following, we assume that
every specification formula is annotated with an ordering on
the output variables, and that PSyNF is w.r.t. that ordering.
To see an example of a PSyNF specification, consider
a variant of the job scheduling problem discussed in Sec-
tion 1. In this variant, we have only two items, and we
require item 2 to be (pre-)processed before item 1. The
variant specification is ¢ = 11 A Y2 A 13, where )1 =
NZ_ (ti+0;+1=1 (mod 2)), 9y = ta+da+1 < t;+6
and 13 = /\le(éi > 0) A (01 + 25, < A). Ttis easy to
see that 1) is not §;-modulo tame for any d;; hence it is not in
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PSyNF. If we replace ¢, with the equivalent formula ¢} =
/\?:1 \/710:O ((6; = r (mod 2)) A (t; = r (mod 2))), the
resulting specification ¢’ = ] A)a A1) is §;-modulo tame
fori € {1,2}. However ¢ is not in PSyNF w.r.t. any order-
ing of &1, d2, since local quantifier elimination replaces the
constraint §; +292 < A with T, removing the cap on the cu-
mulative weighted delay. To remedy this situation, consider
1/)// = 1/)/1 Ao Npg A (1/)4 \/1[)5), where ¢4 = (tz +0+1<
t1) A Vi_o (b1 = 7 (mod 2)) A (26, + 7 < A)), and
5 = (t2+52+1 > tl)/\(tg —t1+30+2 < A) It can be
verified that 1" is semantically equivalent to 1), and satisfies
all conditions for PSyNF w.r.t. the order §; < d2 (but not
w.r.t. 02 < d1). Note that (¢4 V ) constrains t1, ta, 6o, A
in such a way that (14 V ¢5) A 3°%619) <> 35,1 holds.

Main results about PSyNF. The first main result is that
for formulas in PSyNF, we can easily solve PFnS.

Theorem 5.3. Given a Presburger formula ¢(T,y) in
PSyNF, we can compute in time polynomial in the size of
, a Skolem circuit for each existentially quantified variable
invVz3y o(Z, 7).

Second, every formula has an equivalent in PSyNF, albeit
with an exponential blow-up (unavoidable by Thm. 5.3, 4.4):

Theorem 5.4. For every quantifier-free formula (%, j) and
for every ordering of output variables vy;, there is an equiv-
alent formula 1) in PSyNF w.r.t. the order, such that i is at
most exponential in the size of ¢.

As a third important result, we show that checking
whether a formula is in PSyNF has reasonable complexity:

Theorem 5.5. Given a quantifier-free formula o(Z,y) in
NNE, and an ordering of output variables, it is coNP-
complete to decide whether o is in PSyNF w.r.t. the order.

Finally, we have a corollary of independent interest:

Corollary 5.6. The truth problem for the 3*V fragment of
formulas over the structure (Z;+,<,0,1) is NP-complete.

Here, the truth problem is to decide whether a given for-
mula holds. In Corollary 5.6, it is crucial that the input for-
mula is over the structure (Z;+, <, 0, 1), meaning it can-
not contain modulo constraints. Indeed, a reduction simi-
lar to Observation 4.6 shows that with modulo constraints,
even the 3V fragment is X5-hard. Corollary 5.6 is some-
what surprising, since the V3* fragment of (Z; +, <,0, 1) is
coNEXP-complete (Haase 2014, Thm. 1) (the lower bound
was already shown by Grédel (1989, Thm. 4.2)). Hence, in
this setting, allowing an unbounded number of inner quan-
tifiers is more expensive than allowing an unbounded num-
ber of outer quantifiers. Furthermore, Corollary 5.6 comple-
ments a result of Schoning (1997, Corollary), which states
that the 3V fragment for the structure (Z; +, <, 0, 1) is NP-
complete: Together, Corollary 5.6 and Schoning’s result im-
ply that for every i > 1, the fragment 3*V is NP-complete.

The remainder of this section is devoted to proving The-
orems 5.3 to 5.5 and Corollary 5.6. Of these proofs, Theo-
rem 5.3 is the most involved. It is shown in two steps: First,
we prove Theorem 5.3 in the case of one output variable (i.e.
m = 1). Then, we show that this procedure can be used re-
peatedly to solve PFnS in general in polynomial time.
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The case of one output We first prove Theorem 5.3 when
m = 1. In this setting, PSyNF is equivalent to modulo-
tameness w.r.t. the only output variable.

Theorem 5.7. Let p(Z,y) be a y-modulo-tame quantifier-
free PrA formula. A Skolem circuit for the existentially
quantified variable in ¥Vx3y : ©(Z,y) can be computed in
time polynomial in |p).

Below, we give an outline of the proof of Theorem 5.7,
leaving the details to the full version (Akshay et al. 2025).

Step I: Simplify modulo constraints We restrict our-
selves to the case of ( being conjunctive (i.e. its top-most
connective is a conjunction): else, one can first compute a
Skolem circuit for each maximal conjunctive subformula,
and then easily combine these circuits into a Skolem circuit
for ¢. Since ¢ is modulo-tame, there is an M € N such
that all modulo constraints on y in ¢ are of the form y = r
(mod M) for some r € N. Let R denote the set of all such
r; clearly, | R| < |¢|. Now, it suffices to construct a Skolem
circuit C, for each formula ¢, := (¢Ay =r (mod M)) for
r € R. This is because from these |R| circuits, we can eas-
ily construct one for : Just compute C,.(u) for each r € R,
and check whether ¢(u, C,.(u)) holds; if it does, then output
Cr(u) (if no C,(u) works, then the output can be arbitrary).

However, p Ay = r (mod M) is equivalent to a formula
¢ ANy =r (mod M), where ¢ contains no modulo con-
straints on y. Indeed, a modulo constraint on ¥ in ¢ is either
consistent with y = r (mod M) and can be replaced with
T, or it is inconsistent with y = r (mod M) and can be re-
placed with L. Thus, we may assume that our input formula
is of the form p A y = r (mod M), where ¢ is y-modulo-
free, meaning ¢ contains no modulo constraints on y.

Step II: Computing interval ends First, note that for any
@ € Z", the set V of all v € Z for which ¢(,v) holds
can be represented as a finite union of intervals. This is be-
cause ©(Z, y) has no modulo constraints on y, and thus every
atomic formula is an inequality that either yields (i) an upper
bound or (ii) a lower bound on y, given a value of Z.

Next, we construct Presburger circuits that compute the
ends of these finitely many intervals. Once we do this, it is
easy to construct a Skolem circuit for ¢ Ay = r (mod M):
For each interval in some order, check (using div ;) whether
it contains a number = r (mod M), and if so, output one.

Let us describe more precisely how a circuit computes the
interval union V3. An interval-computing circuit is a Pres-
burger circuit C that computes a function Z" — (Z x Z)*+2
for some & € N. It induces a function Fg: Z" — 2% as
follows. If C(@) = (70, 0,71, S1,- - -, Tk+1, Sk+1) for some
u € Z™, thenwe set Fe(u) :=ITUJy U--- U J, UK, where
J; is the closed interval [r;, ;] = {v € Z | < v < s5;};
and [ is the left-open interval (—oo, sg] if ro = 1and I = 0)
if o # 1; and K is the right-open interval K = [rp11,00)
if sgo1 = 1and K = 0 if sgyq # 1. Thus, while
r1,81,-..,Tk, Sg represent end-points of k (possibly over-
lapping) intervals, r( (resp. sx41) serves as a flag indicating
whether the left-open interval (—oo, sg] (resp. right-open in-
terval [rg41,00)) is to be included in V5.
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For a formula ¢(Z, y) with one output y and no modulo-
constraints on y, we say that an interval-computing circuit
C is equivalent to ¢ if for every u € Z™ and every v € Z,
©(@, v) holds if and only if v € F¢(@). The most technical
ingredient in our construction is to show:

Claim 5.8. Given a quantifier-free y-modulo-free Pres-
burger formula, we can compute in polynomial time an
equivalent interval-computing circuit.

Proof sketch. We build the circuit by structural induction,
beginning with atomic formulas. Each atomic formula im-
poses either a lower bound or an upper bound on y, which
can be computed using linear functions and div. For ex-
ample, if the formula is —z; + 3z2 + 5y > 0, then this
is equivalent to y > %(xl — 3x2), and thus we compute
divs(z1 — 3x2) as the only lower bound.

Building the circuit for a disjunction ¢; V @9 is easy:
Starting from circuits C; and Co, we simply output all the
closed intervals output by each circuit. The open intervals
output by the circuits are combined slightly differently de-
pending on the values of the flags. For example, if C; (u) and
Co(u) include intervals [t1, 00) and [t2, 00), then the new cir-
cuit will produce the interval [min(¢1, t3), 00).

The difficult step is to treat conjunctions 1 A ¢s. Here,
we follow a strategy inspired from sorting networks (Cor-
men et al. 2009; Ajtai, Komlés, and Szemerédi 1983) to
coalesce-and-sort the intervals output by each of C; and Cs.
A basic coalesce-and-sort gadget takes as input a pair of
(possibly overlapping) intervals [r, s] and [/, s’], and co-
alesces them into one interval if they overlap; otherwise
it leaves them unchanged. The gadget outputs two dis-
joint intervals [¢, u] and [/, «'], with [¢, u] “ordered below”
[t', ], such that [t,u] U [t',u'] = [r,s] U [r',s'], and ei-
ther [¢,u] = @ or u < ¢. Thus, empty intervals are or-
dered below non-empty ones, and non-empty intervals are
ordered by their end-points. A coalesce-and-sort network
is a sorting network built using these gadgets. If C; out-
puts g; (possibly overlapping) intervals, feeding these to a
coalesce-and-sort network yields at most ¢; disjoint sorted
intervals. The interval-computing circuit for ¢; A @2 now
computes the q;qo pairwise intersections of these disjoint
intervals, coalesce-and-sorts the resulting intervals, and re-
turns the max(qi, ¢2) intervals at the top of the sorted order.
This is sound because intersecting the union of g; disjoint
intervals with the union of some other ¢, disjoint intervals
yields at most max (g1, ¢2) non-empty disjoint intervals.

To keep the interval-computing circuit size under check,
our construction maintains carefully chosen size invariants.
Specifically, we ensure that the number of interval endpoints
at the output of, and indeed the total size of the interval-
computing circuit for ¢ V @2 or 1 A g is always bounded
by a polynomial in |1 | + |@2|. Intuitively, since each inter-
val endpoint at the output of the interval-computing circuit
must originate from an atomic formula at a leaf in the tree
representation of the specification, there are atmost a poly-
nomial number of interval endpoints to track.

The reader is referred to the full version (Akshay et al.
2025) for details of the proof, and a pictorial depiction. [J
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The case of multiple output variables It remains to prove
Theorem 5.3 in the general case (i.e. m > 1).

Proof of Theorem 5.3. Let 3() denote Jocaly e Y
o(z,7), for i € [1,m — 1], and let p'm) = . For
each ¢ in m down to 1, we obtain a Presburger circuit
for a Skolem function f; for the existentially quantified
variable (y;) in VZVy1, ..., yi—13yi: 3D (Z,y1,...,yi) us-
ing Theorem 5.7 for single output specifications. Note
that due to the equivalence of local and (ordinary) ex-
istential quantification, f; is then a Skolem function for
VEYy1, ..., yim1 3y PO, where ¢ is a quantifier-free
equivalent of Jy;11,...,Ym: ©(Z,y). Each such f; ex-
presses y; in terms of Z and yq,...,y;—1. It is easy to see
that by composing the resulting Presburger circuits, we can
obtain Presburger circuits for Skolem functions for all exis-
tentially quantified variables in VZ3g: ¢(Z, 7). Each result-
ing Skolem function is expressed only in terms of Z. O

Achieving PSyNF  We now prove Theorem 5.4. using (ei-
ther of) the recent QE procedures.

Proof of Theorem 5.4. For each i € [1,m — 1], let ¢; be a
quantifier-free equivalent of 3y; 11, ..., ym: ©(Z, 7). By re-
cent results on quantifier-elimination (Chistikov, Mansutti,
and Starchak 2024; Haase et al. 2024), we can obtain such
a 1; of at most exponential size in |p|. The formula n =
© A Niep1,m—1) ¥i is equivalent to ¢, and satisfies the equiv-
alence condition regarding local and global quantification.
It remains to achieve modulo-tameness. For this, we notice
that both recent QE procedures, (Chistikov, Mansutti, and
Starchak 2024, Thm. 3) and (Haase et al. 2024, Thm. 3.1)
produce an exponential disjunction of polynomial-sized for-
mulas. We may thus assume that ¢; = \/;:1 1;,; for some

exponential s for each ¢ € [1,m — 1]. We can now write 1

equivalently as \/feF (go A /\ie[l,m_” ¢i,f(i)>’ where Fis
the set of functions f: [1,m—1] — [1, s]. Observe that each
formula 77 := @ A ;e n—1) i, 1) is of polynomial size,
and thus the product M of all (polynomially many) moduli
(which are at most exponential) ocurring in 7 is at most ex-
ponential. We thus rewrite all modulo constraints in 7y for
variables y; w.r.t. M, yielding an exponential-sized equiva-
lent of 7; which is y,-modulo-tame for all £. The resulting
formula has at most exponential size and is in PSyNF. [

Checking PSyNF: Step I  Finally, we prove Theorem 5.5.
We begin with an auxiliary result:

Theorem 5.9. Given a y-modulo-tame quantifier-free for-
mula ¢©(Z,y), it is coNP-complete to decide whether
VZ3Iy: (T, y) holds.

Note that Theorem 5.9 implies Corollary 5.6, since a for-
mula over the signature (Z;+, <,0,1) is automatically y-
modulo-tame for each variable y.

Proof of Theorem 5.9. Since ¢ is y-modulo-tame, Theo-
rem 5.7 allows us to compute a polynomial-sized Presburger
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circuit C that computes a Skolem function f for the ex-
istentially quantified variable in VZ3y: ¢. Now, we can
build a polynomial-sized circuit C’ for the function g with
g9(Z) = 1if o(z, f(T)), and g(Z) = 0 otherwise (see the
full version (Akshay et al. 2025) for details). Then, we have
VZ3y: ¢(z,y) if and only if the circuit C’ returns 1 true for
every vector Z. Equivalently, VZ3y: ©(Z,y) does not hold
if and only if there is Z such that C’ evaluates to 0. The ex-
istence of such an Z can be decided in NP by a reduction to
existential Presburger arithmetic: Given C’, we introduce a
variable for the output of each gate, and require that (i) each
gate is evaluated correctly and (ii) the circuit outputs 0. [

Checking PSyNF: Step I We can now show Thm. 5.5:

Proof of Theorem 5.5. We can clearly check whether ¢ is in
NNF and whether ¢ is y;-modulo-tame for every i € [1,m].
It remains to check whether (V) in eq. (1) holds for every
i € [1,m — 1]. This is the case iff each formula

Hlocalyi-‘rla s Ym: (,O(.f, y)

yYm 90(5, ?j))
holds for 7 in m — 1 down to 1. Indeed, since we know from
ofm=1 — ,(m=1) that y,, can be eliminated locally, we
can plug that equivalence into ¢(™~2) to obtain ¢f("=2),
By repeating this argument, we can see that the conjunction
of all ¢t (?) implies the conjunction of all ¢(*).

Note that (*) belongs to the V*3 fragment, and the for-
mula is modulo-tame w.r.t. the existentially quantified vari-
able. By Theorem 5.9, we can decide the truth of (¥ in
coNP. For coNP-hardness, note that an NNF formula ¢
with free variables in Z is in PSyNF if and only if VZ: ¢(Z).
Moreover, universality for NNF formulas is coNP-hard. [

SOT(,L) = Vi‘vylv s Yt (

= Fyipr: 30,

Our final result in this section is that the PSyNF normal
form is “optimal” for existential quantification and synthesis
for single-output modulo-tame specifications. Specifically,

Theorem 5.10. Let S be a class of quantifier-free PrA-
formulas in NNF on free variables T and y such that:

1. & is universal, i.e. for every quantifier-free PrA formula
Y(Z,y), there is a semantically equivalent formula in &
2. Every formula p(Z,vy) in & is y-modulo tame

3. There is a polynomial time algorithm that given o(T,y) €
&, computes a quantifier-free equivalent of Jy : p(T,y).

Then there exists a polynomial time algorithm that compiles
o(Z,y) € & to ¢ that is in PSyNF wrt y.

The proof is in the full version (Akshay et al. 2025). As-
sumption 3) is weaker than requiring PFnS to be efficiently
solvable. This is due to the difference in vocabulary between
Presburger formulas and circuits (unlike the Boolean case).

6 Syntactic Normal Form for PFnS

We now present a syntactic normal form for PFnS. This
means, it has three properties: (i) It is syntactic, meaning
one can check in polynomial time whether a given formula
is in this normal form, (ii) it facilitates PFnS, meaning for
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formulas in normal form, PFnS is in polynomial time, and
(iii) every formula can be brought into this normal-form (in
exponential time). We call this normal form PSySyNF.

Definition of PSySyNF Recall that an affine transforma-
tion (from QF to Q%) is a map Q¥ — QF of the form
T — Bz + b, where B € QF*¢ is a k x ¢ matrix over Q
and b € Q" is a vector in Q’. In particular, the affine trans-
formation is described by the entries of B and b. Consider
a quantifier-free PrA formula ¢(Z,9), & = (z1,...,Zn),
g = (y1,---,Ym). To simplify notation, we define for any
vector (,?) € Z"T™ with 4 € Z", v € Z™:

S0), U= (Vg Um)-
The idea of PSySyNF is to encode Skolem functions in the
formula: Each maximal conjunctive subformula (see Sec-
tion 5) is annotated with affine transformations A4, ..., A,
where A; could serve as Skolem functions for this subfor-
mula, when gji are considered as output variables. This can
be viewed as an analogue of weak DNNF (or wDNNF) in the
Boolean setting (Akshay et al. 2021), where each maximal
conjunctive subformula provides for each output variable a
truth value for a Skolem function. Instead of concrete truth
values, PSySyNF has affine transformations in z.

We say that ¢ is in PSySyNF (“syntactic synthesis nor-
mal form”) if for every maximal conjunctive subformula ¢,
there exists an M € Z and for every i € [1,m], there ex-
ists an affine transformation A;: Q"t* — Q™ * such that
(a) ¢ is y;-modulo-tame for every i € [1,m] and (b) every
denominator in the coefficients in A; divides M and (c) ¢’
is a positive Boolean combination of formulas of the form

@@mVVT&WgA

=0

LR
u = (ul,...,un,vl,..

m

N\ (@, Ai(a) A (.5)
=0

(7,5) (mod M), (2)

where ¢ (Z,y) is an atomic formula (with vector con-
gruences allowed), (7,5) € [0,M — 1]™", and where
A;(7') € Z™~". Note that assuming (b) and (Z,y) = (7, 5)

(mod M), the condition A;(7) € Z™ " is equivalent to
A;(Z¥) € Z™ " (see the full version (Akshay et al. 2025)).

Properties of PSySyNF Let us now show that PSySyNF
indeed has the properties (i)—(iii) above. First, one can
easily check (in polynomial time) whether a formula is in
PSySyNF: In each parenthesis, the disjunction over 7' =
A;(z%) means the formula explicitly contains all coeffi-
cients of the affine transformation A;, for every ¢ € [1,m].
Once these are looked up, one can verify that the subfor-
mulas v(Z%, A;(Z")) are obtained by plugging A;(Z!) into
(7%, ) in place of 3. Property (ii) follows from:

Theorem 6.1. Every formula in PSySyNF is also in PSyNF.

Essentially, this is because the annotated affine transfor-
mations yield valuations for satisfying globally quantified
subformulas. Thus, Theorem 5.3 yields a polynomial-time
algorithm for PFnS for PSySyNF formulas.

Finally, we have property (iii): PSySyNF can be achieved
with at most an exponential blow-up:
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Theorem 6.2. Every quantifier-free PrA formula has an
equivalent in PSySyNF of at most exponential size.

Note that Theorems 6.1 and 6.2 yield an alternative proof
for Theorem 5.4. While Theorem 5.4 could be shown us-
ing either of the two recent quantifier elimination tech-
niques (Chistikov, Mansutti, and Starchak 2024; Haase et
al. 2024), Theorem 6.2 depends on the specific geometric
insight from (Haase et al. 2024), namely Proposition 4.2.

Roughly speaking, the idea for proving Theorem 6.2 is to
bring the formula into DNF where each co-clause only con-
tains linear inequalities. For each co-clause we then apply
Proposition 4.2 to yield exponentially many affine transfor-
mations A; that yield candidate assignments for . From
these A;, we then construct the subformulas of the form (2).

Succinctness We have seen that compared to PSyNF, the
form PSySyNF has the advantage that it is syntactic (i.e.
easy to check). However, as we show now, PSyNF has the
advantage that it can be exponentially more succinct. More
specifically, there are formulas in PSyNF whose smallest
equivalent in PSySyNF are exponentially larger:

Theorem 6.3. There is a family (V,,),>0 of PSyNF formu-
las such that any equivalent PSySyNF has size 22(%=1),

One can take ¥, (z,y) =2 <y < x+2"ANy =0
(mod 2™). For each z, there is exactly one y € [z,x +
2"] with ¥, (x,y), and there are exponentially many (2")
possible differences between = and y. One can argue that
for each such difference, a separate affine map has to appear
in any PSySyNF (see the full version (Akshay et al. 2025)).

7 Discussion and Conclusion

Our work maps out the landscape of functional synthesis for
Presburger specifications, setting up a new research agenda
of normal forms for such specifications, and compilation
to them. In doing so, our work exposes similarities and
differences between functional synthesis from Boolean and
Presburger specifications. Specifically the complexity upper
bounds for PFnS match the best known algorithms for BFnS
(EXPTIME), though for one-output specifications, BFnS
is known to be poly-time solvable, while PFnS is at least
NP-hard. This makes it necessary to design new normal
forms for PrA specifications using new concepts of modulo-
tameness and local quantification. Interestingly, local quan-
tification may be viewed as a generalization of a core idea
underlying SynNNF in BFnS (Akshay et al. 2019).

It is natural to ask at this point whether our complexity re-
sults for PFnS would change if we used a syntax for Skolem
functions different from the one chosen in 3. First, our upper
bound results (i.e. algorithms that construct Presburger cir-
cuits; from general PrA formulas or ones in normal forms)
would still apply, as long as the syntax (i) has polynomial-
size descriptions of the atomic functions described in Sec-
tion 3, and (ii) is compositional, in the sense that descrip-
tions can be composed as in circuits. Indeed, under these as-
sumptions, any Presburger circuit can be translated into our
syntax. In our view, these are reasonable assumptions, since
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the atomic functions are natural examples of Presburger-
definable functions and arise as (unique) Skolem functions
of simple formulas. Second, our exponential unconditional
lower bound (Theorem 4.4) might not hold anymore (e.g.
Skolem functions for (14, ), >0 might just be part of the syn-
tax). However, assuming efficient evaluation, i.e. functions
in the chosen syntax can be evaluated in time polynomial
in the size of the functions, we cannot avoid an exponen-
tial conditional lower bound. Indeed, assuming non-uniform
ETH, an exponential size lower bound is known for Boolean
functional synthesis for any representation of Boolean func-
tions that admits evaluation in polynomial time (Akshay et
al. 2021, p. 59). This implies the same for PFnS.

There are several interesting questions that arise from a
comparison of our work with that on knowledge compila-
tion for Boolean functional synthesis. For instance, we saw
that the space of all Skolem functions for Presburger specifi-
cations can be characterized using a set of intervals that can
be represented using Presburger circuits. The correspond-
ing characterization for Boolean Skolem functions using
Skolem basis (see (Akshay, Chakraborty, and Jain 2023))
has the flavour of an on-set and a don’t-care set. The rela-
tion between these two representations is unclear, and war-
rants further invesigation, especially because BFnS can be
encoded as PFnS. Similarly, (Shah et al. 2021) give a pre-
cise characterization for polynomial-time and size solvable
BFnS instances. We do not have such a characterization
for PFnS, though Theorem 5.10 provides such a result for
single-output specifications. We leave the precise charac-
terization of polynomial-time and size solvable multi-output
PFnS instances as an open problem.

Conjunctive Normal Form (CNF) is well-accepted as a
standard form for Boolean formulas, and state-of-the-art
Boolean reasoning engines (SAT-solvers, functional synthe-
sis tools) often exploit the CNF representation for efficient
processing. However, for Presburger Arithmetic, there is
no such dominant representation form that we are aware of.
For example, QF_LIA (quantifier-free linear integer arith-
metic) benchmarks used by the SMT community are Pres-
burger formulas sans modulo constraints, that are not al-
ways represented in CNF in benchmark suites. Hence, we
did not assume the Presburger specification to be in CNF
(or in a similar alternative form) in this work. The question
of whether starting with Presburger specifications in CNF
(or similar forms) can lead to practically efficient compila-
tion techniques to PSyNF remains open. Interestingly, not
all knowledge compilation based approaches for BFnS re-
quire CNF representation to start with (see e.g. (Akshay,
Chakraborty, and Jain 2023; Akshay, Chakraborty, and Shah
2024))

As part of future work, we would like to improve our con-
structions to make them more efficient in practice. For in-
stance, requiring modulo-tameness can lead to blowups that
can potentially be avoided by finding alternate characteri-
zations and normal forms. We expect our results to be a
stepping stone towards practical implementability of Skolem
function synthesis algorithms for Presburger arithmetic via
knowledge compilation, and their wider use within the KR
and SMT communities.
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