Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Strategy Logic, Imperfect Information, and Hyperproperties

Raven Beutner, Bernd Finkbeiner
CISPA Helmholtz Center for Information Security, Germany

Abstract

Strategy logic (SL) is a powerful temporal logic that enables
first-class reasoning over strategic behavior in multi-agent
systems (MAS). In many MASs, the agents (and their strate-
gies) cannot observe the global state of the system, leading to
many extensions of SL centered around imperfect informa-
tion, such as strategy logic with imperfect information (SL;;).
Along orthogonal lines, researchers have studied the combi-
nation of strategic behavior and hyperproperties. Hyperprop-
erties are system properties that relate multiple executions in
a system and commonly arise when specifying security poli-
cies. Hyper Strategy Logic (HyperSL) is a temporal logic that
combines quantification over strategies with the ability to ex-
press hyperproperties on the executions of different strategy
profiles. In this paper, we study the relation between SL;;
and HyperSL. Our main result is that both logics (restricted
to formulas where no state formulas are nested within path
formulas) are equivalent in the sense that we can encode SL;;
instances into HyperSL instances and vice versa. For the for-
mer direction, we build on the well-known observation that
imperfect information is a hyperproperty. For the latter direc-
tion, we construct a self-composition of MASs and show how
we can simulate hyperproperties using imperfect information.

1 Introduction

Multi-agent systems (MAS) are ubiquitous in our everyday
lives, necessitating the need for formal guarantees on their
behavior. In MASs, we typically reason about the ability
of groups of agents, which requires reasoning about strate-
gies. This led to the development of powerful temporal log-
ics like ATL/ATL* (Alur, Henzinger, and Kupferman 2002)
and Strategy Logic (SL) (Chatterjee, Henzinger, and Piter-
man 2010; Mogavero et al. 2014). While the former can im-
plicitly reason about strategic ability (e.g., a group of agents
has some strategy to enforce a certain goal), the latter fea-
tures explicit quantification over strategy, allowing the same
strategy to be used in multiple contexts, which is critical to
express important properties like Nash equilibria.

Strategy Logic With Imperfect Information In plain
SL, the strategies of agents can observe the entire state of the
MAS (Mogavero et al. 2014). In most models of real-world
situations, this is unrealistic, i.e., an agent typically acts on
some local sensing ability and must thus act under incom-
plete information. This observation led to many logics that

148

can reason about strategic behavior under imperfect infor-
mation (Knight and Maubert 2019; Belardinelli et al. 2017;
Berthon, Maubert, and Murano 2017). A particularly pow-
erful logic among these is SL with imperfect information
(SL;;) (Berthon et al. 2017), which extends SL with the
ability to quantify over strategies with a given observation
model. For example,

EI:EO.VyO/.(l »2)(2»y)(3»y) GF goal

expresses that there exists some strategy with observation
model o (formally, o is associated with an indistinguishabil-
ity relation on states of the MAS), such that for every strat-
egy y under observation o, the play where agent 1 plays
strategy «, and agents 2 and 3 play y (i.e., the play under
strategy profile (1 — x,2 — y, 3 — y)) satisfies G F goal.

Hyper Strategy Logic Along orthogonal lines, SL has
been extended with the concept of hyperproperties (Clark-
son and Schneider 2008), i.e., properties that relate multiple
paths in a system. In plain SL, we can use the same strategy
in different situations, but each strategy profile is evaluated
against an LTL formula. As a result, we can only express
properties on individual strategy profiles and then reason
about Boolean combinations of these properties. For many
properties (e.g., security and robustness policies), we need
to compare multiple executions to, e.g., see how different
high-security inputs impact the low-security observations of
a system. HyperSL (Beutner and Finkbeiner 2024a), extends
SL with the concept of path variables (similar to logics like
HyperCTL* (Clarkson et al. 2014)). For example,

m (= 2,2 2,3 2)

Hx.Vy.Vz.((ﬂgm) U gm) mo (1= 2,2y, 3 2)

states that there exists some strategy = (under full infor-
mation), such that for all y, z, the strategy profile (1
x,2 — x,3 — z) reaches a goal g at least as fast as profile
(1 — 2,2 — y,3 — z). To express this, we construct two
paths 71, mo using different strategy profiles, and, within the
LTL body, can refer to atomic propositions on both paths.

The Connection At first glance, SL;; and HyperSL appear
orthogonal. The former is centered around the information

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

of agents, whereas the latter is targeted at quantitative prop-
erties and security policies. However, in this paper, we show
that both logics (restricted to formulas where no state formu-
las are nested within path formulas) are equally expressive
in the sense that we can translate model-checking instances
between both. This connection allows for a unified study of
(imperfect) knowledge and hyperproperties, and potentially
allows the transfer of decidability results between SL;; and
HyperSL (model-checking is undecidable for both logics).
To translate SL;; into HyperSL (Section 3), we build on the
well-known observation that a strategy acting under imper-
fect knowledge is a hyperproperty, i.e., the strategy should
pick the same action on all pairs of executions that appear
indistinguishable. For the latter direction (Section 4), we
simulate hyperproperties within SL;;. Our key observation
here is that we can construct the self-composition of an MAS
and, using imperfect information, simulate multiple execu-
tions within this composition.

2 Preliminaries

We let AP be a fixed finite set of atomic propositions and
fix a finite set of agents Agts = {1,...,n}.

Concurrent Game Structures As the underlying model
of MASs, we use concurrent game structures (CGS) (Alur,
Henzinger, and Kupferman 2002). A CGS is a tuple G =
(S, s0, A, k, L) where S is a finite set of states, so € S is an
initial state, A is a finite set of actions, k : S x (Agts —
A) — S is a transition function, and L : S — 247 is
a labeling function. The transition function takes a state s
and an action profile & : Agts — A and returns a unique
successor state k(s,d). A strategy in G is a function f :
S+ — A, mapping finite plays to actions. We denote the set
of all strategies in G with Str(G). Once we fix a strategy for
each agent, we obtain a unique path in the CGS (cf. the full
version (Beutner and Finkbeiner 2025¢)).

SL,; SL,; (Berthon et al. 2017) extends plain SL by quan-
tifying over strategies with a given observation model. Let
G = (S5, s0,A, K, L) be a fixed CGS, and let Obs be a fixed
finite set of so-called observations. An observation fam-
ily {~o}ocobs associates each o € Obs with an equiva-
lence relation ~,C S x S. For a strategy with observa-
tion o, two states s ~, s’ appear identical. This natu-
rally extends to finite plays: Two finite plays p,p’ € ST
are o-indistinguishable, written p ~, p/, if |p| = |p/| and
for each 0 < i < |p|, p(i) ~, P'(i). An o-strategy is a
function f : ST — A that cannot distinguish between o-
indistinguishable plays, i.e., for all p,p’ € ST with p ~, p’
we have f(p) = f(p'). We denote with Str(G, o) the set of
all o-strategies in G. Now, assume that X = {z,y,...}isa
set of strategy variables. We consider SL;; formulas that are
generated by the following grammar:

Yi=a| W [YvAY| XY |pUy
= eNeleVe |V p| 3z o] (irx)p

where a € AP, x € X,i € Agts, and o € Obs is an obser-
vation. We use the usual Boolean connectives V, —, <>, and

149

constants T, 1, as well as the derived LTL operators even-
tually F 1), globally G, and weak until 1)1 W 1)5. Note that
we do not allow nested state formulas within path formulas.
In SL;;, quantification (Vz° and Jz°) ranges over a strat-
egy with fixed observation o. The agent binding construct
(i x)p, then evaluates ¢ after binding agent ¢ to some pre-
viously quantified strategy = (cf. (Mogavero et al. 2014)).
The semantics of SL;; is defined as expected: We maintain
a partial mapping A : X — Str(G) that maps strategy vari-
ables to strategies, and a mapping © : Agts — Str(G) map-
ping agents to strategies. Whenever we evaluate Vz° or 3z°,
we quantify over a strategy in Str(G,o0) and add it to A;
when evaluating an agent binding (i » z), we update © by
mapping agent i to strategy A(x). Once we reach a path for-
mula ¢, we check if the path resulting from the strategy pro-
file © satisfies the LTL formula). We give the full seman-
tics in the full version (Beutner and Finkbeiner 2025¢). We
write (G, {~o}ocobs) FsL, @ if ¢ holds in G, {~, }oc Obs-

Hyper Strategy Logic HyperSL (Beutner and Finkbeiner
2024a) is centered around the idea of combining strategic
reasoning (as possible in SL) with the ability to express
hyperproperties (as possible in logics such as HyperCTL*
(Clarkson et al. 2014)). In addition to the strategy variables
X, we assume that V = {m,7,...} is a set of path vari-
ables. Path and state formulas in HyperSL are generated by
the following grammar:

Yi=ar [YA | X [pU
@::V:E.ap|3:C.g0|<p/\g0|<p\/g0|w[7rszk]zlzl

where a € AP, 7, 7y,..., 7, € V are path variables, x €
X, and 71,...,%,, : Agts — X are strategy profiles that
assign a strategy variable to each agent.

In HyperSL, we can quantify over strategies (under full
information), and evaluate LTL formulas on multiple paths
at the same time (thus expressing hyperproperties). For-
mally, ¥[my @ Z|7, expresses a hyperproperty over m
paths in the CGS, where the kth path (bound to 7) is the
unique play where each agent 7 plays strategy Zj(¢). In the
LTL formula 1), we then use path-variable-indexed atomic
propositions: The formula a, holds iff AP a holds on the
path bound to path variable 7. HyperSL thus allows us to ex-
press temporal properties on multiple strategy profiles at the
same time. We refer the reader to (Beutner and Finkbeiner
2024a) for details. The semantics of HyperSL is defined as
expected: Similar to SL;;, we collect all strategies in a map-
ping A : X — Str(G). When evaluating ¢[my, : Zx|}",,
we then define 7, to be the unique path where each agent
i € Agts plays strategy A(Zx(i)), and evaluate the LTL for-
mula on the resulting m paths 7y, . .., m,,. We give a full se-
mantics in the full version (Beutner and Finkbeiner 2025c¢).
We write G |= ¢ if G satisfies ¢.

3 Encoding SL;; Into HyperSL
Note that the underlying game structure differs between both
logics (HyperSL is defined on plain CGSs and SL;; on CGSs
with an observation model), so our encodings have to mod-
ify both the formula and the underlying system.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

In this section, we show that we can encode SL;; into
HyperSL by recalling the encoding from (Beutner and
Finkbeiner 2024a). Our encoding is based on the well-
known observation that acting under imperfect information
is a hyperproperty (Bozzelli, Maubert, and Pinchinat 2015).

Injective Labeling and Action Recording Strategies are
defined as functions ST — A, and ~,, is defined as a relation
on states, i.e., both are defined directly on components of
the game structure. In contrast, within our logic, we only
observe the evaluation of the atomic propositions. In the first
step, we thus modify the game structure to provide sufficient
information within its atomic propositions.

Definition 1. A CGS G = (5, so, A, k, L) is injectively la-
beled (IL) if L : S — 247 is injective. The CGS is action
recording (AR) if for each agent i € Agts and every action
a € A, there exists an AP (i, «) € AP that holds in a state
iff agent i played action « in the last step.

We can easily modify any CGS to be IL and AR (note that
SL;; model-checking is undecidable):

Lemma 1. Given an SL;; MC instance (G, {~}oc0bs, ¢
there exists an effectively computable SL;; instance (G, {~
Yocobs, ©') where (1) G' is IL and AR, and 2) (G, {~
Yocovs) Est ¢ iff (G, {~L}ocons) st #

Now assume some fixed CGS G = (S, so, A, , L), ob-
servation family {~,},cons, and SL,; formula . Using
Lemma 1, we assume, w.l.o.g., that G is IL and AR.

!/
o
o

Enforcing Imperfect Information First, we construct a
formula that identifies pairs of states that are indistinguish-
able according to ~,. For o € Obs, we define the HyperSL
path formula ind, over path variables 71, 75 as follows:

nd, := \/ (/\ Gry N /\ Ar, A

(s,8")E~o a€L(s) a€AP\L(s)
/\ Ary N /\ —|a,r2)
a€L(s") a€AP\L(s")

Itis easy to see that on any injectively labeled game structure
ind, holds if the two paths bound to 7y, 75 are ~,-related in
their first state. Given an observation o € Obs, and strategy
variable © € X, we define a formula ii,(x) that holds on
a strategy iff this strategy is an o-strategy (in all reachable
situations and for all agents) as follows:

ZZO(.I‘) = Vyl, PN

7T1: ylv"~7yi7171.7y’i+17~~~7yn)
/\1;[}() / / /
yla R 7yi—1axayi+17' . 7yn)a

/ /
ay’ruyla'- '7yn'

where

= (X /\ (1,0) 7, <>

achA

(i, @)y) W (indy).

The path formula v’ compares two paths 71,72 and
states that as long as prefixes of those two paths are o-
indistinguishable (i.e., ind, holds in each step), the action

selected by agent ¢ is the same on both prefixes (using the
fact that the structure records actions). As we do not know
which agents might end up playing strategy x, we assert that
2 behaves as an o-strategy for all agents. For each i € Agts,
we thus compare two paths where ¢ plays x, but all other
agents play some arbitrary strategy, and assert that 1)’ holds
for those two paths. Strategy x must thus respond with the
same action on any two o-indistinguishable prefixes; in all
reachable situations for all agents.

The Translation Using 4i,(z) as a building block, we can
translate SL;; into HyperSL. Let = € V denote some fixed
path variable. SL;; path formulas are then translated directly
into HyperSL path formulas by indexing APs with 7:

(a) := ax
(=) =~ (¥
(b1 A o)) == (1) A (2)
(X)) =X ()

(11 Uha)) == (1) U (b2)
To translate state formulas, we track the current agent bind-
ing — which SL;; formalizes via agent bindings of the form
(i » x) — using a partial strategy profile : Agts — X (we
write () for the empty profile). We can then use T to construct
the unique path 7 whenever we encounter a path formula:

(o1 A o)™ i= (1) A (i02)®
(o1 V 902[)51: QSﬁ’ngE \ Wz[)i
)" = ()7 : 7]
((iw)p)” = ()"
(]Vw"xp[)f = V. dio(z) — (](,0[)f

(B%.0)™ = Fa. iio(z) A ()°
Note that HyperSL does not allow implications between
state formulas, but we can convert 1 — @5 to —1 V 2,
and push the negation into the path formulas.

Theorem 1. For any SL;; instance ((g,{wo}oe()bs),cp)
where G is IL and AR (c¢f. Lemma 1), we have (G,{~,

Yocons) Fsu, ¢ iff G F ()",

To see the above, observe that for any strategy f € Str(G)
and state s € S, f satisfies 74, in state s iff f is an o-strategy
in all reachable situations starting from s. Phrased differ-
ently, for any strategy f that satisfies 7, there exists some
proper o-strategy f' € Str(G, o) that agrees with f in all
reachable situations. As any strategy will only be queried
on plays that are compatible with the strategy itself, this suf-
fices to encode the SL;; semantics.

Encoding Size We can analyze the size of our formula en-
coding. Formula ind,, is of size O (|AP|-|~,|), and i, is of
size O(|Agts| - (|A| + |ind,|)). The translation for path for-
mulas is linear, and for each quantifier we add one instance

of 4i,, so the size of (¢ [)m is bounded by
(9(|ap| -|Agts| - (|A] +|AP] - max [~o |)>

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Note that this assumes the worst case, where ind, enumer-
ates all pairs in ~,. In most cases, we can identify indistin-
guishable states easily (by, e.g., looking at a particular AP),
reducing the size of ind, significantly.

4 Encoding HyperSL Into SL;

In this section, we consider the reverse problem and en-
code a HyperSL MC instance into an equivalent SL;; MC
instance. Let G = (S, s0,A, k, L) be a fixed CGS and ¢
be a fixed HyperSL formula. The idea of our translation
is to model a hyperproperty on a self-composition of the
game structure (Barthe, D’ Argenio, and Rezk 2011). That
is, we construct a new game structure that simulates multi-
ple copies of G in parallel. Intuitively, each copy will cor-
respond to one of the paths we construct in the HyperSL
formula. We then ensure that an agent does not observe the
state of other copies by using the observation available in
SL;;. We assume, w.l.0.g., that the set of path variables V is
finite. Similar to Lemma 1, we make use of the fact that we
can assume w.l.0.g. that the game structure is IL and AR:

Lemma 2. Given a HyperSL MC instance (G,), there ex-
ists an effectively computable MC instance (G', ") where
(1) G'isILand AR, and (2) G = ¢ iff G' = ¢.

Self-Composition We first formally define the self-
composition of a game structure. In our construction, we
identify each copy in the self-composition by a path variable.
States in the composition are, therefore, functions ¥V — S
that assign a state to each path variable.

Definition 2. Define Gy := (V — S,[].cy S0, A, K", L")
as the CGS over atomic propositions APy, := {a@7 | a €
AP,m € V} and agents Agts,, = {i@n | i € Agts,m €
V} where ' : (V — S) x (Agtsy, — A) = (V — S) is
defined as follows (where & : Agtsy, — A):

H/< H sw,d') = H f@'(sﬂ, H 62(2'@77))

ey ey i€ Agts

and L' (IT,cy s7) == U,ep {a@7 | a € L(sx)}.

In Gy, states are functions)V — S (recall that V and S
are both finite), and the initial state is the function]_[Tr cv 505
mapping all path variables to the initial state sg. Each state
in Gy records a state for every m € V (which we refer to
as the w-copy), so each path in Gy, defines paths in G for
all path variables. Agents in Gy are of the form (@7 €
Agtsy,, and APs are of the form a@m € APy, i.e., they are
indexed by path variables. Intuitively, for each m € V), the
agents {i@m | i € Agts} are responsible for updating the
system copy for 7, so their strategies define the m-path. The
transition function thus takes a state H‘n’GV S (where, for all
m € V, s, is the current state of the m-copy) and an action
vector @ : Agtsy, — A, and returns a new state [., s.
Here, each s/ is defined as m(sﬁ, HieAgts &(i@r)), ie., we
use G’s transition function x and construct the action profile
Agts — A by mapping each agent i € Agts (in G) to the
action chosen by agent i@ (in Gy,).

151

We turn Gy, into a game structure under imperfect infor-
mation by setting Obs = {o, | ¥ € V} and defining

~o = {(H Srs H s;) | 57 = s;}

TeVY TeY

Two states [] .y sr and] ., s thus appear indistin-
guishable under observation o, if the state of the w-copy
agrees. A strategy under observation o, can thus only ob-
serve the m-copy and not base its decision on the other sys-
tem copies.

Translating Path Formulas We can now translate the Hy-
perSL formula into an equivalent SL;; formula over the self-
composed game structure. The idea of our construction is to
interpret path 7 in the HyperSL formula as the path traversed
by the 7-copy in Gy. In HyperSL path formulas, we, there-
fore, replace every path-variable-indexed atomic formula a,
(where a € AP) with the atomic proposition a@7m € APy,
in Gy:

[az] := a@7
[=4] == =[¥]

[th1 A ta] := [A [92]
[X9] = X[¥]

[v1 Ueba] =[] Uf¢]

Strategy Equality For state formulas, we need some ad-
ditional gadget. In the HyperSL formula, each strategy vari-
able z can be used on multiple paths. Yet, in Gy, each strat-
egy only acts in a fixed copy (determined by its observa-
tion). We, therefore, translate the quantification over a strat-
egy variable x in the HyperSL formula into quantification
over |V|-many variables {z, | # € V} in SL;;. Each strat-
egy variable z, will act in the w-copy of Gy and thus be
assigned observation o,. Whenever strategy variable x is
used in the HyperSL formula to construct path 7 € V), our
translation uses strategy variable z,. Consequently, we need
to ensure that the strategies bound to {z | 7 € V} (who all
will act in different copies of Gy)) denote the same strategy,
i.e., respond with the same action to the same prefix (in dif-
ferent copies of Gy). For z € X and 7,7’ € V, we define
formula eq(z,, z,) as follows:

\

JjEAgts,mEV

A

i1,i0€ Agts

yj”;T ® (j@TPYy;)
jEAgts,mEV
(’L'l @ﬂbl’ﬂ)(ig @7TI Pl'ﬂ—/) wffﬂz’

where ;! is defined as follows:

pe ;:(x A (i, 0)@r o (722,(1)@77')

acA

W(\/ a@w%a@w’).

a€AP

Here, we write ® as an abbreviation for the concatenation of
multiple agent bindings in SL;;.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Formula eq (2, x,) expresses that ., and z,, denote the
same strategy, even though x, operates in the m-copy and
25 operates in the 7’'-copy. The underlying idea is similar
to the one used in Section 3: we use the fact that G is IL and
AR and can thus reason about the action selection of agents
within our logic. In eq(z,,z,), we consider every agent
Jj € Agts and every path variable 7 € V), quantify univer-
sally over a strategy ¥, » with observation o, and then bind
agent j @7 in Gy to strategy y; .. We then consider any pair
of agents 71,12 € Agts, and want to express that if i, plays
T, in the m-copy (so agent i1 @7 plays x) and i plays x,/
in the 7’'-copy (so agent i, @7’ plays), the same prefix
(in the 7 and 7’ copies) results in the same action selected by
11 @7 and i, @7r’. We thus re-bind agents i; @7 and i, @7’
to strategies x, and z,/, respectively. The resulting strat-
egy profile now explores all possible reachable situations in
which agent 71 in the 7-copy plays strategy =, and agent io
in the 7'-copy plays strategy 2. The path formula ¢77,
then asserts that as long as the prefix in the 7 and 7’ copy
is equal (using the fact that G is IL), the action selected by
11@7 and i @7’ is the same (using the fact that G is AR).
Note that we assumed that G is AR and thus includes APs of
the form (i, «) for each agent 7 and action «, so Gy, includes
APs of the form (i, o) @7.

Translating State Formulas Using the eg(-,) construc-
tion, we can translate HyperSL state formulas:

V.] = \v/ o, (/\ €q(30m$7r’)) — [l
TeY T, eV
Bo.gl = Far (N ealwnze) Ale]
TeY T, eV
[p1 A 2] := [e1] A [2]
[e1 V2] =[] V 2]
[o[m. : @]l = (o (vi@m»(a‘c‘k(i))m)) [¥]
1€ Agts, k=1

Here, we again write ® as an abbreviation for the concatena-

tion of multiple agent bindings in SL;;. Whenever we trans-
late quantification over variable z, we instead quantify over
|V|-many variables {z. | m € V} with the appropriate ob-
servation and make sure that they all denote the same strat-
egy by using eq(-,-). When we translate ¢ [: &%),
we fix strategies for all agents i@nm € Agts,,, and evalu-
ate the translated path formula [¢']. The key idea here is to
bind each agent : @, to the strategy that corresponds to the
strategy Zx(7) in the HyperSL formula, i.e., the strategy that
takes the role of agent 7 in the 7;-copy of Gy (i.e., the strat-
egy of 1@mr;,) should equal the strategy that agent 7 uses to
construct path 7 in the HyperSL formula. In our encoding,
we translate each strategy quantifier over = in HyperSL, into
|V|-many strategies {x. | # € V} in SL;;, where each x
acts in the m-copy of Gy. Consequently, the strategy vari-
able that corresponds to Zx(7) in the 7-copy is the variable
(Zx (7)), For example, if & (i) = z, we bind agent i@y,
to strategy variable 2, .

152

Example 1. Consider the HyperSL formula
Jz,y.V2.(Glax, = br,))|m1 ¢ (2,y), 72 : (2,2)]
Using our translation, and after removing non-needed vari-

ables, we obtain the following formula on G, .-

Ory Om

Elerql y Lma”™ y?l'll VZ:';? . eq(xﬂ'1) xﬂ'z) N
(l1@m 24,) (2@ B yr,) (1@ W 2,) (2@ B 21,)
G(a@m; — b@7rs).

Theorem 2. Let (G,) be a HyperSL instance, where G is
IL and AR. Then G = @ iff (Gv, {~o, Yo.c0bs) Es. [¢]-

Encoding Size We can, again, analyze the size of our en-
coding. The size of eq(+, -) is of order

O(|Agts| - V] + | Agts|* - (|A] +[AP])).
The translation of path formulas is linear, for each quantifier
we add |V|?>-many eq(-,) constraints, and for each nested
path formula we add |V| - | Agts|-many agent bindings. The
overall size of [] is thus bounded by

O(Il- VI - | Agts|? - (|A] +|APY)).

As expected for a self-composition, Gy, has (9(|S | W') states
(Barthe, D’ Argenio, and Rezk 2011).

5 Related Work

There exist many extensions of ATL* and SL to reason
about imperfect information (Belardinelli, Lomuscio, and
Malvone 2019; Dima and Tiplea 2011; Jamroga, Malvone,
and Murano 2019; Knight and Maubert 2019; Belardinelli et
al. 2017; Berthon, Maubert, and Murano 2017; Huang and
van der Meyden 2014; Huang and van der Meyden 2018)
or hyperproperties (Beutner and Finkbeiner 2021; Beut-
ner and Finkbeiner 2023; Beutner and Finkbeiner 2024b;
Beutner and Finkbeiner 2024a). The connection between
knowledge and hyperproperties has been studied extensively
(Rabe 2016; Coenen et al. 2020; Beutner et al. 2023; Beutner
and Finkbeiner 2025a; Beutner and Finkbeiner 2025b). The
work most closely related to ours is the study of (Bozzelli,
Maubert, and Pinchinat 2015), who show that LTLx and a
fragment of HyperCTL* are equally expressive (on standard
Kripke structures). We study the relation of hyperproperties
and knowledge in the setting of MASs and strategies. For
example, unlike LTL i, SL;; does not use a knowledge op-
erator that we can directly encode. Instead, SL;; quantifies
over strategies with a given observation relation.

6 Conclusion

In this paper, we have established the first formal connec-
tion between imperfect information and hyperproperties in
the context of strategy logic. Our results shed new light on
the intricate connection between knowledge and hyperprop-
erties and allow for the transfer of tools and techniques. For
future work, it is interesting to check how existing verifi-
cation tools for imperfect information (Jamroga et al. 2019;
Lomuscio, Qu, and Raimondi 2009; Kurpiewski, Jamroga,
and Knapik 2019) perform on the encoding from HyperSL,
and if the decidable fragments of HyperSL correspond to in-
teresting classes of SL;; properties.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgments

This work was supported by the European Research Council
(ERC) Grant HYPER (101055412), and by the German Re-
search Foundation (DFG) as part of TRR 248 (389792660).

References

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.

Alternating-time temporal logic. J. ACM.

Barthe, G.; D’ Argenio, P. R.; and Rezk, T. 2011. Secure in-
formation flow by self-composition. Math. Struct. Comput.
Sci.

Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017. Verification of multi-agent systems with imperfect in-

formation and public actions. In Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2017.

Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2019. An
abstraction-based method for verifying strategic properties
in multi-agent systems with imperfect information. In Con-
ference on Artificial Intelligence, AAAI 2019.

Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. Y. 2017. Strategy logic with imperfect information. In
Symposium on Logic in Computer Science, LICS 2017.

Berthon, R.; Maubert, B.; and Murano, A. 2017. Decidabil-
ity results for ATL* with imperfect information and perfect
recall. In Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2017.

Beutner, R., and Finkbeiner, B. 2021. A temporal logic for
strategic hyperproperties. In International Conference on
Concurrency Theory, CONCUR 2021.

Beutner, R., and Finkbeiner, B. 2023. HyperATL*: A logic
for hyperproperties in multi-agent systems. Log. Methods
Comput. Sci.

Beutner, R., and Finkbeiner, B. 2024a. Hyper strategy
logic. In International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2024.

Beutner, R., and Finkbeiner, B. 2024b. On alternating-
time temporal logic, hyperproperties, and strategy sharing.
In Conference on Artificial Intelligence, AAAI 2024.

Beutner, R., and Finkbeiner, B. 2025a. On conformant plan-
ning and model-checking of 3*V* hyperproperties. In Euro-
pean Conference on Artificial Intelligence, ECAI 2025.

Beutner, R., and Finkbeiner, B. 2025b. On hyperproperty
verification, quantifier alternations, and games under partial
information. In Formal Methods in Computer-Aided Design,
FMCAD 2025.

Beutner, R., and Finkbeiner, B. 2025c. Strategy logic, im-
perfect information, and hyperproperties. CoRR.

Beutner, R.; Finkbeiner, B.; Frenkel, H.; and Metzger, N.
2023. Second-order hyperproperties. In International Con-
ference on Computer Aided Verification, CAV 2023.

Bozzelli, L.; Maubert, B.; and Pinchinat, S. 2015. Unify-
ing hyper and epistemic temporal logics. In International

Conference on Foundations of Software Science and Com-
putation Structures, FoSSaCS 2015.

153

Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Inf. Comput.

Clarkson, M. R., and Schneider, F. B. 2008. Hyperprop-
erties. In Computer Security Foundations Symposium, CSF
2008.

Clarkson, M. R.; Finkbeiner, B.; Koleini, M.; Micinski,
K. K.; Rabe, M. N.; and Sanchez, C. 2014. Temporal logics
for hyperproperties. In International Conference on Princi-
ples of Security and Trust, POST 2014.

Coenen, N.; Finkbeiner, B.; Hahn, C.; and Hofmann, J.
2020. The hierarchy of hyperlogics: A knowledge reasoning
perspective.

Dima, C., and Tiplea, F. L. 2011. Model-checking ATL
under imperfect information and perfect recall semantics is
undecidable. CoRR.

Huang, X., and van der Meyden, R. 2014. A temporal
logic of strategic knowledge. In International Conference

on Principles of Knowledge Representation and Reasoning,
KR 2014.

Huang, X., and van der Meyden, R. 2018. An epistemic
strategy logic. ACM Trans. Comput. Log.

Jamroga, W.; Knapik, M.; Kurpiewski, D.; and Mikulski, L.
2019. Approximate verification of strategic abilities under
imperfect information. Artif. Intell.

Jamroga, W.; Malvone, V.; and Murano, A. 2019. Natu-
ral strategic ability under imperfect information. In Inter-
national Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2019.

Knight, S., and Maubert, B. 2019. Dealing with imperfect
information in strategy logic. CoRR.

Kurpiewski, D.; Jamroga, W.; and Knapik, M. 2019. STV:
model checking for strategies under imperfect information.
In International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2019.

Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A
model checker for the verification of multi-agent systems. In
International Conference on Computer Aided Verification,
CAV 2009.

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2014. Reasoning about strategies: On the model-checking
problem. ACM Trans. Comput. Log.

Rabe, M. N. 2016. A temporal logic approach to
information-flow control. Ph.D. Dissertation, Saarland Uni-
versity.

	Introduction
	Preliminaries
	Encoding SLii Into HyperSL
	Encoding HyperSL Into SLii
	Related Work
	Conclusion

