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Abstract

Recent work on quantitative approaches to explaining query
answers employs responsibility measures to assign scores to
facts in order to quantify their respective contributions to ob-
taining a given answer. In this paper, we study the com-
plexity of computing such responsibility scores in the set-
ting of ontology-mediated query answering, focusing on a
very recently introduced family of Shapley-value-based re-
sponsibility measures defined in terms of weighted sums of
minimal supports (WSMS). By exploiting results from the
database setting, we can show that such measures enjoy
polynomial data complexity for classes of ontology-mediated
queries that are first-order-rewritable, whereas the problem
becomes #P-hard when the ontology language can encode
reachability queries (via axioms like ∃R.A ⊑ A). To bet-
ter understand the tractability frontier, we next explore the
combined complexity of WSMS computation. We prove that
intractability applies already to atomic queries if the ontol-
ogy language supports conjunction, as well as to unions of
‘well-behaved’ conjunctive queries, even in the absence of an
ontology. By contrast, our study yields positive results for
common DL-Lite dialects: by means of careful analysis, we
identify classes of structurally restricted conjunctive queries
(which intuitively disallow undesirable interactions between
query atoms) that admit tractable WSMS computation.

� This pdf contains internal links: clicking on a notion
leads to its definition. A long version of this paper can be
found at https://arxiv.org/abs/2507.23191.

1 Introduction
The question of how to explain query answers has received
significant attention in both the database and ontology set-
tings. Qualitative notions of explanation, based e.g. on min-
imal supports of fact or proofs, have been more extensively
explored, particular in the ontology setting, cf. (Borgida,
Calvanese, and Rodriguez-Muro 2008; Alrabbaa et al. 2022;
Bienvenu, Bourgaux, and Goasdoué 2019; Ceylan et al.
2019; Ceylan et al. 2020). However, there has been re-
cent interest in quantitative notions of explanation based
upon responsibility measures, which assign scores to the
dataset facts to quantify their respective contributions to
obtaining a given answer. Prior work on responsibility
measures for query answers has predominantly focused on
the so-called ‘drastic Shapley value’ (Livshits et al. 2021;

Deutch et al. 2022; Khalil and Kimelfeld ; Kara, Olteanu,
and Suciu 2024; Reshef, Kimelfeld, and Livshits 2020;
Bienvenu, Figueira, and Lafourcade 2024b; Karmakar et al.
2024; Bienvenu, Figueira, and Lafourcade 2024a). The dras-
tic Shapley value is defined as the Shapley value of the 0/1
modeling of the (Boolean) query. It was motivated by the ap-
pealing theoretical characterization of the Shapley value as
a concept in cooperative game theory, which is the only dis-
tribution of wealth among players respecting certain guar-
antees, known as ‘Shapley axioms’ (Shapley 1953). The
choice of modelling the query as a 0/1 cooperative game,
however, has not been justified.

Unfortunately, the computation of the drastic Shapley
value is generally intractable (#P-hard in data complexity),
even in the absence of ontologies and for very simple (con-
junctive) queries (Livshits et al. 2021; Bienvenu, Figueira,
and Lafourcade 2024b). Furthermore, it has recently been
argued in (Bienvenu, Figueira, and Lafourcade 2025) that:
(i) not all Shapley axioms yield desirable properties when
translated into the query answering setting, and (ii) the gen-
uinely desirable properties for responsibility measures of
query answers do not pinpoint a single best score function.

In light of this, (Bienvenu, Figueira, and Lafourcade
2025) has very recently proposed a family of responsibil-
ity measures, based on weighted sums of minimal supports
(WSMS), where the score of a fact is defined as a weighted
sum of the sizes of the query’s minimal supports containing
it. The cited work shows that WSMS satisfy several desir-
able properties and that they enjoy more favourable compu-
tational properties compared to the drastic Shapley value in
the database setting. Further, WSMS can also be defined as
the Shapley value of suitable cooperative games.

The positive results for WSMS in the database setting
motivate us to investigate the complexity of computing
WSMS responsibility scores in the more challenging setting
of ontology-mediated query answering (OMQA) (Poggi et
al. 2008; Bienvenu and Ortiz 2015; Xiao et al. 2018). For
this first study of WSMS in the ontology setting, we focus on
description logic (DL) ontologies (Baader et al. 2017), pay-
ing particular attention to DLs of the DL-Lite family (Cal-
vanese et al. 2007), which are the most commonly adopted
in OMQA, due to their favourable computational properties.
We thus consider ontology-mediated queries (OMQs) of the
form (T , q), where T is formulated in some DL and q is
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either a conjunctive query (CQ) or atomic query.

Contributions Our results show that the good computa-
tional behaviour of WSMS in the database setting exhib-
ited in (Bienvenu, Figueira, and Lafourcade 2025) extends
to some relevant classes of ontology-mediated queries. This
is in sharp contrast to the intractability of the drastic Shap-
ley measure considered in the database (Livshits et al. 2021;
Bienvenu, Figueira, and Lafourcade 2024b) and ontology
(Bienvenu, Figueira, and Lafourcade 2024a) settings.

More precisely, we observe that WSMS computation is
tractable in data complexity for any UCQ-rewritable OMQ.
In particular, this covers the class of OMQs (T , q) consist-
ing of a DL-Lite ontology and CQ q (Theorem 4). We show
in fact that WSMS computation for such OMQs can be im-
plemented using relational database systems via simple SQL
queries (Theorem 5 & Corollary 8). We further define a class
of ‘well-behaved’ OMQs composed of DL-Lite ontologies
and bounded treewidth CQs for which we establish tractabil-
ity also in combined complexity (corollary of Theorem 15).

We also identify DL constructs that render WSMS com-
putation intractable. In particular, we show that the
data complexity becomes #P-hard for classes of OMQs
exhibiting reachability behaviour, e.g. admitting axioms
∃R.A ⊑ A (Corollary 10). Furthermore, the presence of
concept conjunction, present in lightweight DLs like as EL
and Horn dialects of DL-Lite, leads to #P-hardness in com-
bined complexity (Proposition 11). Furthermore, we show
that while UCQ-rewritable OMQs enjoy tractable data com-
plexity, this is not the case for combined complexity, even
if the rewriting falls within a very restrictive fragment of
UCQs (namely, acyclic and self-join free) (Proposition 13).

Organization After reviewing basic terminology and no-
tation, we recall in Section 3 the different responsibility
measures, in particular, the recently introduced WSMS, ex-
plain how they can be applied in the OMQA setting, and
define the WSMS computation task. Section 4 focuses on
(in)tractability results on data complexity. The remaining
sections consider combined complexity. Section 5 presents
(in)tractability results for OMQs based upon atomic queries.
Section 6 shows that UCQs are generally intractable for
WSMS computation. Finally, Section 7 exhibits a condition
ensuring polynomial-time tractability. We finish with some
concluding remarks in Section 8.

2 Preliminaries
We recall key definitions and notation concerning descrip-
tion logics and ontology-mediated query answering.

Description Logic Knowledge Bases A description logic
(DL) knowledge base (KB) K = (A, T ) consists of an ABox
A and a TBox T , constructed from mutually disjoint sets
NC of concept names (unary predicates), NR of role names
(binary predicates), and NI of individual names (constants).
An inverse role has the form r−, with r ∈ NR, and we use
N±

R = NR ∪ {r− | r ∈ NR} for the set of roles. The ABox is
a finite set of concept assertions of the form A(c) with A ∈
NC, c ∈ NI and role assertions r(b, c) with r ∈ NR, b, c ∈
NI. We use ind(A) for the set of individual names in A, and

we write R(b, c) to mean r(b, c) if R = r ∈ NR and r(c, b)
if R = r−. The TBox (ontology) is a finite set of axioms
whose form depends on the DL in question.

Many of our results concern lightweight DLs of the DL-
Lite family. We shall in particular consider the DL-LiteR
dialect, whose TBox axioms take the form of concept inclu-
sions B ⊑ C and role inclusions R ⊑ S, built according to
the following grammar

B := A | ∃R C := B | ¬B S := R | ¬R

where A ∈ NC and R ∈ N±
R. The logic DL-Litecore

is obtained from DL-LiteR by disallowing role inclusions.
Another prominent lightweight DL is EL, whose TBoxes
consist of concept inclusions D1 ⊑ D2 between EL-
concepts built as follows:

D := ⊤ | A | D ⊓D | ∃r.D A ∈ NC, r ∈ NR

The semantics of DL KBs is defined using interpretations
I = (∆I , ·I), where the domain ∆I is a non-empty set and
the interpretation function .I maps each a ∈ NI to aI ∈ ∆I ,
each A ∈ NC to AI ⊆ ∆I , each r ∈ NR to rI ⊆ ∆I ×
∆I . The function ·I is extended to complex concepts and
roles: ⊤I = ∆I , (∃R)I = {d | ∃e ∈ ∆I , (d, e) ∈ RI},
(r−)I = {(e, d) | (d, e) ∈ rI}, (C ⊓D)I = CI ∩DI . An
interpretation I satisfies an assertion A(a) (resp. r(b, c)) if
bI ∈ AI (resp. (bI , cI) ∈ rI). I satisfies a (concept or
role) inclusion G ⊑ H if GI ⊆ HI . We call I a model
of a KB K, denoted I |= K, if I satisfies all axioms in T
(written I |= T ) and all assertions in A (written I |= A).
It will also be convenient to introduce notation K |= ∃R(a)
(with R ∈ N±

R) to indicate that aI ∈ (∃R)I in every model
I of K. We use Mod(K) for the set of models of K. A KB
K is consistent if it has a model.

Databases While our main interest is in DL KBs, we shall
import definitions and techniques from the database litera-
ture, so we briefly introduce some notation and terminology
for databases. Formally, a (relational) database D is a finite
set of relational facts P (⃗a), where P is a relational predicate
of arity k ≥ 1 and a⃗ is a k-ary vector of constants (which
we may assume drawn from NI). The signature of D is the
set of predicates that occur in the facts of D, and we speak
of a binary signature if only unary and binary predicates are
used. We will use α ∈ D to indicate that fact α occurs in D.

Every database D can be equivalently viewed as a fi-
nite first-order interpretation ID whose domain is the set
of constants in D, which interprets every constant from D
as itself, and which interprets each predicate P as follows:
P I = {a⃗ | P (⃗a) ∈ D}. Moreover, it will sometimes prove
convenient to treat an ABox A as a database and to consider
the associated finite interpretation IA.

Queries An (abstract, non-numeric) query of arity k ≥ 0
is a function that maps every first-order interpretation I to
a set q(I) of k-tuples of domain elements. We will mostly
work with Boolean queries, of arity 0, for which q(I) can
only take two values: ∅ which we interpret as ‘false’, and
{()} which we interpret as ‘true’. In the latter case, we write
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I |= q. Queries may also be (and in fact are usually) evalu-
ated over databases, in which case q(D) returns a set of tu-
ples of constants from D (called answers) and D |= q means
that q evaluates to ‘true’ in the associated interpretation ID.

We consider various concrete classes of first-order
queries (FO-queries for short), which are defined as first-
order logic formulas. Note that when querying DL KBs, the
relational atoms in queries will use predicates from NC∪NR,
whereas in the database context, the atoms will use the avail-
able database predicates. The most prominent class of FO
queries is CQ, the class of conjunctive queries, which are
defined by formulas of the form q(x⃗) = ∃y⃗.α1 ∧ · · · ∧ αn

where the αi are relational atoms that can contain constants
and/or variables in vars(q) := x⃗∪ y⃗, where x⃗ is the vector of
free variables of the formula. A CQ q can be partitioned into
is connected components which are the inclusion-maximal
connected subqueries of q. When a CQ has no free variables
it is naturally Boolean. We shall also consider the subclass
AQ of CQs with a single atom called atomic queries (AQs),
the class UCQ of unions of conjunctive queries defined as fi-
nite disjunctions of CQs with the same set of free variables,
and the class (U)CQ ̸= of (U)CQ with inequality atoms.

We will often treat CQs as sets of atoms and use notation
like α ∈ q to indicate that atom α is a conjunct of the CQ q.
It is well known that when q is a constant-free Boolean CQ,
I |= q iff there is a homomorphism h : q

hom−−→ I , i.e. a
function h from vars(q) to ∆I such that P (x⃗) ∈ q implies
that h(x⃗) ∈ P I (or P (h(x⃗)) ∈ D if we evaluate q over a
database D). This characterization extends to Boolean CQs
with constants by adding the requirement that h maps every
constant c to cI (or to c itself, if we work with databases).
Note that one can define in the same manner homomor-
phisms between two queries or between two interpretations.

Ontology-Mediated Query Answering We say that a
Boolean query q is entailed from a KB K, written K |= q,
if I |= q for every I ∈ Mod(K). The certain answers to a
non-Boolean k-ary query q(x⃗) w.r.t. a KB K = (A, T ) are
the tuples a⃗ ∈ ind(A)k such that K |= q(⃗a), with q(⃗a) the
Boolean query obtained by substituting a⃗ for x⃗.

Alternatively, we can treat T and q together as consti-
tuting a composite ontology-mediated query (OMQ) Q =
(T , q), in which case we will write A |= (T , q) to mean
(A, T ) |= q. The notation (L,Q) will be used to designate
the class of all OMQs (T , q) consisting of a TBox formu-
lated in the DL L and a query q ∈ Q.

A common approach to computing certain answers (or
checking query entailment) is to rewrite an OMQ into an-
other query that can be directly evaluated using a database
system. Formally, we call a query q∗(x⃗) a rewriting of an
OMQ (T , q) if for every ABox A and candidate answer a⃗:

A |= (T , q(⃗a)) iff A |= q∗(⃗a)

If we restrict the above definition by requiring that q∗ be-
long to a class of queries C (e.g. FO or UCQ ̸=), we call
it a C-rewriting. Several dialects of DL-Lite, including
DL-LiteR, are known to guarantee the existence of FO-
rewritings, meaning that every OMQ from (DL-LiteR,CQ)
possesses an FO-rewriting. Moreover, such rewritings in

fact can be expressed in UCQ (or in UCQ ̸=, if the DL ad-
mits functional roles or number restrictions).

In Horn DLs, like EL and DL-LiteR, every consistent KB
K = (A, T ) admits a canonical model IA,T with the prop-
erty that for every model J of K, there is a homomorphism
h : IA,T

hom−−→ J that is the identity on ind(A). Importantly,
if K = (A, T ) admits a canonical model IA,T , then for ev-
ery CQ q and candidate answer tuple a⃗:

K |= q(⃗a) iff IA,T |= q(⃗a)

The precise definition of IA,T depends on the particular
Horn DL. In the case of DL-LiteR, the domain ∆IA,T of
IA,T consists of all words aR1 . . . Rn (n ≥ 0) such that
a ∈ ind(A), Ri ∈ N±

R, and:

• if n ≥ 1, then (A, T ) |= ∃R1(a) and there is no b ∈
ind(A) such that (A, T ) |= R1(a, b)

• for 1 ≤ i < n, T |= ∃R−
i ⊑ ∃Ri+1 and R−

i ̸= Ri+1.

Elements in ∆IA,T \ ind(A) will be called anonymous ele-
ments. The interpretation function is defined as follows:

aIT ,A = a for all a ∈ ind(A)

AIT ,A =∆IA,T ∩ ({a ∈ ind(A) | (A, T ) |= A(a)}∪
{aR1 . . . Rn | n ≥ 1 and T |= ∃R−

n ⊑ A})

rIT ,A =
(
∆IA,T

)2 ∩ ({(a, b) | r(a, b) ∈ A}∪
{(w1, w2) | w2 = w1R

′ and T |= R′ ⊑ r}∪
{(w2, w1) | w2 = w1R

′ and T |= R′ ⊑ r−})

Complexity We assume familiarity with the class FP of
functions that can be computed in deterministic polynomial
time, as well as the class #P of functions defined as count-
ing the accepting runs of a nondeterministic Turing machine.
All hardness results are defined from polynomial-time Tur-
ing reductions: we say that P1 reduces to P2 and write
P1⩽PP2 if the problem P1 can be solved in polynomial time
given access to a unit-cost oracle that solves P2.

3 Responsibility Measures & Shapley Value
In this section, we recall the notion of responsibility mea-
sure, which provides quantitative explanations of query an-
swers, and some concrete Shapley-value-based responsibil-
ity measures. We also explain and illustrate how these no-
tions, defined for databases, transfer to the OMQA setting.

3.1 Responsibility Measures for Query Answers
Although we shall be interested in employing responsibility
measures to quantify the contribution of facts to obtaining an
answer a⃗ to a query q(x⃗), it will actually be more convenient
to consider the equivalent task of quantifying contributions
to satisfying the associated Boolean query q(⃗a) (obtained by
instantiating the free variables x⃗ of q with a⃗). For this rea-
son, in the remainder of the paper, we shall w.l.o.g. restrict
ourselves to Boolean queries.

We shall further focus on monotone Boolean queries, de-
fined in the database setting as queries q such that D1 |=
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q ⇒ D2 |= q whenever D1 ⊆ D2. Such queries no-
tably include the class of homomorphism-closed queries,
which covers most well-known classes of OMQs, as well as
UCQ ̸=. Note that a natural qualitative approach to explain-
ing why a monotone Boolean query q holds in a database D
is to consider the set MSq(D) of minimal supports of q in D,
defined as inclusion-minimal subsets D′ ⊆ D s.t. D′ |= q.

Our focus will be on providing quantitative explanations
in the form of responsibility measures, which are functions
that assign a score to every fact in the data, reflecting their
contributions to making the query hold. Such measures have
been formally defined, in the database setting, as ternary
functions ϕ that take as input a database D, a (Boolean)
query q and a fact α ∈ D, and output a numerical value. As
this definition is extremely permissive, (Bienvenu, Figueira,
and Lafourcade 2025, §4.1)1 identifies a set of desirable
properties that ϕ ought to satisfy, focusing on the case of
(Boolean) monotone queries. While the formal definitions
are rather technical and outside the scope of this paper, these
properties intuitively state: (Sym-db) if two facts are inter-
changeable w.r.t. the query, they should have equal responsi-
bility; (Null-db) if a fact α ∈ D is irrelevant in the sense that
S ∪ {α} |= q iff S |= q for all S ⊆ D, then ϕ(D, q, α) = 0,
otherwise ϕ(D, q, α) > 0; and (MS1) (resp. (MS2)) all other
things being equal, a fact that appears in smaller (resp. more)
minimal supports should have higher responsibility.

The notions of responsibility measures and minimal sup-
ports can be straightforwardly translated into the OMQA
setting: it suffices to take the ABox as the database and use
an OMQ (T , q) for the database query.
Example 1. Consider the EL KB (A, T ) defined in Fig-
ure 1 and the CQ FishBased(x), which we instantiate with
the answer {x 7→ cancalaiseSole} to obtain the Boolean
CQ q := FishBased(cancalaiseSole). There are 3 min-
imal supports for the OMQ Q := (T , q) in A: {f1, f2},
{f3, f4, f5} and {f3, f6, f7}. We illustrate how the prop-
erties defined above translate in this context: by (Sym-db),
we have ϕ(D, Q, f1) = ϕ(D, Q, f2) (as f1 and f2 ap-
pear in the same minimal supports); by (Null-db), we have
ϕ(D, Q, f0) = 0 (as it is irrelevant); by (MS1), we have
ϕ(D, Q, f1) > ϕ(D, Q, f4) (as f1 appears in smaller sup-
ports); and by (MS2), ϕ(D, Q, f3) > ϕ(D, Q, f4) (as f3
appears in more supports). △

3.2 Shapley-Based Responsibility Measures
The responsibility measures we consider in this paper are
based on the ‘Shapley value’. Originally defined in (Shapley
1953), it takes as input a cooperative game consisting of a
finite set P of players and a wealth function ξ : 2P → Q that
assigns a value to each coalition (i.e., set) of players, with
ξ(∅) = 0. The Shapley value then assigns to each player

1The definitions in the cited paper slightly differ from the ones
we present here since we choose to assign scores to all facts,
whereas in prior work, the database is partitioned into sets of exoge-
nous and endogenous facts, with only endogenous facts assigned
scores. Removing this distinction simplifies the technical presen-
tation, while still covering what is arguably the most relevant prac-
tical setting (in which all facts are treated as endogenous).

∃hasIng.FishBased ⊑ FishBased hasGrnsh ⊑ hasIng
Seafood ⊑ FishBased Fish ⊑ FishBased

hasGrnsh f3
hasI

ngr

f4

hasIngr
f6

hasI
ngr

f1hasIngr f0

cancalaiseSole oyster

cancalaiseGarnish shrimp

Seafood
f5

Seafood
f7

butter sole

Fish
f2

Figure 1: An example KB, with data and knowledge about a recipe
from (Escoffier 1903). The arrows represent role assertions and
labels around boxes (e.g. Fish) represent concept assertions.

p ∈ P a value Sh(P, ξ, p) that should be seen as a fair share
of the total wealth ξ(P ) of the game that should be awarded
to p based on the respective contributions of all players. By
“fair share” we mean that the Shapley value is, provably, the
only wealth distribution scheme that satisfies a very natural
set of axioms (Shapley 1953, Axioms 1 to 3).

To obtain a responsibility measure from the Shapley
value, one needs to model the input instance (D, q) as a co-
operative game (P, ξ). The set P contains the elements that
will receive a score, hence it should naturally be the set D
itself. As for the wealth function, it must assign a numerical
score to every database, reflecting in some way the satisfac-
tion of the query. Formally, one needs to provide a wealth
function family Ξ⋆ := (ξ⋆q)q which associates a wealth func-
tion ξ⋆q with each query q. A responsibility measure can be
straightforwardly obtained by applying the Shapley value to
the game (D, ξ⋆q):

ϕ(D, q, α) := Sh(D, ξ⋆q , α)

The first wealth function family that was considered in the
literature is Ξdr, defined by: ξdr

q (D) := 1 if D |= q and
0 otherwise (Livshits et al. 2021), which gives rise to the
drastic Shapley value Sh(D, ξdr

q , α). In fact, Ξdr was until
recently the only wealth function used to define Shapley-
based responsibility measures for Boolean queries.2

Very recently, however, a new family of responsibil-
ity measures called weighted sums of minimal supports
(WSMSs) has been defined as follows:

ϕw
wsms(D, q, α) :=

∑
S∈MSq(D)

α∈S

w(|S|, |D|) (1)

based upon some weight function w : N × N → Q (Bien-
venu, Figueira, and Lafourcade 2025). It has been shown
that all WSMSs can be equivalently defined via the Shap-
ley value: for every weight function w, there exists a wealth
function family Ξw = (ξwq )q such that

ϕw
wsms(D, q, α) = Sh(D, ξwq , α)

2As a consequence, the drastic Shapley value is simply called
‘Shapley value’ in many papers.
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⋆ f0 f1, f2 f3 f4, f5, f6, f7

dr 0 1224
5040

1056
5040

384
5040

ms 0 1
2

2
3

1
3

Table 1: Values of Sh(D, ξ⋆q , ) for the instance in Figure 1 . The
facts that are equivalent by (Sym-db) are grouped together.

(Bienvenu, Figueira, and Lafourcade 2025, Proposition 4.4).
The wealth function family Ξms := Ξw induced by the in-
verse weight function w : (n, k) 7→ 1/n is of particular in-
terest as its wealth function ξms

q (D) is simply the number of
minimal supports for q in D, which constitutes a very natural
measure of how ‘robust’ the entailment D |= q is.

It should be noted that the Shapley values obtained from
Ξdr and from Ξw (for any positive and non-decreasing
weight function w) yield responsibility measures that sat-
isfy the properties (Sym-db)–(MS2) (Bienvenu, Figueira,
and Lafourcade 2025, Propositions B.1 and B.2). As the fol-
lowing example illustrates, however, these measures do not
always coincide, as the properties do not identify a unique
‘reasonable’ responsibility measure.

Example 2. Reconsider the DL-Litecore KB (A, T ) from
Figure 1 and the CQ q := FishBased(cancalaiseSole). Al-
though the properties (Sym-db)–(MS2) enforce many condi-
tions, they do not restrict the relative values of f1 and f3. In-
deed, we can observe that Sh(D, ξdr

q , f1) > Sh(D, ξdr
q , f3),

but Sh(D, ξms
q , f1) < Sh(D, ξms

q , f3), see Table 1. E.g.,
Sh(D, ξms

q , f3) = 1/3 + 1/3 since f3 is in two minimal sup-
ports, both of size 3, and hence each contributing 1/3. △

Note that while we focus on Ξms as the archetypical
WSMS, it should be observed that the weight function w
can be adjusted to suit the needs of particular settings by
giving more or less weight to the size of the minimal sup-
ports relative to their numbers (intuitively tuning the relative
importance of (MS1) and (MS2)). At the extremes, (Bien-
venu, Figueira, and Lafourcade 2025, §4.4) introduced two
representative WSMS: Ξs that always favours appearing in
the smallest minimal supports, and Ξ# that always favours
the highest total number of minimal supports.

Following (Bienvenu, Figueira, and Lafourcade 2025), for
any wealth function family Ξ⋆ and class C of queries, we de-
note by SVC⋆

C the problem of computing Sh(D, ξ⋆q , α) given
any database D, fact α ∈ D, and query q ∈ C. We also
consider the problem SVC⋆

q associated with a single fixed
query q. Our focus in this paper will be on the case Ξ⋆ = Ξw

for some weight function w, in particular Ξms, in which case
we will speak of WSMS computation. Moreover, we shall
study these tasks in the OMQA setting, so C will be a class
(L,Q) of OMQs, and q will be a particular OMQ Q.

4 Data Complexity
We initiate our study of the complexity of WSMS com-
putation by considering the data complexity of the task
SVCw

(L,Q), for different classes (L,Q) of OMQs. As usual,
data complexity means that complexity is measured only

w.r.t. the size of the ABox, while the size of the OMQ is
treated as a constant. Observe that SVCw

(L,Q) enjoys FP

data complexity just in the case that SVCw
Q is in FP for every

OMQ Q ∈ (L,Q). Likewise, SVCw
(L,Q) is #P-hard iff there

is some OMQ Q ∈ (L,Q) for which SVCw
Q is #P-hard.

Our data complexity results for OMQs naturally build
upon existing results from the database setting (Bienvenu,
Figueira, and Lafourcade 2025). That work establishes
a key lemma that essentially tells us that, assuming the
weight function w is tractable and reversible, the SVCw

Q
task boils down to counting minimal supports, no more nor
less. It would be superfluous to give the precise definition of
tractable and reversible weight functions here: simply note
that they are minor assumptions that are trivially satisfied by
the three explicit instances we consider (Ξms, Ξs and Ξ#).To
present this lemma in our setting, we fix a Boolean OMQ Q
(i.e. Q = (T , q) with q a Boolean query) and consider two
numeric queries (i.e. queries that output a number instead of
a set of answers) derived from Q:

• #fms
Q outputs the number #fms

Q (k,A) of minimal supports
for Q of size3 k in the ABox A, for every size k

• #ms
Q outputs the total number of minimal supports of Q.

We denote by EVAL-#fms
Q and EVAL-#ms

Q the problems of
computing these numeric queries over any input ABox. We
now state the key lemma, phrased for OMQs:

Lemma 3. (Bienvenu, Figueira, and Lafourcade 2025, Lem-
mas 5.1 and 5.5) For every reversible tractable weight func-
tion w, and Boolean monotone OMQ Q,

EVAL-#ms
Q ⩽P SVCw

Q ⩽P EVAL-#fms
Q .

4.1 Tractability Result for Rewritable OMQs
With this lemma at hand, we can forget about the particu-
lar weight function w and concentrate on the conceptually
simpler task EVAL-#fms

Q of counting the number of minimal
supports, per size. This can be achieved in polynomial time
(in data complexity) whenever there is a data-independent
bound on the size of minimal supports, since we can then
simply iterate over all bounded-size subsets of the ABox. In
particular, this holds for OMQs that can be rewritten into a
UCQ ̸=, yielding the following tractability result:

Theorem 4. (Corollary of (Bienvenu, Figueira, and Lafour-
cade 2025, Theorem 5.2)) SVCw

Q ∈ FP for every
tractable weight function w and every Boolean OMQ Q
that is UCQ ̸=-rewritable. This implies, in particular, that
SVCw

(DL-LiteR,UCQ) enjoys FP data complexity.

Theorem 4 mentions (DL-LiteR,UCQ) to give a concrete
example of a tractable OMQ class, but naturally the same
holds for other prominent DL-Lite dialects (like DL-LiteF
and DL-LiteHorn) known to be UCQ ̸=-rewritable. Descrip-
tion logics outside of the DL-Lite family typically do not
guarantee the existence of rewritings. However, techniques
for identifying FO-rewritable (in fact, UCQ ̸=-rewritable)

3FMS stands for Fixed-size Minimal Supports.
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OMQs for various Horn DLs are known (Bienvenu et al.
2016) and have been successfully implemented for OMQs in
(EL,CQ) (Hansen and Lutz 2017). The preceding tractabil-
ity result is therefore relevant for a wider range of DLs.

Beyond providing theoretical results, rewriting is a pow-
erful tool from a practical standpoint and has proven to
be a key technique for obtaining efficient implementations
of OMQA by leveraging existing and highly optimized re-
lational database systems. Computing SVCw

Q for UCQ ̸=-
rewritable OMQs Q is no exception, as it can be done by
evaluating simple SQL queries in parallel. We phrase the
next result for databases, as it is relevant to both the pure
database and OMQA settings.

Theorem 5. For every UCQ ̸= q̃ and k ∈ N, there exists a
set Q ̸= of CQ ̸= queries such that, for every database D,

#fms
q̃ (k,D) =

∑
q∈Q ̸=

#hom
q (D) · γq,

where #hom
q (D) is the number of homomorphisms from q to

D, and γq is a rational number computable from q. Further,
every q ∈ Q ̸= is of at most quadratic size.

Proof. Given a query q̃ ∈ UCQ ̸= and a number k, we show
how to build the set Q ̸= with the desired properties of the
statement. Let us say that q′ is a reduct of q ∈ CQ ̸= if
q′ is the result of collapsing variables of q and removing
repeated atoms; in particular, q′ is a homomorphic image4

of q. Similarly, q′ is a reduct of q̃ if it is a reduct of a CQ ̸=

therein. Consider the set Rk of all reducts q of q̃ such that

(a) q has exactly k relational atoms;
(b) there is no reduct q′ of q̃ having strictly less than k re-

lational atoms such that q′ hom−−→ q.

Let Q be the result of removing from Rk all redundant
queries. Concretely, we initialize Q := Rk and we apply the
following redundancy-removal-rule until no more queries
can be deleted: find a query q ∈ Q such that q′ hom−−→ q
for some distinct q′ ∈ Q and update Q := Q \ {q}. Finally,
let Q ̸= be the result of adding, for each q ∈ Q and distinct
x, y ∈ vars(q), the atom x ̸= y to q. In this way, homomor-
phisms from Q ̸= queries must necessarily be injective.

Claim 6. {MSq(D)}q∈Q ̸= is a partition of {M ∈ MSq̃(D) :
|M | = k}.

An automorphism of q is a homomorphism h : q
hom−−→ q;

we denote by Aut(q) the set of all automorphisms of q.

Claim 7. #hom
q (D) = |Aut(q)| · |MSq(D)| for all q ∈ Q ̸=.

It is easy to see that all queries q ∈ Q ̸= are of quadratic size.
Together with the preceding claims, this shows that Q ̸= and
numbers γq := 1/|Aut(q)| have the required properties.

Corollary 8. Computing SVCw
q̃ for a UCQ ̸= query q̃ can

be achieved by evaluating simple and short (quadratic)
‘SELECT COUNT(*)’ SQL queries in parallel.

4A homomorphism h : q
hom−−→ q′ between q, q′ ∈ CQ ̸= is

defined in the expected way, i.e., if x ̸= y ∈ q, then h(x) ̸= h(y).

4.2 Intractability Results
Theorem 4 applies to OMQs which are UCQ ̸=-rewritable
(which is equivalent to being FO-rewritable for common
DLs), and we conjecture, in line with (Bienvenu, Figueira,
and Lafourcade 2025, Conjecture 5.7), that this is precisely
the tractability frontier, i.e. if an OMQ Q does not admit a
UCQ ̸=-rewriting, then SVCms

Q is #P-hard. We recall a re-
lated result for regular path queries (RPQs):

Theorem 9. (Bienvenu, Figueira, and Lafourcade 2025,
Theorem 5.6) Let w be a reversible tractable weight func-
tion, and a regular path query (RPQ) q := L(c, d) (i.e., q
tests if there is a path from c to d conforming to a regular
language L). Then SVCw

q ∈ FP if L is finite or ϵ ∈ L and
c = d, and #P-hard otherwise.

Exploiting the fact that reachability can be expressed us-
ing atomic queries in DLs such as EL that admit qualified
existential restrictions, we get the following corollary:

Corollary 10. Let w be a reversible tractable weight func-
tion, and L be any DL that can express the axiom ∃r.A ⊑ A,
where A is a concept name and r a role name. Then, there
exists an OMQ Q ∈ (L,AQ) such that SVCw

Q is #P-hard.
Thus, SVCw

(L,Q) is #P-hard in data complexity.

5 Combined Complexity: Atomic OMQs
In light of the positive data complexity results for UCQ ̸=-
rewritable OMQs, such as those based upon DL-Lite ontolo-
gies, a natural question is whether we can achieve tractabil-
ity even in combined complexity, i.e. when also taking into
account the size of the OMQ. Naturally, this will only be
possible if the considered class of OMQs admits PTime
query evaluation. A natural candidate are atomic OMQs,
i.e. OMQs (T , q) where q ∈ AQ (we shall consider re-
stricted classes of (U)CQs in Sections 6 and 7). Note
that due to Lemma 3, it suffices to consider EVAL-#ms

(L,AQ)

and EVAL-#fms
(L,AQ) to obtain, respectively, lower and upper

bounds on SVCw
(L,AQ), for any reversible and tractable w.

5.1 DLs with Conjunction
We first show that WSMS computation is intractable in com-
bined complexity for atomic OMQs whenever the consid-
ered DL allows for concept conjunction. This is the case for
the lightweight DL EL and all of its extensions, but also for
so-called Horn dialects of DL-Lite (which enjoy tractable
data complexity due to Theorem 4).

Proposition 11. Let L⊓ be the DL that only allows for ax-
ioms of the form A ⊓ B ⊑ C, for A,B,C ∈ NC. Then
EVAL-#ms

(L⊓,AQ) is #P-hard.

Proof. We reduce from the problem #MINVERTEXCOVER
which is to count, given an input graph G = (V,E), the
number of inclusion-minimal subsets S ⊆ V such that every
edge e ∈ E has at least one endpoint in S. This problem has
been shown to be #P-hard in (Valiant 1979, Problem 4).
We prove that #MINVERTEXCOVER ⩽P EVAL-#ms

(L⊓,AQ).
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Given a graph G = (V,E), we define the instance:

TG :=
{
Au ⊑ B(u,v), Av ⊑ B(u,v) | (u, v) ∈ E

}
∪ {⊓e∈EBe ⊑ C}

AG := {Au(c) | u ∈ V } qG := C(c)

For simplicity, TG uses ⊓ of arbitrary arity, but this can be
simulated in a standard way (see Appendix B) of the full ver-
sion). By construction, the minimal supports for (TG, qG) in
AG correspond to the minimal vertex covers of G.

5.2 DL-Lite Dialects with Singleton Supports
Many of the more common dialects of DL-Lite, however,
do not allow for conjunction and instead enjoy the following
singleton-support property. A DL L has singleton supports
if for every atomic OMQ (T , q) ∈ (L,AQ) and every ABox
A consistent with T , all sets in MSQ(A) are singletons.
Proposition 12. Let L be any DL that has singleton sup-
ports and for which atomic OMQs admit PTime evalua-
tion in combined complexity. Then EVAL-#fms

(L,AQ) is in FP

for combined complexity. This holds in particular when
L = DL-LiteR.

Proof. Consider an OMQ Q = (T , q) ∈ (L,AQ) and an
ABox A. Since L has singleton supports, we know that ev-
ery minimal support for Q in A consists of a single assertion
from A. We can thus consider the linearly many such sin-
gleton sets and use the PTime evaluation procedure to check
which ones entail the given atomic query. The fact that
DL-LiteR has singleton supports is folklore and implicit in
existing OMQA algorithms. For example, standard rewrit-
ing algorithms will rewrite OMQs from (DL-LiteR,AQ)
into unions of AQs, cf. (Calvanese et al. 2007).

6 Digression: Unions of Conjunctive Queries
Our next goal will be to extend the tractability result
for (DL-LiteR,AQ) to cover some suitable subclass of
(DL-LiteR,CQ), where the user query is a non-atomic CQ.
Since every Q ∈ (DL-LiteR,CQ) can be rewritten into a
UCQ q′, one idea would be to identify conditions on OMQs
that guarantee that the rewritten query belongs to some class
C of UCQs for which EVAL-#fms

C is known to be tractable.
Currently, however, it has only been shown that

EVAL-#fms
C ∈ FP for any class C of CQs having bounded

generalized hypertreewidth and bounded ‘self-join width’
(Bienvenu, Figueira, and Lafourcade 2025, Theorem 6.6).5
This covers in particular CQs that are both acyclic (i.e. the
undirected graph underlying the query is acyclic) and self-
join free (i.e. no two atoms share the same predicate). No
combined complexity results exist for UCQs, and it is not a
priori clear if the preceding tractability result can be suitably
extended to identify a ‘nice’ class of UCQs.

Our next result shows that positive results for well-
behaved CQs do not in fact transfer to their unions. In-
deed, EVAL-#ms is #P-hard already for the restricted class
sjf-AUCQ of acyclic self-join free UCQs.

5Since we do not need the precise definitions, we direct the in-
terested reader to (Bienvenu, Figueira, and Lafourcade 2025, §6.3).

Proposition 13. EVAL-#ms
sjf-AUCQ is #P-hard under

polynomial-time 1-Turing reductions6, even on binary
signatures and in the absence of constants.

Proof sketch. This is an adaptation of the #P-hardness
proof of (Pichler and Skritek 2013, Theorem 6) for count-
ing the number of answers of unions of acyclic full con-
junctive queries (where ‘full’ means that queries have no
existentially quantified variables). The adaptation must ad-
dress some extra requirements, namely: (i) accounting for
counting minimal supports instead of answers, (ii) ensur-
ing that the queries are self-join free, and (iii) working on
binary signatures instead of ternary. While this makes the
reduction considerably more technical, the underlying idea
remains that of Pichler and Skritek.

The reduction, from the perfect matching counting prob-
lem, builds a database D and constant-free queries q1, q2 ∈
sjf-AUCQ such that the number of perfect matchings on G

is equal to #ms
q1 (D) − #ms

q2 (D). In fact, q1 is an (acyclic,
self-join free) CQ rather than a UCQ, and its evaluation is
in polynomial time by (Bienvenu, Figueira, and Lafourcade
2025, Remark 6.5 and paragraph after). Hence, this is a 1-
Turing reduction.

7 From Atomic to Conjunctive Queries
We return to the question of how to extend the tractability
result for (DL-LiteR,AQ) to multiple atoms, covering suit-
able subclasses of (DL-LiteR,CQ). As seen in Section 6, we
cannot simply rewrite the OMQ and appeal to tractability re-
sults for database queries. Instead, we shall introduce a class
of well-behaved OMQs, inspired by the class of self-join
free CQs. We establish tractability for such OMQs by char-
acterizing their minimal supports in terms of the minimal
supports of the atomic OMQs associated with their atoms.

To simplify the presentation, we assume throughout this
section that the TBox is formulated in DL-LiteR, but our re-
sults also apply to other DL-Lite dialects satisfying the con-
ditions of Proposition 12.

7.1 Interaction-Free OMQs
Recall that, by Lemma 3, it suffices to study EVAL-#fms

to obtain the tractability of SVCms (and more generally,
SVCw, for well-behaved w). The method developed in (Bi-
envenu, Figueira, and Lafourcade 2025) for counting min-
imal supports of CQs essentially boils down to a reduc-
tion to the well-studied problem of counting the homomor-
phisms of the CQ into the database. The main issue is
that, for arbitrary CQs, it is possible that several homomor-
phisms map to the same minimal support. Consider for in-
stance the CQ ∃xy.r(x, y) ∧ r(y, x) and its minimal sup-
port {r(c, d), r(d, c)}, which is the image of two homomor-
phisms: (x, y) 7→ (c, d) and (x, y) 7→ (d, c). Observe that
such situations cannot arise for self-join free CQs, as each
fact can only be used to satisfy a single atom of the query. As
a consequence, counting minimal supports reduces to count-
ing homomorphisms of the CQ into the database, which

6I.e., Turing reductions that only allow a single call to an oracle.
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is tractable if there is a bound on the generalized hyper-
treewidth of the considered CQs (Pichler and Skritek 2013).
Our aim will be to exhibit a class of OMQs which retains
the desirable property that a single fact may not be used to
satisfy multiple query atoms, thereby allowing us to charac-
terize the minimal supports of such OMQs in terms of the
minimal supports of the atomic OMQs of their atoms.

We now define our tractability criterion. Let anon be a
special constant not in NI, and for every subset C ⊆ NI

denote by C◦ the set C ∪ {anon}. Given an ABox A, TBox
T , CQ q and assignment µ : vars(q) → ind(A)

◦, we write
(A, T ) |=µ q if there exists a homomorphism h : q → IA,T
such that, for every x ∈ vars(q), h(x) = µ(x) if µ(x) ∈
ind(A) and h(x) /∈ ind(A) if µ(x) = anon. Essentially, the

variables assigned to anon map to anonymous (non-ABox)
elements of the canonical model IA,T .

An OMQ (T , q) ∈ (DL-LiteR,CQ) is interaction-free if,
for every assertion f , atoms α, β of q and assignments µα :
vars(α) → ind(f)◦, µβ : vars(β) → ind(f)◦, we cannot

have both ({f}, T ) |= µαα and ({f}, T ) |= µβ
β, unless

(α, µα) = (β, µβ). We denote by itf-(DL-LiteR,CQ) the
class of all interaction-free OMQs in (DL-LiteR,CQ).

We believe that itf-(DL-LiteR,CQ) is a practically rel-
evant class of OMQs: 8 of the 14 queries from the well-
known LUBM benchmark (Guo, Pan, and Heflin 2005) cor-
respond to interaction-free OMQs and the remaining 6 are
interaction-free after removing obviously redundant atoms.
In the case where T = ∅, the above condition can only
be violated by two distinct atoms α, β and two assignments
µα : vars(α) → NI, µβ : vars(β) → NI (with no anon in
their image) such that µα(α) = µβ(β). As it turns out, this
corresponds to saying that α and β are ‘mergeable’ in the
jargon of (Bienvenu, Figueira, and Lafourcade 2025, §6.3).
The notion of interaction-free thus generalizes the notion of
queries with no mergeable atoms (corresponding to self-join
width 0) , which includes all self-join free CQs.

Example 14. (a) The OMQ (∅, ∃x.r(c, x) ∧ r(d, x)), with
distinct c, d ∈ NI, is interaction-free despite its self-join,
because no fact can satisfy both r(c, x) and r(d, x). (b) The
OMQ ({∃r ⊑ A; ∃r− ⊑ A}, ∃x.A(x)) isn’t interaction-free
despite the query having a single atom, because the fact
r(c, d) satisfies it in two different ways (x 7→ c and x 7→ d).
(c) The OMQ (∃x, y.A(x) ∧ r(x, y), {A ⊑ ∃r}) isn’t inter-
action-free either, because the fact A(c) would satisfy both
atoms thanks to the ontology. △

7.2 Theorem Statement and Proof Idea
As previously mentioned, we aim to reduce the problem of
counting the minimal supports of the input OMQ to count-
ing the minimal supports of its component atomic OMQs.
Formally, we prove:

Theorem 15. Let C be a subclass of itf-(DL-LiteR,CQ)
such that the set of queries {q | (T , q) ∈ C} has bounded
treewidth. Then EVAL-#fms

C ⩽P EVAL-#fms
(DL-LiteR,AQ). Fur-

ther, EVAL-#fms
C ∈ FP.

For the proof of Theorem 15, we focus on the reduction,
since the tractability will readily follow from it and Propo-

sition 12. Before diving into the details, we first give the
following incomplete but informative formula:

#ms
(T ,q)(A) ≈

∑
µ:vars(q)→ind(A)

∏
α∈q

#ms
(T ,µ(α))(A) (2)

Intuitively, this formula enumerates every possible assign-
ment µ, computes the number of minimal supports associ-
ated with µ by multiplying the number of possibilities for
each atom, then sums everything up. This formula does not
give the correct result for all OMQs in itf-(DL-LiteR,CQ)
(hence the ≈), for reasons that will be explained and ad-
dressed in Section 7.4, but it does work in many cases thanks
to the following consequence of the absence of interactions.
Lemma 16. Let (T , q) ∈ itf-(DL-LiteR,CQ), and A be an
ABox. Then for every assignment µ : vars(q) → ind(A):

#ms
(T ,µ(q))(A) =

∏
α∈q

#ms
(T ,µ(α))(A)

Even when Equation (2) holds, it has two issues: (a) it
does not directly yield a polynomial-time procedure as it
sums over an exponential number of mappings µ (this will
be addressed in Section 7.3); and (b) it computes the value of
#ms while we actually need #fms. However, (b) is not actu-
ally a problem: as we observed in the proof of Lemma 16, T
has singleton supports and q is interaction-free, so the mini-
mal supports for (T , q) all have the same size as q.

7.3 Efficient Summation Over Assignments
Observe that in Equation (2) we can ignore all assignments
µ such that (A, T ) ̸|= µq since the summand is 0. In other
words, Equation (2) is a sum over all homomorphisms h :
q → IA,T whose image is contained in ind(A). As it turns
out, efficient summation over homomorphisms has been
studied in the context of databases annotated with semirings,
or weighted databases. These are defined as D = (D†, ω),
where D† is a database and ω : D† → N assigns, to each
fact, a ‘weight’. The weight q(D) ∈ N associated to the
evaluation of a Boolean CQ q = ∃x⃗.

∧k
i=1 αi to a weighted

database D is q(D) :=
∑

h:q
hom−−→D†

∏k
i=1 ω(h(αi)). Equa-

tion (2) can thus be seen as q applied to the weighted
database Dq

A := (D†, {β 7→ #ms
(T ,β)(A)}β∈D†) for D† =

{µ(α) | α ∈ q, µ : vars(α) → ind(A)}. Since each atom of
q contains at most 2 variables, Dq

A has at most |q| · |ind(A)|2
facts. For each fact β ∈ D†, the weight #ms

(T ,β)(A) can be
computed by a call to the EVAL-#ms

(DL-LiteR,AQ) oracle. Over-
all, Dq

A can be built in polynomial time with the oracle. The
last step is to compute q(Dq

A), which can be done in polyno-
mial time for any class of CQs with bounded treewidth.7

7.4 Variables Mapped Outside the ABox
As mentioned earlier, Equation (2) is inaccurate with respect
to DL-LiteR, as evidenced by the following example.

7This is a trivial adaptation of the algorithm of (Flum and Grohe
2004, Proposition 3.5) for counting homomorphisms. It is also a
basic case of the more general tractability results of (Khamis, Ngo,
and Rudra 2016; Joglekar, Puttagunta, and Ré 2016).
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Example 17. Take T = {A ⊑ ∃r; ∃r− ⊑ B}, q =
∃x.B(x) and A = {A(c)}. Then the left-hand side of Equa-
tion (2) equals 1 because A is a minimal support for (T , q),
but the right-hand side equals 0 because the only possible µ
is x 7→ c, but (A, T ) ̸|= B(c). △

The issue highlighted by Example 17 is that some min-
imal supports may only be witnessed by homomorphisms
that map some variable to an anonymous element of IA,T
rather than an ABox individual. Such minimal supports will
thus be missed by Equation (2). However, by exploiting the
structure of canonical models in DL-LiteR, we can show
that the interaction-free condition ensures that all shared
variables (i.e. variables x ∈ vars(q) that appear in multiple
atoms of q) are necessarily mapped to ABox individuals:
Lemma 18. Let Q = (T , q) ∈ itf-(DL-LiteR,CQ) and x
be a shared variable of q. Then, for every homomorphism
h : q

hom−−→ IA,T , we have h(x) ∈ ind(A).

Proof. Assume for a contradiction that h : q
hom−−→ IA,T

and h(x) ̸∈ ind(A) for some shared variable x. From the
definition of IA,T , we know that h(x) = aR1 . . . Rn for
some a ∈ ind(A) and roles Ri. For convenience we suppose
R1 ∈ NR, but the proof is analogous if R1 is an inverse
role. As x is shared, it must appear in at least two distinct
atoms α1 and α2 of q. If αi = A(x), then we must have
h(x) ∈ AIA,T . If αi = s(x, y) or αi = s(y, x), then h(y)
must either be equal to the unique ‘predecessor’ of h(x),
which is aR1 . . . Rn−1, or to some immediate ‘successor’ of
h(x), which must have the form aR1 . . . RnRn+1 for some
role Rn+1. This follows from the way roles are interpreted
in IA,T . Thus, all terms in α1 and α2 must be mapped by h
either to a or to some anonymous element with prefix aR1.

The existence of aR1 . . . Rn in the domain means there
is some assertion f ∈ A such that ({f}, T ) |= ∃R1(a) and
({f}, T ) ̸|= R1(a, b) for any individual b. It follows that
I{f},T will also contain aR1, and in fact all of the anony-
mous elements of IA,T having prefix aR1, and it will in-
terpret concept and role names on these elements in pre-
cisely the same way as in IA,T . Thus, h witnesses the sat-
isfaction of α1 and α2 in I{f},T . But this means that we
can use h to define assignments µ1 : vars(α1) → ind(f)◦,
µ2 : vars(α2) → ind(f)◦ such that both ({f}, T ) |= µ1

α1

and ({f}, T ) |= µ2
α2. This is impossible as α1 ̸= α2 and

(T , q) is interaction-free.

We now have three kinds of query atoms to consider.
First, those that contain no shared variables, which can be
treated by a separate call to the EVAL-#ms

(DL-LiteR,AQ) oracle,
due to the following easy lemma:
Lemma 19. Let (T , q) ∈ itf-(DL-LiteR,CQ) with q = q1∧
q2 such that vars(q1)∩ vars(q2) = ∅. Then for any ABox A,
#ms

(T ,q)(A) = #ms
(T ,q1)

(A)×#ms
(T ,q2)

(A).

Next, we have the atoms that contain only shared vari-
ables. By Lemma 18, their variables must be mapped to
ind(A), hence such atoms are already accounted for by the
weighted database D(T ,q)

A built in Section 7.3.
The third class of atoms are the role atoms which contain

one shared variable and one unshared variable. These will

be addressed by constructing a weighted database D(T ,q)

A
that extends D(T ,q)

A with some extra facts. Consider one
such atom α = R(x, y) ∈ q, with x and y being shared
and unshared respectively, and R ∈ N±

R (since the un-
shared variable could come first). Again by Lemma 18, we
know that x must necessarily be instantiated by an individual
c ∈ ind(A), but y might be mapped to an anonymous ele-

ment. We thus add to D(T ,q)

A a fact R(c, cα), with cα a fresh
individual, for every individual c ∈ ind(A) such that, for
some f ∈ A, ({f}, T ) |= ∃R(c) but ({f}, T ) ̸|= R(c, d)
for all d ∈ A, and set the weight of this R(c, cα) to be the
number of such {f}.
Lemma 20. Let (T , q) ∈ itf-(DL-LiteR,CQ) such that q is

connected and |q| ⩾ 2. Then q
(
D(T ,q)

A

)
= #ms

(T ,q)(A).

7.5 Putting Everything Together
The construction has been presented in a progressive manner
for ease of understanding. We now recapitulate the argument
in a more direct fashion.

Proof of Theorem 15. The algorithm goes as follows. For
every connected component qc of q with at least 2 atoms we:
(1) build the weighted database Dqc

A described in Section 7.3
using the EVAL-#ms

(DL-LiteR,AQ) oracle; (2) extend Dqc
A into

Dqc
A as described in Section 7.4; (3) compute qc(D

qc
A ) using

standard weighted database algorithms.
By Lemma 20, this yields the value of #ms

(T ,qc)
(A). The

remaining connected components consist in a single atom,
so the corresponding value can then be obtained by a direct
call to the EVAL-#ms

(DL-LiteR,AQ) oracle. Once all the values
are obtained, we finally multiply them all together, which
yields the desired #ms

(T ,q)(A) by Lemma 19.
Regarding the consequence that EVAL-#fms

C ∈ FP, this is
a direct application of Proposition 12 to the above.

8 Conclusion and Future Work
Our work explores the recently introduced class of Shapley-
based responsibility measures, known as WSMS, in the con-
text of ontology-mediated query answering. Our complexity
analysis pinpoints sources of intractability but also identifies
relevant classes of OMQs for which WSMS computation is
tractable in data (and sometimes also combined) complexity
and can moreover be computed using standard database sys-
tems. It would be interesting in future work to test out the
approach in practice and try to generalize the ‘interaction-
free’ condition to identify further tractable cases.

While we focused on DLs, many results extend to other
ontology formalisms such as existential rules. In particular,
the data tractability result extends to UCQ-rewritable rule-
sets, and the tractability result for atomic queries extends
to bounded-arity linear existential rules because they satisfy
the conditions of Proposition 12. An interesting future step
would be to see if a useful notion of ‘interaction-free’ could
be defined in order to obtain tractability in combined com-
plexity for linear existential rules with CQs.
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cuisine pratique. Bibliothèque Professionnelle.
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