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Abstract

Repair-based semantics have been extensively studied as a
means of obtaining meaningful answers to queries posed over
inconsistent knowledge bases (KBs). While several works
have considered how to exploit a priority relation between
facts to select optimal repairs, the question of how to spec-
ify such preferences remains largely unaddressed. This moti-
vates us to introduce a declarative rule-based framework for
specifying and computing a priority relation between con-
flicting facts. As the expressed preferences may contain un-
desirable cycles, we consider the problem of determining
when a set of preference rules always yields an acyclic rela-
tion, and we also explore a pragmatic approach that extracts
an acyclic relation by applying various cycle removal tech-
niques. Towards an end-to-end system for querying inconsis-
tent KBs, we present a preliminary implementation and ex-
perimental evaluation of the framework, which employs an-
swer set programming to evaluate the preference rules, apply
the desired cycle resolution techniques to obtain a priority re-
lation, and answer queries under prioritized-repair semantics.

1 Introduction
Inconsistency-tolerant semantics are a well-established ap-
proach to querying data inconsistent w.r.t. some constraints,
both in the relational database and ontology-mediated query
answering settings (cf. recent surveys (Bertossi 2019; Bi-
envenu 2020)). Such semantics typically rely on (subset)
repairs, defined as maximal subsets of the data consistent
w.r.t. the constraints. The most well-known, called the AR
semantics in the KR community and corresponding to con-
sistent query answering in the database community, consid-
ers that a Boolean query holds true if it holds in every repair.
The more cautious IAR semantics amounts to querying the
repairs intersection, and the less cautious brave semantics
only requires that the query holds in some repair.

Since an inconsistent dataset may have a lot of repairs,
several notions of preferred repairs have been proposed in
the literature, to restrict the possible worlds considered to
answer queries, for example by taking into account some in-
formation about the reliability of the data (Lopatenko and
Bertossi 2007; Du, Qi, and Shen 2013; Bienvenu, Bour-
gaux, and Goasdoué 2014; Calautti et al. 2022; Lukasiewicz,
Malizia, and Molinaro 2023). In particular, since its intro-
duction by Staworko, Chomicki, and Marcinkowski (2012),

the framework of prioritized databases, in which a prior-
ity relation between conflicting facts is used to define op-
timal repairs, has attracted attention, with numerous theo-
retical results (Kimelfeld, Livshits, and Peterfreund 2017;
Kimelfeld, Livshits, and Peterfreund 2020; Bienvenu and
Bourgaux 2020; Bienvenu and Bourgaux 2023), and an im-
plementation (Bienvenu and Bourgaux 2022). However, the
crucial question of obtaining the priority relation was left
unaddressed, preventing the adoption of this framework in
practice. Indeed, it is not realistic to expect users to manu-
ally input a binary relation between the facts.

In our work, we tackle this challenge by developing a
general rule-based approach to specifying preferences over
conflicting facts. After introducing the background on op-
timal repair-based inconsistency-tolerant semantics in Sec-
tion 2, we present in Section 3 our framework for specifying
a priority relation between conflicting facts via preference
rules. A distinguishing feature of our work is that we ad-
dress the issue of cycles in the expressed preferences, first
by investigating the problem of deciding whether a given set
of preference rules is guaranteed to produce an acyclic re-
lation, and second by providing a pragmatic approach that
uses cycle removal strategies to extract an acyclic relation.
Section 4 describes our implementation which employs an-
swer set programming to evaluate the preference rules, ap-
ply the desired cycle resolution techniques to obtain a prior-
ity relation, and answer queries under optimal repair-based
semantics. Finally, we present in Section 5 a preliminary ex-
perimental evaluation of the overall framework. Sections 6
and 7 discuss related and future work. Proofs and additional
details on the implementation and experiments are provided
in (Bienvenu et al. 2025). All materials to reproduce the
experiments (e.g. datasets, logic programs) are available at
https://github.com/rjean007/PreferenceRules-ASP

2 Preliminaries
We recall the framework of inconsistency-tolerant querying
of prioritized knowledge bases, as considered in (Bienvenu
and Bourgaux 2022; Bourgaux 2024). We assume that read-
ers are familiar with first-order logic and consider three dis-
joint sets of predicates P, constants C and variables V. As
usual, each predicate has an associated arity n ≥ 1, and we
shall use Pn for the set of the n-ary predicates in P.
Knowledge bases A knowledge base (KB)K = (D, T ) con-
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sists of a dataset D and a logical theory T : D is a finite set
of facts of the form P (c1, . . . , cn) with P ∈ Pn, ci ∈ C for
1 ≤ i ≤ n, and T is a finite set of first-order logic (FOL)
sentences built from P, C and V. We denote by sig(K) and
const(K) (resp. sig(D), const(D)) the set of predicates and
constants that occur in K (resp. in D). A KB K = (D, T ) is
consistent, and D is called T -consistent, if D ∪ T has some
model. Otherwise, K is inconsistent, denoted K |= ⊥.

Typically, T will be either an ontology (formulated in
some description logic or decidable class of existential rules)
or a set of database constraints. In particular, we consider:

• Description logics of the DL-Lite family (Calvanese et al.
2007), such as DL-Litecore, whose axioms take the form
B1 v (¬)B2, with Bi ∈ P1 ∪ {∃R, ∃R− | R ∈ P2}.

• Denial constraints of the form α1 ∧ . . . ∧ αn → ⊥,
where each αi is a relational or inequality atom, which
includes in particular functional dependencies (FDs) such
as P (x, y, z) ∧ P (x, y, z′) ∧ z 6= z′ → ⊥.

Queries A conjunctive query (CQ) is a conjunction of rela-
tional atoms P (t1, . . . , tn) (P ∈ Pn, ti ∈ C ∪ V), where
some variables may be existentially quantified. Given a
query q(~x), with free variables ~x, and a tuple of constants
~a such that |~a| = |~x|, q(~a) denotes the first-order sentence
obtained by replacing each variable in ~x by the correspond-
ing constant in ~a. A (certain) answer to q(~x) over K is a tu-
ple ~a ∈ const(K)|~x| such that q(~a) holds in every model of
K, denotedK |= q(~a). A cause for q(~a) w.r.t.K = (D, T ) is
an inclusion-minimal T -consistent subset C ⊆ D such that
(C, T ) |= q(~a). The set of causes for q(~a) w.r.t.K is denoted
by Causes(q(~a),K).
Conflicts and repairs A conflict of K = (D, T ) is an
inclusion-minimal subset D′ ⊆ D such that (D′, T ) |= ⊥.
The set of conflicts ofK is denoted Conf (K). A (subset) re-
pair of K is an inclusion-maximal subset R ⊆ D such that
(R, T ) 6|= ⊥. The set of repairs of K is denoted SRep(K).
Prioritized KBs A priority relation� for a KBK = (D, T )
is an acyclic1 binary relation over the facts of D such that if
α � β, then there exists C ∈ Conf (K) such that {α, β} ⊆
C. It is total if for every pair α 6= β such that {α, β} ⊆ C for
some C ∈ Conf (K), either α � β or β � α. A completion
of � is a total priority relation �′ ⊇ �. A prioritized KB
K� is a KB K with a priority relation � for K.

Priority relations are used to select optimal repairs. We
recall the notions of Pareto- and completion-optimal repairs2

from (Staworko, Chomicki, and Marcinkowski 2012):

Definition 1. Consider a prioritized KB K� with K =
(D, T ), and let R ∈ SRep(K). A Pareto improvement of
R is a T -consistent B ⊆ D such that there is β ∈ B \ R
with β � α for every α ∈ R \ B. The repair R is a Pareto-
optimal repair of K� if there is no Pareto improvement of
R, and a completion-optimal repair of K� if R is a Pareto-
optimal repair of K�′ , for some completion �′ of �. We

1In line with existing work on prioritized repairs, we do not
require priority relations to be transitive.

2Staworko et al. (2012) further introduces a third notion of
globally-optimal repair, see Section 7 for discussion.

denote by PRep(K�) and CRep(K�) the sets of Pareto-
and completion-optimal repairs.

The following relation between optimal repairs is known:

CRep(K�) ⊆ PRep(K�) ⊆ SRep(K).

Repair-based semantics We next recall three prominent
inconsistency-tolerant semantics (brave, AR, and IAR), pa-
rameterized by the considered type of repair:
Definition 2. Fix X ∈ {S, P,C} and consider a priori-
tized KB K� with K = (D, T ), query q(~x), and tuple
~a ∈ const(K)|~x|. Then ~a is an answer to q over K�
• under X-brave semantics, denoted K� |=X

brave q(~a), if
(R, T ) |= q(~a) for someR ∈ XRep(K�)

• under X-AR semantics, denoted K� |=X
AR q(~a), if

(R, T ) |= q(~a) for everyR ∈ XRep(K�)

• under X-IAR semantics, denoted K� |=X
IAR q(~a), if

(B, T ) |= q(~a) where B =
⋂
R∈XRep(K�)R

It is known that K� |=X
IAR q ⇒ K� |=X

AR q ⇒ K� |=X
brave q.

Example 1. Our running example considers a DL knowl-
edge base Kex = (Dex, Tex) about a university. The ontol-
ogy expresses that associate and full professors (APr and
FPr) are faculty members (Fac) and clerical staff workers
(Cleric) are administrative staff workers (Adm). Moreover,
one cannot be both an associate and a full professor, or an
administrative staff worker and a faculty member.

Tex = {APr v Fac,FPr v Fac,APr v ¬FPr,
∃Teach v Fac,Cleric v Adm,Adm v ¬Fac}

Dex = {APr(a),FPr(a),Cleric(a),Adm(a),Teach(a, c),

Adm(b),APr(b)}

The picture below represents the conflicts of K and a
priority relation �: an arrow from α to β indicates that
α � β and a dotted line indicates that {α, β} ∈ Conf (K)
without priority between α and β.
Teach(a, c) Adm(a)

Cleric(a) APr(a)

FPr(a)

Adm(b)

APr(b)

There are six repairs:

R1 = {APr(a),Teach(a, c),Adm(b)},
R2 = {FPr(a),Teach(a, c),Adm(b)},
R3 = {Cleric(a),Adm(a),Adm(b)},
R4 = {APr(a),Teach(a, c),APr(b)},
R5 = {FPr(a),Teach(a, c),APr(b)},
R6 = {Cleric(a),Adm(a),APr(b)},

and one can check that PRep(K) = {R1,R2,R3} while
CRep(K) = {R1,R2}, so, e.g., K |=P

IAR Adm(b), K 6|=P
brave

APr(b), K 6|=P
AR FPr(a), K |=C

IAR Fac(a), ...

Data complexity When considering the complexity of tasks
involving an input datasetD, we always use data complexity,
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where the sizes of the logical theory T and query q(~x) are
assumed to be fixed. Theorems 1 and 2 summarize known
upper and lower bounds in the database and ontology set-
tings (Staworko, Chomicki, and Marcinkowski 2012; Bi-
envenu and Bourgaux 2020; Bienvenu and Bourgaux 2022;
Rosati 2011; Bienvenu and Rosati 2013).

Theorem 1. Let L be an FOL fragment for which KB con-
sistency and query entailment are in PTIME. Query entail-
ment for L KBs and X ∈ {S, P,C} is in NP under X-brave
semantics, and in coNP under X-AR and X-IAR semantics.

Theorem 2. Let L be any FOL fragment that extends DL-
Litecore, EL⊥, or FDs. Query entailment for L KBs is NP-
hard under X-brave semantics (X ∈ {P,C}), coNP-hard
under X-AR semantics (X ∈ {S, P,C}), coNP-hard under
X-IAR semantics (X ∈ {P,C}).

3 Specifying Priority Relations via Rules
The optimal repair semantics recalled in Section 2 suppose
that we have a priority relation between the facts. However,
the question of how to conveniently specify the priority rela-
tion has not yet been addressed in the literature. This will be
the topic of the present section, which presents a declarative
rule-based framework for specifying priority relations.

3.1 Preference Rules
We propose to use preference rules to state that, when some
conditions are satisfied, a fact should generally be preferred
to another fact. The rule conditions may naturally refer to
the presence (or absence) of facts in the dataset. However,
typically we may also want to exploit information about the
facts themselves, provided in metadata, e.g. to compare facts
based upon the date they were added.

We now introduce some terminology and notation in order
to be able to refer to metadata in rule conditions. First, we
fix a subset PM ( P of metadata predicates and CID (
C of fact identifiers, assumed distinct from the predicates
and constants used in the considered dataset. We assume
that each n-ary predicate P ∈ PM has an associated set of
CID-positions posID(P ) ⊆ {1, . . . , n}, indicating which
positions of P contain constants from CID. Given a KB
K = (D, T ), a meta-database for K is a pairM = (id,F),
where id is an injective function that associates to each fact
α ∈ D an identifier id(α) from CID, andF is a dataset with
sig(F) ⊆ PM satisfying the following conditions:

• if P (c1, . . . , cn) ∈ F , then cj ∈ CID iff j ∈ posID(P )

• if c ∈ const(F) ∩CID, then c = id(α) for some α ∈ D
Intuitively, F provides information about the facts in D by
referring to their identifiers defined by id. Every identifier
in F must designate a unique fact in D, but it is not required
that F contains information about all facts in D.

Example 2. We associate to the KBKex from Example 1 the
meta-database Mex = (idex,Fex), which records the year
that facts have been added to the university database:
idex(APr(a)) = 1, idex(FPr(a)) = 2, idex(Cleric(a)) = 3,
idex(Adm(a)) = 4, idex(Teach(a, c)) = 5,

idex(Adm(b)) = 6, idex(APr(b)) = 7

F = {Date(1, 2014),Date(2, 2025),Date(3, 2013),

<(2013, 2014), <(2013, 2025), <(2014, 2025)}.

Remark 1. To simplify the presentation, we employ a meta-
database predicate < to compare years. However, such
comparison facts could be avoided by extending the defi-
nition of meta-databases to allow for built-in comparison
predicates for different datatypes and adding further typing
constraints on predicate positions.

We now formulate a general definition of preference rules,
which are evaluated over a KB and meta-database:
Definition 3. A preference rule σ over S ⊆ P takes the form

Cond(x1, x2)→ pref(x1, x2)

where pref 6∈ S is a special predicate (assumed not to occur
in KBs nor meta-databases) and Cond(x1, x2) is an expres-
sion whose predicate symbols are drawn from S and whose
two distinguished free variables x1, x2 occur only in CID-
positions of relational atoms over S ∩ PM or in equality
atoms of the form xi = id(P (~t)). We call Cond(x1, x2)
the body of σ and pref(x1, x2) its head. A preference rule
language is a set of preferences rules (intuitively, stipulating
the allowed syntax of rule bodies).

The semantics of preference rule languages is defined
using evaluation functions. An evaluation function for a
preference rule language PL is a function eval that as-
sociates true or false to every KB K = (D, T ) and as-
sociated meta-database M = (id,F), preference rule
Cond(x1, x2) → pref(x1, x2) ∈ PL, and pair of con-
stants (id1, id2) ∈ {(id(α), id(β)) | α, β ∈ D}.
We denote by (K,M) |= Cond(id1, id2) the fact that
eval(K,M,Cond(x1, x2), id1, id2) = true and say that
pref(id1, id2) is induced by σ over (K,M) (w.r.t. eval ) if
σ has body Cond(x1, x2) and (K,M) |= Cond(id1, id2).
Given a set Σ of preference rules with Σ ⊆ PL and an eval-
uation function eval for PL, we denote by Σ(K,M) the set
of all pref(id1, id2) induced by some σ ∈ Σ over (K,M).

Observe that the restrictions on the variables x1, x2 serve
to ensure head variables are mapped to fact identifiers. Aside
from this restriction, we have the preceding definition very
generic to encompass many different settings. The following
example and definition illustrate how our framework can be
instantiated, by giving a concrete preference rule language.
Example 3. Let Σex contain three preference rules for the
KB Kex and meta-databaseMex of our running example:

σ1 : Date(x1, y1)∧Date(x2, y2)∧<(y2, y1)→pref(x1, x2)

σ2 : x1 = id(FPr(y)) ∧ x2 = id(APr(y))→ pref(x1, x2)

σ3 : Y v Adm ∧ Z v Fac ∧ ¬(∃zTeach(y, z))∧
x1 = id(Y (y)) ∧ x2 = id(Z(y))→ pref(x1, x2)

Rule σ1 states a general preference for keeping more re-
cently added facts. Rule σ2 states if we have both FPr(p)
and APr(p), we prefer to keep FPr(p), capturing the do-
main knowledge that associate professors are promoted into
full professors. Rule σ3 states that if a person is declared to

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

166



belong both to a subclass of Adm and a subclass of Fac, but
there is no Teach-fact for the person in the dataset, then the
Adm-related facts are deemed more reliable. Observe that
σ3 uses ontology axioms with variables in order to simplify
rule formulation (avoiding the need to write separate rules
for every pair of subclasses of Adm and Fac).
Definition 4. The preference rule language PLDL contains
rules whose bodies can be obtained from atomic statements
of the following forms using ∧,¬, and ∃:
• relational atoms P (t1, . . . , tn), with P ∈ Pn, ti ∈ V∪C
• x = id(P (t1, . . . , tn)), where P ∈ Pn \PM, ti ∈ V∪C
• inequality atoms x 6= t, where x ∈ V, t ∈ V ∪C

• ontology atoms X v P , where P ∈ P \PM, X ∈ V

The evaluation function for PLDL is defined as follows:
eval(K,M,Cond(x1, x2), id1, id2) = true iff there exists
a function ν that maps each free variable in Cond(x1, x2)
to an element of C ∪ P and is such that ν(x1) = id1,
ν(x2) = id2 and f(K,M, ν(Cond(x1, x2))) = true, where
ν(Cond(x1, x2)) denotes the expression obtained by replac-
ing each free variable y by ν(y) in Cond(x1, x2) and f is
defined recursively as follows:
• f(K,M, φ1 ∧ φ2) = f(K,M, φ1) ∧ f(K,M, φ2),
• f(K,M,¬φ) = ¬f(K,M, φ),
• f(K,M, ∃zφ) = true iff there exists νz : {z} 7→ C ∪ P

such that f(K,M, νz(φ)) = true,
• for every P ∈ sig(F) and tuple ~c of constants,
f(K,M, P (~c)) = true iff F |= P (~c),

• for every P ∈ sig(K) and tuple ~c of constants,
f(K,M, P (~c)) = true iff D |= P (~c),

• f(K,M, idi = id(P (~c))) = true iff idi = id(P (~c)),
• for c, d ∈ C \CID, f(K,M, c 6= d) = true iff c 6= d,
• f(K,M, A v B) = true iff T |= A v B,
• for any atom α of another form, f(K,M, α) = false.
Example 4. By Definitions 3 and 4, Σex(Kex,Mex) is:

{pref(2, 1), pref(2, 3), pref(1, 3), pref(6, 7)}

with pref(2, 1) induced by both the first and second rules.
While preference rules allow users to describe in which

cases one fact should be preferred to another, we cannot im-
mediately obtain a priority relation from Σ(K,M). This
is firstly because priority relations must satisfy the property
that α � β implies that α and β appear together in a conflict.
While one could modify the definition of preference rules to
enforce this property, it would lead to much more compli-
cated rules, as users would need to include extra conditions
in rule bodies to ensure only pairs of ids of conflicting facts
occur in the head. We choose not to impose such a require-
ment, as it is more natural, we believe, to simply interpret a
preference rule Cond(x1, x2)→ pref(x1, x2) as meaning “if
the facts with ids x1 and x2 are in conflict, and Cond(x1, x2)
is satisfied, then prefer fact x1 to fact x2”. Formally, this
means that instead of working with all pairs mentioned in
Σ(K,M), we consider the binary relation �Σ,K,M, defined
by setting α �Σ,K,M β iff pref(id(α), id(β)) ∈ Σ(K,M)
and there exists C ∈ Conf (K) such that {α, β} ⊆ C.

The relation�Σ,K,M may still fail to be a priority relation
if it contains a cycle, as priority relations are required to be
acyclic. In what follows, we explore two complementary ap-
proaches to tackling this issue: identifying preference rules
which are guaranteed to yield an acyclic relation, and em-
ploying different methods to extract an acyclic sub-relation.

Finally let us note that while the definition of priority
relation does not require transitivity, this is often consid-
ered a natural property for preferences. However, we argue
that even in cases where transitivity is desired, one should
first resolve any cycles in the ‘direct’ preferences given in
�Σ,K,M, then only afterwards close under transitivity.

3.2 Checking Acyclicity of Preference Rules
It would be useful to be able to determine in advance, with-
out knowing the dataset and meta-database, whether a given
set of preference rules is guaranteed to produce an acyclic
relation (for example, to alert users and allow them the op-
tion of modifying the rules if this is not the case). Let us first
formalize precisely which property we aim to test:
Definition 5. Given a logical theory T , we say that a set
Σ of preference rules is T -acyclic if for every dataset D
and every meta-database M for the KB K = (D, T ), the
induced binary relation �Σ,K,M is acyclic.

The decidability and complexity of verifying T -acyclicity
naturally depends on the expressivity of the logical theory
and rule bodies. For our proposed language PLDL, the prob-
lem is typically undecidable, since finite satisfiability of FO-
sentences can be reduced to T -acyclicity:
Theorem 3. Let T be any non-trivial theory (i.e. which
can generate some conflict). Then it is undecidable to test
whether a set Σ ⊆ PLDL is T -acyclic.

We now present a positive result that covers some promi-
nent ontology and constraint languages and supports reason-
ably expressive rule bodies. Specifically, we consider the
language PLpos obtained from PLDL by disallowing ontol-
ogy atoms and negation (retaining inequality atoms x 6= t).
Theorem 4. Given a theory T consisting of binary denial
constraints and a set Σ of preference rules from PLpos, it
is decidable whether Σ is T -acyclic. Moreover, the problem
can be decided in coNP if the predicate arity is bounded.

Corollary 1. T -acyclicity testing is in coNP if T is a DL-
Lite ontology and the preference ruleset is in PLpos.

We expect that the preceding result can be extended to
arbitrary denial constraints (and ontology languages with
bounded-size non-binary conflicts), but the argument will
become considerably more involved as one needs to ensure
that the shortened cycle constructed in the proof only in-
volves pairs of facts that co-occur in a conflict. We observe
however that the proof of Theorem 4 already provides us
with a procedure for checking acyclicity of Σ(K,M), which
provides a sufficient condition for T -acyclicity:
Definition 6. We say that a set Σ of preference rules is
strongly acyclic if for every KB K = (D, T ) and ev-
ery meta-database M for K, the binary relation {(α, β) |
pref(id(α), id(β)) ∈ Σ(K,M)} is acyclic.
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Theorem 5. If Σ is strongly acyclic, then it is T -acyclic.

Example 5. The ruleset Σ = {σ2} is strongly acyclic, as σ2

can only induce pref(id(α), id(β)) if α is an FPr-fact and
β a APr-fact, so no cycle can be constructed.

It is also interesting to observe that if some metadata pred-
icates enjoy special properties, this information could be ex-
ploited to identify additional acyclic rulesets.
Example 6. Suppose now that Σ = {σ1}. Naturally
we expect that the meta-database contains a unique fact
Date(id(α), d) for each fact α and that < provides a total
order over the values in the second argument of Date. If we
were to adapt our acyclicity notions to only quantify over
meta-databases satisfying these constraints, then we could
conclude that Σ is strongly acyclic.

We leave it as future work to develop more sophisticated
(T - or strong) acyclicity checking procedures that can take
into account such additional information.

3.3 Resolving Cycles to Get a Priority Relation
Ideally the preference ruleset would satisfy the introduced
acyclicity conditions, but this cannot be assumed in gen-
eral. Indeed, we have seen that it may be undecidable to
determine whether a given ruleset satisfies the conditions.
Furthermore, cycles can naturally arise when users create
rules that capture different criteria, e.g. prefer more recent
facts and prefer facts from more trusted sources. To ensure
acyclicity in such cases, one would need to create more com-
plex rules whose bodies consider different combinations of
the criteria, making rules much harder for users to specify
and understand. We thus advocate a pragmatic approach:
give users free rein to specify preferences as they see fit,
then apply cycle resolution techniques to extract a suitable
acyclic sub-relation should any cycles arise.

To enable a more fine-grained specification of the pref-
erences, we allow users to partition the set Σ of preference
rules into priority levels Σ1, . . . ,Σn, so that a preference in-
duced by a preference rule from Σi is considered more im-
portant than one induced by a preference rule from Σj with
j > i, and will thus be preferably kept in the cycle elim-
ination process. If no such partition is specified, then all
rules are assigned to Σ1. For every pref(id(α), id(β)) ∈
Σ(K,M), we denote by level(α, β) the minimal index i
such that pref(id(α), id(β)) ∈ Σi(K,M). We consider
several ways of removing cycles to obtain a priority relation
� from �Σ,K,M (abbreviated to �Σ in what follows):

• Going up (�u): Let �u:= ∅ and i := 1. Then while
�u∪�Σi

is acyclic, let �u:=�u∪�Σi
and increment i.

• Going down (�d): Let �d:=�Σ and i := n. Then
while �d is cyclic, let �d:=�d \{(α, β) | level(α, β) =
i, (α, β) is in a cycle w.r.t. �d} and decrement i.

• Refined going up (�ru): Let�ru:=�Σ1
, then remove ev-

ery (α, β) that occurs in a cycle w.r.t.�Σ1
. Then for i = 2

to n, add to �ru all pairs (α, β) such that level(α, β) = i
and (α, β) does not belong to any cycle w.r.t. �ru∪�Σi

.
• Grounded (�g): Let �g:= ∅. Then until a fixpoint is

reached, add to �g all pairs (α, β) such that α �Σ β and

for every cycle c of �Σ containing (α, β), either there is
(γ, δ) ∈ c such that level(α, β) < level(γ, δ), or there is
(γ, δ) ∈ c such that �g ∪{(γ, δ)} is cyclic.
We next relate the preceding strategies to notions that

have been proposed in the literature to select a single con-
sistent set of facts from a KB whose dataset is partitioned
into priority levels. Indeed, one can define the KB Kcy =
(Dcy, T cy) with Dcy = {R(id(α), id(β)) | α �Σ β} and
T cy = {R(x, y) ∧ R(y, z) → R(x, z), R(x, x) → ⊥},
whose conflicts correspond exactly to the minimal cycles
of �Σ, and further partition Dcy into Dcy

1 , . . . ,Dcy
n as fol-

lows: R(id(α), id(β)) ∈ Dcy
i iff level(α, β) = i. For

such a KB K whose dataset is partitioned into priority levels
D1, . . . ,Dn, Benferhat, Bouraoui, and Tabia (2015) defined
the possibilistic repair Poss(K) = D1 ∪ · · · ∪ Dinc(K)−1

where inc(K) is the inconsistency degree ofK, i.e., the min-
imal i such that D1 ∪ · · · ∪ Di is inconsistent; the non-
defeated repair NonDef(K), defined as the union of the
intersections of the (subset) repairs of D1, D1 ∪ D2, . . . ,
D1 ∪ · · · ∪ Dn; and the prioritized inclusion-based non-
defeated repair Prio(K), defined similarly to NonDef(K)
but considering optimal repairs instead of subset repairs. In-
deed, when a priority relation is induced from priority levels
(called score-structured in the literature), the three notions
of optimal repairs coincide, and can be defined directly from
the priority levels (Bourgaux 2016; Livshits and Kimelfeld
2017). Finally, Bienvenu and Bourgaux (2020) defined the
preference-based set-based argumentation framework asso-
ciated with a prioritized KBK, whose arguments are the KB
facts and attacks are defined from the KB conflicts, and con-
sidered its grounded extension Grd(K).
Theorem 6. It holds that:
• α �u β iff R(id(α), id(β)) ∈ Poss(Kcy),
• α �d β iff R(id(α), id(β)) ∈ NonDef(Kcy),
• α �g β iff R(id(α), id(β)) ∈ Grd(Kcy).

It has been shown that Poss(K) ⊆ NonDef(K) ⊆
Grd(K) ⊆ Prio(K) and that all these sets of facts can be
computed in polynomial time except for Prio(K) (Benfer-
hat, Bouraoui, and Tabia 2015; Bienvenu and Bourgaux
2020). Combined with Theorem 6, these results can help
us show the following theorems:
Theorem 7. �u⊆�d⊆�g and �u⊆�d⊆�ru.

Theorem 8. Each of the relations �u,�d,�g,�ru can be
computed in polynomial time from the relations �Σi

.
Examples 7 and 8 show that �g and �ru are incom-

parable and that it may be the case that α �ru β while
R(id(α), id(β)) /∈ Prio(Kcy).
Example 7. Assume that �Σ1

= {(α, β), (β, γ)}, and that
�Σ2

= {(α, γ), (γ, α))}. Then �ru= {(α, β), (β, γ)} while
�g= {(α, β), (β, γ), (α, γ)}, so �ru(�g .
Example 8. Assume that �Σ1

= {(α, β), (γ, δ)}, �Σ2
=

{(β, γ), (δ, α))}, and �Σ3
= {(γ, β)}. Then �ru=

{(α, β), (γ, δ), (γ, β)} while �g= {(α, β), (γ, δ)}, so
�g(�ru. Note that R(id(γ), id(β)) /∈ Prio(Kcy) since
{R(id(α), id(β)), R(id(γ), id(δ)), R(id(β), id(γ))} is an
optimal repair of Kcy .
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program facts and rules input encoded

ΠD data(i). P (c1, . . . , cn) ∈ D,
P (i, c1, . . . , cn). id(P (c1, . . . , cn)) = i

ΠF Q(c1, . . . , cn). Q(c1, . . . , cn) ∈ F

ΠC conf init((Id0, . . . , Idk)) :- P0(Id0, t01, . . . , t
0
n0

), . . . , Pk(Idk, tk1 , . . . , t
k
nk

).
∧k

i=0 Pi(t
i
1, . . . , t

i
ni

)→ ⊥ ∈ Inc(T )
inConf init((Id0, . . . , Idk), Idj) :- P0(Id0, t01, . . . , t

0
n0

), . . . , Pk(Idk, tk1 , . . . , t
k
nk

).

ΠQ cause((x0, . . . , xm), (Id0, . . . , Idk)) :- P0(Id0, t01, . . . , t
0
n0

), . . . , Pk(Idk, tk1 , . . . , t
k
nk

). ∃~y
∧k

i=0 Pi(t
i
1, . . . , t

i
ni

)
inCause((Id0, . . . , Idk), Idj) :- P0(Id0, t01, . . . , t

0
n0

), . . . , Pk(Idk, tk1 , . . . , t
k
nk

). → q(x0, . . . , xm) ∈ Rew(q, T )

ΠP pref init(x1, x2, i) :- inConf(C, x1), inConf(C, x2), Cond(x1, x2)→ pref(x1, x2) ∈ Σi

P0(X0, t01, . . . , t
0
n0

), . . . , Pk(Xk, tk1 , . . . , t
k
nk

), Cond(x1, x2) = ∃~y
∧k

i=0 Pi(t
i
1, . . . , t

i
ni

)∧
not P ′0(Y0, t′01 , . . . , t

′0
n′0

), . . . , not P ′k′(Yk
′, t′k

′

1 , . . . , t′k
′

n′
k′

),
∧k′

i=0 ¬P ′i (t′i1 , . . . , t′in′i)∧
Q0(l01, . . . , l

0
p0

), . . . , Qm(lm1 , . . . , l
m
pm

),
∧m

i=0Qi(l
i
1, . . . , l

i
pi

)∧
not Q′0(l′01 , . . . , l

′0
p′0

), . . . , not Q′m′(l
′m′
1 , . . . , lm

′

p′
m′

),
∧m′

i=0 ¬Q′i(l′i1 , . . . , l′ip′i)∧
f0

1 ./ f
0
2 , . . . , f

r
1 ./ f

r
2 ,

∧r
`=0 f

`
1 ./ f

`
2∧

P ′′1 (t1, t
′′1
1 , . . . , t′′1n′1

), . . . , P ′′q (tq, t
′′q
1 , . . . , t′′qn′q ).

∧q
i=1 ti = id(P ′′i (t′′i1 , . . . , t

′′i
n′′i

))

level(i).

Table 1: Logic programs encoding the input. P, Pi, P
′
i , P

′′
i ∈ sig(D), Q,Qj ∈ sig(F), terms are in C ∪V and ./∈{=, 6=, >,<,≥,≤}.

4 ASP Implementation
We implement our approach using answer set programming
(ASP) (Lifschitz 2019; Gebser et al. 2012). We consider
ASP programs consisting of rules of the form

γ :- α1, . . . , αn, notβ1, . . . , notβm.

where γ, αi, βj are atoms built from predicates, variables,
constants and comparison operators. Every variable occur-
ring in the head γ of a rule must also occur in some positive
literal of its body α1, . . . , αn, notβ1, . . . , notβm. A rule
with an empty body is a fact, and a rule with an empty head
a constraint. We also use choice rules to select exactly or
at least one atom from a set. Importantly, it is possible to
use a tuple of terms as a predicate argument. We use this to
define, e.g., conflict identifiers as the tuple of the identifiers
of their facts. ASP is based on the stable model semantics.

We implement several building blocks, which provide an
almost end-to-end approach to querying inconsistent KBs.
Our system takes as input logic programs representing the
input, and computes the query answers under the chosen
semantics among X-brave, X-AR or X-IAR with X ∈
{S, P,C} w.r.t. �x for the chosen x ∈ {u, d, ru, g}. All
building blocks can be encoded into ASP programs that a
Python program combines and passes to the ASP solver
clingo3 (Gebser et al. 2011) to check whether the resulting
program has a stable model. However, we found more ef-
ficient in practice to split the computation into several steps
and implement some of them in Python (see Section 4.1).

4.1 Input, Conflicts, Causes and Preferences
Our approach applies to any logical theory T such that:

1. there exists a set Inc(T ) of rules of the form q → ⊥ with
q a Boolean CQ, such that for every dataset D, (D, T ) |=
⊥ iff there exists q → ⊥ ∈ Inc(T ) such that D |= q; and

3https://github.com/potassco/clingo

2. for every CQ q(~x) there exists a set Rew(q, T ) of rules of
the form q′(~x) → q(~x) with q′ a CQ such that for every
D s.t. (D, T ) 6|= ⊥ and tuple ~a, (D, T ) |= q(~a) iff there
exists q′(~x)→ q(~x) ∈ Rew(q, T ) s.t. (D, T ) |= q′(~a).

These conditions are fulfilled, e.g., when T is a set of denial
constraints (then, Inc(T ) = T and Rew(q, T ) = {q →
q}), or when T is a DL-Lite ontology. Regarding preference
rules, we handle rules whose bodies are CQs with negation
and comparison operators (see Table 1 for the syntax).

We expect that the KB K = (D, T ), meta-database
M = (id,F), preference rules Σ = Σ1 ∪ · · · ∪ Σn, and
query q have been transformed into the five ASP programs
given in Table 1. Programs ΠD and ΠF represent the dataset
D and the identifier function id, and the meta-database re-
spectively, and can be obtained quite straightforwardly from
various data formats. Constructing ΠC and ΠQ, which en-
code the constraints and queries, is more demanding since it
requires to compute the sets Inc(T ) and Rew(q, T ).
Proposition 1. The program ΠD ∪ ΠQ has a single stable
model S , and for every {α0, . . . , αk} ∈ Causes(q(~a),K),
S contains the facts cause((~a), (id(α0), . . . , id(αk))) and
inCause((id(α0), . . . , id(αk)), id(αj)), 0 ≤ j ≤ k.
Moreover, if cause((~a), (id(α0), . . . , id(αk))) ∈ S , then
({α0, . . . , αk}, T ) |= q(~a).

Essentially, ΠD ∪ ΠQ computes a superset of
Causes(q(~a),K), such that each superfluous B either
includes a real cause of q(~a) or contains a conflict. Simi-
larly, ΠD ∪ ΠC computes a superset of Conf (K), such that
each superfluous B contains an actual conflict. To obtain
Conf (K), we filter out these non-minimal T -inconsistent
subsets either via an ASP program ΠminC or by a Python
program, which we found faster in practice. In the case
where conflicts are of size at most two, we further optimize
the program by relying on the fact that non-minimal
T -inconsistent subsets we compute are not conflicts only
if they contain some self-inconsistent fact. We do not need
to filter out the superfluous sets from the superset of
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Π�u trans cl(X, Y, I) :- pref init(X, Y, I), not blocked(I).
trans cl(X, Y, I) :- level(I), trans cl(X, Y, J), J < I, not blocked(I).
trans cl(X, Y, I) :- pref init(X, Z, J), trans cl(Z, Y, I), J <= I, not blocked(I).
cycle(I) :- trans cl(X, X, I).
blocked(I) :- level(I), cycle(J), J < I. pref(X, Y) :- pref init(X, Y, I), not cycle(I), not blocked(I).

Π�d trans cl(X, Y, I) :- pref init(X, Y, I).
trans cl(X, Y, I) :- pref init(X, Z, I), trans cl(Z, Y, J), J <= I.
trans cl(X, Y, I) :- pref init(X, Z, J), trans cl(Z, Y, I), J <= I.
cycle(X, Y, I) :- pref init(X, Y, I), trans cl(Y, X, I). pref(X, Y) :- pref init(X, Y, I), not cycle(X, Y, I).

Π�ru trans cl(X, Y, I) :- pref init(X, Y, I).
trans cl(X, Y, I) :- level(I), rel(X, Y, J), J < I.
trans cl(X, Y, I) :- pref init(X, Z, I), trans cl(Z, Y, I).
trans cl(X, Y, I) :- trans cl(X, Z, I), trans cl(Z, Y, I).
cycle(X, Y, I) :- pref init(X, Y, I), trans cl(Y, X, I).
rel(X, Y, I) :- pref init(X, Y, I), not cycle(X, Y, I).
rel(X, Y, I) :- rel(X, Z, J), rel(Z, Y, I), J <= I. pref(X, Y) :- pref init(X, Y, I), rel(X, Y, I).

Table 2: Logic programs to compute �x from facts on predicates conf, inConf, pref init and level.

Causes(q(~a),K), and only need to ensure that they do
not contain some self-inconsistent fact (cf. (Bienvenu and
Bourgaux 2022, Section 4)), which we do using Python.
Proposition 2. The program ΠD ∪ ΠC ∪ ΠminC has a
single stable model S , which is such that {α0, . . . , αk} ∈
Conf (K) iff S contains conf((id(α0), . . . , id(αk))) and
inConf((id(α0), . . . , id(αk)), id(αj)), 0 ≤ j ≤ k.

Finally, ΠP encodes the preference rules with their prior-
ity levels. Note that we add in the preference rule body the
condition that the two facts compared in the head belong to
the same conflict to compute directly the �Σi

’s.
Proposition 3. The program ΠD∪ΠF ∪ΠC ∪ΠminC ∪ΠP

has a single stable model S , which is such that for every
α, β ∈ D, α �Σi

β iff pref init(id(α), id(β), i) ∈ S .

4.2 Computing the Priority Relation
We compute �x for the chosen x ∈ {u, d, ru, g} from the
conflicts given by facts on predicates conf, inConf, and the
�Σi

’s given by pref init with Π�x . For x ∈ {u, d, ru},
Π�x is given in Table 2 (for space reasons, we omit Π�g ,
which draws inspiration from the ASP encoding of the
grounded extension from (Egly, Gaggl, and Woltran 2008)).
Proposition 4. The program ΠD ∪ ΠF ∪ ΠC ∪ ΠminC ∪
ΠP ∪ Π�x has a single stable model S which is such that
for all α, β ∈ D, α �x β iff pref(id(α), id(β)) ∈ S .

4.3 Optimal Repair-Based Semantics
After preliminary experiments, we found it more efficient
to treat each potential answer separately, so we transform
(using Python) the cause((~a), (id(α0), . . . , id(αk))) facts
built by ΠD ∪ ΠQ into a set of programs Π~a representing
causes of each ~a with facts cause((id(α0), . . . , id(αk)))
and inCause((id(α0), . . . , id(αk)), id(αj)). For the ease
of presentation, we also denote by Πconf� the logic program
that contains the conflicts and priority relation. We say that
a conflict C attacks a fact α, written C  α, if α ∈ C and
α 6� β for every β ∈ C. We use a program Πatt to pre-
compute the attack relation (att) from Πconf� .

For X ∈ {S, P,C} and Sem ∈ {brave,AR, IAR}, we
define ΠX-Sem from building blocks inspired by the SAT

encodings given by Bienvenu and Bourgaux (2022). Note,
however, that the latter are implemented for binary conflicts,
so our system is the first implementing optimal repair-based
inconsistency-tolerant semantics for conflicts of arbitrary
size. For Sem ∈ {brave,AR}, ΠX-Sem is the union of:
• Πloc , which localizes the attack relation to relevant facts

(those that are reachable from the causes);
• Πcons , which selects (using a choice rule) a consistent set

of facts among the relevant facts by enforcing that at least
one fact per relevant conflict is removed;

• Πbrave if Sem = brave, which ensures that ΠX-Sem is sat-
isfiable only if all facts of some cause are selected;

• ΠAR if Sem = AR, which ensures that ΠX-Sem is satis-
fiable only if every cause is contradicted by the selected
facts, meaning that these facts include C \ {α} for some
C  α with α a fact of the cause;

• ΠPareto if X = P (resp. ΠCompletion if X = C), which
ensures that ΠX-Sem is satisfiable only if the selected facts
can be extended into a Pareto- (resp. completion-) repair.

For Sem = IAR, ΠX-Sem intuitively checks whether each
cause can be contradicted by a consistent set of facts. It
is similar to ΠX-AR, except that predicates in Πloc , Πcons ,
ΠAR and ΠPareto or ΠCompletion are extended with an extra
argument that keeps the identifier of the cause considered.
Proposition 5. The program Πconf� ∪Π~a ∪Πatt ∪ΠX-Sem
has a stable model iff

1. K� |=X
Sem q(~a) if Sem = brave;

2. K� 6|=X
Sem q(~a) if Sem ∈ {AR, IAR}.

5 Experiments
Our main goal is to compare the different approaches to ob-
taining a priority relation from preferences rules, in terms of
run time and size of the priority relation. We also compare
our ASP implementation of the optimal repair-based seman-
tics with ORBITS, the existing SAT-based implementation.

5.1 Experimental Setting
We use the CQAPri benchmark (Bourgaux 2016), a syn-
thetic benchmark adapted from LUBM∃20 (Lutz et al. 2013)
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Σa
1 ∪ Σa

2 ∪ Σa
3 Σc

1 Σd
1

#conf. �Σ �u �d �g �Σ �u �d,g �

u1c1 2,354 7,068 3,041 3,644 3,703 5,633 0 1,510 0

u1c5 8,516 17,804 7,624 8,944 9,324 14,517 0 3,356 1

u1c10 14,301 27,927 2 14,402 14,808 22,634 0 6,082 2

u1c20 28,272 52,361 4 27,185 27,948 42,032 0 12,300 4

u1c30 45,524 82,531 6 41,300 42,601 65,142 16,361 6

u1c50 81,344 145,193 69,454 113,857 19,966 8

u5c1 12,024 23,932 10,241 13,275 13,339 18,570 0 7,821 0

u5c5 53,438 96,307 52,084 52,820 76,045 0 28,017 1

u5c10 109,493 194,306 6 103,094 154,271 50,673 6

u5c20 231,811 319,549 87,006 14

u20c1 73,252 131,103 2 73,157 73,583 103,260 0 74,909 2

u20c503,130,417 159

Table 3: Number of conflicts, pref init facts (�Σ), and pref
facts computed for �u, �d and �g , for scenarios (a), (c) and (d)
(which directly yields an acyclic relation). Empty cells indicate that
clingo overflows or reaches a 30 min time-out. We fail to compute
priority relations on omitted datasets in all scenarios but (d).

to evaluate inconsistency-tolerant query answering over DL-
Lite KBs. We also consider its extension with two prior-
ity relations given by the ORBITS benchmark (Bienvenu and
Bourgaux 2022) for the comparison with ORBITS. In this
case, we translate the oriented conflict graph and causes for
potential answers provided in the benchmark into Πconf�
and Π~a (for each potential answer ~a). Experiments were run
with 16Go of RAM in a cluster node running CentOS Linux
7.6.1810 (Core) with linux kernel 3.10.0, with processor 2x
16-core Skylake Intel Xeon Gold 6142 @ 2.6 GHz. Re-
ported times are averaged over 5 runs.
Datasets and meta-database We build programs ΠD for
the uXcY datasets of the CQAPri benchmark with X ∈
{1, 5, 20} and Y ∈ {1, 5, 10, 20, 30, 50}. These datasets
are such that uXcY ⊆ uXcY′ for Y ≤ Y′ and uXcY ⊆
uX′cY for X ≤ X′, with X and Y related to the size
and the proportion of facts involved in some conflicts re-
spectively. Their sizes range from 75K to 2M facts and
their proportions of facts involved in some (binary) con-
flict from 3% to 46%. We ensure that for every fact α,
id(α) is the same in all uXcY, and we obtain each pro-
gram ΠF as a subset of the one generated for the largest
dataset u20c50, so that the same meta-data is used across the
uXcY. For ΠF , we randomly generate two facts per α ∈ D:
date(id(α), n) and source(id(α), k), where n, k are inte-
gers between 0 and 1000. For each k, we also generate a fact
reliability(k,m) with m an integer between 0 and 3.
Ontology and queries We use the DL-Lite ontology and
CQs of the CQAPri benchmark to generate ΠC and ΠQ. For
ΠC , we first build a denial constraint per concept or role dis-
jointness axiom. To experiment with non-binary conflicts,
we also add a denial constraint with 10 relational atoms.
We then rewrite all these constraints w.r.t. the ontology us-
ing Rapid (Chortaras, Trivela, and Stamou 2011). For the
queries, we similarly rewrite each query into a set of CQs.
Preference rules We use the following preferences rules,
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0

200

400

600
(a) �u

0 20 40 60 80

(a) �d

0 20 40 60 80

(a) �g

0 20 40 60 80
0

200

400

600

800 (b) �u

0 20 40 60 80

(b) �d

0 20 40 60 80

(b) �g

Figure 1: Time (in sec.) to compute �x from the pre-computed
conflicts for u1cY given as a program Πconf and ΠD ∪ΠF ∪ΠP ∪
Π�x in scenarios (a) and (b) w.r.t. the number (in thousands) of
conflicts. Empty bars for u1c50 (81K conflicts) mean t.o. or oom.
The lower part of each bar (light grey) shows the time to ground
the ASP program while the upper part is the time to solve it.

and test four scenarios: (a) Σa
1 = {ρ3, ρ4}, Σa

2 = {ρ2},
Σa

3 = {ρ1}; (b) Σb
1 = {ρ1, ρ3, ρ4}, Σb

2 = {ρ2}; (c) Σc
1 =

{ρ1, ρ2, ρ3, ρ4}; (d) Σd
1 = {ρ3, ρ4} (dropping ρ1, ρ2).

ρ1 : date(x1, y1) ∧ date(x2, y2) ∧ y1 > y2 → pref(x1, x2)

ρ2 : source(x1, y1) ∧ source(x2, y2) ∧ reliability(y1, z1)

∧ reliability(y2, z2) ∧ z1 > z2 → pref(x1, x2)

ρ3 : x1 = id(FPr(y)) ∧ x2 = id(APr(y))→ pref(x1, x2)

ρ4 : x1 = id(APr(y)) ∧ x2 = id(GrSt(y))→ pref(x1, x2)

5.2 Experimental Results
Table 3 and Figure 1 present some results of the evaluation
of the priority relation computation. We were not able to
compute �ru even on u1c1 because it overflows the number
of atoms clingo can handle. However, we managed to com-
pute the other priority relations for almost all small datasets
(>75K), several medium size datasets (>463K), and one
large dataset (>1,983K) even in cases with a large propor-
tion of facts in conflicts (44% for u1c50) or high numbers
of pref init facts (319K for u5c20 in scenario (c)). All
datasets have exactly 40 conflicts of size 10, which yields
1,800 pairs of facts, and other conflicts are binary (so that
e.g., u1c1 has 4,114 pairs of conflicting facts). Several pref-
erence statements (�Σ) can be made on each such pair (in
both directions and on different priority levels) while the pri-
ority relation (�x) compares each pair of facts at most once
so that, e.g., �g compares 90% of the pairs of conflicting
facts of u1c1 in scenario (a). Interestingly, �d and �g often
coincide and never differ by more than 5% of pref facts on
instances for which we computed them, while �u is often
reduced to the empty relation. From a computational point
of view, �d is significantly faster to compute than �g and
�u (except in scenario (d) which yields a very small and
acyclic �Σ). Hence �d may be a good method in practice.
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The times given in Figure 1 do not include the time needed
to compute the conflicts, which may be far from negligible:
while the evaluation of ΠD∪ΠC never takes more than about
1min (u20c50), the time needed to minimize the conflicts
takes from less than 1sec to 206sec for the u1cY cases, but
more than 45 hours for u20c50! In the case where conflicts
have size at most two, however, this takes at most 1.5sec for
the u1cY cases and no more than 42sec (u20c50).

Regarding the computation of optimal repair-based se-
mantics, we select 8 queries with a reasonable number of
potential answers (between 3 and 16,969) because very high
numbers of answers lead to time-out (30 minutes per query).
Our system is in general by far slower than ORBITS on
datasets that are large or with a high percentage of conflict-
ing facts: e.g., on u20c1 and u1c50, our implementation al-
ways takes more than 16 times longer and up to more than
1,200 times longer to filter answers under P -AR or P -brave
semantics. On the simplest case, u1c1, the difference is less
striking (at least if we include the time to load the input in
the computation time for ORBITS), but still of orders of mag-
nitude for many queries. However, it is notable that we do
manage to answer a few queries under C-AR and C-brave
semantics in cases where ORBITS fails.

6 Related Work
We draw inspiration from different preference specification
formalisms defined for related settings, such as preference-
based query answering over databases (Stefanidis, Koutrika,
and Pitoura 2011) or (consistent) KBs (Lukasiewicz, Mar-
tinez, and Simari 2013). In the latter work, for example,
preference formulas consist of a condition, given by an FO-
formula, which induces a preference between two atoms.
In the context of controlled query evaluation in DL, Cima
et al. (2021) define a preference relation among ontology
predicates, which straightforwardly induces one among the
facts. Closer to our own work, Calautti et al. (2022) consider
preference rules that generate preferences between atoms in
order to select preferred repairs of inconsistent KBs. Dif-
ferently from us, their preference rules are evaluated over
the repairs themselves, whereas our rules are evaluated over
the dataset (and meta-database) and yield a priority relation
between facts, which is then lifted to get optimal repairs.

Our preference rules generalize the preceding preference
formalisms by allowing rule bodies that express more com-
plex conditions, e.g., that may refer to meta-data, include
negated atoms, or quantify over ontology predicates. In this
manner, we obtain an easy and flexible way of defining in-
consistency management policies, as considered in (Mar-
tinez et al. 2014). Moreover, a distinguishing contribution of
our work is that we propose methods for dealing with cycles
among the induced preference statements. Our cycle reso-
lution techniques can take into account priorities amongst
the preference rules themselves. Rules with priorities are
also considered in prioritized logic programming (Sakama
and Inoue 2000; Brewka and Eiter 1999), but there serve the
purpose of identifying preferred answer sets.

Our work has high-level similarities with (Fagin et al.
2016), which employs optimal repairs from (Staworko,
Chomicki, and Marcinkowski 2012) to clean inconsistencies

arising amongst facts extracted using document spanners.
They introduce priority-generating dependencies to define a
priority relation and explore some properties of the induced
relations. However, the formalization and techniques differ
significantly due to the very different settings.

Another line of related work uses logic programming for
consistent query answering over relational databases (Greco,
Greco, and Zumpano 2003; Eiter et al. 2008; Manna, Ricca,
and Terracina 2013). These works consider different kinds
of repair: on the one hand, they allow repairs to restore con-
sistency by adding facts, while we focus on subset repairs,
only involving deletions, which are standard for KBs inter-
preted under the open-world assumption; on the other hand,
we consider priority-based optimal repairs. Greco, Greco,
and Zumpano (2003), however, define constraints that ex-
press conditions on the insertion or deletion of atoms, and
rules defining priorities among such updates, sharing the in-
tuition that the user should be able to specify preferences
on how to treat inconsistency. On the implementation side,
we remark that compared to our experimental setting, the
evaluations of previous ASP approaches typically either use
databases with very few conflicts (few hundreds), or whose
conflicts have a specific structure that ensures that the con-
flicts form small independent connected components.

7 Conclusion and Future Work
In this paper, we present a rule-based approach to specifying
a priority relation between conflicting facts, in order to adopt
optimal repair-based inconsistency-tolerant semantics. We
investigate the problem of deciding whether the relation in-
duced by a set of preference rules is guaranteed to be acyclic
and propose several strategies to remove cycles. We also
present an implementation of the approach, including the
computation of query answers that hold under a given se-
mantics, which was not yet implemented for the case of non-
binary conflicts and optimal repairs. While our comparison
show that existing SAT implementation is more efficient for
the latter task (though the SAT implementation is optimized
for binary conflicts while ours handles conflicts of any size
so the comparison is not entirely fair), ASP retains a num-
ber of advantages. Besides allowing the user to directly and
easily express preference rules, logic programs are easy to
modify to treat other problems (such as the computation of
repairs, which is not tackled by ORBITS). Moreover, ASP is
more expressive than SAT, so that it is theoretically possible
to employ ASP to compute answers under globally-optimal-
repair-based semantics (which have Σp

2 / Πp
2 complexity),

even if finding an efficient encoding remains a challenge.
There are several directions for future work. First, we

could extend the static analysis of Section 3.2, by consid-
ering more classes of logical theories and preference rules.
Besides the problem of deciding whether a theory and set of
preference rules ensure that the induced relation is acyclic,
one could wonder whether they guarantee that there exists
a unique optimal repair. On the practical side, we want to
implement the last missing blocks to have a truly end-to-
end system for query answering over inconsistent KBs with
preference rules (in particular to generate the input logic pro-
grams of Table 1 from data/theory given in various formats).
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