Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Halting Recurrent GNNs and the Graded -Calculus

Jeroen Bollen' , Jan Van den Bussche!, Stijn Vansummeren', Jonni Virtema?

!Data Science Institute, Hasselt University, Belgium
2School of Computer Science, University of Sheffield, UK.

{first, second} @uhasselt.be, j.t.virtema@sheffield.ac.uk

Abstract

Graph Neural Networks (GNNs) are machine-learning models
that operate on graph-structured data. Their expressive power
is intimately related to logics that are invariant under graded
bisimilarity. Current proposals for recurrent GNNs either as-
sume that the graph size is given to the model, or suffer from
a lack of termination guarantees. Here, we propose a halting
mechanism for recurrent GNNs. We prove that our model
can express all node classifiers definable in graded modal -
calculus, even for the standard GNN variant that is oblivious to
the graph size. To prove our main result, we develop a new ap-
proximate semantics for graded p-calculus, which we believe
to be of independent interest. We leverage this new semantics
into a new model-checking algorithm, called the counting al-
gorithm, which is oblivious to the graph size. In a final step
we show that the counting algorithm can be implemented on a
halting-classifier recurrent GNN.

1 Introduction

Graph neural networks (GNNs) represent a popular class
of machine-learning models on graphs (Hamilton 2020). A
multitude of GNN variants have been proposed (Sato 2020;
Wau et al. 2021; Zhang 2025), but in their basic form, a GNN
updates a vector of numerical features in every node of a
graph by combining the node’s own feature vector with the
sum of those of its neighbors. The combination is usually
expressed by a feedforward neural network with ReL.U acti-
vation functions (Goodfellow, Bengio, and Courville 2016).
The parameters of this network are typically learned, but in
this paper we are concerned with the intrinsic expressiveness
of the GNN model, and not on how GNNs can be concretely
obtained from training data.

The “message passing” (Gilmer, Schoenholz, and others
2017) between neighbors in the graph, just described, starts
from an initial feature map and can go on for a fixed or vari-
able number of rounds (referred to as fixed-depth or recurrent
GNNS, respectively). Ultimately, of course, we want to do
something with the feature vectors computed for the nodes.
We focus on the task of node classification where in the end
a boolean-valued classification function is applied to the fea-
ture vector of each node. In this way, GNNs express unary
(i.e., node-selecting) queries on graphs. In graph learning,
unary queries on graphs are known as node classifiers.

It is natural to ask about the power of GNNs in express-
ing node classifiers. Interestingly, this question can be ap-

175

proached through logic. Initial results focused on the question
of distinguishability: given two finite pointed graphs (G, v)
and (H,w), does there exist a GNN N such that N (G, v)
is true but N'(H,w) is false? Distinguishability by GNNs
was found to be closely related to distinguishability by color
refinement. Specifically, it is easy to see that when (G, v) and
(H,w) are graded bisimilar (see, e.g., (Otto 2023) for a defi-
nition), which is equivalent to indistinguishability by color
refinement, then (G, v) and (H, w) are indistinguishable by
GNNs. It turns out that the converse implication holds as
well (Grohe 2021).

For distinguishing finite graphs, it does not matter whether
we work with fixed-depth or recurrent GNNs. This changes
when considering uniform expressiveness; that is, the ques-
tion which unary graph queries are expressible by GNNs?
We saw above that all expressible graph queries are invari-
ant under graded bisimilarity. An important related logic is
graded modal logic GML (de Rijke 2000), for it can express
all so-called logical classifiers (i.e., unary queries that are ex-
pressible in first-order logic) that are invariant under graded
bisimulation (Otto 2023). Interestingly, it has been shown
that every GML formula is expressible by a fixed-depth GNN
(Barceld et al. 2020).

What about recurrent GNNs? A logical step is to gauge
their expressiveness through the extension of GML with re-
cursion, i.e., the graded p-calculus GML (Kupferman, Sat-
tler, and Vardi 2002). This logic is not only fundamental
in computer-aided verification, but also lies at the basis of
expressive description logics. Our main result shows that ev-
ery uGML formula is expressible by a recurrent GNN. Two
important remarks are in order here. First, we work with
the plain-vanilla variety of GNNs: the combination function
is a feedforward network employing ReLLU. Second, our re-
current GNNs are halting. By this we mean that the GNN
includes a boolean-valued halting function, defined on fea-
ture vectors. The GNN we construct for any pGML formula
o comes with the following halting guarantee: on every finite
graph, there exists an iteration where the halting function is
true in every node. At that point, the classification function
can be applied at every node and will be correct, i.e., agree
with . This global halting condition will be reached in a
number of iterations that is polynomial in the graph size.

Getting such a halting guarantee is quite challenging, be-
cause a GNN operating on a graph GG cannot know the precise

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

number NV of nodes of GG. Therefore, we cannot simply it-
erate fixpoint formulas NV times to obtain the correct result.
Extensions of GNNSs that know the graph size, e.g., by global
readout layers (Barcel6 et al. 2020), or simply by setting
the graph size at initialisation (Pflueger, Tena Cucala, and
Kostylev 2024), have been considered. Our contribution is
to show that global readouts are not necessary for express-
ing pGML, if one adopts a global halting condition instead.
This result is not only interesting from the perspective of
fundamental understanding; simpler neural network architec-
tures also tend to be easier to train, although experimental
follow-up work is necessary to confirm this.

We prove our result in several steps. We consider, for
any natural number k, the approximate semantics for uGML
that iterates all fixpoints exactly k times. Of independent
interest, we define a notion of when the k-approximation
semantics is stable on a graph G, and show that when a k-
approximation is stable, it coincides with the true semantics
of uGML. The challenge is to show that a recurrent GNN can
express the k-approximation semantics for increasing values
of k as well as track stability of the current approximation.
We overcome this in two steps. We first define an algorithm,
called the counting algorithm, that incrementally computes
k-approximations and their stability. The correctness of the
algorithm, which is oblivious to the graph size, is nontrivial.
In a second, equally crucial step, we show how to implement
the counting algorithm in a halting-classifier recurrent GNN.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 provides preliminaries. Section 4 intro-
duces halting-classifier recurrent GNNs. Section 5 presents
the translation of yGML into halting-classifier recurrent
GNNGs. Section 6 offers concluding remarks.

Proofs are omitted due to space constraints, but may be
found in the technical report (Bollen et al. 2025).

2 Related Work

In comparison with related work, the innovative aspect of our
recurrent GNN model is the halting aspect. We are aware of
two prior works relating recurrent GNNS to p-calculus.

Pflueger et al. (2024) consider a very general, abstract re-
current GNN model, where the combination function can be
an arbitrary function, not necessarily a feedforward network,
and likewise an arbitrary aggregation function can be used in-
stead of summing of neighbors. Such a general model is still
invariant under graded bisimulation. Moreover, they do not
guarantee termination. Instead, they classify a node n as true
if, during the infinite sequence of iterated message passing,
the classification function applied to n eventually stabilizes
to true. There is no apparent way to test this effectively.

In the setting of Pflueger et al., every node classifier in-
variant under graded bisimilarity (in particular, every uGML
formula) is expressible by a recurrent GNN. Indeed, the
contribution of their work lies much more in the converse di-
rection. Establishing a preservation theorem regarding “local”
monadic fixpoint logic (LocMMFP) formulas invariant under
graded bisimilarity, they obtain that every recurrent GNN
that expresses a node classifier expressible in LocMMFP is
actually expressible in GML.

176

Ahvonen et al. (2024a) investigate recurrent GNNs with
yet another acceptance condition, which is neither a global
halting condition (as ours) nor a local stabilization condition
(as in Pflueger et al.). Their notion of GNN does not employ a
classification function, but instead includes a set of accepting
feature vectors. A node is classified as true if, during the
iteration, it obtains such an accepting feature vector. Like
acceptance by stabilization a la Pflueger et al., this semantics
offers no practical termination guarantee; we can see when a
node has “decided to be true”, but there is no clear-cut way
to know that this will eventually happen, and hence no way
to know that a node will be classified as false.

The acceptance semantics of Ahvonen et al. is a double-
edged sword. On the one hand, it allows the expression of
node classifiers such as the centre point property (Kuusisto
2013) that are not expressible in xGML. On the other hand,
by the lack of a global halting condition, nested or alternating
fixpoints cannot be expressed; the most we can get using
accepting feature vectors are countably infinite disjunctions
of GML formulas (denoted by wGML). Using an instanti-
ation of their model over the real numbers, with arbitrary
aggregation and combination functions, Ahvonen et al. show
that recurrent GNNSs capture all of wGML. They also pro-
pose a realistic instantiation where every GNN comes with
its own finite floating-point domain, aggregation is sum, and
combination functions are truncated-ReLU layers. These
floating-point recurrent GNNs are shown to coincide with
GMSC, a logic that iterates GML formulas. In a technical re-
port (Ahvonen et al. 2024b), they show that this continues to
hold when using acceptance by stabilization a la Pflueger et al.
Interestingly, they show the real and the float instantiations
to express exactly the same node classifiers in MSO.

In parallel with our own work, Rosenbluth and Grohe
(2025) have studied the computational completeness of re-
current GNNs. In contrast to ours, their model provides the
graph size as input to the GNN, and operates on graphs with
bitstring features. Their focus then is on showing that their
model is Turing-complete for feature transformers invariant
under the colorings produced by color refinement.

3 Preliminaries

Notation. We denote by N and R the sets of natural numbers
and real numbers, respectively. We denote by B = {0, 1} the
set of booleans, where we identify false with 0 and true with
1. We denote the cardinality of a set X by | X|, the powerset
of X by P(X) and by M(X) the set of finite multisets over
X, i.e., the set of functions M : X — N whose support
supp(M) := {x € X | M(x) > 0} is finite. Intuitively,
M (z) = n means M contains n copies of 2. We use doubly
curly braces {. ..} to denote multiset comprehension.

Graphs. We work with finite, node-labeled, directed graphs.
Given a set X, an X-labeled graph is a triple G = (N, E, g)
where N is a finite set of nodes; £ C N x N is the edge
relation, and g: N — X is the node labeling function. When
X = R? for some d € N, we call g a feature map. To
ease notation, we write N for the node set of G; n € G
to indicate that n € Ng; G(n) instead of g(n) to denote
the label of node n in G; and E¢(n) for the set {m € N |

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

(n,m) € E} of all out-neighbours of n in G. Our results
easily extend to graphs that also admit labels on edges as
well as nodes.

Label transformers and node classifiers. We write G[X]
for the set of all X -labeled graphs. A label transformer is
a function f: G[X] — G[Y] such that G and f(G) have the
same nodes and edges for all G € G[X], but may differ in
the node labels. If h: X — Y is a function, then we write
ht: G[X] — G[Y] for the label transformer that replaces the
label of each node n in the input graph G by h(n). We say
that i1 is obtained by lifting h. A node classifier (on X) is a
label transformer f: G[X| — G[B].

Graded modal yi-calculus. We are interested in comparing
the expressive power of recurrent GNNs to that of the graded
modal p-calculus pGML. To define nGML, we assume given
a finite set of proposition symbols P = {p,q,...} and a
countable set X = {X,Y],. ..} of variables, disjoint with PP.

The formulae of pGML have the following syntax, where
peP, X € X,and k € Nwith k > 1.

pu=p|lp|X[oAp|pVe
| Ok | Ok | uXop | vX .

Without loss of generality, we hence adopt formulae in nega-
tion normal form, where the negation operator — can only
be applied to proposition symbols. The modal operator ¢
expresses that there are at least k£ neighbours where (holds
while (g expresses that there are strictly less than k& neigh-
bours where ¢ does not hold. We also write Q¢ and Clp for
Q1 and Oy . The fixed-point operators pX.p and v.X.¢
are respectively used to define least and greatest fixed points,
allowing for the expression of recursive properties.

Semantically, ©GML formulae operate on P (PP)-labeled
graphs. A valuation on such a graph G is a function V'
assigning a subset of vertices in G to each variable. The
valuation V[X — S] is defined as the function that is equal
to V' on all variables except X, which is mapped to S. Given
a P(P)-labeled graph G and a valuation V, a p-calculus
formula ¢ evaluates to a set ﬂgo]]‘g, of nodes in G, inductively
defined as follows.

[p)V = {n € G|peGn)}
[-p]V = {n € G|p ¢ Gn)}
[X] = V(X)
[A9IF =[]V N [W]F
[e v oI¥ = [lF U [W]F
[Oxel§ := {n € G||Ec(n) N [¢]F| > k}
[BrelV = {n € G[|Ec(n) \ []¥] < k}
[X el =) {5 C Ng ‘ [e]Vixoss) S S}

[vX.¢]§ = U {S C Ng ‘ SC IISO]]\C/;[XHS]}

The notions of free and bound variables are defined as usual:
1X .o binds X in ¢ and similarly for v X.. We use free (¢),
and vars () to denote the sets of free and all variables occur-
ring in ¢, respectively. A formula is well-named if its free

variables are distinct from its bound variables, and every vari-
able is bound at most once in the formula. Throughout the
paper we assume that all considered formulae are well-named.
This is without loss of generality since ill-named formulae
may always be made well-named by suitably renaming bound
variables if necessary.

A sentence is a formula without free variables. Note that to
evaluate a sentence, the valuation V' is actually not needed, as
the semantics depends only the valuation of the free variables.
We can then write [¢]“ to denote [¢]$ for any valuation V.

A node classifier C' on P(IP)-graphs is definable in -
calculus if there exists a p-calculus sentence ¢ such that
[¢]¢ = {n € G | C(G)(n) = 1} for all P(P)-graphs G.
We also say that ¢ defines C' in this case.

4 Halting Recurrent Graph Neural Networks

In this section we introduce our recurrent GNN model and
show invariance under total surjective graded bisimulations.

An aggregate-combine (AC) layer (Barcel6 et al. 2020;
Grohe 2021; Geerts, Steegmans, and Van den Bussche 2022)
of input dimension p and output dimension ¢ is a pair L =
(AGG,COMB) of functions where AGG: M(RP) — R"
with h € N is an aggregation function and COMB: RP X
R" — RY is a combination function. Semantically, such a
layer is a label transformer: when executed on RP-labeled
graph G = (N, E,g), it returns the R9-labeled graph
G' = (N, E,¢') with ¢’ defined by

g n— CoMB(g(n), AGG {g(m) | m € Eg(n)}).

We abuse notation, and indicate by L both the AC layer and
the label transformer that it defines.

Definition 4.1 (Recurrent GNN). Given a finite set X, a
halting-classifier-based recurrent GNN over X of dimension
dis a tuple N = (IN, L, HLT, OUT) where IN: X — R is
the initialisation function; L is an AC layer with input and
output dimension d; HLT: RY — B is the halting function;
and OUT: R¢ — B is the readout function.

For parsimony we simply say “recurrent GNN” instead of
“halting-classifier-based recurrent GNN” in what follows.

We next define the semantics of recurrent GNNs. A
run of N over X-labeled graph G is a finite sequence
Hy, Hy,...,H; of Ré-labeled graphs such that Hy =
INT(G) and H; 1 = L(H;) forevery 1 < i < k. Arun
is complete if every node in HLT{(H},) is labeled 1, and k is
the first index for which this condition holds. The output of a
complete run is the B-labeled graph OUT](Hy,).

Definition 4.2 (Halting recurrent GNN). A recurrent GNN
N over X is halting if there exists a complete run for every
X-labeled input graph. If A is halting, then we write V' (G)
for the output of the complete run of A/ on G.

Halting recurrent GNNs hence define node classifiers
whereas arbitrary recurrent GNNs may define only partial
node classifiers, as some of their computations (i.e., runs)
may never terminate. For completeness sake, we note that the
problem of determining whether a given recurrent GNN is
halting, is undecidable. However, the GNNs that we construct
in this paper are always halting.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Proposition 4.3 (Undecidability of Halting). The problem
of determining whether a given recurrent GNN is halting is
undecidable.

The proof is based on a reduction from the (undecidable)
halting problem for 3-counter machines (Minsky 1967).
Simple recurrent GNNs. A simple but practically relevant
choice for the aggregation and combination functions of an
AC layer, which is commonly used in the literature (Barcelé
et al. 2020; Ahvonen et al. 2024a; Geerts, Steegmans, and
Van den Bussche 2022), is to take

AGG: M(RP) 5 RP: M —)
xEsupp(M)
CoMB: R? x R? - RY: (x,y) — f(x]y)

M(x)-x

where M (x) - x is the scalar multiplication of x by its mul-
tiplicity in M; x | y denotes vector concatenation; and f is
a ReLU-based feedforward neural network (RFNN). That is,
f: R? — RY s of the form

ApoReLUo Ay_q10---0ReLUo Ay

where A;: RPi — RPi+1 1 < 4 < [are affine transforma-
tions with p; = 2p and py41 = ¢, and ReL.U is the Rectified
Linear Unit, applying ReLU(x;) = max(0, x;) to each vec-
tor element z; of its input vector x. If L is of this form then
we call L simple.

We say that the halting function HLT and readout function
OUT of a recurrent GNN are simple if there is some 1 < ¢ <
d such that for all x € R, HLT(x) = 1 (resp. OUT(x) = 1)
if, and only if, the i-th element of x is > 0.

Definition 4.4. A recurrent GNN is simple if L, HLT and
OUT are all simple.

Invariance under graded bisimulation. As discussed in
the Introduction and Section 2, a multitude of recurrent and
non-recurrent GNN variants have been proposed in the litera-
ture. An important property in all of these variants, however,
is that they are invariant under a notion of graded bisimu-
lation. Note that our halting condition is global and this
needs to be reflected in the notion of bisimulation. As a
sanity check, therefore, we next establish invariance of our
recurrent GNNs under total surjective graded bisimulations.

Definition 4.5 (Graded bisimulation). Let G and H be X-

labeled graphs over a set of labels X. A relation Z C Ng X

Ny is a graded bisimulation (or g-bisimulation) between G

and H if for every (n,m) € Z the following hold:

1. G(n) = H(m),

2. there is a bijection f: Eg(n) — FEg(m) such that
(1, f(i)) € Z, forevery i € Eg(n).

The g-bisimulation is total (surjective, resp.), if the domain

(range, resp.) of Z is Ng (Ny, resp.).

Definition 4.6. A label transformer f: G[X] — G[Y] is

invariant under g-bisimulation if for every pair G and H of

X-labeled graphs and every graded bisimulation Z between

G and H, it is the case that Z is also a graded bisimulation

between f(G) and f(H). (Recall that G and f(G) have the

same set of nodes, and similarly for H and f(H).)

178

Proposition 4.7. Every node classifier definable by a halt-
ing recurrent GNN is invariant under total surjective g-
bisimulations.

Proof. Notice that every aggregate-combine (AC) layer is
a label transformer that is g-bisimulation invariant. Like-
wise the lifted initialisation and lifted readout functions yield
g-bisimulation invariant label transformers. Since the com-
position of g-bisimulation invariant label transformers is a
g-bisimulation invariant label transformer, the result follows
by observing that the lifted halting function can be seen as
a g-bisimulation invariant label transformer as well. Total-
ity and surjectivity of the g-bisimulation quarantees that the
readout function is enacted to runs of the same length. [

5 From p-Calculus to Halting-Classifier
Recurrent GNNs

In this section we prove the central result of our paper.

Theorem 5.1. Every node classifier defined by j1GML sen-
tence is also definable by a simple halting recurrent GNN.

Our proof is constructive, but requires us to develop sev-
eral new concepts and proceeds in multiple steps. First, in
Section 5.1 we show how to view the computation of ¢ as
a sequence of approximations),)) We ob-
serve that this sequence reaches a fixpoint equaling ¢ as soon
as we reach an approximation ¢(*) that is stable (Def. 5.2),
which is guaranteed to happen when k exceeds the graph size,
but may also happen earlier (Proposition 5.3). In Section 5.2
we define an algorithm, called the counting algorithm, for
computing the elements in the sequence of approximations
and tracking their stability at the same time. The counting
algorithm is expressed as a transition system on configura-
tions. We then show in Section 5.3 that configurations can be
encoded as labeled graphs, and give a simple recurrent GNN
that simulates the counting algorithm’s transition system.
The GNN'’s halting classifier tests the stability of the current
encoded configuration to decide if ¢ is fully computed.

We will require the following notation. For a pGML for-
mula ¢ we write sub () for the set of direct subformulae
of . For example, if ¢ = —p V (X A Ogq), then sub (p)
consists of —p and X A {g. Note that sub (p) = sub (—p) =
sub (X) = (. We write sub™ () for the set of all strict (not
necessarily direct) subformulae of ¢, computed recursively.
In the example above, sub+(<p) consists of =p, X, ¢, O¢ and
X A Oq. We write sub®(p) for sub™ (p) U {p}. We write
sub,, () (resp. sub,, ()) for the subset of sub () consisting
of those formulae that are of the form pX.¢ (resp. v.X.0),
and let sub, (¢) = sub, () U sub, (¢). The notations
sub:(gp), sub,, () etc. are defined similarly as subsets of

sub™ () and sub™ (). We abuse notation, and use operators
that are defined on formulae also on sets of formulae, union-
ing the pointwise results. For example, we write sub (A)
for U ca sub} (¢). We will use the notation 7X.¢) to refer

to any fixpoint formula, least or greatest (i.e. m € {u,v}).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

5.1 Approximations and Stability

We define the syntax of approximation-adorned pGML
(henceforth simply called adorned uGML) to be equal to
the syntax of uGML, except that all fixpoint-operators are of
the form ‘X .4 or v* X .4y, with i € N and) itself adorned.

pu=p|lw|X|pAp|lpVe
| Ok | Ok | W' X | V' X .

The semantics of adorned formulae is defined similarly to
that of normal formulae, except that

; 0 ifi=0
'X. ¢ = V
[X.0]v { [[gp]]‘Cj[X'_}[[mlewH‘c/;] otherwise.
; N ifi=0
' X. G = .a
[[SO]]V { [[%0]]‘6;[)(,_}“1/,71)(90]]3] otherwise.

Intuitively, 1'X.o computes an under-approximation of
11X ., obtained by iterating ¢ for i iterations, while v/ X.¢
similarly computes an over-approximation of v X.¢.

For a normal uGML formula ¢ and i € N, we denote by
() the adorned ;GML formula that is obtained by adorning
every fixpoint operator of the form pX resp vX by p‘ X resp.
v*X. For instance:

p=pY.(pV OY)V (uX. (g A O (Y V 0X))))
P = 1Y ((pV OY)V (1 X. (g A O (Y V 0X))))

Intuitively, ¢(*) approximates ¢ by iterating every fixpoint for
i times. We also call ¢(9) the i-th uniform approximation of
. Note that, because ¢ may have nested and alternating fix-
points, ¢ itself is not necessarily an under-approximation,
nor an over-approximation of .

For a fixpoint formula ¢ = 7X.¢) and i, k € N we write
%) for the adorned formula 7*X.1)(*) that iterates the
outermost fixpoint ¢ times, and all inner fixpoints % times.
For instance:

e=pY.((pV OY)V (uX. (¢ N O (Y VX))
R =Y. ((pv OY)V (1 X (g A O (Y V 0X))))

Definition 5.2. Let k € N,k > 1. A uGML formula ¢ is
k-stable on input graph G, valuation V, and node n € G if

* (is not a fixpoint formula (i.e., not of the form 7 X.v)) and
every direct subformula of ¢ is k-stable on (G, V,n). In
particular p, —p, and X are always k-stable on (G, V, n)
as they do not have direct subformulae.

* Or, ¢ is a fixpoint formula 7 X .¢) and
1. n e [p*M]G iffn € [p*r~1R]E; and
2. forevery 0 < ¢ < k, 1) is k-stable on (G, V;, n) where
Vi = VIX = [pP]F].
Formula ¢ is k-stable on (G, V) if it is k-stable on (G, V, n)
for every n € G.
The following proposition shows that the sequence

oM, @) ©B) . of uniform approximations of ¢ reaches
a fixpoint that equals ¢ as soon as we reach an approximation

179

©*) that is k-stable. This is guaranteed to happen when k
exceeds the graph size, but may also happen earlier. Hence,
for any uGML formula ¢, graph G, and valuation V' we may
compute [#]$ by means of the following simple algorithm:

(*) Compute the k-approximation "] for increas-
ing values of k, and stop as soon as ¢ becomes k-stable
on (G, V). Then return [o®]§.

Proposition 5.3. Forall k > 1, G and V it holds that:

1. if g is k-stable on (G, V') then [= [¢]$; and

2. ifk > |Ng|, then @ is k-stable on (G, V).

We define the following notion related to k-stability.
Definition 5.4. Let j, k € N with k£ > 1. A uGML fixpoint
formula ¢ = 7w X.1) is (j,k)-stable on input graph G, valua-
tion V and node n € G if for every 0 < i < j, v is k-stable
on (G, V;,n) where V; = V[X = [o#R]E].

Note that if j = 0, then ¢ is vacuously (0, k)-stable on
(G, V, n). Furthermore if ¢ is k-stable on (G, V, n), then it is
also (k, k)-stable on (G, V, n) but the converse does not hold
since item (1) of Definition 5.2 is not necessarily guaranteed.

In general, (j, k)-stability on fixpoint formulae is hence a
weaker notion than k-stability.

5.2 The Counting Algorithm

To prove Theorem 5.1 we next define an algorithm, called
the counting algorithm, that implements (¥). To later allow
easy simulation by means of a recurrent GNNs, we define
the counting algorithm as a transition system operating on
configurations. We also take up the important task of proving
correctness. How to simulate the counting algorithm by
means of a recurrent GNN is shown in Subsection 5.3.

Throughout this section and the next, let ¢ be a fixed
1GML sentence. Our convention that ©GML formulae are
well-named implies that for every variable X € vars ()
there exists exactly one fixpoint formula in sub. () that
binds X. We denote this binding formula by ¢|x.

A counter on ¢ is a mapping C': sub.(¢) — N. To ease
notation, we write C' < k (resp. C' = k) to indicate that
C(a) < k (resp. C(a) = k) for all @ € subl.(y).

Because the semantics of a formula only depends on its
free variables, and because the free variables of ¢ and all of its
subformulae are subsets of vars (), we can treat valuations
on a graph G as finite mappings V' : vars (¢) — P(N¢g). We
refer to such mappings as p-valuations.

Definition 5.5. Let ¢ be a uGML sentence. A configuration
of ¢ is a tuple k = (G, k,C,V,R,F,S,T) where G is a
P(P)-labeled graph; k € N with k& > 1 is called the bound of
k; C'is a counter on ¢ with C' < k—1; V is a (p-valuation on
G; R: sub*(p) — P(Ng); F C sub™(p); S: sub™(p) —
P(Ng);and T': sub).(p) = P(Ng).

Intuitively, the bound & in a configuration will indicate the
uniform approximation of o(*) for which we are currently
computing [[gp(k)]]G while counter C' will record how far we
are in this computation. Moreover, V' will contain the valua-
tion under which we are currently computing the results of
subformulae, while R stores subresults required to continue

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

computation; F' registers for which subformulae of ¢ the
subresults stored in R can be considered valid; S is used to
track, for each subformula, on which nodes the subformula is
k-stable; and T is used to track, for each fixpoint subformula
«, for which nodes n the subformula is (C(«), k) stable on
(G, V,n).

Our algorithm does not work on arbitrary configurations,
but on configurations for which our intuitive description is
coherent. We formalize this as follows. To simplify notation,
for a counter C' we write a(“%) for a(¢(®):*¥) and we say that
a € subl(p) is (C, k)-stable on (G, V,n) if ais (C(a), k)-
stable on (G, V,n).

Definition 5.6. A configuration is coherent if the following
three conditions hold.

1. Ttis sound: V(X) = [[cp|X(C’k)]]‘§ for all X € vars ().
2. Itis consistent: for all o« € F,

(@ R(a) = [aM™]F;

(b) sub(a) C F;

(c) if ais a fixpoint formula, then C(a) = k — 1. And
3. It tracks stability:

(@ S(a) = {n € G | aisk-stableon (G,V,n)} for
every o € F'; and
(b) T(a) = {n € G | ais(C,k)-stable on (G,V,n)}

for every « € sub (o).

A configuration k is complete if p € F. Itis stable if S(p) =
N¢ with G the graph of «.

Note that from a coherent and complete configuration we
can obtain [p™]¢ = [p™]$ by simply reading R(¢p).
Likewise, k-stability of ¢ on (G,V') can be obtained by
checking that & is stable.

The goal of the counting algorithm is to compute a coher-
ent and complete configuration for ¢ on G. Computation
starts at the initial configuration w.r.t £ = 1, defined below.

Definition 5.7. The initial configuration of ¢ on graph G
wrt. k> 1lisk:= (G, k,C,V,R, F,S,T) where C = 0;

[0 ifplx € subj(v)
VOO ={% o c oo

R and S map every formula to (); F' = (; and T' maps every
fixpoint formula to ().

The initial configuration is trivially coherent. We complete
our definition of the counting algorithm by defining three
types of transitions on configurations.

Definition 5.8. Let k = (G,k,C,V, R, F,S,T) be a con-
figuration. A type-1 transition on « yields the configuration
k' = (G,k,C,V,R | F',S',T) where

R'(p) :
R'(-p) :

{neGlpeGn)}
{neGlpgGn)}

R'(X) = V(X)
R'(p A4') == R(y) N R(¥)
R4V a) = R(y) UR(Y')
R(0e9) :={n € G ||Ea(n) N R(¥)| > {}

180

R(O¢¢) == {n € G| |Ea(n) \ R(¥)| < £}
R/(mX.4) := R(¥)
F':={a € sub™(p) | sub(a) C F}

\{a € subr(p) | Cla) <k —1}

S'(a) := Ng N ﬂ S(B) if o & subj(p)
Besub(a)
S'(mX.ap) = S(W) NT(r X))

N{neG|neV(X)iffne R ()}

We denote this by & 1 /.

Intuitively, if x is coherent then for any formula 5 € F,
R already stores the value of [3(*)]$. Hence, for any «
with sub (o) € F we may read these values to compute
[a®]$, cf. the definition of R’. For fixpoint formulae
a = wX .4, this is only correct if C(a)) = k — 1, since we
have then already evaluated the body v under valuation with
V(X) = [7*"1X.4]¢, and hence

[« ®]§ =

[[WkX w(k)]]c [W(k)]]v[xH[[aw L)€

= BWIF = Rw)

Here, the second-to-last equality is by soundness of . This
reasoning is not correct when C'(a) < k — 1, which is why
all fixpoint formulae with C(a)) < k — 1 are excluded from
F’. Note that F' C F’ by consistency of x.

The construction of S’ follows the definition of k-stability.
Assume that o« € F”. If « is a non-fixpoint formula then it
is k-stable on (G, V,n) when every subformula is k-stable

n (G,V,n). If « is a fixpoint formula o = 7X.1), it is is
k-stable on (G, V,n) if ¢ is k-stable on (G, V, n); a is itself
(C, k) stable on (G,V,n), and n € [a®]§ = R'(a) iff
n € [a*=1RME = V(X).

Based on this reasoning, we can formally prove:

Lemma 5.9. If x b1 ' and k is coherent then so is k'.

To define the second type of transition, we require the
notion of a ticking fixpoint formula. We say that o € sub’. ()
ticks in configuration k if (1) sub (o) C F; (2) C(a) < k—1;
and (3) C(B) = k — 1 for every 8 € sub?(a). We write
ticks (k) for the subset of sub. () that tick in x. Note that if
a ticks, none of its strict fixpoint subformulae can tick. We
observe:

Lemma 5.10. If o = m X .4 ticks in coherent configuration
K then [a(C(OFLRIE = R(y).

This lemma shows that if & = 7w X .9 ticks in a coherent x
then in R(v)) we have already computed C'(«v) + 1 iterations
of a’s outermost fixpoint. However, since C'(a) + 1 < k, we
have not yet computed all necessary k fixpoint iterations of
a®) = %) To ensure that computation can continue, a
type-2 transition therefore changes the configuration such that
it causes [a(C(®)+2#)]¢ to be computed in further transition
steps. It does so by copying R(¢)) = [a(C(@FLR]E o
V(X), increasing C(«), and resetting the computation of all
subformulae that depend on the value of X, which has now
changed.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Formally, define reset (k) to be the smallest subset of
vars () satisfying

reset (k) = {X | ¢|x € ticks ()}
U{Y | free (o|y) Nreset (k) # 0}.

Define dep(k) := {p|x | X € reset (k)} \ ticks (k). We say
that the elements of dep(x) depend on a tick in k.
Definition 5.11. Let x = (G, k,C,V, R, F,S,T) be a con-

figuration. A type-2 transition on « yields the configuration
K = (G, k,C" V'R, F', S, T") where

Cla)+1 if « € ticks (k)

C'(a) =40 if a € dep(k)
C(a) otherwise
R(y) if ¢|x € ticks (k) , p|x = 7 X4

y 0 if p|x € dep(k) N sub} (o)

VI(X) = Ng if p|x € dep(k) N subg(go)

V(X) otherwise
F':={a € F | free (o) Nreset (k) = 0}
T(rXA)NS() ifnX.y € ticks (k)
T' (7 X)) =< Ng if X1 € dep(k)

T (X)) otherwise

We denote this by x o &’

Note that if no fixpoint formula ticks in &, then K’ = k,
i.e., the transition is a no-op.

Lemma 5.12. If k 5 ' and & is coherent then so is K’

The third kind of transition increases the bound £ when &
is complete.

Definition 5.13. Let x be a configuration with graph G and
bound k. A type-3 transition on x yields the configuration r’
such that k = &’ if x is not complete. Otherwise, ' is the
initial configuration of ¢ on G w.r.t. k + 1. We write x 3 &’
to indicate that ' is the type-3 transition of .

It is straightforward to show:
Lemma 5.14. If k b3 k' and k is coherent, then so is /.

Let us write -1 » for the composition of I-; and -2, with -5
executing after ;. We define -3 1 o similarly. We use }—’{72
to denote the reflexive-transitive closure of -1 » and similarly
fork35 4 5.

Lemma’s 5.9, 5.12 and 5.14 show preservation of coher-
ence by -3 1 2. We can also show that the three transition
types make progress when executed in the order -3 1 2: 3
transitions to the next bound value when the input is complete
and is a no-op otherwise, while -1 » change the configuration
to become “strictly more complete”, in the following sense.

Proposition 5.15. Let k be the initial configuration on ¢
for G w.r.t. bound k. There exists ' that is coherent and
complete such that k 5 5 K.

Combined with Proposition 5.3, this yields correctness of
the counting algorithm:

181

Proposition 5.16. Let k be the initial configuration k on
for G w.r.t. bound 1. There exists a configuration r' that is
coherent, complete, and stable such that x F§71_2 K.

Proof. Note that I3 is a no-op on configurations that are
not complete. Since by Proposition 5.15 « 5 5 £ with "
coherent, complete and having the same bound as , there is
also a sequence of transitions of the form x I3 ; , k”": before
reaching completion we may vacuously introduce -3 before

F-1 since this is a no-op. Now two things may happen:

« ' is stable, in which case it suffices to take k' = K'’;

« k' is not stable. By executing 3 on x” we then obtain
the initial configuration x5 that has bound 2. By repeating
our reasoning, but now starting from x5 we know from
Proposition 5.3 that will eventually get the desired x'. [

5.3 Implementing the Counting Algorithm in a
Halting-Classifier Recurrent GNN

We next show how to encode configurations as labeled graphs
and prove that that there exists a simple recurrent GNNs that
simulates 3 , | on such encodings.

To define the encoding of a configuration «, we first de-
fine local versions of configurations. Intuitively, if G is the
graph of x then the local configuration of xk at n € G will
contain the information specific to n stored in «, as well as
the information that is common to all nodes, such as k£ and
F. Formally, for a function M : A — P(N¢) from some
domain A to sets of nodes, we define the local version of M
at node n to be the function m: A — B such that, for all
a€ A,m(a)=1iff n € M(a).

Definition 5.17. Let «x = (G, k,C,V, R, F,S,T) be a con-

figuration and let n be a node in G. The local version of

(k,n) is the tuple (G(n), k, C,v,r, F, s,t) where

* G(n) C Pis the label of n in G;

¢ k € Nis the bound of x;

» F'is the validity set of «; and

e v, 71,5, and t are the local versions at n of V, R, S, and T',
respectively.

The encoding of « is the graph H that has the same nodes

and edges as G, such that H (n) is the local version of (x, n),

for every node n € G.

It is clear that when A is a finite set, we may treat functions
A — B and A — N as boolean resp. natural number vectors.
Moreover, we may also treat subsets of a finite universe A
as boolean vectors, since such subsets are isomorphic to
characteristic functions A — B. Since all components of
local configurations are of this form, it follows that we may
treat local configurations as vectors over N U BB, and hence
also as vectors in R? for some large enough value d. For
example, for every p € P this vector has a component that
is 1if p € G(n) and is 0 otherwise. In what follows, we
hence treat local configurations as vectors in R?, with the
understanding that its components carry a value from either B
or N. To facilitate notation, we will refer to the components
of local configuration vector x using “field access” notation:
e.g., x[v(X)] is the boolean element of x that stores v(X).
Specifically, x[« € F is the boolean element of x that is 1
iff & € F, and we similarly write x[p € G(n)].

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

In the above sense, the encoding H of G is a R-labeled
graph.

Let f be a function mapping configurations to configu-
rations. A label transformer g: G[RY] — G[RY] simulates
such a function f if for all configurations x, the equality
glenc(k)) = enc(f(k)) holds, where enc(x) denotes the
encoding of x as a labeled graph.

It is relatively straightforward to show that there is an AC
layer L; simulating +;, for every 1 < ¢ < 3. Hence, their
sequential composition Ls3; Lo; Ly simulates 32 1. It im-
mediately follows that there exists a “multi-layer” recurrent
GNN that iterates the composition L3; Lo; L1 to simulate
p-calculus formulae. This is not sufficient to prove Theo-
rem 5.1, however, since (i) we have defined recurrent GNNs
to iterate only a single AC layer and (ii) this layer must be
simple for Theorem 5.1 to hold.

Unfortunately, we cannot simulate -2 and -3 by means of
a simple AC layer: these transitions may cause the counter
C(X) of a variable X to be reset to zero if a certain boolean
condition b holds. To express this by means of a RFNN in the
CoMB function of a GNN, we must essentially determine the
new value of C'(X) by a function of the form “if b = 1 then
C(X) else 0”. This function is non-continuous around b = 1,
and therefore not expressible by a RFNN, which always
expresses a continuous and piecewise-linear transformation.

We hence need to work harder to obtain Theorem 5.1. Our
approach is conceptually simple: while we cannot directly
express “if b = 1 then C'(X) else 0” in an AC layer, we may
use the iteration capabilities of recurrent GNNs to repeatedly
decrement C'(X) until it reaches zero. We have to take care,
of course, that while we are doing this the state of the other
configuration components is not incorrectly altered.

Formally, an extended configuration is a pair (k, D) with
k a configuration, and D C vars (¢). Intuitively, D will
hold the variables whose counter value we need to keep
decrementing. We also call D the residual set.

Given a configuration x, we define the partial transition
of type 2 and type 3, denoted H and 4 as follows. The
partial type-2 transition on & yields the extended configura-
tion (', D') where (i) ' is defined such as in Definition 5.11
except that C’(X) := C(X) for all X with ¢|x € dep(k),
and (ii)) D' := {X | ¢|x € dep(k)}. The partial type-3
transition on « yields the extended configuration (k’, D’)
where (i) k' is defined such as in Definition 5.13 except that
C'(X) := C(X) for all X, and (ii) D’ := vars (). These
partial transitions hence delay setting variable counters to
zero, but record in D’ for which variables this must still
happen. For notational convenience, define x ;| (x/,0)
whenever k 1 /.

For every 1 < ¢ < 3 we then define the extended type-i
transition on extended configurations, denoted (k, D) ~-;
(«',D’). Here, (k',D’) (k,D) if D # {); otherwise,
(k/, D') is the result of applying I to k.

Finally, we define a reset transition on extended configu-
rations: on (x, D) the resetting transition ~~,. yields (', D")
where ' equals on all components except C, and

o) -1
_{C(X)

if X € Dand C(X) >0

C'(X) :
(X) otherwise

182

D':={XeD|C(X)-1>0}
Note in particular that (s, D") = (k, D) when D = ().

Proposition 5.18. Let k, k' be configurations with k' com-
plete. Then k&3 | » w" if, and only if, (k,0) ~3 1 5., (8, 0).

Proof sketch. We only illustrate the = direction, the con-
verse direction proceeds similarly but additionally exploits
the completeness of «’. If k is not complete, then +3 and
~~3 are the identity on x resp. (k,{). As such, it is not dif-
ficult to see that if is not complete we may mimic 3 1 o
by executing ~~3 1 2 on (k, () followed by zero or more ex-
ecutions of ~-, until the residual set becomes empty. Since
each extended transition ~~; with 1 < 7 < 3 acts as the
identity on extended configurations for which the residual set
is no-empty, we may also execute ~-,. on extended config-
urations with non-empty residual set by means of ~»3 12 ,.
Consequently, on incomplete configurations we may mimic
F3,1,2 by executing ~~3 5 ..

If x is complete, then I3 yields a non-complete config-
uration, say x’/. Using analogous reasoning as before, we
can argue that we may mimic (-3 on x by means of ~3 ; , ..
Because " is not-complete, the subsequent execution of -1 o
on " is equivalent to execution of -3 1 o on x”. The latter
can be mimicked by means of ~~3 ; 5, by our reasoning
in the previous case. Consequently, -3 1 2 is mimicked by
means of two applications of ~3 ; 5 .. O

We can encode extended configurations as labeled graphs
similarly to how we encode configurations as labeled graphs:
in the local configuration of (x, D) at node n we now also
include D at every node. The concept of a label transformer
simulating a function on extended configurations is defined
in the obvious way.

Proposition 5.19. There exists a simple AC layer simulating
~=3.1, as well as RFNNs whose lifting simulate ~»o and ~,..

Proof sketch. The crux is that local versions of extended
configurations are vectors whose elements are all in B or
N. It is well-known that, on such vectors, RFNNs can ex-
press all functions defined by boolean combinations of (i)
the B input elements and (ii) comparisons on the N elements.
For instance, if a,b € B and ¢ € N then then function
¢(a,b,¢) = —=(a A—=b) V (¢ > 1) is definable by an RFNN.

We will only need such functions to define output local
configuration vectors of ~»3 1, ~»9, and ~»,. For ~»3 1 we
also need the message passing capability of AC layers.

Let us illustrate how to simulate ~3 1, focusing on a single
output element. Assume that (k, D) ~»31 (', D’). Let H
and H’ be the encodings of (x, D) and (x’, D'), respectively.
Letn € Ny = Np/. Then H(n) is the input local configu-
ration vector at n, and H'(n) the output vector. We illustrate
only how to define the output element H'(n)[r({,v)] with
O¢ 1) a subformula of .! According to the definition of

~31t

o if D’ # () then H'(n)[r(Qe)] = H(n)[r(Or ¢;

"Recall that H'(n)[r(Oe 1)) stores whether n € R’ (Qr 1)) with
R’ the result assignment of &’

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

¢ if D’ = () and & is complete then H'(n)[r(O¢ 1] = 0 since
3 moves to the next initial k-configuraton;

* otherwise, D’ = () and x is not complete, and ~3 is
the identity on (x, D) and hence (x', D’) is the result of
applying ~»1 on (x, D). Therefore, according to Defini-
tion 5.8, in this case, H'(n)[r(0¢)] = 1if, and only if,

(ZmGEH(n) H(m) [r(z/J)]) > ¢. Note that in an AC layer,

> me By (n) H (m)[r(¥)] is provided by the AGG function,
which aggregates the local vectors of neighboring nodes,
so this remains a comparison of an input feature vector
element.

In each of these three cases, H'(n)[r({¢] is hence de-
termined by a boolean combination of input boolean ele-
ments and natural number comparisons. The three conditions
themselves can also be expressed as boolean combinations:
D' = 0 is equivalent to \/ x ¢, () H(n)[X € D] while
completeness of x is equivalent to H(n)[p € F]. Therefore,
the entire computation of H'(n)[r(0g 1] is definable by a
simple AC layer. O

Corollary 5.20. There exists a simple AC layer simulating

~23.1,2,r

Proof. Observe that simple AC layers are closed under com-
position with lifted RFNNs: if L: G[R?] — G[R9] is a simple
AC layer and f: R? — R? is a RFNN then f1 o L is also
expressible by a simple AC layer, obtained by taking the
RFNN g: R? — R% in L’s COMB function, and replacing it
by fog. 0

We now have all the ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. Let ¢ be a uGML sentence and G the
input to . Let d be the dimension necessary to encode local
versions of extended configurations as vectors in R.

Fix N' = (IN, L, HLT, OUT) be the recurrent GNN over
P(P) of dimension d where

s IN: P(P) — R maps each finite set P of proposition
symbols to the initial local extended configuration of ¢
wrt. k = 1, which is (P, 1,v,0,r,s,t,0) with v,s,t
mapping all formulae to 0, and ¢ mapping all formulae
to 1. It is straighforward to see that INT, when executed
on G, returns the encoding of (x,) with « the initial
configuration of ¢ on G w.r.t. k = 1.

* L is the simple AC layer simulating ~~3 1 2 -, which exists
by Corollary 5.20.

e HLT: RY — B is the RFNN that, given the local version
xp, of an extended configuration (k, D) at node n returns
1 if and only if is complete (i.e., xu[p € F| = 1), pis
k-stable at (G, V,n), (i.e., Xa[s(¢)] = 1), and D is empty
(.., ~(Vxears(p)Xn[X € D]) = 1). On a graph H that
encodes an extended configuration (x, D), HLTT(H) has
all nodes labeled 1 if, and only if, x is complete and stable,
and D =).

e OUT: RY — B is the function that on x, which is the
encoding of (x, D) at node n, returns the element x[r(¢)]
of x that stores whether n € R(¢p).

183

N expresses the node classifier defined by ¢ by the com-
bination of Proposition 5.3, 5.16, 5.18, and Corollary 5.20.
Strictly speaking, A is not simple since HLT need not be
simple. This is easily solved, however, by extending local
configurations with an extra boolean element that is used
to store the result of HLT, and modifying L so that it also
computes HLT and stores it in this extra element. Then, HLT
can just read this element instead. O

6 Concluding Remarks

We have shown that “bare bones” recurrent GNNs, without
any features that allow to determine the graph size, can ex-
press p-calculus, under a terminating semantics. Specifically,
the GNN can be halted as soon as we see a stopping bit of
one in every node. Morever, it is guaranteed that this will
happen after a finite number of iterations (polynomial in the
graph size). Proving this possibility result turned out to be
surprisingly subtle and intricate.

An interesting question for further research is whether
it is possible to make the termination fully convergent, as
intended in the original recurrent GNN proposal by Scarselli
et al. (2009). Specifically, is it possible to express every
uGML formula by a recurrent GNN, with stopping bits and
our halting guarantee, and moreover such that the entire
feature vector of all nodes will stabilize?

It is also natural to wonder about the converse direction:
do recurrent GNN classifiers always fall within xGML? The
unreserved statement certainly does not hold, even for fixed-
depth GNNs (Barcel6 et al. 2020). As already mentioned,
Pflueger et al. obtained a converse result relative to node
classifiers expressible in “local” monadic fixpoint logic.

What if we relativize more generally to MSO (monadic
second-order logic) node classifiers and strongly connected
graphs? In restriction to strongly connected graphs, g-
bisimilarity and total surjective g-bisimilarity coincide, and
hence here recurrent GNNSs are invariant under graded bisim-
ulations (Section 4). Since unary MSO formulas invari-
ant under graded bisimilarity are expressible in puGML
(Walukiewicz 2002; Janin and Lenzi 2001), it would then
immediately follow that recurrent GNN node classifiers in
MSO fall within uGML (when restricted to strongly con-
nected graphs), were it not for the caveat that the cited Janin—
Walukiewicz theorem (as well as its graded version) assumes
invariance of the MSO formula over all graphs, finite or in-
finite. In contrast, GNNs are designed to operate on finite
graphs only.

There may be a way out of this conundrum, as a break-
through, solving the open problem of proving the finitary
version of the cited Janin—Walukiewicz theorem, has re-
cently been announced (Colcombet, Doumane, and Kuper-
berg 2024). Another way to sidestep the situation is to
agree on a reasonable definition of GNNs working on infinite
graphs. This is an interesting line of research and promising
work already exists for graphons (Boker, Levie, and others
2023). Of course, the requirement that the recurrent GNN
node classifier is expressible in MSO becomes stronger and
possibly unnatural in this manner, since MSO cannot express
finiteness. The general case where graphs are not necessarily
strongly connected remains wide open.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgments

This work was supported by the Bijzonder Onderzoeksfonds
(BOF) of Hasselt University Grant No. BOF20ZAP02; by
the Research Foundation Flanders (FWQ) under research
project Grant No. GO19222N; and by the Flanders AI (FAIR)
research program.

References

Ahvonen, V.; Heiman, D.; Kuusisto, A.; and Lutz, C. 2024a.
Logical characterizations of recurrent graph neural networks
with reals and floats. In Globerson, A.; Mackey, L.; et al., eds.,
Proceedings 38th Annual Conference on Neural Information
Processing Systems.

Ahvonen, V.; Heiman, D.; Kuusisto, A.; and Lutz, C. 2024b.
Logical characterizations of recurrent graph neural networks
with reals and floats. arXiv:2405.14606.

Barceld, P.; Kostylev, E.; Monet, M.; Pérez, J.; Reutter, J.;
and Silva, J. 2020. The logical expressiveness of graph neu-
ral networks. In 8th International Conference on Learning
Representations. OpenReview.net.

Boker, J.; Levie, R.; et al. 2023. Fine-grained expressiv-
ity of graph neural networks. In Proceedings 37th Annual
Conference on Neural Information Processing Systems.

Bollen, J.; Van den Bussche, J.; Vansummeren, S.; and
Virtema, J. 2025. Halting recurrent GNNs and the graded p-
calculus. Technical report. https://arxiv.org/abs/2505.11050.

Colcombet, T.; Doumane, A.; and Kuperberg, D. 2024. Tree
algebras and bisimulation-invariant MSO on finite graphs.
arXiv:2407.12677.

de Rijke, M. 2000. A note on graded modal logic. Studia
Logica 64(2):271-283.

Geerts, F.; Steegmans, J.; and Van den Bussche, J. 2022. On
the Expressive Power of Message-Passing Neural Networks
as Global Feature Map Transformers. In Varzinczak, L., ed.,
Foundations of Information and Knowledge Systems, LNCS,
20-34. Cham: Springer.

Gilmer, J.; Schoenholz, S.; et al. 2017. Neural message
passing for quantum chemistry. In Precup, D., and Teh, Y.,
eds., Proceedings 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, 1263-1272.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.

Grohe, M. 2021. The logic of graph neural networks. In
Proceedings 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, 1-17. 1IEEE.

Hamilton, W. 2020. Graph Representation Learning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool.

Janin, D., and Lenzi, G. 2001. Relating levels of the mu-
calculus hierarchy and levels of the monadic hierarchy. In
16th Annual IEEE Symposium on Logic in Computer Science,
Boston, Massachusetts, USA, June 16-19, 2001, Proceedings,
347-356. IEEE Computer Society.

184

Kupferman, O.; Sattler, U.; and Vardi, M. 2002. The complex-
ity of the graded p-calculus. In Voronkov, A., ed., 18th Inter-
national Conference on Automated Deduction, volume 2392
of Lecture Notes in Computer Science, 423-437. Springer.

Kuusisto, A. 2013. Modal logic and distributed message pass-
ing automata. In Rochi Della Rocca, S., ed., Computer Sci-
ence Logic, volume 23 of Leibniz International Proceedings
in Informatics, 452-468. Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik.

Minsky, M. L. 1967. Computation: Finite and Infinite
Machines. Englewood Cliffs, NJ: Prentice-Hall.

Otto, M. 2023. Graded modal logic and counting bisimula-
tion. arXiv:1910.00039.

Pflueger, M.; Tena Cucala, D.; and Kostylev, E. 2024. Recur-
rent graph neural networks and their connections to bisimu-
lation and logic. In Woolridge, M., et al., eds., Proceedings
38th AAAI Conference, 14608—-14616.

Rosenbluth, E., and Grohe, M. 2025. Repetition makes
perfect: Recurrens sum-GNNs match message passing limit.
arXiv:2505.00291.

Sato, R. 2020. A survey on the expressive power of graph
neural networks. arXiv:2003.04078.

Scarselli, F., et al. 2009. The graph neural network model.
IEEE Transactions on Neural Networks 20(1):61-80.

Walukiewicz, I. 2002. Monadic second-order logic on tree-
like structures. Theor. Comput. Sci. 275(1-2):311-346.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu,
P. S. 2021. A Comprehensive Survey on Graph Neural Net-
works. IEEE Transactions on Neural Networks and Learning
Systems 32(1):4-24.

Zhang, B. 2025. The expressive power of graph neural
networks: A survey. IEEE Transactions on Knowledge and
Data Engineering 37:1455-1474.

https://arxiv.org/abs/2505.11050

	Introduction
	Related Work
	Preliminaries
	Halting Recurrent Graph Neural Networks
	From -Calculus to Halting-Classifier Recurrent GNNs
	Approximations and Stability
	The Counting Algorithm
	Implementing the Counting Algorithm in a Halting-Classifier Recurrent GNN

	Concluding Remarks

