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Abstract
The grounding bottleneck in Answer Set Programming pro-
hibits large instances from being solved. This is caused by
a combinatorial explosion in the grounding phase of stan-
dard ground&solve systems. A promising alternative is Body-
Decoupled Grounding (BDG), which grounds each body pred-
icate on its own. However, BDG faces challenges in terms of
worst-case grounding size and limited interoperability with
other systems.
This paper addresses shortcomings of BDG by introducing
FastFound: an alternative foundedness check that significantly
reduces grounding sizes, by grounding each predicate on its
own. FastFound’s foundedness check is done implicitly, which
leads to a quadratic reduction in grounding size. We start
by introducing FastFound for tight normal rules, where we
observe that this cannot be substantially improved. Then
we extend FastFound to head-cycle-free programs and give
novel interoperability results for full disjunctive programs. An
experimental evaluation on our prototype shows promising
results, as we solve more grounding-heavy tasks than both
standard ground&solve systems and BDG.

1 Introduction
Answer Set Programming (ASP) (Gelfond and Leone 2002)
is a logic programming paradigm with various applications,
both in industry (Falkner et al. 2018) and science (Erdem,
Gelfond, and Leone 2016). Solutions to ASP programs are
called answer sets. Automatic computation of answer sets is
enabled by modern efficient systems like clingo (Gebser
et al. 2016) and dlv (Leone et al. 2006). These approaches
are based on the so-called ground&solve paradigm, which
proceeds by first grounding, instantiating variables, and then
solving, computing answers by SAT-like solvers.

Although modern grounders, like gringo (Gebser et al.
2015) and idlv (Calimeri et al. 2017) are highly optimized
systems, they still suffer from the so-called grounding bottle-
neck (Gebser et al. 2018). Resulting from the combinatorial
explosion in the variable instantiation phase, the worst-case
grounding size is exponential in the number of variables of
a program. Alternative grounding procedures, such as lazy
grounding (Weinzierl 2017), compilation-based techniques
(Dodaro, Mazzotta, and Ricca 2024), or Body-Decoupled
Grounding (BDG) (Besin, Hecher, and Woltran 2022; Beiser
et al. 2024), partially alleviate the problem. BDG is par-
ticularly promising on grounding-heavy problems. It shifts

effort from the grounder to the solver, by decomposing rules
into their predicates and grounding the body predicates one
by one. The resulting grounding size is exponential in two
times the maximum predicate arity, whereas groundings of
standard grounders are exponential in the number of rule vari-
ables. Compared to standard grounders, the effort in terms of
solving increases by one level of the polynomial hierarchy:

Method Grounding Effort Solving Effort

Standard ≈ | dom(Π)|| var(Π)| normal ASP
BDG ≈ | dom(Π)|2·a disjunctive ASP
FastFound ≈ | dom(Π)|a+1 disjunctive ASP

Comparison of grounding methods. Standard grounding is exponen-
tial in the program size, whereas the size of BDG depends on the
largest predicate arity a. Our approach avoids a quadratic blow-up,
which is essentially optimal.

The quadratic blow-up of BDG is particularly problematic
in practical solving. It originates from foundedness, where
one must keep track of every instantiation of head predicate
(variables) and link this to a corresponding instantiation
of a body predicate, which might double the involved
arities. Further, interoperability with other approaches has
been limited to head-cycle-free programs, which might be
problematic for some practical problems.

Contributions. We address BDG’s shortcomings as follows:
1. We first introduce FastFound for tight normal programs,

providing an alternative foundedness check for BDG that
has a quadratic improvement in grounding size. It turns out
that we cannot substantially improve this bound. We then
proceed to extend FastFound to head-cycle-free programs
and the non-tight case.

2. Further, we obtain interoperability results on full disjunc-
tive programs, which allows us to interleave standard
grounding with FastFound.

3. We prototypically integrate FastFound into newground
(Besin, Hecher, and Woltran 2022). There, we show
promising results of FastFound on grounding-heavy prob-
lems in terms of both grounding and solving performance.

Related Work. Standard grounding (Kaminski and Schaub
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2023) implements bottom-up/semi-naive grounding, which
grounds a program along its dependency graph (Gebser,
Kaminski, and Schaub 2015). The modern grounders
gringo (Gebser et al. 2015) and idlv (Calimeri et al.
2017) implement semi-naive grounding. Lazy ground-
ing (Weinzierl 2017; Leutgeb and Weinzierl 2018; Boman-
son, Janhunen, and Weinzierl 2019) skips the separate
grounding phase and interleaves grounding with solving.
Compilation-based approaches skip grounding, by compil-
ing parts of a program s.t. this compiled program injects
constraints (Cuteri et al. 2019; Lierler and Robbins 2021)
or additional nogoods (Mazzotta, Ricca, and Dodaro 2022;
Dodaro, Mazzotta, and Ricca 2024) during solving. ASP
modulo theories integrates approaches like constraint pro-
gramming (Banbara et al. 2017) or mixed-integer program-
ming (Liu, Janhunen, and Niemela 2012). This has also been
tackled by skipping grounding altogether—using s(CASP),
which has no preliminary grounding phase (Arias et al. 2018).
In this paper we introduce FastFound, which is orthogonal
to the previously mentioned approaches, by rewriting and
decoupling non-ground rules.

Structure-aware techniques ground bag by bag on a min-
imal tree decomposition of a rule’s variable graph (Bich-
ler, Morak, and Woltran 2016), while FastFound grounds
predicate by predicate. BDG (Besin, Hecher, and Woltran
2022) relies on a basic technique for handling foundedness of
atoms, which we improve with FastFound. Hybrid Ground-
ing (Beiser et al. 2024) enables interoperability of BDG with
head-cycle-free rules, which we extend to full disjunctive
programs. Recent work (Besin, Hecher, and Woltran 2023)
shows a reduction from full disjunctive ASP to epistemic
logic programming, while FastFound stays in ASP.
Structure. We define preliminaries below. Section 3 intro-
duces the FastFound reduction, and Section 4 shows how
FastFound is interoperable with full disjunctive programs.
After experimentally demonstrating FastFound in Section 5,
we conclude the paper in Section 6.

2 Preliminaries
Ground ASP. An ASP program Π is a set of rules r ∈ Π:
a1 ∨ . . . ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an, where
l,m, n ∈ N s.t. l ≤ m ≤ n and a1, . . . , an are propositional
atoms. Let Hr = {a1, . . . , al}, B+

r = {al+1, . . . , am},
B−r = {am+1, . . . , an}, and Br = B+

r ∪ B−r . We say that
r ∈ Π is normal iff |Hr| ≤ 1, a constraint iff |Hr| = 0, and
disjunctive iff |Hr| > 1. Choice rules are defined as usual
(Calimeri et al. 2020). Π is disjunctive iff it contains at least
one disjunctive rule, otherwise Π is normal. The (positive)
dependency graph D = (V,E) is a directed graph, where
V =

⋃︁
r∈Π(Hr ∪ B+

r ) and E = {(b, h) | r ∈ Π, b ∈ B+
r ,

h ∈ Hr}. Program Π is tight iff there is no cycle in D, and
Π is head-cycle-free (HCF) iff there is no cycle in D among
two atoms {a, b} ⊆ Hr for any r ∈ Π. Let SCC(Π) be
the strongly connected components (SCCs) of D, let ϵ be a
fresh constant, and SCC(Π, p) = {v ∈ S | S ∈ SCC(Π),
p ∈ S} ∪ {ϵ | S ∈ SCC(Π), p ∈ S, v ∈ S, (v, v) ∈ E}.

Let HB(Π) be the set of all atoms of Π. An interpretation
I ⊆ HB(Π) is a set of (true) atoms. I satisfies a rule r iff

(Hr ∪ B−r ) ∩ I ̸= ∅ or B+
r \ I ̸= ∅. I is a model of Π iff

it satisfies all rules of Π. The Gelfond-Lifschitz (GL) reduct
of Π under I is the program ΠI obtained from Π by first
removing all rules r with B−r ∩ I ̸= ∅ and then removing
all ¬a where a ∈ B−r from the remaining rules r (Gelfond
and Lifschitz 1991). I is an answer set of a program Π iff I
is a minimal model (w.r.t.⊆) of P I . For an interpretation I , a
level mapping φ : I → {0, . . . , |I| − 1} assigns every atom
in I a unique value (Lin and Zhao 2003; Janhunen 2006).
Let I be an interpretation of a normal (HCF) program Π. An
atom a ∈ I is founded iff there is a rule r ∈ Π s.t. (i) r is
suitable for justifying a, i.e., Hr ∩ I = {a}, B+

r ⊆ I , and
B−r ∩ I = ∅, and (ii) there are no cyclic-derivations, i.e.,
∀b ∈ B+

r : φ(b) < φ(a). I is an answer set of a normal
(HCF) program Π iff I is a model of Π s.t. all atoms in I are
founded for some level mapping.

Non-ground ASP. A non-ground ASP program Π
is a set of rules r ∈ Π: p1(X1) ∨ . . . ∨ pℓ(Xℓ) ←
pℓ+1(Xℓ+1), . . . , pm(Xm),¬pm+1(Xm+1), . . . ,¬pn(Xn),
where l,m, n ∈ N s.t. l ≤ m ≤ n and p1(X1), . . . , pn(Xn)
are predicates. For a predicate pi(Xi), pi is its predicate
name, and Xi = ⟨x1, . . . , xa⟩ is its term vector. A
term is a constant or a variable, and |pi| = |Xi| = a
is the arity of pi(Xi). By x ∈ X, we denote
that x is in X. We require variable safeness, define
Hr, Br, B

+
r , and B−r analogously to the ground case, and

let pred(r) = {p | p(X) ∈ r}, pred(Π) =
⋃︁

r∈Π pred(r),
var(r) = {x ∈ X | p(X) ∈ B+

r }, var(Π) =
⋃︁

r∈Π var(r).
Wlog., we assume that variables are unique per rule, i.e.,
var(r1)∩var(r2) = ∅ for any two r1, r2 ∈ Π. The attributes
disjunctive, normal, constraint, and tight (HCF) carry over
to non-ground rules (programs), where we define the depen-
dency graph D over pred(Π). For a predicate p ∈ pred(Π),
let RULES(p) = {r ∈ Π | p ∈ pred(Hr)}. Grounding
refers to the instantiation of variables by their domain. Let
Fp = {p(D) | r ∈ Π, var(r) = ∅, Br = ∅, p(D) ∈ Hr}
be the fact predicates, dom(Π) = {d ∈ D | p(D) ∈ Fp}
be the domain, and let wlog. dom(x) = dom(Π) be
for any variable x. The instantiations dom(X) of a
variable vector X = ⟨x1, . . . , xk⟩ contain all term vectors
D = ⟨d1, . . . , dk⟩ with d1 ∈ dom(x1), . . . , dk ∈ dom(xk).
By D⟨Y⟩ = ⟨di, . . . , dj⟩, we denote the restriction of
D ∈ dom(X) to a variable vector Y = ⟨xi, . . . , xj⟩ s.t.
{xi, . . . , xj} ⊆ {x1, . . . , xk}. A rule r ∈ Π over the
variables X is naively grounded by G(r) = {p1(D⟨X1⟩) ∨
. . . ∨ pl(D⟨Xl⟩) ← pl+1(D⟨Xl+1⟩), . . . , pm(D⟨Xm⟩),
¬pm+1(D⟨Xm+1⟩), . . . ,¬pn(D⟨Xn⟩) | D ∈ dom(X)}. A
program is grounded (naively) by G(Π) =

⋃︁
r∈Π G(r).

The size of a rule r is |r| = |Hr∪Br|, and |Π| =
∑︁

r∈Π |r|
for a program Π. A naively grounded rule r has a grounding
size in O

(︁
|r| · | dom(Π)|| var(r)|

)︁
. For brevity, we write ≈

| dom(Π)|| var(r)|. The grounding size of a program Π is
≈ | dom(Π)|maxr∈Π | var(r)|, or ≈ | dom(Π)|| var(Π)| in the
worst-case. The semantics of a non-ground program Π is
defined over G(Π), where the Herbrand base is HB(Π) =
{p(D) ∈ Hr ∪ Br | r ∈ G(Π)}. Given that the worst-
case grounding size of state-of-the-art (SOTA-)grounding
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matches naive grounding G(Π) (Kaminski and Schaub 2023),
we use the terms bottom-up, semi-naive, SOTA-, and naive
grounding interchangeably.
Complexity Theory. We assume familiarity with notions of
complexity theory. Given a program Π, the answer set exis-
tence problem asks whether Π has an answer set1. For ground
ASP, it is ΣP

2-complete (Eiter and Gottlob 1995), which drops
to NP-completeness for HCF programs (Dechter 1994). The
complexity increases to NEXPTIMENP-completeness for non-
ground programs and to NEXPTIME-completeness for non-
ground HCF ASP (Dantsin, Eiter, and Gottlob 2001). Assum-
ing bounded predicate arities, it drops to ΣP

2-completeness
for HCF/normal programs, and ΣP

3-completeness for full dis-
junctive programs (Eiter et al. 2007).

3 Quadratic Boost via FastFound
First, we recall the challenges that BDG faces.

3.1 Shortcomings of BDG
BDG grounds non-ground normal programs with a trans-
lation to ground disjunctive programs. This translation (1)
ensures satisfiability of all rules and (2) prevents unfounded-
ness of atoms. Let a be the maximum predicate arity. BDG
ignores unfoundedness for constraints, as there is no head
atom. We are left with the satisfiability check, which is
performed in ≈ | dom(Π)|a. However, normal rules require
prevention of unfoundedness, which increases grounding size
to ≈ | dom(Π)|2·a (Besin, Hecher, and Woltran 2022).
Example 1. Consider the listing below. We are given a graph
instance defined by predicate e, where we assume a simple
graph. First we guess two subgraphs defined by predicates
f and d. We denote the two rules in Line 1 as r1. For f , we
require that no clique of size ≥3 exists and for d, we want to
derive all vertices that are part of a clique of size ≥3. These
shall be gathered in predicate c for later processing. Let the
rules in Lines 2–3 be r2 and r3, respectively.

1 {f(X,Y)} ←e(X,Y). {d(X,Y)} ←e(X,Y).

2 ←f(X1,X2), f(X1,X3), f(X2,X3).

3 c(X1) ←d(X1,X2), d(X1,X3), d(X2,X3).

Standard grounding has a grounding size ≈ | dom(Π)|3 for
both r2 and r3. BDG’s grounding size is ≈ | dom(Π)|2 for
r2, and ≈ | dom(Π)|3 for r3.

Observe the cubic grounding sizes of BDG and SOTA-
grounding for r3. As BDG pushes effort from grounding
to solving, its overall performance is worse than SOTA-
grounding, which renders BDG useless for r3.

3.2 FastFound: Efficient Foundedness
In this section, we first introduce FastFound for tight normal
programs Π. Later we will extend this to ensure interoper-
ability with standard grounding procedures. Compared to the
quadratic increase in grounding size of BDG, we define a
reduction avoiding it. We obtain linear optimal groundings,
which is a worst-case limit (assuming answer sets contain all
ground atoms of a program).

1The answer set existence problem considers both facts (data)
and the encoding (combined complexity).

Observation 1 (LB). For any predicate arity a ≥ 0, there is
a non-ground program Π such that its answer set contains
all atoms in HB(Π) and is of size Ω(|Π| · | dom(Π)|a).
Proof. Construct such a worst-case non-ground program Π
of arity a, where each predicate occurs constantly often and
the answer set of Π is of size Ω(|Π| · | dom(Π)|a), containing
all ground atoms.

Fastfound approaches this bound up to O(|Π|·| dom(Π)|a+1)
for normal programs, by splitting grounding into three parts:

1. Guessing ground atoms of the answer set candidate,
2. Checking that every (ground) rule is indeed satisfied, and
3. Ensuring that every guessed atom is founded: This part re-

quires care, as naive encodings cause a quadratic increase,
which we avoid via saturation2.

Figure 1 presents the reduction from a tight normal program
to a disjunctive program, where parts of the grounding ef-
fort are shifted from the grounder to the solver. The three
parts are represented in the figure as follows. True atoms
are guessed by Equations (2)–(3), satisfiability is ensured
by Equations (4)–(9), and foundedness is given by Equa-
tions (10)–(19).
1. Guessing Atoms. By decoupling the rule structure, we
ground the head independent of its body. We introduce aux-
iliary predicates that enable partitioning a program Π into
a part ΠG that is grounded by any grounding approach in
Equation (1), and a part ΠH grounded by FastFound in Equa-
tions (2)–(19).

Example 2. We proceed by showing FastFound’s ground-
ing of r3 from Example 1. Let us assume that dom(Π) =
dom(X1) = dom(X2) = dom(X3) = {1, 2}. First, we
guess whether the auxiliary head holds. The following listing
provides the result of applying Equations (2)–(3).

1 {c’(1)}. {c’(2)}. c(1) ←c’(1). c(2) ←c’(2).

2. Satisfiability. For an answer set I of Π and for any non-
ground rule r ∈ Π, all of r’s ground instantiations must be
satisfied. This is encoded with an implicit for-all check and
instantiation over all var(r). For each variable assignment
corresponding to a ground rule, we require that B+

r \ I ̸= ∅
or I ∩ (B−r ∪ Hr) ̸= ∅ (Equations (5)–(6)) holds. We use
saturation to ensure that a non-ground rule is satisfied iff all
its variable instantiations are satisfied (Equations (4), (8))
and require satisfiability for all rules (Equations (7), (9)).
Saturation carries out the universal step covering all potential
variable instantiations.

Example 3. We continue Example 2 with the satisfiability
check of r3. In Lines 1–2 below, we apply Equation (4)
to guess all variable combinations by disjunction, and in
Lines 3–6, we apply Equation (5) to handle d(X1, X2). In
the example, we skip d(X1, X3) and d(X2, X3).

1 svarX1(1) | svarX1(2). svarX2(1) | svarX2(2).

2 svarX3(1) | svarX3(2).

3 satr3 ← svarX1(1), svarX2(1), not d(1,1).

2Saturation (Eiter and Gottlob 1995) is a technique for second-
level problems via full disjunctive programs.
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Joining ΠG and ΠH
r for every r∈G(ΠG) (1)
Guess Heads of ΠH
{h′(D)} ← for every r ∈ ΠH, h(X) ∈ Hr,D ∈ dom(X) (2)
h(D)← h′(D) for every r ∈ ΠH, h(X) ∈ Hr,D ∈ dom(X) (3)
Satisfiability of ΠH⋁︂
d∈dom(x)

svarx(d)← for every r ∈ ΠH, x ∈ var(r) (4)

satr ← svarx1(D⟨x1⟩), . . . , svarxt(D⟨xt⟩),¬p(D) for every r ∈ ΠH, p(X) ∈ B+
r ,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (5)

satr ← svarx1(D⟨x1⟩), . . . , svarxt(D⟨xt⟩), p(D) for every r ∈ ΠH, p(X) ∈ B−
r ∪Hr,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (6)

sat← satr1 , . . . , satrn let ΠH = {r1, . . . , rn} (7)
svarx(d)← sat for every r ∈ ΠH, x ∈ var(r), d ∈ dom(x) (8)
← ¬sat (9)

Foundedness of ΠH⋁︂
d∈dom(x)

fvarx(d)← for every r ∈ ΠH, {h(X)} = Hr, x ∈ X (10)

1{bfvary(d1,D), . . . , bfvary(dk,D)}1← h′(D) for every r ∈ ΠH, {h(X)} = Hr,D ∈ dom(X), y ∈ var(r) \X,
dom(y) = {d1, ..., dk} (11)

fvary(d)← bfvary(d,D), fvarx1(d1), . . . , fvarxt(dt) for every r ∈ ΠH, {h(X)} = Hr,X = ⟨x1, . . . , xt⟩,
D = ⟨d1, . . . , dt⟩,D ∈ dom(X), y ∈ var(r) \X, d ∈ dom(y) (12)

litp ← fvarx1(D⟨x1⟩), . . . , fvarxt(D⟨xt⟩), p(D) for every r ∈ ΠH, p(X) ∈ B+
r ,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (13)

litp ← fvarx1(D⟨x1⟩), . . . , fvarxt(D⟨xt⟩),¬p(D) for every r ∈ ΠH, p(X) ∈ B−
r ,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (14)

justr ← litp2 , . . . , litpm , litpm+1 , . . . , litpn for every r ∈ ΠH, B+
r = {p2, . . . , pm}, B−

r = {pm+1, . . . , pn} (15)
justr ← fvarx1(D⟨x1⟩), . . . , fvarxt(D⟨xt⟩),¬h

′(D) for every r ∈ ΠH, {h(X)} = Hr,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (16)
just← justr1 , . . . , justrn let ΠH = {r1, . . . , rn} (17)

fvarx(d)← just for every r ∈ ΠH, {h(X)} = Hr, x ∈ X, d ∈ dom(x) (18)
← ¬just (19)

Figure 1: FastFound reduction F(ΠH,ΠG) for a given tight normal program Π that is partitioned into ΠH and ΠG . The reduction uses
saturation for the foundedness check, and the resulting grounding size of F(Π, ∅) is in O

(︁
|Π| · |dom(Π)|a+1

)︁
.

4 satr3 ← svarX1(1), svarX2(2), not d(1,2).

5 satr3 ← svarX1(2), svarX2(1), not d(2,1).

6 satr3 ← svarX1(2), svarX2(2), not d(2,2).

The next listing shows the remaining satisfiability rules. In
Line 1, we apply Equation (6) to handle c(X1), and in
Lines 2–3, we apply Equation (8) to close the saturation
loop. Lastly, applying Equations (7), (9) in Line 4 ensures
that every answer set satisfies r3.

1 satr3 ← svarX1(1), c(1). satr3 ← svarX1(2), c(2).

2 svarX1(1) ← sat. svarX2(1) ← sat. svarX3(1) ← sat.

3 svarX1(2) ← sat. svarX2(2) ← sat. svarX3(2) ← sat.

4 sat ←satr3. ← not sat.

3. Foundedness. We must ensure that, for each atom
h(D) ∈ I , there is a rule justifying this atom. A ground
normal rule r ∈ G(Π) justifies h(D), when {h(D)} = Hr,
B+

r ⊆ I , and B−r ∩ I = ∅. While a naive approach fixes
h(D), takes a non-ground rule r ∈ Π s.t. {h(X)} = Hr,
and searches through all body instantiations simultaneously,
BDG searches in tuples of predicates ⟨h(D), p(Dp)⟩, where
p(Dp) ∈ Br. Although BDG’s foundedness check is an im-
provement over the naive approach, it suffers from doubling
the arity by searching in tuples ⟨h(D), p(Dp)⟩, which leads
to the undesirable quadratic increase in grounding size. This
is particularly problematic for practical applications. In fact,

it has been open whether one could avoid doubling the arity
(Besin, Hecher, and Woltran 2022).

We solve this by introducing the FastFound reduction,
which not only decouples body predicates, but fully decou-
ples all rule predicates. This is enabled by transitioning from
fixing predicates to fixing variable assignments. For each
head variable assignment D ∈ dom(X) s.t. h′(D) ∈ I , we
guess one suitable body variable assignment, variable by
variable y ∈ var(r) \X. Body predicates p(Dp) ∈ Br are
instantiated by this variable assignment, and then we check
whether p(Dp) ∈ I . Finally, we implicitly iterate through all
head variable assignments with the help of saturation. There-
fore, the search for fitting body predicates is only dependent
on the variable assignments, which avoids the quadratic over-
head in grounding size.

Let r ∈ Π be a non-ground normal rule, let Hr = {h(X)}
be the rule’s head, and let h(D) ∈ dom(X) be an instan-
tiation of the head. Whenever h′(D) /∈ I , we can skip
the predicate (Equation (16)). Otherwise, a variable instan-
tiation (Equations (11)–(12)) is needed s.t. B+

r ⊆ I and
B−r ∩ I = ∅ (Equations (13)–(14)). Respective conditions
must hold for all body predicates in Br (Equation (15)).
Equations (10), (18) perform the universal saturation check,
thereby ensuring that all head instantiations (Equation (2)) are
justified. Finally, Equation (17) encodes that all rule heads
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must be justified, and Equation (19) prevents unfounded in-
terpretations. Note that Equations (2)–(3) ensure unique rule
heads. Due to this uniqueness, we can indeed proceed rule
by rule and use saturation for the universal step of the head
variable assignments, to cover all potential instantiations.

Example 4. We continue Example 2 by showing the founded-
ness check of r3. Line 1 applies Equation (10) and guesses all
head-variable combinations. Lines 2–3 apply Equation (11)
to obtain the body variable guesses for X2. As the body
variable guesses are intertwined with a head variable vector,
we disentangle them in Lines 4–7 by applying Equation (12).
Here, we skip analogous rules for X3.

1 fvarX1(1) | fvarX1(2).

2 1{bfvarX2(1,1); bfvarX2(2,1)}1 ← c’(1).

3 1{bfvarX2(1,2); bfvarX2(2,2)}1 ← c’(2).

4 fvarX2(1) ← bfvarX2(1,1), fvarX1(1).

5 fvarX2(1) ← bfvarX2(1,2), fvarX1(2).

6 fvarX2(2) ← bfvarX2(2,1), fvarX1(1).

7 fvarX2(2) ← bfvarX2(2,2), fvarX1(2).

Next, we consider the remaining foundedness rules. Lines 1–
4 handle d(X1, X2) by applying Equation (13). In a
full rewriting, we are required to handle d(X1, X3) and
d(X2, X3) as well, which result in the introduction of litp3
and litp4, respectively. When the body holds, the head atom
is justified, which is encoded in Line 5 that handles Equa-
tion (15). If the head does not hold, we set just3 to true, as
in Line 6 handling Equation (16). Line 7 closes the saturation
loop by applying Equation (18), and Line 8 ensures that all
atoms are founded by applying Equations (17), (19).

1 litp2 ← fvarX1(1), fvarX2(1), d(1,1).

2 litp2 ← fvarX1(1), fvarX2(2), d(1,2).

3 litp2 ← fvarX1(2), fvarX2(1), d(2,1).

4 litp2 ← fvarX1(2), fvarX2(2), d(2,2).

5 justr3←litp2, litp3, litp4.

6 justr3←fvarX1(1), not c’(1). justr3←fvarX1(2), not c’(2).

7 fvarX1(1) ← just. fvarX1(2) ← just.

8 just ←justr3. ← not just.

Theorem 1 (Correctness). Let Π be a tight normal program
and ΠH ∪ΠG be a partition thereof. Then, the answer sets
of F(ΠH,ΠG), given by Figure 1, restricted to HB(Π) bijec-
tively match the answer sets of G(Π).
Proof. We proceed by proving two directions: (i) every
answer set of G(Π) has a corresponding answer set of
F(ΠH,ΠG), and the converse that (ii) every answer set
of F(ΠH,ΠG) restricted to HB(Π) is an answer set of
G(Π). Wlog., we assume that, for any two r1, r2 ∈ Π,
Hr1△Hr2 ̸= ∅, B+

r1△B+
r2 ̸= ∅, or B−r1△B−r2 ̸= ∅, where

we ignore variables, to establish that G(r1) ∩ G(r2) = ∅.
(i) We prove that, for any answer set I of G(Π), there is an

answer set I ′ of F(ΠH,ΠG) s.t. I ′ ∩ HB(Π) = I . Let I ′ =
I ∪SAT∪FOUND, so the original answer set augmented
with parts obtained by satisfiability and foundedness rules.
We define the satisfiability part as SAT = {sat} ∪ {satr |
r ∈ ΠH} ∪ {svarx(d) | r ∈ ΠH, x ∈ var(r), d ∈ dom(x)},
and the foundedness part as FOUND = {just} ∪ {justr |
r ∈ ΠH} ∪HEADS∪LITS∪HVAR∪BVAR, where
head variables are HVAR = {fvarx(d) | r ∈ ΠH,

Hr = {h(X)}, x ∈ X, d ∈ dom(x)}. The construction
of HEADS, LITS, and BVAR is detailed in the supple-
mentary material3.

By this construction, I ′ is an answer set, as it is the min-
imal model of F(ΠH,ΠG)I

′
. Due to I ⊆ I ′, we know

that Equation (1) is satisfied. Equations (2)–(8), (10), and
(15)–(18) are satisfied as Hr ⊆ I ′. Equations (9) and
(19) are not part of the reduct due to B−r ∩ I ′ ̸= ∅. The
remaining Equations (11)–(14) are more involved. Equa-
tion (11) is satisfied whenever h′(D) /∈ HEADS, or when
exactly one bfvary(d,D) ∈ BVAR1. There is precisely one
fvary(d) ∈ BVAR2 whenever bfvary(d,D) ∈ BVAR1,
which satisfies Equation (12). By construction, litp are added
to LITS iff the respective body of Equations (13)–(14) holds,
which satisfies Equations (13)–(14).

It remains to argue that I ′ is indeed the minimal model
of F(ΠH,ΠG)I

′
. Assume that any I ′′ ⊂ I ′ is a model of

F(ΠH,ΠG)I
′
. This implies that sat /∈ I ′′ or just /∈ I ′′, so

that I cannot be an answer set of G(Π).
(ii) We prove that, for any answer set I ′ of F(ΠH,ΠG),

I = I ′ ∩ HB(Π) is an answer set of G(Π). Suppose towards
a contradiction that I ′ is an answer set, but I is not. Then,
I does not satisfy some rule of G(Π), or some atom h ∈ I
is not founded. Any rule r ∈ G(ΠG) that is not satisfied
is not satisfied in F(ΠH,ΠG) either, due to Equation (1).
When a rule r ∈ G(ΠH) is not satisfied, then B+

r ⊆ I and
(Hr∪B−r )∩I = ∅. This means that Equations (5)–(6) cannot
justify satr, while satr ∈ I ′ as I ′ would not be an answer set
otherwise. Since satr ∈ I ′ is not founded, I ′ is not an answer
set of F(ΠH,ΠG), which contradicts our assumption.

The other case is that an atom h ∈ I is not founded. Due
to tightness, this translates to h not being justified by any rule.
We only need to consider the rules R(h) = {r ∈ G(Π) |
{h} = Hr}. For any r ∈ R(h), B+

r ̸⊆ I or B−r ∩ I ̸= ∅
holds. As we assume that h is founded in I ′, it is justi-
fied by F(ΠH,ΠG). However, h cannot be justified by any
r ∈ G(ΠG), due to Equation (1). So h must be justified
by Equations (2)–(3), and consequently h′ ∈ I ′ for some
r ∈ ΠH s.t. G(r) ∩R(h) ̸= ∅. As I ′ is an answer set, we
require that justr ∈ I ′, while Equation (16) cannot justify
justr. Since litp cannot be justified by Equations (13)–(14)
for at least one p ∈ Br, Equation (15) cannot justify justr
either. Since justr ∈ I ′ is not founded, I ′ is not an answer
set of F(ΠH,ΠG), which contradicts our assumption.

Grounding Size Bound. We proceed to bound the grounding
size of FastFound. Let Π be a tight normal program, and
consider the FastFound reduction F(Π, ∅). We denote the
maximum head arity by ah = maxr∈Π,h(X)∈Hr

|X|, and
the maximum body arity by aB = maxr∈Π,p(X)∈Br

|X|.
Further, let a = max{ah, aB} be the maximum arity, α =
max{ah + 1, aB}, and observe that a+ 1 ≥ α.

Theorem 2 (Grounding Size). Let Π be a tight normal
program. Then, the grounding size of F(Π, ∅) is in
O (|Π| · | dom(Π)|α).

3https://github.com/alexl4123/newground
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Equations (1)–(9) are unchanged
Foundedness Equations (10)–(19) are replaced by:⋁︂
d∈dom(x)

fvarh,x(d)← for every r ∈ ΠH, h(X) ∈ Hr, x ∈ X (20)

1{bfvarh,y(d1,D), . . . , bfvarh,y(dk,D)}1← h′(D) for every r ∈ ΠH, h(X) ∈ Hr,D ∈ dom(X), y ∈ var(r) \X,
dom(y) = {d1, ..., dk} (21)

fvarh,y(d)← bfvarh,y(d,D), fvarh,x1(d1), . . . , fvarh,xt(dt) for every r ∈ ΠH, h(X) ∈ Hr,X = ⟨x1, . . . , xt⟩,
D = ⟨d1, . . . , dt⟩,D ∈ dom(X), y ∈ var(r) \X, d ∈ dom(y) (22)

lith,p ← fvarh,x1(D⟨x1⟩), . . . , fvarh,xt(D⟨xt⟩), p(D) for every r ∈ ΠH, h ∈ Hr, p(X) ∈ B+
r ,D ∈ dom(X),X=⟨x1, . . . , xt⟩

(23)
lith,p ← fvarh,x1(D⟨x1⟩), . . . , fvarh,xt(D⟨xt⟩),¬p(D) for every r ∈ ΠH, h ∈ Hr, p(X) ∈ (B−

r ∪ (Hr \ {h})),
D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (24)

justhi,r
← lithi,pl+1 , . . . , lithi,pm , lithi,pm+1 , . . . , lithi,pn , for every r ∈ ΠH, Hr = {h1, . . . , hi, . . . , hl}, B+

r = {pl+1, . . . , pm},
lithi,h1 , . . . , lithi,hi−1 , lithi,hi+1 , . . . , lithi,hl B−

r = {pm+1, . . . , pn} (25)

justh,r ← fvarh,x1(D⟨x1⟩), . . . , fvarh,xt(D⟨xt⟩),¬h
′(D) for every r ∈ ΠH, h(X) ∈ Hr,D ∈ dom(X),X = ⟨x1, . . . , xt⟩ (26)

just← justh11
,r1

, . . . , justhl1
,r1

, . . . , justh1n ,rn
, . . . , justhln ,rn

let ΠH = {r1, . . . , rn}, ∀ri ∈ ΠH : Hri = {h1i , . . . , hli} (27)

fvarh,x(d)← just for every r ∈ ΠH, h(X) ∈ Hr, x ∈ X, d ∈ dom(x) (28)
← ¬just (29)

Figure 2: Adapted FastFound reduction FH(ΠH,ΠG) for a given tight HCF program Π that is partitioned into ΠH and ΠG . The resulting
grounding size of FH(Π, ∅) is in O

(︁
h · |Π| · |dom(Π)|a+1

)︁
.

Proof. Equations (9) and (19) have a grounding size that is
in O(1). Equations (7), (15), and (17) have a grounding size
that is in O(|Π|). Equations (4), (8), (10), and (18) have a
grounding size that is in O(|Π| · | dom(Π)|). Equations (2),
(3), (5), (6), (13), (14), and (16) have a grounding size that
is in O(|Π| · | dom(Π)|a). Equations (11) and 12) have a
grounding size that is in O(|Π| · | dom(Π)|ah+1).

So, O
(︁
|Π| · | dom(Π)|max{ah+1,a})︁ is the grounding

size. As max{ah+1, a} = max{ah+1,max{ah, aB}} =
max{ah+1, aB} = α, we obtain O (|Π| · | dom(Π)|α).

As a+ 1 ≥ α, we write O
(︁
|Π| · | dom(Π)|a+1

)︁
for brevity.

Example 5. Recall r3 of Example 1. Observe that ah = 1,
ab = 2, and therefore α = 2. Evidently, FastFound’s ground-
ing size of r3 is ≈ | dom(Π)|2, compared to ≈ | dom(Π)|3
for both BDG and bottom-up grounding. Letting ΠG = {r1}
and ΠH = {r2, r3}, the grounding size of F(ΠH,ΠG) is in
≈ | dom(Π)|2.

3.3 FastFound for Tight HCF Programs
In this section, we extend the FastFound reduction from tight
normal programs to tight HCF programs. Our method is
inspired by the shifting technique (Gelfond et al. 1991) for
ground programs, which transforms HCF rules into normal
rules. Shifting splits an HCF rule r, with l-many head predi-
cates, into l-many rules. Each fresh rule ri has one head pred-
icate {hi(Xi)} = Hri , where the remaining Hr \ {hi(Xi)}
head predicates are moved to the negative body B−ri . Shifting
preserves answer sets for HCF programs (Dechter 1994).

In Figure 2, the FastFound reduction for HCF programs
is shown. On a high level, the tight HCF reduction is sim-
ilar to the tight normal reduction, as we have three parts:

atom guessing, proving satisfiability, and proving founded-
ness. However, due to the nature of atom guessing and the
definition of satisfiability, we do not need to apply shift-
ing to Equations (1)–(9). For satisfiability, this stems from
I ∩ (B−r ∪Hr) ̸= ∅, as we handle rule heads with |Hr| > 1
in Equation (6) as well.

Therefore, we are only required to integrate shifting into
the foundedness part, which translates to a partial application
of shifting, where the rules for foundedness are adapted by
Equations (20)–(29). Intuitively, the new foundedness rules
incorporate the shifting idea into FastFound (for non-ground
programs) by indexing predicates with the head predicates.

Equations (20)–(22) and (28) index the respective predi-
cates on a per-head predicate basis h(X) ∈ Hr, while Equa-
tion (29) stays. Equations (23) and (26) treat h(X) from the
head Hr, while Equation (24) considers all Hr \ {h(X)} as
a negative body predicate. Lastly, Equation (25) requires all
Hr \{h(X)} predicates to hold, and Equation (27) is adapted
to check all rules and heads.
Theorem 3 (Correctness). Let Π be a tight HCF program
and ΠH ∪ΠG be a partition thereof. Then, the answer sets
of FH(ΠH,ΠG), given by Figure 2, restricted to HB(Π) bi-
jectively match the answer sets of G(Π).

Proof (Sketch). We proceed analogously to the proof of The-
orem 1. Here we present the idea, while a more detailed
proof is given in the supplementary material.

(i): Let I be an answer set of G(Π), from which we con-
struct I ′ = I ∪ SAT ∪ FOUND. SAT is constructed in
the same way as in the proof of Theorem 1, whereas the
construction of FOUND needs adaptation. We need to pay
special attention to include the proper indexing and to the
definition of LITS. For the construction, we then show that
I ′ is indeed an answer set of FH(ΠH,ΠG) by arguing that

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

105



I ′ is a model as well as a minimal model of FH(ΠH,ΠG)
I′

,
as I would not be an answer set of G(Π) otherwise.

(ii): Similarly to the proof of Theorem 1, let I ′ be an an-
swer set ofFH(ΠH,ΠG) and I = I ′∩HB(Π). As the shifted
program ΠS is normal, it suffices to show that all rules of ΠS

are satisfied and all atoms in I are founded. Towards a contra-
diction, we assume that I is not an answer set of ΠS , which
means that some rule of ΠS is not satisfied or some atom in
I is not founded. However, either condition contradicts our
assumption that I ′ is an answer set of FH(ΠH,ΠG).

We proceed by stating our grounding size bound of Fast-
Found for HCF programs. Let the maximum head arity be
ah, the maximum body arity be aB , the maximum arity be a,
and α be defined as in the tight normal case. Further, let h =
maxr∈Π |Hr| be the maximum number of head predicates.

Theorem 4 (Grounding Size). Let Π be a tight HCF
program. Then, the grounding size of FH(Π, ∅) is in
O (h · |Π| · | dom(Π)|α).

Proof (Sketch). We obtain the same arities as for F . How-
ever, Equations (20)–(26) and (28) can occur h-many
times.

3.4 FastFound for Normal Programs
For a normal program Π, we must additionally prevent cyclic
derivations, where FastFound relies on level mappings (Jan-
hunen 2006). We briefly sketch their integration, saying that
an SCC S is non-tight whenever |S| ≥ 2. Level mappings
are required whenever there is a non-tight SCC S with some
predicate p ∈ S s.t. RULES(p)∩ΠH ̸= ∅. We construct level
mappings for any two atoms p1(D1), p2(D2) ∈ S, where
we guess whether p1(D1) is derived before p2(D2), denoted
by [p1(D1) ≺ p2(D2)], or the contrary [p2(D2) ≺ p1(D1)].
Additionally, we prevent non-transitive derivations, and adapt
the FastFound reduction to require that, for each h ∈ Hr and
p ∈ B+

r , also [p(Dp) ≺ h(Dh)] must hold. For a normal pro-
gram Π partitioned into ΠH and ΠG , we write Flv(ΠH,ΠG)
for FastFound with level mappings.

Theorem 5. Let Π be a normal program and ΠH ∪ΠG be a
partition thereof. Then, the answer sets of Flv(ΠH,ΠG) re-
stricted to HB(Π) match the answer sets of G(Π).

Proof (Sketch). On a high level, we proceed as in the proof
of Theorem 1. In the construction of (i), we must additionally
include the [p(Dp) ≺ h(Dh)] predicates and argue that no
cyclic derivations can occur. In (ii), we proceed with a proof
by contradiction and the additional case of cyclic derivations
for I not being an answer set. See the supplementary material
for details.

We obtain the following result on grounding size. Let Π
be a normal program, D be the (positive) dependency graph
of Π, SCC(Π) be the SCCs of D, and SCCnt(Π) = {S ∈
SCC(Π) | |S| > 1} be the non-trivial SCCs. Further, let
α be defined as previously, β = 3 ·maxS∈SCCnt(Π),p∈S |p|,
and γ = max{α, β}.
Theorem 6. Let Π be a normal program. Then, the ground-
ing size of Flv(Π, ∅) is in O (|Π| · |dom(Π)|γ).

Proof (Sketch). We proceed analogously to Theorem 2. De-
tails are given in the supplementary material.

As 3 ·a ≥ γ, we writeO
(︁
|Π| · |dom(Π)|3·a

)︁
. FastFound can

also be extended to HCF programs by incorporating level
mappings into Figure 2.

4 Interoperability With Disjunctions
We define conditions for interoperability of FastFound when
using non-ground disjunctive programs. So far, no results
for interoperability of BDG with non-ground disjunctive pro-
grams were known.

Recall that the computational complexity of the answer set
existence problem under bounded predicate arities for non-
ground HCF/normal programs is ΣP

2 -complete. However, the
complexity of the answer set existence problem increases to
ΣP

3 -completeness for non-ground full disjunctive programs
(Eiter et al. 2007). Therefore, an adaptation of the FastFound
reduction that is applicable to non-ground full disjunctive
programs in general is highly unlikely. Still, we are able to
define conditions under which an application to parts of a
non-ground disjunctive program is possible.

Example 6. Consider the non-ground disjunctive program
Π displayed in the next listing, where H and K are arbi-
trary (integer) constants. The rules in Lines 1–2 define a toy
saturation example over predicates a, z, and disj. As input,
we assume a graph instance defined by predicate e (Line 1).
Lines 3–4, which we denote as r3 and r4, respectively, guess
subgraphs defined by predicate f , where predicate d derives
vertices of cliques of size greater or equal to 3.

1 a(1)|..|a(K). {z(1);..;z(K)}. e(1,2). .. e(H,K).

2 disj ←a(X), not z(X). a(1) ←disj. .. a(K) ←disj.

3 {f(X,Y)} ←e(X,Y), a(X).

4 d(X1) ←f(X1,X2), f(X1,X3), f(X2,X3).

We show the dependency graph of Π in Figure 3. As predicate
a is part of a disjunctive rule and a non-tight SCC Sdisj, it
is not clear how FastFound could be applied to Π. However,
the application of FastFound to r4 is beneficial and correct,
due to r4’s effective independence of Sdisj.

adisj f dz e

Figure 3: Dependency graph of Π.

By moving from intuition to computation, we start by
defining the reductionFi, a combination ofFH withFlv . Let
Π be a full disjunctive program, ΠH∪ΠG = Π be a partition,
and ΠFH

∪ ΠFlv = ΠH be another partition. In the latter
partition, ΠFlv is the set of rules occurring in non-tight normal
SCCs, ΠFlv = {r ∈ ΠH | {h} = Hr, ∀p ∈ SCC(Π, h).
∀r′ ∈ RULES(p) : |Hr′ | ≤ 1}, and ΠFH

= ΠH \ ΠFlv is
the rest. In our theorem, we require conditions on ΠH. Then,
we define Fi(ΠH,ΠG) by Fi(ΠH,ΠG) = Flv(ΠFlv ,ΠG) ∪
FH(ΠFH

, ∅).
Theorem 7. (Interoperability for Full Disjunctive ASP) Let
Π be a disjunctive program and ΠH ∪ ΠG be a partition
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Scenario Instances gringo idlv BDG FastFound

S M T S M T S M T S M T

Total-SUM 240 23 182 35 29 182 29 54 153 33 75 131 34

CN3 40 7 33 0 7 33 0 35 5 0 35 5 0
CC3 40 5 35 0 5 35 0 5 35 0 17 23 0
CC4 40 1 39 0 1 39 0 3 37 0 13 27 0
CP3 40 5 35 0 5 35 0 4 36 0 3 37 0
CP4 40 1 39 0 1 39 0 1 39 0 2 38 0
LS(N ×N) 40 4 1 35 10 1 29 6 1 33 5 1 34

Table 1: Numbers of solved instances (S), memouts (M), and timeouts (T) for each scenario, comparing gringo, idlv, BDG, and FastFound.
Timeouts occur after 1800s, and memouts occur if the RAM usage exceeds 10GB.

s.t., for each r ∈ ΠH and p ∈ Hr, at least one of these two
conditions holds:

1. | SCC(Π, p)| = 1, or
2. S = SCC(Π, p) and ∀q ∈ S.∀r ∈ RULES(q): |Hr| ≤ 1.

Then, the answer sets of Fi(ΠH,ΠG) restricted to HB(Π)
bijectively match the answer sets of G(Π).
Proof (Sketch). The outline of the proof is similar to the
proof of Theorem 1, while details are given in the supple-
mentary material. We prove both sides of the bijection: (i)
every answer set of G(Π) has a corresponding answer set
of Fi(ΠH,ΠG), and (ii) every answer set of Fi(ΠH,ΠG)
restricted to HB(Π) is an answer set of G(Π).

(i): Let I be an answer set of G(Π), from which we con-
struct I ′ = I∪SAT∪FOUND. Special care must be taken
for the construction of FOUND, as due to our conditions,
any rule r ∈ ΠH can be tight normal, normal, or HCF, where
either FH or Flv is selectively applied. It remains to show
that I ′ is indeed an answer set ofFi(ΠH,ΠG) by arguing that
I ′ is a model as well as a minimal model of Fi(ΠH,ΠG)

I′
.

(ii): We show that, for any answer set I ′ of Fi(ΠH,ΠG),
I = I ′ ∩HB(Π) is an answer set of G(Π). As Π is a full dis-
junctive program, we cannot directly reuse the satisfiability
and foundedness arguments from the prior proofs to establish
that I is a minimal model of G(Π)I . Towards a contradiction,
we assume that I is not an answer set of G(Π), where we
consider the two cases that I is not a model or no minimal
model of G(Π)I . The first case is analogous to the satisfia-
bility part in the proof of Theorem 1. In the second case, we
pay special attention to the disjunctive rules of Π.

Note that the conditions for interoperability of FastFound
carry over to BDG (Besin, Hecher, and Woltran 2022).

Example 7. We illustrate the application of Theorem 7
on the program Π from Example 6. Let ΠH = {r4}
and ΠG = Π \ ΠH. As | SCC(Π, d)| = 1, FastFound
can be used to ground Fi(ΠH,ΠG). Further, observe that
| SCC(Π, disj)| = | SCC(Π, a)| = 2, while it is 1 for all
other (head) predicates occurring in ΠG .

5 Experiments
We demonstrate the viability of FastFound by conducting
experiments. Therefore, we implemented the tight FastFound

Scenario gringo idlv BDG FastFound

CN3 3 3 2 2
CC3 3 3 3 2
CC4 4 4 3 2
CP3 3 3 3 3
CP4 4 4 4 3

LS(N ×N ) 4N − 1 ≈ N + 1 5 4

Table 2: Asymptotic grounding sizes of the instances for gringo,
idlv, BDG, and FastFound, where table entries show the exponent
c of O (|Π| · | dom(Π)|c).

reduction in our prototype newground, which is written in
Python (version 3.12.1). We restrict our analysis to compar-
ing grounding-heavy scenarios.

Benchmark System. We compare gringo (version 5.7.1),
idlv (version 1.1.6), BDG (with newground version
3.0.0), and FastFound (with newground version 3.0.0). As
ASP solver, we run clingo (version 5.7.1) with clasp
(version 3.3.10). For both BDG and FastFound, we take
gringo as the standard grounder. Our benchmark system
has 225GB RAM and an AMD Opteron 6272 CPU with 16
cores, operated by Debian 10 OS (kernel 4.19.0-16-amd64).

Benchmark Setup. We measure grounding time, grounding
size, ram usage, and combined time (grounding and solving).
The grounding performance was evaluated in a separate run.
We consider instances as a TIMEOUT whenever a system
takes more than 1800s (grounding or combined time), and a
MEMOUT in case RAM usage or grounding size exceeds 10
GB. We set a fixed seed for clingo (11904657) and ensured
that each experiment is run on a separate physical processor,
to obtain near-deterministic results.

Benchmarks Scenarios. We take grounding-heavy bench-
marks adapted from BDG (Besin, Hecher, and Woltran 2022)
and hybrid grounding experiments (Beiser et al. 2024), which
we adapt for normal rules. These scenarios take a graph as
input, where we generate complete graphs ranging from in-
stance size 50 to 2000 with step increases of 50. In more
detail, we benchmark the scenarios of constrained cliques
(CN3), counting cliques (CC3, CC4), and counting paths
(CP3, CP4). In addition, we encode latin squares (LS) with
long rules, where latin squares are of the size N×N , ranging
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(b) Solving profile for the CC3 scenario.
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(d) Solving profile for the CC4 scenario.

Figure 4: Cactus plots (Figures 4a and 4c) and solving profiles (Figures 4b and 4d), comparing gringo, idlv, BDG, and FastFound.

from N = 1 to N = 40. For each scenario, ΠH contains a
single grounding-heavy rule, whereas ΠG = Π\ΠH. Table 2
shows asymptotic grounding sizes, where we assume that
structural rewritings are used for idlv (Calimeri et al. 2018;
Bichler, Morak, and Woltran 2016). Also note that, for these
scenarios, ProASP (Dodaro, Mazzotta, and Ricca 2024) is
not applicable due to syntax restrictions.
Hypotheses. We expect to observe the following behavior:

H1 FastFound is able to solve previously ungroundable in-
stances on grounding-heavy scenarios.

H2 If asymptotic grounding sizes of FastFound, BDG, and
bottom-up solvers match, bottom-up systems solve more
instances than BDG, which still outperforms FastFound.

Experiment Results and Discussion. We show overall re-
sults, cactus plots, and solving profiles in Table 1 and Fig-
ure 4. Overall, FastFound solves the most instances (75),
which is followed by BDG (54), idlv (29), and gringo
(23). Figures 4b and 4d show that FastFound is able to solve
larger instances of the counting cliques scenarios CC3 and
CC4 than gringo, idlv, and BDG. Further, the cactus plot
in Figure 4c exhibits a reduced increase in RAM usage of
FastFound in comparison to the other grounders. Relating
this to Figure 4a, we observe that excessive RAM usage is
indeed the main reason for solving failures, confirming H1.

Regarding H2, let us inspect the scenario CP3, where
the asymptotic grounding sizes of gringo, idlv, BDG,

and FastFound match. Here, gringo and idlv solve 5
instances, whereas BDG and FastFound solve 4 or 3 instances,
respectively. Accordingly, we can confirm H2 as well.

The main conclusion of H1 and H2 is that only an informed
usage of BDG or FastFound is beneficial. Ideally, the decision
which rules to include in ΠH should be made automatically
by a decision heuristic. We expect this to be embeddable into
standard grounders.

6 Discussion and Conclusion
Alternative grounding techniques show promising results.
However, using some of them, e.g., BDG, still remains a
challenge. In this paper, we introduce FastFound: an al-
ternative BDG foundedness check that avoids the quadratic
increase of grounding size for normal rules. We extend the ba-
sic FastFound reduction from tight normal programs to HCF
programs, and then further to the non-tight case. Addition-
ally, we obtain novel interoperability results for FastFound
on full disjunctive programs. We implemented FastFound in
our newground prototype, which shows promising results
on grounding-heavy benchmarks. Future research should
investigate the challenging issue of programs with high-arity
predicates and a symbiosis with lazy grounding.
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