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Abstract

In this work, we broaden the investigation of admissibility
notions in the context of assumption-based argumentation
(ABA). More specifically, we study two prominent alterna-
tives to the standard notion of admissibility from abstract ar-
gumentation, namely strong and weak admissibility, and in-
troduce the respective preferred, complete and grounded se-
mantics for general (sometimes called non-flat) ABA. To do
so, we use abstract bipolar set-based argumentation frame-
works (BSAFs) as formal playground since they concisely
capture the relations between assumptions and are expres-
sive enough to represent general non-flat ABA frameworks,
as recently shown. While weak admissibility has been re-
cently investigated for a restricted fragment of ABA in which
assumptions cannot be derived (flat ABA), strong admissi-
bility has not been investigated for ABA so far. We intro-
duce strong admissibility for ABA and investigate desirable
properties. We furthermore extend the recent investigations
of weak admissibility in the flat ABA fragment to the non-
flat case. We show that the central modularization property
is maintained under classical, strong, and weak admissibility.
We also show that strong and weakly admissible semantics
in non-flat ABA share some of the shortcomings of standard
admissible semantics and discuss ways to address these.

1 Introduction

Computational argumentation is a dynamic and widely
studied area within knowledge representation and reason-
ing (Gabbay et al. 2021). It provides foundational mod-
els for human reasoning processes when challenged with
conflicting information with the goal of identifying sets
of jointly acceptable assumptions, premises, or arguments,
representing coherent and defensible viewpoints. A well-
established formalism in this domain is assumption-based
argumentation (ABA) (Bondarenko et al. 1997; Cyras et al.
2018), which has been thoroughly investigated (Heyninck
and Arieli 2024; Lehtonen, Wallner, and Jarvisalo 2021;
Lehtonen et al. 2023; Rapberger and Ulbricht 2024) and has
applications in fields such as decision making (Fan et al.
2014; Cyras et al. 2021), planning (Fan 2018), and explain-
able AI (Russo, Rapberger, and Toni 2024; Leofante et al.
2024). In ABA frameworks (ABAFs), the reasoning process
revolves around identifying acceptable sets of assumptions,
which are the defeasible elements of the framework. The fo-
cus on inference rules and assumptions places ABA within
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the subfield of structured argumentation, which explicitly
accounts for the internal structure of arguments. In contrast,
abstract argumentation (Dung 1995) models argumentative
processes by directed graphs where nodes are abstract ar-
guments and edges represent attacks between them. Vari-
ous argumentation semantics, largely shared across all major
argumentation formalisms, are used to formalize when as-
sumption sets can be considered acceptable, we refer to, e.g.,
(Baroni, Caminada, and Giacomin 2018; Cyras et al. 2018;
Besnard et al. 2014) for an overview.

At the heart of most of these semantics lies the concept of
admissibility (Dung 1995). This notion, which can be seen
as the argumentative counterpart to self-defense, is crucial
for defining acceptance and defeat in computational argu-
mentation. Dung (1995) introduced admissibility for ab-
stract argumentation frameworks (AFs), encapsulated with
the informal slogan: the one who has the last word laughs
best. A set of arguments is said to be admissible if it ensures
both internal coherence (no self-conflict) and self-defense
(ability to counter attacks). In the context of ABA, an as-
sumption a can be challenged (attacked) by a set of assump-
tions S if S derives the negation (the so-called contrary)
of a. A set of assumptions is then said to be admissible if it
is conflict-free and counters all of its attackers.

Beyond the classical notion, several refinements of admis-
sibility have been proposed. Strong admissibility strength-
ens defense: a member of a strongly admissible set cannot
defend itself. This property has been introduced by Ba-
roni and Giacomin (2007) and first studied as an indepen-
dent semantics by Caminada (2014) in the context of ab-
stract argumentation; using the following recursive defini-
tion: a set S is strongly admissible if each a € S is strongly
defended by a subset of S\ {a}. It addresses concerns
about circular justifications which are tolerated under stan-
dard admissibility. Strong admissiblity is well understood
for AFs (Caminada and Dunne 2020; Caminada and Harikr-
ishnan 2024a) and has been studied in generalizations of
AFs (Keshavarzi Zafarghandi, Verbrugge, and Verheij 2022;
Bistarelli and Taticchi 2022). In contrast, the realm of struc-
tured argumentation lacks similar investigations so far.

On the other end of the spectrum, weak admissibility has
been proposed as a relaxation of the classical approach.
Originally introduced for AFs by Baumann, Brewka, and
Ulbricht (2020b), weak admissiblity addresses situations in-
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volving paradoxical arguments, such as self-attacking cy-
cles, in which the standard notion of admissibility can be
overly restrictive or unintuitive (Dung 1995; Dondio and
Longo 2019). The weaker version of the semantics al-
lows for a more relaxed approach to defense that can ig-
nore such paradoxes, focusing instead on maintaining the
acceptability of reasonable arguments. Crucial for the no-
tion is the reduct which removes arguments whose accep-
tance status is already decided, i.e., either accepted or de-
feated. The reduct is the technical prerequisite for the mod-
ularization property which intuitively captures the idea that
the evaluation of a semantics can be broken down into the
evaluation on subframeworks, based on the reduct com-
putation. In the context of AFs, weak admissibility is
well understood (Baumann, Brewka, and Ulbricht 2022;
Dauphin, Rienstra, and van der Torre 2021; Bliimel and
Ulbricht 2022). In recent work, Bliimel, Konig, and Ul-
bricht (2024) investigate weak admissibility in the context
of ABA. They focus, however, exclusively on the flat ABA
fragment in which assumptions cannot be derived (Bon-
darenko et al. 1997). The flat setting restricts the frame-
work’s expressiveness when applied to complex domains.
In many contexts —such as legal reasoning, ethical deliber-
ation, or cognitive modeling— assumptions are often inter-
dependent, something flat ABA cannot represent. Despite its
potential, the non-flat setting remains underexplored and of-
fers a promising direction for extending the applicability and
depth of assumption-based frameworks, especially in com-
bination with alternative notions of admissibility.
Therefore, unlike prior work, we do not restrict ourselves to
the flat case but explore admissiblity under these more gen-
eral conditions. Naturally, this poses additional challenges
as (i) in addition to attacks, assumptions can now also sup-
port each other—analogously to the case of attacks, a set of
assumptions .S supports an assumption a if .S derives a—and
(i) assumption sets can carry implicit conflicts due to the as-
sumptions they additionally derive. To address (ii), accept-
ability in non-flat ABAFs requires in addition to conflict-
freeness and defense that the assumption set is closed, that
is, it contains all assumptions it derives. This ensures that
implicit conflicts are exposed and that the acceptability of a
set can be meaningfully evaluated only when all its logical
consequences are taken into account.

We base our investigations on bipolar set-based AFs
(BSAFs) (Berthold, Rapberger, and Ulbricht 2024) as they
concisely capture the attack and support relations between
assumptions and abstract away from all elements such as
rules, ordinary atoms, argument trees that are only indirectly
used in the evaluation of an ABAF.

Overall, our main contributions are as follows.

* We introduce strong admissibility for general (non-flat)
ABA. We investigate fundamental properties of strong
admissibility such as (UM) which states that the C-
maximal strongly admissible set is unique. While some of
these properties may be violated in the general case, the
semantics behave as expected in the flat ABA fragment,
as we show. Section 5

* We generalize weak admissibility to non-flat ABA and
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study its properties. We show that some of the fundamen-
tal principles of weakly admissible semantics do not hold
for non-flat ABA, e.g., removing self-attacking assump-
tions (PA) is not always possible. Section 6

» Towards generalizing weak admissiblity to the non-flat
case, we define and investigate the BSAF reduct and the
closely related modularization property, and show that
modularization holds for both weak and strong admissi-
blity, as well as the classical semantics in non-flat ABA.
Section 4

* Inspired by recent attempts to alleviate the undesired be-
havior of ABA semantics in the non-flat case, we inves-
tigate the notion of I'-closure in the context of weak and
strong admissiblity. Intuitively, the I'-closure of a set S
allows to ignore assumptions that are not defended by S.
While the adjustment fails to fix weak semantics, we show
that the resulting strongly I'-admissible semantics retains
all desired properties. Section 7

A full version of the paper including all proofs is available
online.!

2 Background
2.1 Assumption-based Argumentation

We recall the technical definitions of (ABA) (Cyras et al.
2018). We assume a deductive system, i.e. a tuple (L, R),
where L is a set of atoms and R is a set of inference rules
over L. A rule r € R has the form ag + ai,...,a,, s.t.
a; € Lforall 0 < i < n; head(r) := ag is the head and
body(r) := {a,...,an} is the (possibly empty) body of r.

Definition 2.1. An ABA framework (ABAF) is a tuple
(L, R, A,c), where (L,R) is a deductive system, A C L

a set of assumptions, and ¢ : A — L a contrary function.

We fix an arbitrary ABAF D = (£, R, A, ¢) below. The
ABAF D is flat iff head(r) ¢ A for all r € R. In this work
we focus on finite ABAFs, i.e. £ and R are finite.

An atom p € L is tree-derivable from assumptions S C A
and rules R C R, denoted by S Fg p, if there is a finite
rooted labeled tree t s.t. i) the root of ¢ is labeled with p, ii)
the set of labels for the leaves of ¢ is equal to S or S U {T},
and iii) for each node v that is not a leaf of ¢ there is a rule
r € R such that v is labeled with head(r) and labels of the
children correspond to body(r) or T if body(r) = . We
write S F p iff there exists R C R such that S -y p.

Let S C A. By ¢(S) := {c(a) | a € S} we denote the
set of all contraries of S. Set S attacks a set T' C A if there
are S C Sand a € T s.t. S - ¢(a); if S attacks {a} we
say S attacks a. S is conflict-free (S € ¢f (D)) if it does not
attack itself. The closure cl(S) of S'is cl(S) := Thp(S)NA
where Thp(S) :=={pe L |35 CS:5 F p} denotes all
derived conclusions. We write cl(a) instead of cl({a}) for
singletons. We call S C A closed if S = cl(5).

Now we consider defense (Bondarenko et al. 1997; Cyras
et al. 2018). Observe that defense in general ABAFs is only
required against closed sets of attackers.

'https://zenodo.org/records/16884917
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Definition 2.2. A set S of assumptions defends an assump-
tion a iff for each closed set T which attacks a, we have S
attacks T'; S defends itself iff S defends each b € S.

A set E of assumptions is admissible (E € adm(F)) iff
FE is conflict-free, closed and defends itself. We next recall
grounded, complete, and preferred ABA semantics.
Definition 2.3. Let D be an ABAF and S € adm(D). Then
* S € com(D) iff it contains every assumption it defends;

» S € grd(D) iff S is C-minimal in com(D);
o S € pref(D) iff S is C-maximal in adm(D).

We denote by ¥ = {adm, com, grd, pref} the family of
(classical, admissible-based) Dung semantics.

To study restrictions of ABAFs, the following notation
will be useful. For an ABAF D = (L, R, A,c) and S C A,

we write D | g for the framework that arises when restricting
Dto S,ie.,Dls:=(L,R,S c|s).

2.2 Bipolar Set-based Abstract Argumentation
Bipolar SETAFs (Berthold, Rapberger, and Ulbricht 2024)
combine the ideas underlying argumentation frameworks
with collective attacks (SETAFs) (Nielsen and Parsons
2006) and bipolar argumentation frameworks (BAFs) (Cay-
rol and Lagasquie-Schiex 2005; Amgoud et al. 2008; Ul-
bricht et al. 2024). Instead of only considering an attack
relation, there is also a notion of support. Bipolar SETAFs
(BSAFs) can model collective attacks and supports.
Definition 2.4. A bipolar set-argumentation framework
(BSAF) is a tuple F = (A, R, S), where A is a finite set
of arguments, R C 24 % A is the attack relation and
S C 24 x A is the support relation.

In this work, we consider finite BSAFs only, i.e., A is
finite. A SETAF is a BSAF F = (A, R, S) with S = (); an
AF is a SETAF with |T'| = 1 for all (T, h) € R.

Definition 2.5. Given BSAF F=(A,R,S) and E C A, let
suppp(E):=FEU{he€ A|3(T,h) € S:T C E}.
We define the closure clp(E) := ;> suppn(E) of E; E

is closed if clp(E) = E. -

Definition 2.6. Given BSAF F =(A, R, S), a set EC A de-
fends a € A if for each closed attacker E' C A of a, E attacks
E'; E defends E' if E defends each a € E'. The character-
istic function is T (E) := {a € A | E defends a in F}.

We omit the subscript F' for I" and ¢! if clear from context.

Let us now head to BSAF semantics. A set E is conflict-
free (F € ¢f (F)) if it does not attack itself; E is admissible
(E € adm(F))ifitis conflict-free, closed and defends itself.
Definition 2.7. Let F' be an BSAF and let E € adm(F).

* E € com(F) iff E contains every assumption it defends;
* E € grd(F) iff E is C-minimal in com(F');
» E € pref(F) iff E is C-maximal in adm(F).

Given a BSAF (A, R, S) and a set of arguments £ C A,
we denote Ef; := {h | 3T C A: (T,h) € R} and the range
of E by Ef := Ep U E};. The index R may be omitted,
if clear from the context. Graphically, we depict the attack

relation of a BSAF by solid edges and the support relation
by dashed edges (cf. Example 2.10).
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ABA and BSAF BSAFs capture non-flat ABAFs, as
shown by Berthold, Rapberger, and Ulbricht (2024).

Definition 2.8. Ler D = (L, R, A, c) be an ABAF. Then we
set Fp := (A, R, S), where A .= A and

R:={(T,h) |he A, TC A, TFc(h)},
S:={(T,h)|he A, TCA Tk h}}

Berthold, Rapberger, and Ulbricht (2024) show that the
BSAF abstraction of an ABAF preserves the semantics.

Theorem 2.9. o(D)=0(Fp) for any o € ¥ and ABAF D.

Example 2.10. We consider an ABAF D = (L, R, A,c)
with literals L = {a,b,c,d,e,ac,be, Ce,de, €.}, assump-
tions A = {a,b,c,d, e}, their contraries a., be, ¢, de, €,
respectively, and rules

Cc—d e.+—e e<ab d.+c e. <+ b

We compute the BSAF Fp = (A, R,S): the nodes cor-
respond to the assumptions, i.e, A = {a,b,c,d, e}, the
attacks to the tree-derivations that derive contraries, i.e.,
R = {({d},o). ({c}, d), . ({e}.€)}. and the sup-
ports correspond to the tree-derivations that derive assump-
tions, in this case S = {({a,b}.e)}.

®

The BSAF provides an easy-to-understand graphical repre-
sentation to evaluate the semantics in D. The sets {a} and
{b} are admissible since they are unattacked; however, they
cannot be accepted together because they jointly support the
self-attacker e. Thus, the BSAF (and therefore the ABAF)
has neither complete nor grounded extensions. It has three
preferred extensions, {a, c}, {b, c} and {b, d}.

3 Strong and Weak Admissibility in ABA

Our goal is to study semantics based on strong and weak ad-
missibility in ABA in a principled way. We will thus identify
desirable properties that we expect our new families of se-
mantics adhere to.

To get a better understanding of the oftentimes involved
technicalities of the recursive definitions of strong and weak
admissibility, we make use of the close relationship between
BSAFs and ABAFs. BSAFs concisely capture the attack
and support relations between assumptions while abstract-
ing away from all components of an ABAF that are only
implicitly needed to compute the extensions, as discussed
in Example 2.10. We will therefore utilize BSAFs as our
formal playground to rigorously define and investigate our
novel semantics.

In the remainder of this section, we consider an arbitrary
but fixed ABAFD = (L, R, A,c).

Global Desiderata We discuss desired properties for both
strong and weak admissiblility. A central property of argu-
mentation semantics is the fundamental lemma, introduced
by Dung (1995). It states that each assumption defended by
an admissible set E' can be accepted together with E.
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(F) Fundamental Lemma: If S € adm(D) defends a, then
SU{a} € adm(D).

We recall basic semantics relations; also, all semantics are

expected to return a result.

(SR) Semantics Relations: pref(D) C com(D) C adm(D)
and grd(D) C com(D)

(NE) Non-empty: adm(D), com(D), pref(D), grd(D) # )

We note that (SR implies the maximal complete principle
(MC) (Bliimel, Konig, and Ulbricht 2024) which states that
the preferred extensions correspond to the maximal com-
plete extensions of a given framework.

Proposition 3.1. (SR) = (MC) where (MC) denotes
pref(D) = {E C A | E is maximal in com(D)}

Central to both strong and weak admissibility is the mod-
ularization property. A semantics satisfies modularization
if its extensions can be computed iteratively by projecting
away all elements that are already known to be either ac-
cepted or defeated. Crucial for this property is the reduct of a
framework, originally introduced in (Baumann, Brewka, and
Ulbricht 2020b). Below, we recall the definition for SETAFs
as they correspond to flat ABAFs (Dvotdk et al. 2021).

Definition 3.2. Given a SETAF F = (A,R) and E C A,
the E-reduct of F is the SETAF FE .= (AP RE), with

AP = A\ E$
RE = {(T\E,h) | (T,h) € R, TNE} =10,
T ¢ E, he AP}

Example 3.3. Consider the SETAF F and its reduct F'¥
wrt. E = {a} (with removed arguments and attacks in light-
gray), depicted below.

F: (a)—(b) FE: (a)—(b
ORONO, @@ ©

The reduct F¥ of F wrt. E assumes a to be true. Thus, b
is assumed to be false, since it is attacked by I. Both argu-
ments a and b are therefore removed. The attack ({b,d}, e)
is deactivated because b is out, thus it is removed entirely;
the attack can still fire, since a is in, thus, we
adjust it accordingly and keep in FE.

We are ready to define modularization which allows
to compute extensions in a modular fashion. The prop-
erty holds for (SET)AFs (Baumann, Brewka, and Ulbricht
2020a; Dvorak et al. 2024), and we expect this property to
hold for BSAFs (that resemble non-flat ABAFs) as well.

(M) Modularization: A semantics o satisfies modulariza-
tion iff for each E C A, E' C A¥ we have E € o(F)
and E’ € o(FF) implies EU E’ € o(F).

Strong Admissibility Desiderata Strong admissibility
strengthens the standard notion by requiring that each mem-
ber of a strongly admissible set is defended by a strongly
admissible subset that does not contain it. The notion has
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first been introduced in the scope of a principle-based anal-
ysis by Baroni and Giacomin (2007) for AFs and has first
been studied as an independent semantics concept by Cami-
nada (2014). We recall the AF definition.

Definition 3.4. Let F' = (A, R) be an AF. A conflict-free set
E € ¢f(F) is strongly admissible in F iff each a € E is
defended by a strongly admissible set E' C E \ {a}.

Similar to grounded semantics, strongly admissible ex-
tensions can be computed starting from a set of undefeated
arguments. We discuss the idea in the following example.

Example 3.5. Consider the following AF.

O—O—© @O—O

A strongly admissible extension may, or may not contain c or
d, since they are unattacked. Accordingly, an extension may
contain a, if it contains c. Note that a is not contained in
a strongly admissible extension if c is not present. We have

adm’(F) = {0, {c}, {¢,a}, {d}, {¢, d}, {c,d, a}}.

Analogous to the AF case, we expect that strong admissi-
bility for ABA strengthens admissibility.

(S) Strengthening: It holds that adm®(D) C adm(D).

We consider the following three desiderata, inspired by
Caminada (2014). Unique maximum states that the set of
strongly admissible extensions has a unique maximal ele-
ment; Unique relative maximum states that this property
also holds relative to a given admissible set; and complete
containment states that each strongly admissible set is con-
tained in each complete extension.

(UM) Unique Maximum: The C-maximal strongly admis-
sible extension is unique.

(URM) Unique Relative Maximum: Each admissible set
has a unique C-maximal strongly admissible subset.

(CC) Complete Containment: E € adm’(D) and E' €
com(D) imply E C F’.

Note that for AFs, (CC) implies that all strongly admissible

sets are a subset of the (unique) grounded extension.

Weak Admissibility Desiderata Bliimel, Konig, and Ul-
bricht (2024) introduced weak admissiblity for the flat ABA
fragment, basing their definition on SETAFs.

Definition 3.6. Let F = (A, R) be a SETAF, let E C A be

a set of arguments, and F¥ = (A¥ RF) its E-reduct. Then
E is called weakly admissible in F (E € adm" (F)) iff

1. E€cf(F)and

2. foreach (T,h) € Rwithh € E, and TNE}, = (it holds
BE' € aam”(FE)s.t. TN AP C E".

Let D = (L, A, R,c) be an ABAF and Fp the correspond-

ing SETAF (cf. Definition 2.8). A set E C A of assumptions

is weakly admissible (E € adm” (D)) iff E € adm™ (Fp).
In their work, they identified desirable properties for

weakly admissible semantics which we will recall below.

First, the semantics is expected to weaken the traditional ad-
missibility notion.
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(L) Liberalization: It holds that adm(D) C adm” (D).

A fundamental principle of weak admissibility is that it al-
lows for deleting so-called paradoxical components. In AFs,
these components are, for instance, self-attackers or odd
cycles in general. In the case of ABAFs, Bliimel, Konig,
and Ulbricht ( 2024) identified the following counterpart for
paradoxical assumptions.

(PA) Paradoxical Assumptions: If {a} + c¢(a), then it
holds that adm” (D) = adm" (D | 4\ {a})-

Finally, we consider a novel principle similar to the paradox-
ical rule principle in (Bliimel, Konig, and Ulbricht 2024).
The principle involves attacks and supports in the ABAF that
we deem paradoxical. We introduce the concept (in terms of
BSAFs as they resemble ABA attacks and supports) below.

Definition 3.7. Given a BSAF F = (A, R, S). An attack
r = (T,h) € R is paradoxical iff T # () and for everyt € T
thereisaT CT,T' # () s.t.

o there exists (T',t) € Rand h ¢ T'.

A support s = (T, h) € S is paradoxical iff T # 0 and for
everyt € TthereisaT' CT,T' # ) s.t.

* there exists (T',t) € R.

(PRS) Paradoxical Attacks/Supports: Removing a para-
doxical attack r or support s does not alter the mod-
els of F, ie. adm"(F) = adm"(F’') where F' =
(A, R\ {}.5) (resp. F' = (A, R, S\ {s})).

Section Qutline In the following sections, we will define
strong and weak admissibility and study them in terms of the
desiderata that we identified, thereby utilizing BSAFs as a
formal playground. First, we will introduce the BSAF reduct
and study modularization for classical Dung semantics in
general (potentially non-flat) ABA (cf. Section 4). Second,
we introduce strong admissibility, first for BSAFs, and sub-
sequently for ABA in Section 5 where we study its behavior
for non-flat ABA and in the flat fragment. Third, we discuss
weak admissibilty for non-flat ABA in Section 6.

The classical semantics general (potentially non-flat)
ABA are known to admit undesired behavior, as, e.g., dis-
cussed in (Heyninck and Arieli 2024; Berthold, Rapberger,
and Ulbricht 2024). We (correctly) anticipate similar is-
sues with the generalizations of the semantics based on
strong respectively weak admissibility. We tackle these is-
sues in Section 7 and consider revised versions of the seman-
tics to reinstate (F),(SR) and (NE), as recently proposed
in (Berthold, Rapberger, and Ulbricht 2024).

4 The BSAF Reduct

Towards modularization and weak admissibility for BSAFs,
we first introduce the E-reduct for BSAFs. As for the AF
and SETAF reduct (Baumann, Brewka, and Ulbricht 2020b;
Dvoték et al. 2024), the BSAF reduct should capture the
intuition that the arguments in a given set E are true, and all
arguments in E7 are false.

It is tempting to proceed analogous to the (SET)AF case
and set all arguments that are attacked to false (and remove
them). However, when doing so, we encounter some issues.
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Example 4.1. Consider the BSAF F as depicted below (left)
and the result F’ of the SETAF reduct computation wrt. E =

{d} (cf. Definition 3.2) (right).
F’: @ @

@’"\*@<—@ @

If we proceed as in the SETAF case, the argument e is de-
feated and thus can be removed. The resulting BSAF thus
contains no attacks and supports, thus all arguments can be
accepted in the next iteration. With supports present, how-
ever, we need to be a bit more careful since accepting the
arguments a and b would require to accept the previously
defeated argument e as well. Thus, we need to ensure that
the set a and b cannot be jointly accepted. To do so, we will
add attacks from the set {a, b} to each of its members.

As shown in the previous example, the removal of an at-
tack has consequences for all its supporting sets. To prevent
that all arguments in a set .S that supports an already defeated
argument can get accepted, we add self-attacks (.5, a) to all
a € S, this acts as a constraint. As soon as one of the ar-
guments in the set gets defeated the attacks will be removed
and the remaining arguments can be accepted.

We encounter another subtlety.

Example 4.2. Consider the BSAF F as depicted below (left)
and the SETAF reduct F' wrt. E = {a} (right).

F:@-@=©@ r:o0-0

However, since a supports b, we already know that b can be
deemed accepted as well; and, consequently, c is defeated.
In the BSAF reduct, we will thus remove all true and de-
feated arguments wrt. the closure of E.
We define the reduct as follows.
« First, we add constraints, for each support (T, h) with h €
cl(E)}, we add attacks (T, t) for all t € T,

» Next, we remove all true and defeated arguments: com-
pute the closure cl(FE) of F, remove all arguments that
are contained in ¢l(F) since they are true wrt. E, remove

all arguments in cl(E)}, since they are defeated wrt. E;

* Now, we remove all attacks and supports (7', h) whenever
h e c(E)® orTNcl(E)) #0;

* Finally, we adjust the attacks and supports by restricting
the remaining attacks and supports to (7" \ cl(E), h).

Definition 4.3. Given a BSAF F = (A, R,S) and E C A,
the E-reduct of F is the BSAF F¥ := (AE RE SE), with

AP = A\ (U(BE)R)
E.={(T\ c(E),t) | 3h € cl(E)} : (T,h) € S,
teTmAE}u
{(T\ cl(B),h) | TN el(B)f
(T, )eREheAE}
SE = {(T\ cl(E),h) | TN cl(E)} =0,
(T,h) € S,h € AP}
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Example 4.1 (continued). We depict the previous BSAF F'
and its BSAF reduct F¥ for E = {d} below.

ENOMNO \OBNO
@ E—@ ()9

The reduct generalizes the SETAF-reduct (and the AF-
reduct) in that for each BSAF (A, R, S) with S = ) (and
|H| = 1forall (H,t) € R) the two reduct notions coincide.

We show that the reduct is compatible with union for
conflict-free and closed sets.

Proposition 4.4. Let F = (A, R,S) be a BSAF E C A
closed and conflict-free in F,E' C A¥ closed and conflict-
free in FE. Then FEVE' = (FE)E/

Let us inspect whether our newly defined reduct behaves
as expected with respect to modularization (IM). Towards

proving this property, we first observe that the reduct guar-
antees to preserve the closedness of a set of arguments.

Proposition 4.5. Let F = (A, R, S) be a BSAF, then for
each E C A, E' C AF it holds that

s E € cf(F)and closed F and E' € cf (FF) and closed in
F¥ = EUF closedin F

s E,EUE' € ¢f(F) and closedin F = E' closed in F¥

We show that all semantics in X satisfy modularization
(cf. (M) in Section 3), using our newly defined reduct.

Proposition 4.6. o satisfies modularization (M) for o € .

FE .

S Strong Admissibility

Following the investigation of the abstract case in (Cami-
nada 2014; Baumann, Linsbichler, and Woltran 2016), we
lift strong admissibility to BSAFs, before we turn our atten-
tion to the consequences this has for ABA.

5.1 Strong Admissibility for BSAFs

Towards lifting strong admissibility to BSAF, lets recall that
on AF it is defined recursively, where a set F is strongly ad-
missible, if each arguments a € E is defended by a strongly
admissible set £ C E'\ {a} (cf. Def 3.4). The support re-
lation introduces a particularity that prevents us from using
directly a similar recursion for BSAF: Clearly, a strongly ad-
missible set should be closed, yet if strong admissibility is
defined recursively on itself, as it is in AF, we would need
a closed set on each step of the defense. Let us look at an
example to illustrate this counter-intuitive behavior.

Example 5.1. Consider the following two BSAFs F and F':
F: e F’ e
@ © OO

In F we expect () and {a} to be strongly admissible, fur-
ther {a, c} is strongly admissible, since c is defended by the
strongly admissible set {a}. In F', however, the same set
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{a,c} is not strongly admissible, if we require c to be de-
fended by a strongly admissible set, since {a} is not closed.
This is counterintuitive, since additional support on an ex-
tension should not speak against it.

We therefore decouple closedness and strong defense: an
extension is strongly defended if it is defended by a smaller
strongly defended extension, but does not need to be closed.

Definition 5.2. Let I' = (A, R, S) be a BSAF. A set of ar-
guments E C A is strongly defended (E € sd(F)) iff B
is conflict-free and for every a € E there exists a strongly

defended subset E' C E \ {a}, which defends a.
We are now ready to define strong admissibility on BSAF.

Definition 5.3. Let F' = (A, R, S) be a BSAF. A set of ar-
guments E C A is strongly admissible (E € adm’(F)) iff
E € sd(F) and FE is closed.

Like for AFs, (Baumann, Linsbichler, and Woltran 2016),
we can now give a constructive characterization of strongly
admissible extensions.

Proposition 5.4. Let F = (A, R, S) be a BSAF, and E C A.
Then E € adm’(F) iff E is conflict-free, closed and there
exists a finite sequence ofpatrwzse disjoint sets E, ..., E,

such that £y = 0, E = U E; and for each i > 1 it holds
that E; is defended by U E

7<i
In the same vein we are able to proof the satisfaction of
modularization (M) wrt. strong admissible semantics.

Proposition 5.5. Strongly admissible semantics satisfies
modularization (M).

We will now discuss desirable properties specifically for
for strong admissibility. We observe that strongly admis-
sible semantics are a subset of admissible semantics, i.e.,
strengthening (S) is satisfied. Likewise, the complete con-
tainment property (CC) that formalizes that each strongly
admissible set is contained in each complete extension holds
for strongly admissible semantics for non-flat ABA.

Proposition 5.6. Let F' = (A, R, S) be a BSAF. Then,
1. adm’(F) C adm(F); and
2. E € adm*(F)and E' € com(F) implies E C E'.
As a consequence, each BSAF has at most one complete
strongly admissible extension; and if such a complete ex-

tension exists, it is also the unique grounded and the unique
C-maximal strongly admissible extension.

Proposition 5.7. Let F = (A, R, S) be a BSAF. Then,
1. |adm’(F) N com(F)| < 1; and
2. ifE € adm*(F)Ncom(F), then E is the unique grounded

extension of F (E € grd(F)) and the unique subset-
maximal strongly admissible extension.

In contrast, unique relative maximum (URM) and
unique maximum (UM) are not satisfied, as illustrated by
the following example. This example also shows that the
complete strongly admissible extension does not always ex-
ist. It also demonstrates that the union of two strongly ad-
missible sets may fail to be strongly admissible, thereby vi-
olating another property discussed in (Caminada 2014).
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Example 5.8. Consider the following BSAF F

O, ()
::»@ @
5 O

In F, the sets 0,{a}, {b},{a,b,c,e},{a,b,c, f} are admis-
sible; the latter two are complete, grounded, and preferred.

The strongly admissible sets are adm’(F) = {0,{a}, {b}}.
* (URM) Both {a,b,c,e} and {a,b,c, f} have two
C-maximal strongly admissible subsets: {a} and {b};
* (UM) Both {a} and {b} are C-maximal in adm’(F);
e Their union {a, b} is not strongly admissible.

As the example shows, strongly admissible extensions
take over an important function of the grounded seman-
tics, i.e. they identify arguments with a stronger justifica-
tion. In the abstract setting, the unique grounded extension
contains only arguments, whose defense can be traced back
to the empty set, and which therefore do not rely on cy-
cles for their defense. In non-flat ABA, this is not true for
members of grounded extensions in general, but still holds
for arguments accepted under strongly admissible seman-
tics. In general there can be more than one subset-maximal
strongly admissible extension, which warrants the definition
of strongly preferred and strongly complete semantics as a
BSAF-semantics in its own right.

Definition 5.9. Let F be a BSAF and let E € adm’(F).

* E € com’(F) iff E contains every assumption it defends;
o E € pref(F) iff E is C-maximal in adm’(F);

We omit strongly grounded semantics since it coincides
with strongly complete semantics (as observed below Propo-
sition 5.6, com®(F') has at most one member). We write
%5 = {adm’, com® pref’} to denote the family of strongly
admissible semantics. Note that the framework F' above
has two complete extensions {a,b,c,e}, and {a,b,c, f}.
The strong variant does not have an extension in F', i.e.
com*(F) = (. Example 5.8 shows that the fundamental
lemma (F) is not satisfied, and that in general pref’ (F) C
com’(F') does not hold.

Example 5.8 (continued). The strongly admissible set {a}
defends the unattacked argument b. Since {a,b} is not
closed it is not strongly admissible. Thus the fundamental
lemma (F) is violated and we have no grounded extension,
instead {a}, {b} are our two strongly preferred extensions.

5.2 Concequences for (flat and non-flat) ABA

In the last section we proved the (un)satisfiability of several
desiderata that pose requirements of the ABA semantics di-
rectly in BSAF. We utilize these findings to define and inves-
tigate semantics based on strong admissibility for ABAFs.

Definition 5.10. Given an ABAF D = (L, R, A,c) and a
semantics o0 € 3°, then E € o(D) iff E € o(Fp).

Due to the close correspondence of ABAFs and BSAFs,
the results of the previous section directly transfer to ABA.
Strongly admissible semantics for ABA satisfy modulariza-
tion (M) since the corresponding BSAF semantics does, as
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shown in Proposition 5.5; moreover, strengthening (S) and
complete containment (CC) is satisfied by Proposition 5.6.
For the remaining cases, the counter-examples carry over.

Theorem 5.11. The strongly admissible semantics for ABA
satisfies (M), (S), and (CC), but does not satisfy (F),
(SR), (NE), (MC), (UM), nor (URM).

While central properties are satisfied, our results show
that, as anticipated, the family of strongly admissible seman-
tics admits in some aspects undesired behavior.

For the flat ABA fragment, these issues do not occur. Flat
ABA, directly corresponds to SETAF, meaning that the in-
stantiation Fp = (A, R, S) of a flat ABAF D (via Def. 2.8)
has no support relations, i.e. S = . It holds that (M), (S)
and (CC) are satisfied since any SETAF is a BSAF. Further,
if we take a look at the counter-examples used to show non-
satisfaction, we notice all of them use at least one support.
It turns out that all (F), (SR), (NE), (MC), (UM), and
(URM) are indeed satisfied for flat ABA.

Theorem 5.12. The strongly admissible semantics for flat
ABA and SETAFs satisfy all of (M), (S), (CC), (F), (SR),
(NE), (MC), (UM), and (URM).

6 Weak Admissibility

In contrast to strong admissibility our goal is now to accept
as much as we reasonably can. In this section, we generalize
the definition of weak admissibility by Bliimel, Konig, and
Ulbricht (2024) to non-flat ABA.

6.1 Weak Admissibility for BSAFs

The E-reduct for BSAFs gives us the tools to generalize
weak admissibility. Note that the definition is recursive, but
well-defined as in each recursion step the reduct contains
fewer arguments and we deal only with finite BSAFs.

Definition 6.1. Let F = (A, R, S) be a BSAE, E C A a set
of arguments, and F¥ = (AP RE SF) its E-reduct. Then
E is called weakly admissible in F' (E € adm" (F)) iff

1. E€c¢f(F), E closed and

2. foreach (T, h) € Rwith h € E, and TNE}, = 0 it holds
BE' € adm”(FE)st. TN AE C F.

As it is the case for SETAFs, the tail of a joint attack has to
be part of a weakly admissible set (of the reduct) as a whole
for it to be considered an attack one has to defend against.
In BSAFs, we additionally have to take closedness into con-
sideration. On the one hand, we limit the set of weakly ad-
missible extensions to closed sets. On the other hand, this
allows us to ignore even more involved types of unreason-
able attacks, e.g. indirectly conflicting sets of attackers.

Example 6.2. Compare the SETAF Fy and BSAF F':

Fo - e F: @——>
@ @

®
In both frameworks {a} is attacked by {b, c}, and weakly ad-
missible. In Fy the joint attack does not fire, because {b, c}

is not conflict-free.
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At first sight, nothing seems to be wrong with {b,c} in F,
the set is not only conflict-free, it is even unattacked. How-
ever, b and c support conflicting arguments, so even though
the closed subsets {b, d} and {c, e} are weakly admissible in
the reduct F1%} | there is no closed and conflict-free set con-
taining both b and c, so the joint attack on a can be ignored.

Closedness neutralizes attacks from indirectly self-
conflicting sets under weak admissibility. Next, we show
that closedness of attackers already holds by definition.

Proposition 6.3. Let F = (A, R,S) be a BSAFE, let E C
A be a set of arguments, and F¥ = (A¥ RE SF) its E-
reduct. Then E € adm” (F) iff E is conflict-free, closed, and
for every closed set E' which attacks E it holds that either
E attacks E' or (E' \ E) ¢ adm" (FF).

The notion of weak defense, as well as, weakly complete,
weakly grounded and weakly preferred semantics generalize
to BSAFs in the natural way.

Definition 6.4. Let F = (A, R,S) be a BSAF and let
E, X C A. We say E weakly defends X (abbr. E w-defends
X) if for each (T, h) € Rwith h € X, and for every closed
E' with T C E’ one of the following two conditions hold:
* FE attacks E', or
* the following two conditions hold simultaneously:

1. thereis no E* € adm® (F¥) with E' C EU E*,

2. there is some X' s.t. X C X' € adm" (F).
Definition 6.5. Let F be a BSAF and let E € adm” (F):
* Eis weakly complete, E € com”(F), iff foreach X O E

s.t. B2 w-defends X, we have £ = X,

* FE is weakly preferred, E € pref'(F), iff E is maximal

wrt. C in adm” (F),

* FE is weakly grounded, E € grd"(F), iff E is minimal

wrt. C in com” (F).

We denote by X% = {adm", com”, grd”, pref"} the fam-
ily of weakly admissible semantics.

Turning now to modularization (M), we find that an
even stronger result can be proved. As for AFs (Baumann,
Brewka, and Ulbricht 2020a), also the other direction holds.
Proposition 6.6. Let o € X%, and F = (A, R, S), then for
each E C A, E' C AF we have
s Eco(F),E €o(FF) = EUFE €o(F)

* E,EUE €0(F) = E €o(FF)

6.2 Consequences for ABA

We are ready to introduce weak admissibility for ABA. As
in the case of strong admissibility, we define the semantics
with respect to the instantiated BSAF.

Definition 6.7. Let D be an ABAF and Fp be the instanti-
ated BSAF. For any o € % we let 0¥ (D) = " (Fp).

Note that the semantics faithfully generalize the weakly
admissible semantics of the flat ABA fragment (Bliimel,
Konig, and Ulbricht 2024).

We examine our novel semantics with respect to the
desiderata stated in Section 3. Observe first, that weak ad-
missibility satisfies liberalization (L), i.e. classic admissi-
bility is a special case of weak admissibility. Modularization
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(M) is also preserved, which indicates our generalization
is well-behaved for the most part. The indifference towards
the presence of self-attacking assumptions (PA), however, a
key feature of weak admissibility in AFs and SETAFs, is no
longer given in BSAFs. Due to the additional requirement
of closedness and the sensitivity towards indirect conflicts
accompanying it, self-attackers influence the set of weakly
admissible extensions indirectly via their incoming supports.

Example 6.8. Consider F = ({a},{({a},a)},{(0,a)}).
This BSAF contains a single self-attacking assumption a
which is supported by the empty set, rendering the empty
set not acceptable under weak admissibility since it is not
closed. Now if a is removed, ) immediately becomes a
weakly admissible set.

It turns out that weak admissibility for BSAFs, and con-
sequently for ABA, takes a more differentiated look at self-
attackers than for SETAFs/flat ABA. On the one hand, self-
attackers compromise the assumptions supporting them, on
the other hand, they do not impact the acceptance of assump-
tions attacked by them under weak admissibility. The later
is validated by the fact that weak admissibility satisfies para-
doxical attacks/supports (PRS) in BSAFs.

Observe that, as for classic admissible semantics, the fun-
damental lemma (F') is not satisfied for weakly admissi-
ble semantics and the family of weak semantics admits un-
wanted behavior. We summarize our findings below.

Theorem 6.9. The weakly admissible semantics for ABA
satisfies (L), (PRS), and (M), and does not satisfy (F),
(PA), (NE), (SR),(MC).

7 Fixing Strong Admissibility (and why
Fixing Weak Admissibility Fails)
The undesired behavior of ABA semantics has received
quite some attention in the literature recently (Heyninck and
Arieli 2024; Berthold, Rapberger, and Ulbricht 2024). To
overcome some of the issues, Berthold, Rapberger, and Ul-
bricht (2024) propose alternatives to the classical semantics
that reinstate some of the desired properties of the seman-
tics. Inspired by their investigations, we discuss ways how
to address the observed shortcomings in our setting. To do
so, we focus on the so-called I'-semantics as they address
issues of admissible-based semantics by modifying the clo-
sure. In this section, we focus on BSAF semantics; as in the
previous sections, the results transfer to ABA as well.
We recall I'-closure below. Intuitively, an argument a only
counts as supported by a set F if E is strong enough to de-
fend a against each attack (I" is defined in Definition 2.6).

Definition 7.1. Given a BSAF F = (A, R,S), E C A, and
a € A. Then E T-supports a iff a € cl(F) and a € T(E);
E is I'-closed iff I/ contains all arguments it I'-supports. By
clr (E) we denote the I-closure of E.

The I'-closure induces versions of admissible, preferred,
complete, and grounded semantics, which we denote by or.
We state the definition of I'-admissible semantics; the re-
maining semantics are defined analogously.

Definition 7.2. Let F be a BSAF. E € ¢f (F) is T'-admissible
(E € admp(F)) iff E defends itself and is T'-closed.
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As discussed in (Berthold, Rapberger, and Ulbricht 2024),
I'-admissible semantics satisfy many of the desired seman-
tics properties, especially for admissible-based semantics.
The objective of this section is to introduce I'-closure as a fix
to the strong and weak admissible semantics to address some
of the undesired properties for our semantics. As it turns out,
however, I'-semantics lack an important prerequisite, espe-
cially for weak semantics: the modularization property is
not satisfied. We demonstrate this issue below.

Example 7.3. Consider the following BSAF F = (A, R, S)
and its reduct wrt. E = {d} below.

F: (@O—O—()-@
FE . c d

FE is T'-closed since E does not defend c although it is in the
closure of E. Thus, E is T'-admissible. Let E' = {a}. Thus,
E is weakly I'-admissible in F, E’' is weakly I'-admissible
in FE. However, E U E' is not weakly T'-admissible in F.

Without modularization the I'-closure is not well suited
for fixing weakly admissible semantics, because the idea of
rejecting an attacker that is not acceptable in the reduct has
to be justified wrt. the framework as a whole. For strong ad-
missibility, on the other hand, the adaptation of I"-closedenss
offers several desirable results, as we discuss below. First,
let us define the I'-version of strong admissibility, and the
semantics based on strong admissibility.

Definition 7.4. Let F' be a BSAF; a set E € c¢f(F) is
strongly I'-admissible (E' € admy.(F)) iff E € sd(F') and
E is T'-closed. Further, given E € admy.(F):

* E € com{.(F) iff E contains every assumption it defends;
» E € grd.(F) iff E is C-minimal in com}.(F');
o E € prefl.(F) iff E is C-maximal in admy.(F);

Note that strong I'-admissible semantics are guaranteed to
return some extension since clr((}) can be closed.

Proposition 7.5. admi.(F') # 0 for each BSAF F.

As a result, non-emptiness (NE) is satisfied by strongly
I"-admissible semantics.

Next, we give a constructive definition of strongly I'-
admissible semantics.

Proposition 7.6. Let F = (A, R, S) be a BSAF. A set of
arguments E C A is strongly I'-admissible iff it is conflict-
free, I'-closed and there exists a finite sequence of pairwise
n
disjoint sets E1, ..., E, such that Ey = (, E = |J E; and
i=1
for each i > 1 it holds that E; is defended by |} E;.

7<i

We also obtain the following weaker version of the fun-
damental lemma (F') for strongly I"-admissible semantics.

(WF) Weakened Fundamental Lemma: If S € adm(F') de-
fends a, then there exists S” € adm(F), s.t. SU{a} CS".

Given a strongly I'-admissible set .S and an argument « it de-
fends, we can use the constructive definition of the seman-
tics to compute the I'-closure of S U {a} in an iterative way.
In each step, we add all arguments that lie in the I'-closure
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and are not already contained in S. The resulting sequence
satisfies the requirements from Proposition 7.6.

Proposition 7.7. If E € admy(F) defends a, then there
exists E' € admi.(F), such that EU {a} C F'.

Note that the weakened fundamental lemma (WF) is not
satisfied for adm’, as Example 5.1 shows: a defends the
unattacked argument b but there is no strongly admissible
extension that contains both.

As a consequence of Proposition 7.7, we obtain that each
BSAF contains a unique maximal I'-admissible extension.
Also, strongly I'-admissible semantics satisfies strengthen-
ing (S) and complete containment (CC). Overall, strongly
I'-admissible semantics satisfy several properties that are not
satisfied wrt. strong admissibility, as summarized below.

Theorem 7.8. The strongly T'-admissible semantics for
BSAF satisfies (S), (NE), (WF), (URM), (UM), (CC),
(SR), and (MC), but does not satisfy (M) and (F).

8 Conclusion

This work introduces strong and weak admissibility for non-
flat ABA. We generalize the notion of reduct to BSAF and
show that modularity is satisfied by standard, weak, and
strong admissibility. We furthermore propose semantics
based on strong I'-admissibility, which satisfy several de-
sirable properties. Overall, our results reveal a fundamental
trade-off between general semantics properties and a suffi-
ciently well-behaved notion of closedness, e.g., strongly I'-
admissible semantics are I"-closed but not modular.

Our findings contribute to ongoing work in ABA and
abstract argumentation in a multitude of ways, touching
open issues regarding existence and computation of exten-
sions, principle satisfaction and interrepresentability of for-
malisms wrt. three well-established notions of admissibil-
ity. Our investigations pave the way for sequential com-
putation of extensions (Caminada and Harikrishnan 2024b;
Bengel and Thimm 2022) for a large variety of semantics in
BSAF and general ABA. Moreover, successfully capturing
weak admissibility for general ABA provides valuable in-
sights towards a native reduct notion for ABA and an ABA-
semantics satisfying long-standing rationality postulates like
non-interference (Borg and Strafler 2018) in the future. The
novel families of semantics can be beneficial for several
ABA applications since they can model real world scenarios
where the classical semantics may be too strict or not strict
enough,e.g., in the planning approach by Fan (2018) which
uses flat ABA or in the causal discovery setting which uses
non-flat ABA (Russo, Rapberger, and Toni 2024).

Our results demonstrate that no existing semantics satis-
fies all weak admissibility desiderata in the general case. As
shown in Theorem 6.9, paradoxical assumptions cannot be
avoided, and attempts to resolve this using I"-admissible se-
mantics fall short due to the lack of modularity. Identify-
ing a suitable middle ground that ensures more of the de-
sired properties remains an interesting and challenging di-
rection for future work. One promising candidate is the A-
semantics proposed in (Berthold, Rapberger, and Ulbricht
2024) to address related issues of complete-based semantics
under strong and weak admissibility.
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