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Abstract

An argument can be seen as a pair of premises and a claim
they support. Human arguments are often approximate, with
some premises left implicit, leading to an implicit inference
of the claim, i.e., forming enthymemes. To better under-
stand and use them, we must decode these approximate en-
thymemes, typically by identifying missing premises to make
the inference explicit, and, as we propose, by also remov-
ing irrelevant content to improve argument quality in specific
contexts. Often, multiple decodings of an enthymeme are
possible. However, no formal method has yet been proposed
for identifying higher-quality decodings. To pave the way, we
introduce six types of criteria for evaluating aspects of decod-
ings. Then, we introduce the concept of a criterion measure,
designed to evaluate decodings based on a specific criterion.
In parallel, we define desirable properties for criterion mea-
sures, referred to as axioms, and we systematically evaluate
our criterion measures with respect to them. Finally, we in-
troduce the notion of quality measure that combine specific
criterion measures to give an overall evaluation of the quality
of decodings.

1 Introduction

In the literature on logic-based argumentation, a deduc-
tive argument is usually defined as a premise-claim pair
where the claim is inferred (according to a logic) from the
premises. However, when studying human debates (i.e., real
world argumentation), it is common to find incomplete ar-
guments, called enthymemes, for which the premises are in-
sufficient for implying the claim. The reason for this incom-
pleteness is varied, for example it may result from impreci-
sion or error, e.g., a human may argue without knowing all
the necessary information, or it may be intentional, e.g., one
may presuppose that some information is commonly known
and therefore does not need to be stated, or that it is being
deployed as a rhetorical device (employment of enthymemes
is a well-known instrument since Aristotle (Faure 2010) for
persuasion of an audience).

1.1 Novel Framework for Decoding Enthymemes

There are studies in the literature on understanding en-
thymemes in argumentation, using natural language process-
ing (Habernal et al. 2017; Singh et al. 2022; Wei et al. 2022),
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but these do not identify logic-based arguments. There
are also symbolic approaches for decoding enthymemes in
structured argumentation (Hunter 2007; Dupin de Saint-Cyr
2011; Black and Hunter 2012; Hosseini, Modgil, and Ro-
drigues 2014; Xydis et al. 2020; Panisson, McBurney, and
Bordini 2022; Hunter 2022; Leiva, Gottifredi, and Garcia
2023; Ben-Naim, David, and Hunter 2024; David and
Hunter 2025), which frame the task as identifying a comple-
tion, i.e., a set of additional premises that, when combined
with the original ones, render the inference of the claim ex-
plicit. A simple example of an enthymeme is the following
where r = weather report predicts rain and
u = take an umbrella are atoms: The premises {7}
are insufficient to entail the claim v (i.e. {r} t/ w), butif
the formula » — w is added to the premises, we have a com-
pletion since the claim now follows (i.e. {r,r — u} F w).
The added premise bridges the gap between the initial infor-
mation and the claim, yielding a fully explicit and logically
valid inference.

For real-world argumentation, decoding offers a broader
framework than completion. Unlike previous approaches
that treat enthymemes as incomplete arguments requiring
only additional premises to restore inference, our framework
allows both the addition and removal of information, adapt-
ing the decoding to the needs of a specific application or
user. This generalization is not just about covering more
cases, it introduces flexibility that allows for decodings to
have qualities beyond just the premises being consistent, or
the premises implying the claim.

For instance, aspects like Granularity, which evaluates the
amount of information in a decoding (assessing its level of
conciseness or detail) may favor simplifying content rather
than expanding it. A simple example illustrating the con-
ciseness dimension of the Granularity criterion is the follow-
ing: where s = weather report predicts sun,
and ¢ = report predicts high temperature,
and h = take a sun hat are atoms. The premises
{s,t} are insufficient to entail the claim h (i.e., {s,t} ¥ h).
However, if both s — h and s At — h are available, the de-
coding ({s,s — h}, h) may be preferred over ({s,t, sAt —
h}, h) due to its greater conciseness.

Thus most appropriate decoding of an enthymeme can be
undertaken across various dimensions of quality. When mul-
tiple decodings of an enthymeme are possible, a key chal-
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Figure 1: Possible pipeline for decoding a textual enthymeme into its best logical decoding(s), optionally back-translated into text, incor-
porating one of the two strategies to generate candidates in logic, which are then evaluated using our quality measures based on criterion
measures and aggregation. In this paper, we only investigate quality measures and leave the other aspects of the pipeline to future work.

lenge is to compare and evaluate them systematically. The
current state of the art lacks a formal evaluation framework
for this. There is therefore a need for specific measures of
the quality of decodings to be formalized, and for methods
to aggregate different dimensions of quality, in order to se-
lect the more appropriate decoding for a specific context or
objective.

Consider the following example (our running example),
illustrating an enthymeme explaining why Bob is happy,
with three possible decodings based on different reasons.

* Enthymeme E: Bob is wealthy, he is a researcher, he
makes people happy, and he has people around him who
seem to love him, then Bob is often happy.

* Decoding D;: Bob is a researcher and researchers are of-
ten happy, so Bob is often happy.

* Decoding Dy: Bob makes people happy and has people
who love him, and because giving and receiving love usu-
ally makes people happy, Bob is often happy.

e Decoding Ds3: Bob is wealthy but not a researcher,
wealthy people are generally happy, Bob is often happy.

To assess the quality of a decoding, e.g., to determine
whether D1, Dy or Ds is a better decoding for E, we repre-
sent the information using formal logic. This formalization
makes explicit what is stated in the premises and the claim,
allowing precise comparisons between candidates. Further-
more, we introduce a set of criteria for evaluating decoding
quality, each associated with a measure designed to satisfy
logical axioms that ensure desirable behavior. This formal
foundation clarifies the interpretation of each criterion and
enables automated evaluation. Importantly, our framework
is highly general: it can be instantiated with any logical rep-
resentation and any set of criteria.

1.2 Using Our Framework in a Pipeline

We see our framework for decoding enthymemes as an
important component for addressing the implicit nature
of argumentation found in natural language. In the field
of argument mining, a growing body of research focuses
on the extraction and structuring of argumentative content
from natural language texts, including claims, premises,
and the relations between them (Lippi and Torroni 2016;
Lawrence and Reed 2020). However, real-world argumen-
tation, particularly in debates, social media, or opinionated
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discourse, is often incomplete or implicit, posing a major
challenge for both human interpretation and automated rea-
soning (Boltuzi¢ and Snajder 2016; Habernal et al. 2017).

To tackle this, our framework may be used in a pipeline
for processing natural language argumentation by evaluat-
ing multiple candidate decodings. We envision a pipeline
with one or more decoding strategies such as illustrated in
Figure 1. We explain these decoding strategies as follows.

(a) Text-based Decoding. In this strategy, textual candi-
dates for decoding an enthymeme are first generated (e.g.,
by LLMs), then translated into logic, and finally assessed
using our criterion measures to identify the best decodings.

Other authors, such as (Al Khatib et al. 2021), have shown
that plausible argumentative completions can be generated
from sentential claim inputs using a fine-tuned GPT-2 model
enriched with argumentation knowledge graphs. To evalu-
ate the generated outputs, human annotators labeled a sub-
set of examples along five dimensions. These annotations
were then used to train automatic classifiers, enabling large-
scale evaluation of completions. While such evaluation is
informative, it relies on supervised learning from human-
labeled data, which limits scalability to new domains or
tasks. Moreover, relying on classifiers trained on human
judgments introduces an additional limitation: the evalua-
tion process becomes opaque and difficult to interpret, re-
ducing the explainability of the quality assessment.

In contrast, our approach defines quality measures in a
formal framework, where decodings are unambiguous and
evaluated without supervision (see Section 4). Logical rep-
resentations allow for transparent, interpretable, and com-
putable measures, supported by formal guarantees.

That said, it is important to acknowledge that translating
natural language into formal logic remains a very challeng-
ing and unresolved task. While recent advances, such as
those in (Han et al. 2022; Lu et al. 2022; Yang et al. 2023;
Lalwani et al. 2024; Ryu et al. 2024), are encouraging, this
remains an open research area. In this context, we do not
assume such translation to be fully solved; rather, we view
it as a promising direction that can benefit from our formal
evaluation layer once candidate decodings (whether gener-
ated by humans or machines) are available in logical form.

(b) Logic-based Decoding. In this strategy, the en-
thymeme is first translated into a logical representation, then
candidate decodings are generated directly with symbolic
approach and evaluated using our quality measures.
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Some existing approaches in the literature apply abduc-
tive reasoning to infer missing information and restore in-
complete arguments or reasoning (Hunter 2007; Arieli et
al. 2022; Hunter 2022). These methods assume access to a
sufficiently complete knowledge base, such as a knowledge
graph, from which implicit content can be inferred.

However, most existing methods, whether text-based or
logic-based, focus solely on completion, adding informa-
tion to fill gaps, without considering removal to satisfy al-
ternative criteria like Granularity. This highlights the need
for new decoding generation methods that go beyond com-
pletion. In both text-based and logic-based strategies, guid-
ing the generation process with quality criteria could lead to
more efficient and goal-oriented decoding.

By incorporating our framework into a pipeline such as
in Figure 1, we enable a modular and explainable evalua-
tion layer that assesses the quality of each decoding based
on multiple criteria (see Section 4). This supports not only
the correction of noisy or incomplete argument graphs, but
also the development of richer, more interpretable reasoning
systems that bridge symbolic and neural methods. Combin-
ing them through hybrid pipelines may lead to more robust
and interpretable end-to-end argument understanding.

2  Weighted Logics

While our framework is designed to be logic-agnostic, it
does not depend on any specific formalism and can, in prin-
ciple, be instantiated with various argumentation systems
such as ABA (Toni 2014) or ASPIC+ (Modgil and Prakken
2014). Weighted logics are commonly used in Al for rep-
resenting and reasoning with imperfect or uncertain knowl-
edge (Zimanyi 1992), and we argue that they offer a useful
abstraction for qualifying different types of uncertainty in-
volved in enthymeme decoding. Our goal is not to commit
to a specific logic, but to define a flexible framework where
the logic acts as a parameter. While existing weighted logic-
based argumentation, such as (Alsinet et al. 2008), could be
used, our contribution focuses on the criteria-based evalua-
tion of decoding rather than the underlying logic. Therefore,
we adopt a broad definition of weighted logic and illustrate
it using a simple weighted propositional logic. Furthermore,
approaches such as deductive argumentation (Besnard and
Hunter 2001) can be captured in this framework by setting
all weights to 1.

Definition 1. A weighted language is a set W such that:
* every element of W is a pair of the form o = (f, w) such

that f is a formula and w a weight in [0, 1];

o if (f,w) € W, then, Vv € [0,1], (f,v) € W;
* Vw e [0,1], (L, w) € W (L means contradiction).

We see weights as confidence scores of the reliability of
formulas. For example, in fact-checking, automated meth-
ods can assess information reliability (Rashkin et al. 2017;
Nakov et al. 2021).

Definition 2. A weighted logic is a triple L = (W, |+, t) s.t.:
* Wis a weighted language;
* v is a weighted consequence relation on W, i.e., a rela-

tion from 2" to W;
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* t1is a consistency threshold belonging to [0, 1].

We say that I' C W is inconsistent on L iff there exists
w > ts.t. ' (L, w), and the set of all inconsistent set of
formulae in L is denoted by incy,. In the following, when
the weighted logic L is clear, we will omit it (e.g., inc for
incy,). Otherwise, I is said to be consistent.

Next, we present an instance of weighted logic that will be
used in examples. As a preliminary, we need two operators
that extract the flat formulae or the weights from weighted
formulae.

Definition 3. Let W be a weighted language and I' C W. We
denote by flat(T") the set of every flat formula appearing
inT,ie., flat(') = {f : Fw, (f,w) € T'}.

We denote by weight(T") the set of every weight appear-
inginT,ie., weight(l') = {w: 3 f, (f,w) € T'}.

From now on, for functions taking a set of weighted for-
mulae as parameter, we simplify the notation for single-
formula cases by removing the brackets: e.g., for a € W,
we write flat(«) instead of flat({a}).

As another preliminary, we recall the notion of classical
propositional language.

Definition 4. We denote by Lan the set of classical propo-
sitional formula built from a given non-empty finite set of
atomic formulae, denoted by A, and the usual connectives
-, V, A, —, and <. A literal is either an element of A or
the negation of it. For any flat formula f € Lan we de-
note by 1it(f) the set of literals occurring in f (as defined
in (Lang, Liberatore, and Marquis 2003)), and VF' C Lan,
lit(F)={l:1€1lit(f)and f € F}.

We are ready to introduce our specific weighted logic that
we will be used in examples.

Definition 5. We denote by wLan the weighted proposi-
tional language, i.c., wLan is the set of every pair (f,w)
such that f in Lan and w € [0, 1].

We denote by wLog the weighted propositional logic,
i.e., wLog = (W, v, t) s.t. the following holds:

e W= wlLan;

« VI Cwlan, Va = (f,w) € wLan, I' ) aiff (fisa
tautology and w = 1) or (f is not a tautology, f clas-
sically follows from flat(T'), i.e., flat(I') + f, and
w = min[weight(I)]);

e t=20.5.

Following examples 1 and 2 illustrate this definition.
From now on, whenever we work with a weighted logic L,
the typical instance we have in mind is wLog.

Later in the paper, we count the number of elements in
a set of formulae I". Thus, we need first to normalize the
syntactic form of I'. To achieve this goal, we assume the
notion of a normalization method.

Definition 6. Let W be a weighted language. A normaliza-
tion method on W is a function n normalizing the syntactic
form of the formulae, i.e., n is a function from 2" to 2V.

These normalizations aim to restrict the language to a sin-
gle formula per equivalence class.
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Example 1. Let n be the normalization of sets of formulae
into a set of clauses by removing unnecessary literals, on
wLog, and © = {(=(p = ¢V —r),0.7)}, ¥ = {{(p V q) A
(pV —q),0.7), (=g A =—r,0.7)} C wLog. Hence we may
obtain n(®) = n(¥) = {(p,0.7), (—q,0.7), (r,0.7)}.

This normalization in the argumentation literature is also
sometimes called compilation and examples include (Am-
goud and Doder 2019; Amgoud and David 2021). In the
rest of the article, we assume a normalized language for all
definitions and examples.

3 Weighted Structured Argumentation

An argument can be seen as a pair consisting of a set of
premises and a claim implied by them. Some constraints on
the premises and claim are usually considered (Besnard and
Hunter 2001). The goal of this section is to extend the notion
of argument to a weighted logic.

Definition 7. Let L = (W, },t) be a weighted logic.
A weighted argument on L is a pair (I', @) such that T
is a finite subset of W and a € W, T is consistent, I" ;v «,
VI C T, TV foa. Let Argy, be the set of all weighted argu-
ments on L.

However, such ideal arguments, whether weighted or not,
are rarely seen. In general, humans use enthymemes, i.e.,
incomplete arguments in which part of the premises is miss-
ing, to logically infer the claim. The formal definition and
the task of handling enthymemes is investigated in e.g.,
(Hunter 2007; 2022).

In what follows, we introduce the notion of an approxi-
mate weighted argument, which is subject to no constraints
other than the structure of its premises/claims. Thus, an en-
thymeme is a special case of this type of argument, where
it is guaranteed that the inference between the premises and
the claim does not logically hold.

Definition 8. Let L = (W, |~,¢) be a weighted logic.
An approximate weighted argument on L is a pair A =
(T, &) such that T is a finite subset of W and o € W. We
denote by aArg;, the set of all approximate weighted ar-
guments on L. An enthymeme on L is an element £ =
(T, ) € aArgy, such that I’ j~a. We denote by Enthy, the
set of all enthymemes on L.

We now present the running example. In the logical
atoms, we retain the core concepts while abstracting away
uncertainty, which will instead be captured by associated
weights. In this example, the weights are manually as-
signed to illustrate interesting cases, but they could be au-
tomatically estimated in practice based on contextual or ex-
ternal information. This opens the door to learning-based
approaches for weight assignment, such as confidence scor-
ing from knowledge extraction systems (Dong et al. 2014;
Lajus, Galarraga, and Suchanek 2020).

Example 2. Assuming that: h = “Bob is happy”, w = “Bob
is wealthy”, r = “Bob is a researcher”, p = “Bob gives love
to people”, [ = “Bob receives love”. Then,

cE= <{<U}, 07>7 <T7 07>7 <pa 1>a <lv 1>}’ <h7 07>>’
* Dy = {{{r,0.7),(—r V h,0.8)}, (h,0.7));
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« Dy = ({{p,1), (1, 1), (~p\V =LV h,0.95)}, (h,0.7));
« Dy = ({{~,0.7), (w,0.7), (=w \V h, 0.8)}, (h, 0.7)).

Where E, Dy € Enth are enthymemes, while D, € Arg is
a weighted argument, and D3 € aArg is just an approximate
weighted argument (i.e., D3 is not an enthymeme).

We now formally define an enthymeme decoding as a
pair containing the enthymeme and another approximate
weighted argument that we refer to as a decoding.

Definition 9. L = (W, ), ¢) be a weighted logic. An en-
thymeme decoding on L is a pair (F, D) € Enth x aArg.
Intuitively, D is a decoding of the enthymeme F.

In Example 2, we give an enthymeme, and three exam-
ples of a decoding. Note, the decoding D5 is actually an en-
thymeme because the premises imply h with value 0.95, and
the claim is h with value 0.7, and so this mismatch means
the premises do not imply exactly the claim. In contrast, the
decoding D3 has premises that imply h with value 0.7, and
the claim is h with value 0.7, but the premises are not mini-
mal, and so the D3 is an approximate weighted argument.

Decodings are intentionally defined without constraints to
accommodate real-world scenarios in which imperfect de-
codings should at least be provided when no perfect decod-
ings are possible. For example, decodings generated by hu-
mans or derived from automatically retrieved information
may only be approximately coherent (e.g., in decoding Do,
the combined weight of the premises differs from the weight
of the claim by 0.25). Our evaluation criteria below are
specifically designed to measure the quality of a given en-
thymeme decoding, i.e., its degree of perfection.

4 Axioms and Criterion Measures

Some decodings of enthymemes may be unreasonable. To
identify reasonable ones, six criteria and the concept of cri-
terion measure are introduced.

Definition 10. Let L = (W, t) be a weighted logic.
A criterion measure on L is a measure of the quality of
an enthymeme decoding with regard to one criterion, i.e., it
is a function o : Enth x aArg — [0, 1].

We propose 6 criteria for evaluating enthymeme decod-
ings: the flat inference of the claim from the premises, the
sound weighting between the premises and the claim, the co-
herence of the premises, their minimality, the similarity bet-
ween the enthymeme and the decoding, and the granularity
of the decoded premises.

All these criteria are inspired by criteria defined in argu-
mentation (Simari and Loui 1992), or informally discussed
in explainable AI (XAI) (Sokol and Flach 2020) or in phi-
losophy (Grice 1975), as elucidated in Figure 2. It is useful
also to recall that the notions of argument and explanation
are close (Hahn and Tesi¢ 2023), and that XAI’s informal
properties are originally based on social science research to
make algorithmic explanations more natural for users, which
is very relevant in the case of enthymeme decoding (context-
and user-dependent).

To ensure that the resulting measures exhibit desirable be-
havior, we use an axiomatic approach. For each criterion,
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Figure 2: Criteria from argumentation ([]), XAI (<), philosophy (/\) which have inspired our decoding criteria ().

we take two steps: 1. Define a set of axioms that a crite-
rion measure should satisfy to achieve desirable properties.
2. Propose a measure or family of measures that satisfy these
axioms, ensuring their soundness. This proposal to analyze
and evaluate each criterion modularly, (rather than attempt-
ing to define a single function that incorporates all the crite-
ria), enables a more robust study of the various possible con-
figurations of a quality measure. Indeed, each criterion (i.e.,
axioms and measures) is examined individually, allowing for
simplified composition when constructing the quality mea-
sure (see Section 5). This modular approach also facilitates
the incorporation of new criteria in our quality measure.

As depicted in Figure 2, to analyze the weighted inference
of decoding, we split it into two criteria: first assessing flat
inferences, then evaluating weights. This reflects the clas-
sic trade-off in multi-criteria decision theory (Mardani et al.
2015) between quantity (number of inferences) and quality
(inference weights).

4.1 Criterion of Inference

Axioms. These properties ensure that a measure considers a
decoding as reasonable if the premises infer the claim (Ideal
version) or the more the premises fully infer the claim, the
better the decoding (Increasing version). In Figure 2, this is
inspired by validity (argumentation), soundness (XAI), and
quality (philosophy).

Definition 11. We denote by | X| the cardinality of X.

Let L = (W, |, ) be a weighted logic and o a criterion
measure on L. We say that o satisfies the axiom Ideal In-
ference (I,) iff V E' € Enth,V D = (A, 3) € aArg:

if flat(A) F flat(p), then o(E, D) = 1.

o satisfies the axioms Lenient Increasing Inference (I)
iff, V E € Enth,V D = (A, 8), D' = (A, 8) € aArg:

it [{f : £1at(A) - f and £1at(8) - f}| >
{f:flat(A") F f and flat(B) - [},
then o(E, D) > o(E, D’).

The axiom Strict Increasing Inference (I3) is defined as
above, but > is replaced by >.

Criterion measure. We illustrate a measure of inference
based on the weighted propositional logic (Definition 5),
by adapting the dependent finite Cn definition from (David
2021) to handle finite consequences. The definition for
fCn(A) below gives a single formula per equivalence class
for all consequences of minimal subsets I' of A that do not
add new literals.
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Definition 12. Let A C wLan, and n a normalization
method on Lan, the Flat Finite Cn of A is

fCn(A) = {n(f) : flat(A) + fs.t. f € Lan and,
lit(f) C lit(flat(l))s.t. T C A, flat(D) F f
and AT C T s.t. £1lat(T) - f}.

This definition captures minimal (without irrelevant liter-
als) consequences derivable from A, providing a basis for
evaluating whether a decoding’s claim is logically entailed
by its premises.

Example 3. Let

o A= {(r,0.7),(-rV h,0.8)} C wLan;

* 8= (r ANhAx,0.7) € wLan. Hence, we have:

o £Cn(A) = {r,~rV h,h,r V h};

o fCn(B) = {r,h,z,r V h,rVx,hV z,rV hV x}.

To finitely represent the semantics of formulae, a classic
approach is to use prime implicates (Darwiche and Marquis
2002) for their compactness. However, they are too seman-
tically compact to syntactically extract their overlap, e.g.,
the prime implicates {p, ¢} and {p V ¢} share no common
formula despite their semantic link.

The next measure assigns a quality of 1 to decodings that
fully infer their claim and reduces its score for each conse-
quence that is not deductible from the premises.

Definition 13. Let L = (W, |~, ¢) be a weighted logic. Let

aii the criterion measure on L called Proportional Infer-
ence,ie.,V E € Enth, VD = (A, ) € aArg:

B [£cn(B)
[£Cn(B)] + [£0n(3) \ £Ca(A)]

We extend the running example with a decoding Dy, to
show the different behaviors of the measure.

Example 4. (Cont. running ex.) Let L = wLog.
e oPH(E,D1)=1 oP(E,D3)=1 oPH(E,D3)=1
e let Dy = ({{r,0.7), <—|7;\/ h,0.8)}, (r Ah A x,0.7)):

oP(E,Dy) = ﬁ =L

Proposition 1. ¢! satisfies all Inference axioms.

Some criteria are specifically designed to evaluate a de-
coding D independently of the original enthymeme E. The
Inference criterion is one such example: it focuses solely on
the internal coherence of D, namely whether its premises en-
tail its claim, without reference to the source argument. This
independence supports a modular evaluation strategy, where
each criterion isolates a particular aspect of quality. Such
separation is essential for flexible analysis, as it allows us
to assess decodings along multiple orthogonal dimensions,
which can later be combined or prioritized depending on the
needs of the application.

o1 (E, D)

~
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4.2 Criterion of Weighting

Axioms. Weighting ensures minimal difference between the
premises and claim weights, with quality decreasing as the
gap increases. In Figure 2, this is inspired by validity (argu-
mentation), soundness (XAI), and quality (philosophy).

A weighted consequence operator, use a weight aggrega-
tor (v) to infers the weight of a weighted formula from a set
of formulae. In our weighted propositional logic, v is the
function min on the weights of a set of formulae.

Definition 14. Let W be a weighted language. A weight ag-
gregator is a function v : 2¥ — [0, 1] that assigns a weight
to any set of weighted formulae.

Definition 15. Let L = (W, }~,t) be a weighted logic, v
the weight aggregator of L, and o a criterion measure on
L. o satisfies the axiom Ideal Weighting (W) iff, V £ €
Enth,V D = (A, 8), D' = (A, 8') € aArg:

ifv(A) =v(8), theno(E,D) = 1.

Let abs(z) be the absolute value of z. Similarly, o satis-
fies Lenient Decreasing Weighting (W) iff:

if abs(v(A) — v(B)) > abs(v(A') — v(8)),
then o(E, D) < o(E, D’).

The axiom Strict Decreasing Weighting (W) is defined
as above but > is replaced by > and < by <.

Criterion measure. We propose a strict version discrimi-
nating all variations from the difference.

Definition 16. Let L = (W, |~,¢) be a weighted logic.
Let of¥ the criterion measure on L called the Difference
Weighting, i.e., V F € Enth, VD = (A, 8) € aArg:

if A = (), then 0§ (E, D) = 1; otherwise,

of¥(E,D) = 1 — abs(min[weight(A)] — weight(S)).
Example 5. (Cont. running ex.) Let L = wLog.

e 0™(E,Dy) =1,0%(E, Dy) = %, o%™(E,D3) = 1.
Proposition 2. % satisfies all Weighting axioms.

The Weighting criterion captures how well the premises
aligns with the claim. For instance, if the argument’s
premises infer “Tweety flies” with weight 0.9, but the claim
states it at 0.1, there is a meaningful mismatch.

4.3 Criterion of Minimality

Axioms. Decoding should be selective to avoid overwhelm-
ing the user (Ideal version); the more information in the
premises that is unecessary to infer the claim, the worse the
decoding (Decreasing version). Note that if the premises do
not imply the claim, then any information is potentially re-
quired to infer the claim, thus minimality is not weakened.
In Figure 2, this is inspired by minimality (argumentation),
parsimony (XAI), and quality/manner (philosophy).
Definition 17. Let L = (W, |, ¢) be a weighted logic, and o
a criterion measure on L. We say that o satisfies the axiom
Ideal Minimality (M,) iff V £ = (I', «) € Enth,V D =
(A, ) € aArg, the following holds:

ifVA"Cc A,A" /B, theno(E,D) = 1.
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We say that o satisfies the axiom Lenient Decreasing
Minimality (M) iff, V £ € Enth, VD = (A, 8),D' =
(A, B) € aArg, the following holds:

T T CASLTRBY > (I C Ast T kB,
then o(E, D) < o(E, D).

The axiom Strict Decreasing Minimality (M3) is defined
as the point above, but > is replaced by >, < is replaced by
<, and both sets are non-empty.

Criterion measure. We propose a strategy based on the
number of minimal subsets. Recall that we use a normalized
language, which allows knowledge to be counted.

Definition 18. Let L = (W, )v,¢) be a weighted logic. We
denote by infy, the function on 2" x W such that, V A C W,
V B € W, the following holds:

infy, (A, 8) ={T': T C A and T'3}.

Let Uff“ be the criterion measure called the Divided
Minimality, i.e., V F € Enth,V D = (A, ) € aArg,

if infy, (A, 8) = 0, then o$™(E, D) = 1;

1
otherwise, of*(E, D) = Jintr,(A, B)|

Example 6. (Cont. running ex.) Let L = wLog.

e 0®(E,Dy) =1,0%(E,Ds) = 1,0%(E, D3) = 1.

Proposition 3. %" satisfies all Minimality axioms.

Importantly, our framework does not impose any specific
strategy for generating decodings; it focuses only on evalu-
ating the resulting decodings against a set of quality crite-
ria. While logic-based decodings may naturally satisfy cer-
tain criteria such as Minimality, this is not always desirable.
In some contexts, such as persuasion, redundancy can serve
rhetorical purposes.

4.4 Criterion of Coherence

Axioms. Any explainable system (i.e., decoding) must be
consistent with itself (Strong version) or, to go further; they
must be consistent with the user’s prior knowledge (Weak
version). Also, the more subsets of inconsistent formulae a
decoding contains, the worse the decoding (Decreasing ver-
sion). In Figure 2, this is inspired by consistency (argumen-
tation), coherence (XAI), and quality (philosophy).

Definition 19. Let L = (W, |+, t) be a weighted logic and o
a criterion measure on L. We say that o satisfies the axioms
Ideal Strong Coherence (C,), and Ideal Weak Coherence
(Co)iff, VE = (I',a) € Enth, VD = (A, ) € aArg, the
following first, and second point holds, respectively:
* if A is consistent, then o(E, D) = 1;
« if AUT is consistent, then o(F, D) = 1.

We say that o satisfies the axiom Lenient Decreasing
Strong Coherence (C3), iff V E = (I',a) € Enth, VD =
(A, B), D' = (A, B) € aArg, the following holds:

if [ {PCA:®€incand BV C ®s.t. ¥ € inc} | >
| {®' CA’:® € incand PV’ C &' s.t. U € inc} |
then o(F, D) < o(E, D’).
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The axiom Strict Decreasing Strong Coherence (C,) is de-
fined as above, but > is replaced by >, and < by <.
Lenient Decreasing Weak Coherence (Cs) is defined by
replacing A with AUT, and A’ with A’ UT.

Strict Decreasing Weak Coherence (Cg) is defined by re-
placing Aby AUT, A’ by A’ UT, > by >, and < by <.

The condition of the weak coherence is more restric-
tive because even if information in the premises of the en-
thymeme is not used in the decoding, it can prevent a de-
coding if the latter is inconsistent with it. Hence, consistent
decodings may be disallowed. However, from a user point
of view, this constraint can be valuable.

Criterion measures. We propose a strategy based on the
number of minimal inconsistent subsets.

Definition 20. Let L = (W, t) be a weighted logic,
VE = (T',a) € Enth,V D = (A, ) € aArg, we define
nb_sInc(E,D) = |{® CA:® € inc,¥ C &: ¥ € inc}|
nbwinc(E,D)=|{® CAUT:® € inc,}¥ C ®: ¥ € inc}|

We denote by ofs¢ the criterion measure on L called
Divided Strong Coherence, and by a‘ff’c the criterion mea-
sure on L called Divided Weak Coherence:

1
dsc E D
( )= 1+ nb_sInc(E, D)
1
dwc(E D)

1+ nb_wiInc(E, D)
Example 7. (Cont. running ex.) Let L = wLog.
d O'dsc(E,Dl) = ad"’c(E, Dl) = 1;

e 0%¢(E, D) = 0%(E,Dy) =1,

o UdSC(E, D3) =1, and UdWC(E, Dg) =35

Proposition 4. o9 satisfies all Coherence axioms.
0% satisfies Co, Cs5 and Cg.

4.5 Criterion of Similarity

Axioms. Adjusting an explanation to users requires model-
ing their background knowledge as much as possible, i.e., a
decoding is preferable when it uses as much information as
possible from the enthymeme (increasing similarity) and a
minimum of new information (decreasing similarity). More-
over, a decoding must be based on the elements present in
the enthymeme, aligned with its premises (preservation) and
claim (preservation). In Figure 2, this is inspired by fidelity
(XAlI), and relation (philosophy).

Definition 21. Let L = (W, ), t) be a weighted logic, and o
a criterion measure on L. We say that o satisfies the axiom
Lenient Similarity (S,) iff, VE = (I, ) € Enth,V D =
(A, B), D' = (A, B) € aArg,

ifa>a,b<V, theno(E,D) > o(E, D),
where a = |ANTY, o’ = |A"NT|, (common information)

= |A\T|, ¥ = |A’\T|. (distinct information)

o satisfies the axioms Strict Increasing Similarity (S-),
and Strict Decreasing Similarity (Ss) iff the following first,
second, and third point holds, respectively:

e ifa>ad,b<V, theno(E,D) > c(E,D");
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«ifa>d >0, b<¥, theno(E,D) > o(E, D).

Definition 22. Let L = (W, |~,¢) be a weighted logic, and
o a criterion measure on L. o satisfies the axioms Premises
Preservation (S,), and Claim Preservation (S;) iff, V /' =
(I'ya) € Enth, VD = (A, 3) € aArg, the following first,
and second point holds, respectively:

« if ANT =0, then o(F, D) = 0;
o ifa # 3, then o(E, D) = 0.

Criterion measures. We propose syntactic similarity mea-
sure from the literature to deal with similarity.

Tversky’s ratio model (Tversky 1977) is a general sim-
ilarity measure which encompasses different well known
similarity measure such as (Jaccard 1901), (Dice 1945),
(Sgrensen 1948), (Anderberg 1973) and (Sneath, Sokal, and
others 1973). These measures have been studied in the liter-
ature to evaluate arguments in propositional logic (Amgoud
and David 2018; Amgoud, David, and Doder 2019) and first-
order logic (David, Delobelle, and Mailly 2023).

Definition 23. Let W be a weighted language, I', A C W, and
z,y € (0,400). Let Tve, (I, A) the zy-Tversky Mea-
sure, defined by:

1 ifI'=A = (;
Tve, (I, A) = a
a+ (xxb)+ (y xc)

where o = TN A[,b=|T'\ Al,and c = |A\T.

The above classic measures can be obtained with a@ =
B = 27", The Jaccard measure is obtained with n = 0 (i.e.,
Tve;,1 = jac), Dice with n = 1 (i.e,, Tveg 5,05 = dic),
Sorensen with n = 2 (i.e., Tveg 250.25 = sor), Ander-
berg with n = 3 (i.e., Tveq.125,0.125 and), and Sokal
and Sneah 2 with n = —1 (i.e., Tves » = ss2). Similar-
ity measures taking into account the structure of weighted
formulae would be significant in improving accuracy.

Definition 24. Let L = (W, |~, ¢) be a weighted logic, and
z,y € (0,4+00). We denote by o715, the criterion mea-
sure on L called the xy-Tversky Similarity on = and y, i.e.,
VE = (T',a) € Enth,VD = (A, 8) € aArg,

01y (B, D) = Tvey (I, A) x Tve, y(a, ).

A similarity score of 1 means the decoding matches the
enthymeme exactly, but since enthymemes are incomplete,
a good decoding should never achieve this.

otherwise,

Example 8. (Cont. running ex.) LetL = wLog.

. Utsd(E Dy) = %,) and aJaC(E Dy) = g,
(E DQ) §7 and UJac(E’DQ) = %,
and(E7D3) =71 62” and O'JaC(E,Dg) = l
Proposition 5. For any z,y € (0,+oo), oS, sat-
isfy all Similarity axioms. So do the extended classical
MEASUTES 055, Tgics Tsors Tang> aNd 05

4.6 Criterion of Granularity

Axioms. Due to the diversity of users’ experience and knowl-
edge, a single explanation cannot meet all expectations.
Users should be able to personalize the explanation to their
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needs, such as adjusting the granularity of the decoding.
We propose two strategies: concise and detailed. In Fig-
ure 2, this is inspired by complexity/personalisation (XAI),
and quality/manner (philosophy).

Definition 25. Let L = (W, ), t) be a weighted logic, and o
a criterion measure on L. We say that o satisfies the axiom
Lenient Concise Granularity (G,) iff, VE € Enth,V D =
(A B), D' = (A", 3) € aArg,

if |A| < |A/|, then o(E, D) > o(E, D').

o satisfies the axioms Strict Concise Granularity (G-),
Lenient Detailed Granularity (Gs3), and Strict Detailed
Granularity (G4) iff the following first, second, and third
point holds, respectively:

o if |A| < |A/|, theno(E, D) > o(E,D’);
o if |A| < |A/|, theno(E, D) < o(E,D’);
o if |A| < |A/|, theno(E, D) < o(E,D").

Criterion measures. Let us examine the granularity mea-

sure, which favors concise decodings.

Definition 26. Let L = (W, ), ¢) be a weighted logic. We
denote by o1* the criterion measure on L called the Concise
Granularity, i.e., V E € Enth,V D = (A, 8) € aArg, the
following holds:

c 1
O'Lg(.E‘7 .D) = W

Example 9. (Cont. running ex.) Let L = wLog.
* 0%8(E,D;) = % 08(E, Dy) = %, 08(E,D3) = %.
Next, let us see the dual version.

Definition 27. Let L = (W, |, t) be a weighted logic, o3& be
the criterion measure on L called the Detailed Granularity,
YV E € Enth, D = (A, 3) € aArg,

1
Al +1
Example 10. (Cont. running ex.) Let L = wLog.
e 0%(E, D) = %, 0% (E, Dy) = %, c%(FE, D3) = %.

Proposition 6. o€ satisfies the Granularity axioms G1, G2
while 09 satisfies G3, G4.

ot(E,D)=1—

4.7 Insights on Axioms and Measures

The satisfaction of some axioms ensures that a decoding
constitutes a valid argument (as defined in Definition 7).

Proposition 7. Let L = (W, t) be a weighted logic,
01,09,03,04 be criterion measures on L, each satisfying
one of the following axioms respectively: Ideal Inference,
Ideal Weighting, Ideal Strong Coherence, and Ideal Mini-
mality. Let £ € Enth and D € aArg. If D € Arg, then
Ul(E,D) = UQ(E,D) == Ug(E,D) = 0'4(E,D) =1.

A set of axioms is compatible if and only if there exists
a criterion measure that satisfies all of them. Otherwise, the
axioms are incompatible.
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Theorem 1. For the proposed axioms, the set of all Le-
nient axioms is compatible with either, the set of all Ideal
axioms, or with the set of all Preservation ones; i.e., {Is,
Wy, M,, Cs, Cs, Sq, Gy, G3}, with either {11, Wi, M,
Cy, Ca}, or {S4, S5} is compatible. For each criterion
X € {I, W,M, C, S}, the set of axioms for X is compat-
ible. For criterion G, each of {G1, G2}, {G3, G4} and {G,
G3} is compatible; all other non-singleton subsets of the ax-
ioms of G is incompatible.

Theorem 2. For the proposed axioms, for each Strict ax-
iom X of any criterion, and for each axiom Y of any other
criterion, {X, Y} is incompatible. For each Ideal axiom [
of any criterion, and for each Preservation axiom P for the
Similarity criterion, {I, P} is incompatible.

Next we consider implication between axioms. An axiom
ax1 implies (i.e., —) an axiom ax- iff for all measures o, if
o satisfies axq, then o satisfies axs.

Theorem 3. For Coherence criterion, the Strong axioms im-
ply Weak ones; for any criterion, any Strict axiom implies
its Lenient version; and any Ideal axiom implies its Lenient
version i.e., applying also the transitivity we obtain I3 — I,
I, - Io; W3 > Wy, Wy — Wy, M3 — My, M — Mo;
C1 — C2, C1 — Cg, C1 — C5, CQ — C5, C4 — C3, C6 —
C;5,C3 - C5,Cy —C4,Cy —C5;8 — 81,83 — S1; G
- G1,Gy — G3.

We show next that our criterion measures do not overlap.
A criterion measure is orthogonal to a set of criteria if the
measure fails to satisfy any axiom for this set of criteria. Let
Q) be the set of criteria of this paper.

Corollary 1. If a criterion measure o for X € () satisfies a
Strict axiom for X, then o is orthogonal to Q \ {X}.

Corollary 2. For any criterion X € ), any criterion mea-
sure o for X, o is orthogonal to 2 \ {X}.

These results are fundamental, as they stress that a mod-
ular approach is necessary for a deep analysis of each crite-
rion, as no measure can satisfy all the axioms. Moreover,
strict axioms are key to prevent redundancy among mea-
sures, thus avoiding over-valuing certain aspects.

5 Quality Measure

Criterion measures are designed to evaluate different aspects
of the quality of an enthymeme decoding. To assess overall
quality, we combine these values into a single one. To do
that we use an aggregation function @, defined as follow-
ing: @ : [0,1]™ — [0, 1], where n € N.

Definition 28. Let L = (W, t) be a weighted logic,
C = (01,...,0%) a sequence of criterion measures on L,
and @ an aggregation function. We denote by Q% the quality

measure based on C and @, i.e., the function on Enth x aArg
such that, V E' € Enth, V D € aArg, the following holds:

QS,(E, D) = ®(01(E,D),...,o1(E, D))

We propose a sequence of criterion measures because we
believe that the order can be significant, especially for future
work involving the assignment of specific properties or coef-
ficient of importance depending on the different criteria. In
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certain contexts, a subset of criteria may have the property
of being “mandatory”, meaning that if their quality drops
below 1 (or a threshold), the overall quality becomes zero.
For example, in decoding a scientific argument, generally
the information is assumed to be verified, so decodings that
are inconsistent with the enthymeme are deemed invalid. In
contrast, when decoding a political argument, where falla-
cies are more likely, a decoding that is incoherent with the
original enthymeme may be permissible.

Let see some examples of aggregation function. For a se-
quence of values T" = (vy, ..., vk ), the aggregation function
av(T') computes the average of the values in T, and pr(T)
returns the product of all the values in 7T'.

Let us see now an example of a sequence of criterion mea-
sures, the Jaccard Coherently Weak Concise, defined as:

dw

. i ts
jewe = (oP*) 0% o® 0N, o

jac? ch>

Continuing our example, we analyze the best decoding for
the enthymeme E explaining why Bob is happy.

w (E,D1)= av(l,1,1,1,£,3) =~ 0.756;
w (E,Dy) = av(1,%,1,1,2,3) ~ 0.733;
v (B,D3) = av(l,1,1,1, 1 4) ~ 0.569.
Qe “(E,D1) = pr(l,1,1,1,1,5) =~ 0.067;
Qf_,;wc(E,Dg): pr(l,%,l,l,%,%) = 0.075;
Qe “(E,D3) = pr(l,1,3,%4,4,5) ~ 0.010.

There are at least two possible goals for a quality mea-
sure’s output: i) extracting the k-best decodings via ranking,
or ii) identifying “acceptable” decodings using a threshold.

To identify the best decoding according to Q3; ", Dy (“a
researcher is generally happy”) ranks first due to its bet-
ter alignment of weights: its support weight (min 0.7)
exactly matches the weight of its claim (0.7), whereas Do
(“being loved makes people happy”’) shows a less coherent
support weight (min = 0.95). In contrast, under Q3 , Do
ranks higher thanks to a better similarity score, and a higher
product of similarity and support weight (2 x 2 > 1 x 1).
This example highlights the crucial role of the aggregation
function: even with the same underlying criterion measures,
different aggregation strategies can lead to different rank-
ings of the best decoding. When focusing on “acceptable”
decodings, we also observe that the acceptance threshold is
not fixed (e.g., 0.5), but instead depends on the combination
of criterion scores and the chosen aggregation method. Alto-
gether, this illustrates the importance of analyzing the math-
ematical properties of aggregation functions, as they directly
affect the selection of optimal decodings.

One of the key advantages of our quality measure ap-
proach lies in its explainability: by decomposing the eval-
uation of a decoding into distinct, interpretable criteria and
an explicit aggregation strategy, we gain insight into why a
given decoding receives a particular score. This modular
structure not only improves transparency, but also allows for
fine-grained control and adaptation to different application
needs or user preferences.
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6 Discussion and Conclusion

This paper presents the first formal framework for evaluat-
ing enthymeme decodings using weighted logic and quality
criteria. We explore how content can be added or removed
from an argument, and introduce a general mechanism for
assessing decodings across multiple dimensions. At the core
of our approach is a set of criterion measures that satisfy log-
ical axioms, ensuring desirable behavior. The resulting qual-
ity measure is parametric and modular, making it adaptable
to various goals, users, and contexts.

Understanding and evaluating implicit arguments is es-
sential for building systems capable of robust reasoning in
realistic discourse. While argumentative XAI approaches
leverage argumentation frameworks to explain decisions or
model dialectical interactions (Cyras etal. 2021; Vassiliades,
Bassiliades, and Patkos 2021), they typically rely on pre-
constructed argument graphs. Their focus is on clarifying
how a conclusion was reached and which arguments sup-
port or challenge it. In contrast, our work targets an earlier
and complementary step: decoding implicit arguments (en-
thymemes). By enhancing the qualities of these arguments,
our approach improves both the interpretability and accu-
racy of the underlying argumentative structure, providing a
more reliable foundation for downstream reasoning.

Unlike approaches such as (Al Khatib et al. 2021), rely-
ing on human-annotated criteria (relevance, argumentative-
ness, content richness, plausibility, bias) and trained clas-
sifiers to evaluate completions, our framework operates in
a formal logic setting. It supports clear evaluation through
logic-based measures with formal guarantees. While some
criteria, such as bias or argumentativeness, depend on con-
textual or pragmatic factors and remain hard to formalize,
they point to valuable directions for future integration. No-
tably, dimensions like rhetorical quality and fallacy degree
offer promising extensions. The former captures how ef-
fectively a decoding serves communicative goals (e.g., em-
phasis, structure, audience alignment), while the latter re-
flects the presence of reasoning flaws such as false dilem-
mas or emotional appeals. In future work, we will in-
vestigate how such dimensions could be captured in our
framework in order to identify not only logically valid, but
also pragmatically sound and argumentatively robust decod-
ings, better aligned with human judgment. In addition to
proposing new criteria, existing ones may also be extended.
Similarity could, for example, move beyond formula-to-
formula to set-to-set comparisons (e.g., {minor (x) } vs.
{human (x),underl8 (x) }), or be refined with formula
weights to assess local coherence across matched elements,
unlike Weighting, which evaluates global weight coherence
between the premises and the claim of a decoding.

Finally, we will further analyze quality measures and ag-
gregation functions. Most of the proposed measures are non-
parametric, except for Similarity, which can be tuned using
thresholds or scaling factors for better practical alignment.
Criteria can be defined by users based on their semantic rel-
evance to the task. While configuring measures and aggre-
gation functions may be non-trivial, a promising solution is
to learn these parameters from annotated examples.
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