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Abstract

Standpoint linear temporal logic (SLTL) is a recently intro-
duced extension of linear temporal logic (LTL) with stand-
point modalities. Intuitively, these modalities allow to ex-
press that, from agent a’s standpoint, it is conceivable that a
given formula holds. Besides the standard interpretation of
the standpoint modalities, we introduce four new semantics,
which differ in the information an agent can extract from the
history. We provide a general model checking algorithm ap-
plicable to SLTL under any of the five semantics. Further
we analyze the computational complexity of the correspond-
ing model checking problems, obtaining PSPACE-complete-
ness in three cases, which stands in contrast to the known
EXPSPACE-completeness of the SLTL satisfiability problem.

1 Introduction
Automated reasoning about the dynamics of scenarios in
which multiple agents with access to different informa-
tion interact is a key problem in artificial intelligence and
formal verification. Epistemic temporal logics are promi-
nent, expressive formalisms to specify properties of such
scenarios (see, e.g., (Halpern and Vardi 1986; Halpern
1986; Fagin et al. 2004; Bozzelli, Maubert, and Murano
2024)). The resulting algorithmic problems, however, of-
ten have non-elementary complexity or are even undecidable
(see, e.g., (van der Meyden and Shilov 1999; Dima 2009;
Bozzelli, Maubert, and Murano 2024)).

Aiming to balance expressiveness and computational
tractability, (Álvarez and Rudolph 2021; Alvarez 2020) de-
fines static standpoint logics that extend propositional logic
with modalities ⟨⟨a⟩⟩ϕ expressing that “according to agent
a, it is conceivable that ϕ” and the dual modalities [[a]]ϕ
expressing that “according to a, it is unequivocal that ϕ”.
Standpoint logics and their extensions have proven useful
to, e.g., reason about inconsistent formalizations of concepts
in the medical domain to align different ontologies and in a
forestry application, where different sources disagree about
the global extent of forests (Álvarez and Rudolph 2021;
Alvarez 2020; Alvarez, Rudolph, and Strass 2022).

Recently introduced combinations of linear temporal
logic (LTL) with standpoint modalities (Gigante, Gómez Al-
varez, and Lyon 2023; Demri and Walega 2024) enable
reasoning about dynamical aspects of multi-agent systems.
Enriching standpoint logic with a temporal dimension is

essential for applications, e.g., in the verification of net-
work and communication protocols or distributed systems.
The focus of (Gigante, Gómez Alvarez, and Lyon 2023;
Demri and Walega 2024) is the satisfiability problem for the
resulting standpoint LTL (SLTL). In this paper, we consider
the model-checking problem that asks whether all execu-
tions of a transition system satisfy a given SLTL-formula.
To the best of our knowledge, this problem has not been ad-
dressed in the literature.

Whether the formula ⟨⟨a⟩⟩ϕ holds after a finite history,
that is, whether agent a finds it plausible that ϕ holds in
the future, depends on a’s standpoint and on what was ob-
servable to a in the past. To illustrate this, consider a situ-
ation in which different political agents have different per-
ceptions of how actions taken by the state influence future
developments.These perceptions are the standpoints of the
agents. After a series of events (i.e., a history), agents con-
sider different future developments possible, depending on
their standpoint and the parts of the history they are aware of.
When reasoning about each other’s standpoints, information
might be exchanged in various ways. For example, during
a discussion, agents may uncover previously unknown parts
of the history or choose to disregard others’ observations.

Besides the semantics for SLTL proposed in (Gigante,
Gómez Alvarez, and Lyon 2023; Demri and Walega 2024),
we introduce four additional semantics that differ in the
amount of information agent a can access from the history
and how information is transferred between agents. To for-
malize these semantics, we use the natural standpoint-logic
approach with separate transition systems Ta describing the
executions that are consistent with a’s standpoint as in (Gi-
gante, Gómez Alvarez, and Lyon 2023; Demri and Walega
2024), together with a main transition system T modeling
the actual system. Unlike (Gigante, Gómez Alvarez, and
Lyon 2023; Demri and Walega 2024), we assume the labels
of the states in Ta to be from a subset Pa of the set P of
atomic propositions of T . The difference from the use of
indistinguishability relations ∼a over states of one transition
system for all agents a ∈ Ag, common in epistemic temporal
logics, is that in LTLK they may be arbitrary equivalence re-
lations unrelated to the atomic propositions, making the em-
bedding of LTLK (without common knowledge) into SLTL
challenging, despite the reverse being straightforward.

Under all five semantics, the intuitive meaning of ⟨⟨a⟩⟩ϕ is
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that there is a state s in Ta, which is one of the potential cur-
rent states from agent a’s view of the history, and a path π

in Ta from s such that π satisfies ϕ when a makes nondeter-
ministic guesses for truth values of the atomic propositions
outside Pa. Informally, the different semantics are:
– The step semantics |=step agrees with the semantics pro-
posed in (Gigante, Gómez Alvarez, and Lyon 2023; Demri
and Walega 2024). It assumes that only the number of steps
performed in the past are accessible to the agents.
– The pure observation-based semantics |=pobs is in the spirit
of the perfect-recall LTLK (LTL extended with knowledge
operators) semantics of (Bozzelli, Maubert, and Murano
2024) where a can access exactly the truth values of the
atomic propositions in Pa from the history. We provide
an embedding of the pure observation-based semantics into
LTLK. So, the same application domains as for LTLK such
as multi-agent systems (Fagin et al. 2004) are applicable in
our setting. The restriction imposed by SLTL structures that
the indistinguishability relation of each agent a is given by a
set of atomic proposition Pa in contrast to an arbitrary indis-
tinguishability relation in LTLK structures is quite natural.
–The public-history semantics |=public can be seen as a
perfect-recall variant of the LTLK semantics where all
agents have full access to the history. It models agents shar-
ing a knowledge base but using different future-prediction
policies. This framework naturally extends to settings where
agents share identical observations, such as a comprehensive
medical dataset on the COVID-19 pandemic, yet adopt rad-
ically different interpretations of the data. For example, one
agent might interpret epidemiological statistics and clinical
reports as evidence that COVID-19 is a hoax, while another
uses scientifically grounded inference rules on the same
data to assess the pandemic’s real-world impacts. Public-
history semantics thus makes it possible to reason about both
common data access and heterogeneous prediction policies
within a single unified model.
– The incremental semantics |=incr is as |=decr, but under the
assumption that standpoint subformulas ⟨⟨b⟩⟩ψ of a stand-
point formula ⟨⟨a⟩⟩ϕ are interpreted from the view of the
coalition {a,b}, i.e., that a can access the atomic proposi-
tions in Pa ∪Pb to determine what agent b knows from the
history. This models scenarios in which information is ac-
tively exchanged between agents. For example, in negotia-
tions between two countries, where each country has access
only to a part of the intelligence information, incremental
semantics can help model the exchange of information and
the gradual improvement of understanding of the situation,
while decremental semantics can model how each country
draws conclusions based solely on common observations.
So, as potential applications, we can highlight the modeling
of conflicts and negotiations.
– The decremental semantics |=decr is a variant of |=pobs in
which standpoint subformulas ⟨⟨b⟩⟩ψ inside a formula ⟨⟨a⟩⟩ϕ
are interpreted from the perspective of agent a. While a
knows the transition system of agent b, it can only access the
atomic propositions in Pa ∩Pb to guess what b knows from
the history. That is, to make a guess on the current state of
b’s transition system Tb, agent a may only use the atomic
propositions in the intersection rather than the full set Pb.

For example, consider autonomous vehicles that share some
sensors, but each also has access to sensors unavailable to
the others. If the vehicles make decisions solely based on
the values of the common sensors, the decremental seman-
tics applies as each agent must reason based on overlapping
knowledge only. In contrast, under incremental semantics
agents share both common and individual sensor data, so
access to the combined observations lets them refine their
understanding beyond individual inference.

The decremental and incremental semantics share ideas of
distributed knowledge and the “everybody knows” operator
of epistemic logics (Fagin et al. 2004).

Main Contributions. Besides introducing the four new
semantics for SLTL (Section 3), our main contributions are
– a generic model-checking algorithm that is applicable for
all five semantics (Section 4)
– complexity-theoretic results for the model checking prob-
lem of SLTL under the different semantics (Section 5). More
precisely we show PSPACE-completeness for full SLTL un-
der |=step and |=public, and for SLTL formulas of alternation
depth 1 under |=pobs, |=decr and |=incr. This stands in contrast
to the EXPSPACE-completeness of the satisfiability prob-
lem for SLTL under the step semantics (Demri and Walega
2024). Furthermore, our results yield an EXPTIME up-
per bound for |=decr. The same holds for |=pobs under the
additional assumption that the Pa’s are pairwise disjoint.
We show that SLTL under all five semantics can be em-
bedded into LTLK. For the case of |=incr, the embedding
yields an (N−1)-EXPSPACE upper bound where N = |Ag|.
For the case of |=pobs and the SLTL fragment of alternation
depth at most d, the embedding into LTLK implies (d−1)-
EXPSPACE membership.

While our algorithm builds on ideas from the LTLK
model-checking algorithm in (Bozzelli, Maubert, and Mu-
rano 2024) (and even for CTL*K), it exploits the simpler
nature of SLTL compared to LTLK and generates smaller
history-automata than those that would have been con-
structed when applying iteratively the powerset construc-
tions of (Bozzelli, Maubert, and Murano 2024). As such, our
algorithm can be seen as an adaption of (Bozzelli, Maubert,
and Murano 2024) that takes a more fine-grained approach
for the different SLTL semantics resulting in the different
complexity bounds described above.

Omitted proofs can be found in the full version (Aghamov
et al. 2025).

2 Preliminaries
Throughout the paper, we assume some familiarity with lin-
ear temporal logic interpreted over transition systems and
automata-based model checking, see e.g. (Clarke et al. 2018;
Baier and Katoen 2008).

Notations for Strings. Given an alphabet Σ, we write Σ∗

for the set of finite strings over Σ, Σω for the set of infinite
strings over Σ and Σ∞ for Σ∗∪Σω . As usual, Σ+ = Σ∗ \{ε}
where ε denotes the empty string. Given a (in)finite string
ς = H0 H1 . . .Hn or ς = H0 H1 . . . over Σ, let first(ς) = H0. If
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ς =H0 . . .Hn is finite then last(ς)=Hn. For i, j ∈N, ς [i . . . j]
denotes the substring Hi . . .H j if i ⩽ j (and assuming j ⩽ n if
ς is a finite string of length n) and ς [i . . . j] = ε if i > j. If i =
j then ς [i . . . i] = ς [i] = Hi. So, ς [0 . . . j] denotes the prefix
H0 . . .H j. If ς is infinite then ς [ j . . .∞] = H j H j+1 H j+2 . . ..

If Σ = 2P is the powerset of P and R ⊆ P then the pro-
jection function |R : (2P)∞ → (2R)∞ is obtained by applying
the projection 2P → 2R, H 7→ H ∩ R, elementwise, i.e., if
ς = H0 H1 H2 . . . then ς |R = (H0 ∩R)(H1 ∩R)(H2 ∩R) . . ..

Transition Systems. A transition system is a tuple T =
(S,→, Init,R,L) where S is a finite state space, → ⊆ S× S
a total transition relation (where totality means that every
state s has at least one outgoing transition s → s′), Init ⊆ S
the set of initial states, R a finite set of atomic propositions
and L : S → 2R the labeling function. If Init is a singleton,
say Init = {init}, we simply write T = (S,→, init,R,L).

A path in T is a (in)finite string π = s0 s1 . . .sn ∈ S+ or
π = s0 s1 s2 . . .∈ Sω such that si → si+1 for all i. π is initial if
first(π) ∈ Init. The trace of π is trace(π) = L(s0)L(s1) . . . ∈
(2R)+∪ (2R)ω . If s ∈ S then Paths(T ,s) contains all infinite
paths in T starting in s and Traces(T ,s) = {trace(π) : π ∈
Paths(T ,s)}. If P is a superset of R then

TracesP(T ,s) =
{

ρ ∈
(
2P

)ω : ρ|R ∈ Traces(T ,s)
}

.

Thus, Traces(T ,s)⊆ (2R)ω , while TracesP(T ,s)⊆ (2P)ω .
Moreover, Paths(T ) =

⋃
s∈Init Paths(T ,s). Traces(T ) and

TracesP(T ) have the analogous meaning. If h ∈ (2P)+ then
Reach(T ,h) denotes the set of states s in T that are reach-
able from Init via a path π with trace(π) = h|R.

Linear Temporal Logic (LTL). The syntax of LTL over
P is given by (where p ∈ P):

ϕ ::= true
∣∣ p

∣∣ ¬ϕ
∣∣ ϕ1 ∧ϕ2

∣∣ ⃝ϕ
∣∣ ϕ1 Uϕ2

Other Boolean connectives are derived as usual, e.g., ϕ1 ∨
ϕ2 = ¬(¬ϕ1 ∧¬ϕ2). The modalities ♢ (eventually) and □
(always) are defined by ♢ϕ = trueUϕ and □ϕ = ¬♢¬ϕ .
The standard LTL semantics is formalized by a satisfaction
relation |=LTL where formulas are interpreted over infinite
traces (i.e., elements of (2P)ω ), see e.g. (Clarke et al. 2018;
Baier and Katoen 2008). An equivalent semantics can be
provided using a satisfaction relation |= that interprets for-
mulas over trace-position pairs (ρ,n) ∈ (2P)ω ×N such that
(ρ,n) |= ϕ iff ρ[n . . .∞] |=LTL ϕ .

We use here an equivalent formalisation of the seman-
tics of LTL (and later its extension SLTL) that interprets
formulas over future-history pairs ( f ,h) ∈ (2P)ω × (2P)+

with last(h) = first( f ), see the upper part of Figure 1 where
f [1 . . .0] = ε . Then, f |=LTL ϕ iff ( f ,first( f )) |= ϕ . For in-
terpreting LTL formulas, the history is irrelevant: f |=LTL ϕ

iff ( f ,first( f )) |= ϕ iff ( f ,h) |= ϕ for some h with last(h) =
first( f ) iff ( f ,h) |= ϕ for all h with last(h) = first( f ).

If T = (S,→, Init,R,L) is a transition system with R ⊆ P
and ϕ an LTL formula over P then T |=LTL ϕ iff f |=LTL ϕ for
each f ∈ TracesP(T ). SatT (∃ϕ) denotes the set of states
s ∈ S where { f ∈ TracesP(T ,s) : f |=LTL ϕ} ̸=∅.

3 SLTL: LTL with Standpoint Modalities
Standpoint LTL (SLTL) extends LTL by standpoint modali-
ties ⟨⟨a⟩⟩ϕ where a is an agent and ϕ a formula.

3.1 Syntax
Given a finite set P of atomic propositions and a finite set Ag
of agents, say Ag = {a,b, . . .}, the syntax of SLTL formulas
over P and Ag for p ∈ P and a ∈ Ag is given by

ϕ ::= true
∣∣ p

∣∣ ¬ϕ
∣∣ ϕ1 ∧ϕ2

∣∣ ⃝ϕ
∣∣ ϕ1 Uϕ2

∣∣ ⟨⟨a⟩⟩ϕ
The intuitive meaning of ⟨⟨a⟩⟩ϕ is that from agent a’s stand-
point it is conceivable that ϕ will hold, in the sense that there
are indications from a’s view that there is a path starting in
the current state that fulfills ϕ . The dual standpoint modality
is defined by [[a]]ϕ = ¬⟨⟨a⟩⟩¬ϕ and has the intuitive mean-
ing that from the standpoint of a, ϕ is unequivocal. That is,
under a’s view all paths starting in the current state fulfill ϕ .

Formulas of the shape ⟨⟨a⟩⟩ϕ are called standpoint for-
mulas. If ϕ is a SLTL formula, then maximal stand-
point subformulas of ϕ are subformulas that have the form
⟨⟨a⟩⟩φ and that are not in the scope of another stand-
point operator. For example, ϕ = (p ∧⃝χ1) ∨ ψ with
χ1 = ⟨⟨a⟩⟩(⟨⟨b⟩⟩qUr) and ψ = [[c]]⃝ (r∧ ⟨⟨a⟩⟩pU⟨⟨a⟩⟩q) has
two maximal standpoint subformulas, namely χ1 and χ2 =
⟨⟨c⟩⟩¬⃝ (r∧⟨⟨a⟩⟩pU⟨⟨a⟩⟩q).

The alternation depth ad(ϕ) of ϕ is the maximal number
of alternations between standpoint modalities for different
agents. E.g., ad(⟨⟨a⟩⟩(p∧⃝[[b]]q)) = 2, while ad(⟨⟨a⟩⟩(p∧
⃝[[a]]q)) = ad(⟨⟨a⟩⟩p∧⃝[[b]]q) = 1 if a ̸= b. Formally:
Definition 3.1. The alternation depth of SLTL formulas is
defined inductively:
• ad(true) = ad(p) = 0 for p ∈ P,
• ad(ϕ1 ∧ϕ2) = ad(ϕ1 Uϕ2) = max{ad(ϕ1),ad(ϕ2)},
• ad(¬ϕ) = ad(⃝ϕ) = ad(ϕ).
For standpoint formulas φ = ⟨⟨a⟩⟩ϕ , the definition of ad(φ)
is as follows. If ϕ is an LTL formula then ad(⟨⟨a⟩⟩ϕ) = 1.
Otherwise let χ1 = ⟨⟨b1⟩⟩ψ, . . . ,χk = ⟨⟨bk⟩⟩ψk be the maximal
standpoint subformulas of ϕ . We may suppose an enumer-
ation such that a = b1 = . . . = bℓ and a /∈ {bℓ+1, . . . ,bk}.
Then, ad(φ) is the maximum of max{ad(χi) : i = 1, . . . , ℓ}
and max{ad(χi) : i = ℓ+1, . . . ,k}+1.

Each SLTL formula over a singleton agent set Ag = {a}
has alternation depth at most 1. For d ∈N, let SLTLd denote
the sublogic of SLTL where all formulas ϕ satisfy ad(ϕ)≤
d. In particular, SLTL0 is LTL.
Remark 3.2. The original papers (Gigante, Gómez Alvarez,
and Lyon 2023; Demri and Walega 2024) on standpoint LTL
have an additional type of formula a ⪯ b where a,b ∈ Ag.
The intuitive semantics of a ⪯ b is that the standpoint of
a is sharper than that of b. In our setting, where we are
given transition systems for a and b, formulas a ⪯ b are ei-
ther true or false depending on whether the set of traces of
the transition system representing a’s view is contained in
the set of b’s traces or not. As the trace inclusion problem
is PSPACE-complete (Kanellakis and Smolka 1990) like the
LTL model-checking problem (Sistla and Clarke 1985), the
complexity results of Section 5 are not affected when adding
sharpening statements a ⪯ b to SLTL.
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( f ,h) |= p iff p ∈ f [0]

( f ,h) |= ϕ1 ∧ϕ2 iff ( f ,h) |= ϕ1 and ( f ,h) |= ϕ2

( f ,h) |= ¬ϕ iff ( f ,h) ̸|= ϕ

( f ,h) |=⃝ϕ iff ( f [1 . . .∞],h f [1]) |= ϕ

( f ,h) |= ϕ1 Uϕ2 iff there exists ℓ ∈ N such that ( f [ℓ . . .∞],h f [1 . . . ℓ]) |= ϕ2 and ( f [ j . . .∞],h f [1 . . . j]) |= ϕ1 for all j < ℓ

( f ,h) |= ⟨⟨a⟩⟩ϕ iff there exists h′ ∈ (2P)+, t ∈ Reach(Ta,h′) and f ′ ∈ TracesP(Ta, t) such that last(h′) = first( f ′),
obsa(h) = obsa(h′) and ( f ′,h′) |= ϕ

Figure 1: Satisfaction relation |= for SLTL over future-history pairs ( f ,h) ∈ (2P)ω × (2P)+ with last(h) = first( f ).

3.2 Semantics of SLTL
We consider different semantics of the standpoint modality
that differ in what the agents can observe from the history.

SLTL Structures. SLTL structures are tuples T =(
T0,(Ta)a∈Ag

)
with T0 = (S0,→0, init0,P0,L0) a transition

system over the full set P0 = P of atomic propositions, and
Ta = (Sa,→a, inita,Pa,La) transition systems for the agents
a ∈ Ag over some Pa ⊆ P. For simplicity, we assume these
transition systems to have unique initial states.

Semantics of the Standpoint Modalities. We consider
five different semantics for ⟨⟨a⟩⟩ϕ , using satisfaction re-
lations |=step (step semantics as in (Gigante, Gómez Al-
varez, and Lyon 2023; Demri and Walega 2024)), |=pobs

(pure observation-based semantics which is essentially
the perfect-recall partial information semantics for LTLK
(Bozzelli, Maubert, and Murano 2024) adapted for SLTL
structures), |=public (public-history semantics which are like
a perfect-recall semantics where agents have full informa-
tion about the history), |=Q

decr and |=Q
incr (variants of |=pobs with

decremental resp. incremental knowledge) where Q ⊆ P.
We deal here with an interpretation over future-history

pairs (see Section 2). Let |= be one of the five satisfaction
relations. The semantics of SLTL can be presented in a uni-
form manner as shown in Figure 1. For the dual standpoint
operator we obtain: ( f ,h) |= [[a]]ϕ iff ( f ′,h′) |= ϕ for all
h′ ∈ (2P)+, t ∈ Reach(Ta,h′) and f ′ ∈ TracesP(Ta, t) with
last(h′) = first( f ′) and obsa(h) = obsa(h′).

The five semantics rely on different observation functions
obsa. In all cases, obsa is a projection obsa : (2P)+ →
(2Oa)+, obsa(h) = h|Oa for some Oa ⊆ P. Intuitively, Oa
formalizes which of the propositions are visible to agent a in
the history. (For the decremental and incremental semantics,
both Oa and the induced observation function obsa do not
only depend on a, but on the context of the formula ⟨⟨a⟩⟩ϕ
as will be explained later.) Before presenting the specific
choices of Oa in the five SLTL semantics, we make some
general observations:

Lemma 3.3. If f1, f2 ∈ (2P)ω and h ∈ (2P)+ with last(h) =
first( f1) = first( f2) then ( f1,h) |= ⟨⟨a⟩⟩ϕ iff ( f2,h) |= ⟨⟨a⟩⟩ϕ .

By Lemma 3.3 one can drop the f -component and write
(∗,h) |= ⟨⟨a⟩⟩ϕ when ( f ,h) |= ⟨⟨a⟩⟩ϕ for some (each) future f
with first( f ) = last(h). Truth values of standpoint formulas
⟨⟨a⟩⟩ϕ only depend on agent a’s observation of the history:

Lemma 3.4. If h1,h2 ∈ (2P)+ with obsa(h1)= obsa(h2) then
(∗,h1) |= ⟨⟨a⟩⟩ϕ iff (∗,h2) |= ⟨⟨a⟩⟩ϕ .

Remark 3.5. SLTL structures defined in (Gigante,
Gómez Alvarez, and Lyon 2023; Demri and Walega 2024)
assign to each agent a a nonempty subset λ (a) ⊆ (2P)ω

and assume a universal agent, called *, such that λ (a) ⊆
λ (∗) for all other agents a. The latter is irrelevant for our
purposes. Assuming transition system representations for
the sets λ (a) is natural for the model checking problem.
In contrast to (Gigante, Gómez Alvarez, and Lyon 2023;
Demri and Walega 2024), we suppose here that the stand-
point transition systems Ta are defined over some Pa ⊆ P,
which appears more natural for defining the information
that an agent can extract from the history. In the seman-
tics of ⟨⟨a⟩⟩ϕ , we thus switch from Traces(Ta, t)⊆ (2Pa)ω to
TracesP(Ta, t)⊆ (2P)ω which essentially means that a may
guess the truth values of the atomic propositions in P\Pa to
predict whether ϕ can hold in the future. Alternatively, one
could define SLTL structures as tuples (T0,(Ta,Pa)a∈Ag)
where T0 is as before, the Ta’s are transition systems over
some Ra ⊆ P, and Pa ⊆ Ra where the Pa serves to de-
fine the functions obsa for the histories. With Ra = P and
λ (a) = Traces(Ta), SLTL under |=step agrees with the logic
considered in (Gigante, Gómez Alvarez, and Lyon 2023;
Demri and Walega 2024) (except for sharpening statements;
see Remark 3.2). Our model checking algorithm can eas-
ily be adapted for this more general type of SLTL structures
without affecting our complexity results.

Step Semantics: The semantics of the standpoint modal-
ity ⟨⟨a⟩⟩ϕ introduced in (Gigante, Gómez Alvarez, and Lyon
2023; Demri and Walega 2024) relies on the assumption that
the only information that the agents can extract from the
history is the number of steps that have been performed in
the past. They formulate the semantics in terms of trace-
position pairs (ρ,n) ∈ (2P)ω ×N and define (ρ,n) |= ⟨⟨a⟩⟩ϕ
iff (ρ ′,n) |= ϕ for some ρ ′ ∈ Traces(Ta). Reformulated to
our setting, the set of propositions visible for agent a in the
history is Oa = ∅, which yields the observation function
obsa : (2P)+ → N, obsa(h) = |h|. Formulated for future-
history pairs, ( f ,h) |=step ⟨⟨a⟩⟩ϕ iff there is a word h′ ∈ (2P)+,
a state t ∈Reach(Ta,h′) and a trace f ′ ∈ TracesP(Ta, t) such
that last(h′) = first( f ′), |h|= |h′| and ( f ′,h′) |=step ϕ .

Pure Observation-Based Semantics: In the style of the
(dual of the) classical K-modality in LTLK (Halpern and
Vardi 1986; Halpern and Vardi 1989; Bozzelli, Maubert, and
Murano 2024) (cf. Section 3.3) we can deal with the obser-
vation function that projects the given history h to the obser-
vations that agent a can make when exactly the propositions
in Pa are visible for a. That is, for the pure observation-
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∅{p}{r} ∅ ∅

∅{q}∅ ∅ {r}

Ta

Tb

Figure 2: The transition systems used in Example 3.6.

based semantics, Oa = Pa. Then, ( f ,h) |=pobs ⟨⟨a⟩⟩ϕ iff there
exist a word h′ ∈ (2P)+, a state t ∈ Reach(Ta,h′) and a trace
f ′ ∈ TracesP(Ta, t) such that last(h′) = first( f ′), h|Pa = h′|Pa
and ( f ′,h′) |=pobs ϕ .

Public-History Semantics: In the public-history seman-
tics all agents a have full information about the history h,
i.e., Oa = P and obsa(h) = h. Then, ( f ,h) |=public ⟨⟨a⟩⟩ϕ iff
∃t ∈ Reach(Ta,h) and a trace f ′ ∈ TracesP(Ta, t) such that
last(h) = first( f ′) and ( f ′,h) |=public ϕ .

Decremental Semantics: The decremental semantics is a
variant of the pure observation-based semantics with a dif-
ferent meaning of nested standpoint subformulas: A stand-
point formula ⟨⟨a⟩⟩ϕ interpretes maximal standpoint subfor-
mulas ⟨⟨b⟩⟩ψ of ϕ from the view of agent a. The assumption
is that a knows agent b’s transition system Tb and thus can
make the same guesses for the future as b, but can access
only the truth values of joint atomic propositions in P′

a ∩Pb
from the history to make a guess what b has observed in the
past. Here, P′

a ⊆ Pa is the set of atomic propositions accessi-
ble when interpreting ⟨⟨a⟩⟩ϕ which can itself be a subformula
of a larger standpoint formula ⟨⟨c⟩⟩χ (in which case ⟨⟨a⟩⟩ϕ
is interpreted from the view of agent c and P′

a ⊆ Pc ∩Pa).
Formally, we use a parametric satisfaction relation |=Q

decr for
Q ⊆ P. The intuitive meaning of ⟨⟨a⟩⟩ϕ under |=Q

decr is that
a can extract from the history h exactly the truth values
of the propositions in OQ

a = Q∩Pa. So, ( f ,h) |=Q
decr ⟨⟨a⟩⟩ϕ

iff there exist a word h′ ∈ (2P)+, a state t ∈ Reach(Ta,h′)
and a trace f ′ ∈ TracesP(Ta, t) such that last(h′) = first( f ′),
h|Q∩Pa = h′|Q∩Pa and ( f ′,h′) |=Q∩Pa

decr ϕ . For the satisfaction
over a SLTL structure, we start with Q = P.

Incremental Semantics: The incremental semantics also
relies on a parametric satisfaction relation |=Q

incr where Q ⊆
P. The intuitive meaning of ⟨⟨a⟩⟩ϕ under |=Q

incr is that agent
a can extract from the history h exactly the propositions in
OQ

a = Q ∪ Pa and interpretes ϕ over Q ∪ Pa. Thus, when
interpreting nested standpoint subformulas ⟨⟨b⟩⟩ψ of ⟨⟨a⟩⟩ϕ
then agents a and b build a coalition to extract the infor-
mation from the history. Formally, ( f ,h) |=Q

incr ⟨⟨a⟩⟩ϕ iff
there exist a word h′ ∈ (2P)+, a state t ∈ Reach(Ta,h′)
and a trace f ′ ∈ TracesP(Ta, t) such that last(h′) = first( f ′),
h|Q∪Pa = h′|Q∪Pa and ( f ′,h′) |=Q∪Pa

incr ϕ . For the satisfaction
over a SLTL structure, we start with Q =∅.

Example 3.6. We illustrate the differences between the se-
mantics: Consider two agents a and b with Pa = {p,r},

Pb = {q,r}, the transition system of Figure 2, and formu-
las φu = ⟨⟨a⟩⟩⃝ ⟨⟨b⟩⟩u, with u ∈ P = Pa ∪Pb. As these for-
mulas φu are negation-free and contain only the existential
⟨⟨⟩⟩ modality, satisfaction becomes easier if less restrictive
requirements are imposed on histories. So, for all future-
history pairs ( f ,h), u ∈ {p,q,r} and using the total order
public ≻ incr ≻ pobs ≻ decr ≻ step:

If ( f ,h) |=σ φu and σ ≻ τ then ( f ,h) |=τ φu

where σ ,τ ∈ {public, incr,pobs,decr,step}. Now, we pro-
vide examples where the reverse implications do not hold.
We regard the future-history pair ( f ,h) where h = ∅{p,q}
and f = {p,q}{r}ω .

For φ = ⟨⟨a⟩⟩⃝⟨⟨b⟩⟩r, we have ( f ,h) ̸|=public φ : In the quan-
tification of ⟨⟨a⟩⟩, all possible future traces f ′ have to start
with {p,q}. So, according to Ta, the future has to contain
r in the second position. When evaluating ⟨⟨b⟩⟩, these first
two positions of f ′ have to be respected, i.e., the history un-
der consideration is h′ =∅{p,q}H where H contains r. But
there is no trace in Tb with q in the second and r in the third
position. However, ( f ,h) |=incr φ as we can choose any trace
{p}{r}... as the future trace in the quantification of ⟨⟨a⟩⟩.
This means, the history ∅{p}{r} has to be respected when
evaluating ⟨⟨b⟩⟩. When projecting to Pb, this can be respected
by the trace in Tb satisfying r in the third position.

Next, consider φ = ⟨⟨a⟩⟩⃝⟨⟨b⟩⟩p. Then, ( f ,h) ̸|=incr φ as
the future trace f ′ quantified in ⟨⟨a⟩⟩ starting after one step
in the history cannot have p in the second position because
there is no trace with p in the third position in Ta. In the in-
cremental semantics, the history chosen for ⟨⟨b⟩⟩ has to agree
with f ′ on p in the second step and hence can also not con-
tain p there. In contrast, ( f ,h) |=pobs φ as here agent b can
“choose” the truth value of p arbitrarily as p ̸∈ Pb.

With similar reasoning, |=pobs and |=decr can be distin-
guished by the formula φ = ⟨⟨a⟩⟩⃝ ⟨⟨b⟩⟩(q ∧ r) and ( f ,h)
as above: ( f ,h) ̸|=pobs φ as q is false on any state reach-
able in Tb after two steps. So, no matter which history h′
and future f ′ is chosen in the quantification of ⟨⟨a⟩⟩, there
is no future-history pair ( f ′′,h′′) that agrees with a trace
in Tb on all atomic propositions in Pb and is such that q
holds at the third position. In contrast, ( f ,h) |=decr φ : We
can choose h′ = ∅{p} and f ′ = {p}{r}ω for the quantifi-
cation of ⟨⟨a⟩⟩ as h′ agrees with h = ∅{p,q} on all atomic
propositions in Pa. Then, the quantification of ⟨⟨b⟩⟩ in φ can
choose h′′ =∅∅{r,q}ω and f ′′ = {r,q}ω as this agrees with
the trace of the right-hand side path in Tb for all atomic
propositions in Pa ∩Pb = {r}.

Finally, for |=decr and |=step consider φ = ⟨⟨a⟩⟩⃝ ⟨⟨b⟩⟩¬r
and ( f ,h) as above. Under |=decr, in the first quantification of
⟨⟨a⟩⟩, the history h′ must contain p and potentially q. Hence,
the future f ′ must contain r in the second position as only
the left path in Ta is possible. So, the history h′′ quantified
in ⟨⟨b⟩⟩ also must contain r in the third position as r ∈ Pa∩Pb.
Thus, φ cannot hold, i.e., ( f ,h) ̸|=decr φ . In the step seman-
tics, the quantification for ⟨⟨b⟩⟩ can simply choose history
h′′ =∅{q}∅ and future f ′′ =∅ω and so ( f ,h) |=step φ .

Satisfaction of SLTL Formulas Over Structures. Given
a structure T =

(
T0,(Ta)a∈Ag

)
as in Section 3.2, an SLTL
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formula φ and |= ∈ {|=step, |=pobs, |=public, |=decr, |=incr}:

T |= φ iff ( f ,first( f )) |=∗ φ for all f ∈ Traces(T0)

where |=∗ equals |= for step, pure observation-based and
public-history semantics, |=∗ equals |=P

decr for decremental
semantics and |=∗ equals |=∅

incr for incremental semantics.

Remark 3.7. The meanings of ⟨⟨a⟩⟩ϕ under |=Q
decr and |=Q

incr
are context-dependent through the parameter Q. If, e.g., φ =
⟨⟨a⟩⟩ϕ ∨ ⟨⟨b⟩⟩(q∧⃝⟨⟨a⟩⟩ϕ) for ϕ an SLTL formula then the
first occurrence of ⟨⟨a⟩⟩ϕ is interpreted over |=P

decr, while the
second is interpreted over |=Pb

decr. The set Q = Q∗
χ with ∗ ∈

{decr, incr} over which occurrences of subformulas χ of φ

are interpreted can be derived from the syntax tree of φ .
Formally, we assign a set Q∗

v with ∗ ∈ {decr, incr} to each
node v in the tree. Let φv denote the subformula represented
by v. If v is the root node then φv = φ and Qdecr

v = P while
Qincr

v = ∅. Let now v and w be nodes such that v is the fa-
ther of w. If v is not labeled by a standpoint modality then
Q∗

v = Q∗
w. Otherwise φv has the form ⟨⟨a⟩⟩φw for some a ∈ Ag

and Qdecr
w = Qdecr

v ∩Pa while Qincr
w = Qincr

v ∪Pa. With abuse of
notations, we will simply write Q∗

χ instead of Q∗
v for a node

v representing the particular occurrence of χ = φv in φ .

Obviously, the five semantics agree on the LTL fragment.
More precisely, for |= as above, T a SLTL structure and φ an
LTL formula we have T |= φ iff T0 |=LTL φ in the sense that
Traces(T0) ⊆ { f ∈ (2P)ω : f |=LTL φ}. For SLTL formulas
with at least one standpoint subformula, but no alternation
of standpoint modalities, the pure observation-based, decre-
mental and incremental semantics agree, but might yield dif-
ferent truth values than the step or public-history semantics:

Lemma 3.8. If φ is a SLTL formula of alternation depth 1
then T |=pobs φ iff T |=decr φ iff T |=incr φ , while T ̸|=pobs φ and
T |= φ (or vice versa) is possible where |= ∈ {|=step, |=public}.
Likewise, T ̸|=public φ and T |=step φ (or vice versa) is possible.

3.3 From Pure Observation-Based SLTL to LTLK
LTLK (also called CKLm) (Halpern and Vardi 1986; Halpern
and Vardi 1989; Bozzelli, Maubert, and Murano 2024) ex-
tends LTL by an unary knowledge modality Ka for every
a ∈ Ag and a common knowledge operator CA for coalitions
A ⊆ Ag. We drop the latter and deal with LTLK where the
grammar for formulas is the same as for SLTL when ⟨⟨a⟩⟩ϕ is
replaced with Kaϕ . The alternation depth of LTLK formulas
and the sublogics LTLKd are defined as for SLTL.

LTLK structures are tuples (T ,(∼a)a∈Ag) where T =
(S,→, init,R,L) is a transition system and the ∼a, a ∈ Ag,
are equivalence relations on S. The intended meaning is that
s ∼a t if agent a cannot distinguish the states s and t.

The perfect-recall semantics of LTLK extends the stan-
dard LTL semantics formulated for path-position pairs (π,n)
consisting of a path π = s0s1s2 . . .∈Paths(T ) and a position
n ∈ N by (π,n) |=LTLK Kaϕ iff (π ′,n) |=LTLK ϕ for all paths
π ′ = s′0s′1s′2 . . . ∈ Paths(T ) with si ∼a s′i for i = 0,1, . . . ,n.
As such, the dual standpoint modality [[a]] under the pure
observation-based semantics resembles the Ka modality of
LTLK. Indeed, SLTL under |=pobs can be considered as a spe-
cial case of LTLK under the perfect-recall semantics:

Lemma 3.9. Given a pair (T,φ) consisting of a SLTL struc-
ture T = (T0,(Ta)a∈Ag) and a SLTL formula φ , one can
construct in polynomial time an LTLK structure TLTLK =
(T ′,(∼a)a∈Ag) and an LTLK formula φLTLK such that:

(1) T |=pobs φ if and only if TLTLK |=LTLK φLTLK

(2) φ and φLTLK have the same alternation depth.

Proof sketch. Assume w.l.o.g. that the initial state label-
ings in T0 and Ta are consistent for all a. First, for each
a ∈ Ag∪{0}, we extend Ta to its completion T ⊥

a by adding
new states ⊥Q

a for each Q ⊆ Pa, where the set of atomic
propositions in T ⊥

a is P⊥
a = Pa ∪ {⊥a}. The labeling of

the original states is unchanged, i.e., L⊥
a (s) = La(s), while

for the fresh states L⊥
a (⊥

Q
a ) = Q ∪ {⊥a}. We then con-

struct the synchronous product T ′ = S⊥0 ×∏a∈Ag T ⊥
a such

that L⊥
0 (s)∩Pa = L⊥

a (sa)∩Pa for each a ∈ Ag. The set of
atomic propositions is P′ = P∪ {⊥a : a ∈ Ag∪ {0}}, and
L′(s,(sa)a∈Ag) = L0(s)∪{⊥a : a ∈ Ag∪{0},⊥a ∈ L⊥

a (sa)}.
The initial state of T ′ is init′ = (init0,(inita)a∈Ag), and
the transitions are defined synchronously. The equiva-
lence relations ∼a on S′ satisfy σ ∼a θ iff L′(σ)∩ P⊥

a =
L′(θ)∩P⊥

a . We then inductively translate SLTL formulas
ϕ into “equivalent” LTLK formulas ϕ ′: ϕ ′ = ϕ, (¬ϕ)′ =
¬ϕ ′, (ϕ ∧ ψ)′ = ϕ ′ ∧ ψ ′, (⃝ϕ)′ = ⃝ϕ ′, (ϕ1 Uϕ2)

′ =
ϕ ′

1 Uϕ ′
2, (⟨⟨a⟩⟩ϕ)′ = Ka(ϕ

′ ∧□¬⊥a). Finally, we define
φLTLK =□¬⊥0 → φ ′.

4 Model Checking SLTL
Let |= be one of the five satisfaction relations defined in Sec-
tion 3.2. The task of the SLTL model checking problem is
as follows. Given a SLTL structure T=

(
T0,(Ta)a∈Ag

)
and

an SLTL formula φ , decide whether T |= φ .
We present a generic model checking algorithm for the

five semantics, which can be seen as an adaptation of the
standard CTL*-like model checking procedure (Emerson
and Sistla 1984; Emerson and Lei 1987) and its variant
for LTLK and CTL*K under the perfect-recall semantics
(Bozzelli, Maubert, and Murano 2024). The central idea
is an inductive approach to compute deterministic finite au-
tomata (DFA) Dχ for all standpoint subformulas χ = ⟨⟨a⟩⟩ϕ
of φ . The automaton for χ , called history-DFA, represents
the language of all histories h ∈ (2P)+ with (∗,h) |=χ χ

where |=χ stands for one of the satisfaction relations |=step,
|=pobs, |=public, |=Q

decr or |=Q
incr with Q ∈ {Qdecr

χ ,Qincr
χ } as in Re-

mark 3.7.
The inductive computation corresponds to a bottom-up

approach where the innermost standpoint subformulas, i.e.,
subformulas χ = ⟨⟨a⟩⟩ψ where ψ is an LTL formula, are
treated first. When computing Dχ for a subformula χ =
⟨⟨a⟩⟩ψ where ψ contains standpoint modalities, we may as-
sume that history-DFA for the maximal standpoint subfor-
mulas χ1, . . . ,χk of ψ have been computed before.

Preprocessing for |=decr and |=incr. In the decremental and
incremental semantics, our iterative bottom-up approach re-
quires computing the relevant parameters Q ⊆ P of the satis-
faction relations |=Q

decr and |=Q
incr over which subformulas of φ
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are interpreted. This can be done in time linear in the length
of φ by a top-down analysis of the syntax tree of φ (see Re-
mark 3.7). In what follows, we shall write Qχ to denote the
corresponding subset Qdecr

χ or Qincr
χ , respectively, of P for (an

occurrence of) a subformula χ . Thus, if χ is not in the
scope of a standpoint modality or a maximal standpoint sub-
formulas of φ then Qχ = P under the decremental semantics
and Qχ =∅ under the incremental semantics. If χ = ⟨⟨a⟩⟩ψ
is (an occurrence) of a standpoint subformula of φ and χ ′

a subformula of ψ that – as a subformula of ψ – is not in
the scope of a standpoint modality or a maximal standpoint
subformula of ψ then Qχ ′ = Qχ ∩Pa for the decremental se-
mantics and Qχ ′ = Qχ ∪Pa for the incremental semantics.

Observation Sets Oχ . Our algorithm uses subsets Oχ ⊆
P for the standpoint subformulas χ = ⟨⟨a⟩⟩ϕ of φ , whose
definition depends on the considered semantics: Oχ =∅ for
|=step, Oχ = Pa for |=pobs, Oχ = P for |=public, Oχ = Qdecr

χ ∩Pa

for |=decr and Oχ = Qincr
χ ∪Pa for |=incr. Let obsχ : (2P)∗ →

(2Oχ )∗ be the induced observation function obsχ(h)= h|Oχ
.

Transition Systems T R
a . Define Rχ =Pa under decremen-

tal and step semantics and Rχ = P otherwise. We denote
R = Rχ , where R ⊇ Pa, and switch from the transition sys-
tem Ta to an extended system T R

a over the domain R, which
preserves the behavior of Ta. , but makes nondeterministic
guesses for the truth values of propositions in R \Pa for the
starting state, as well as in every step of a computation. So,
the states of T R

a are pairs (s,O) with s ∈ Sa and O ⊆ R such
that La(s) = O∩Pa.

The switch from Ta to T R
a will be needed to deal with the

constraints last(h′) = first( f ′) in the definitions of |=public ,
|=incr and |=pobs.
Remark 4.1. If R = Pa then T R

a and Ta are isomorphic,
so the switch from Ta to T R

a is obsolete. (Note that then
O = La(s) for all states (s,O) in T R

a .) This applies to |=step

where Oχ =∅ and |=decr where Oχ ⊆ Pa.
Definition 4.2. Let χ be a standpoint subformula of φ . A
history-DFA for χ is a deterministic finite automaton D =
(Xχ ,δχ , initχ ,Fχ) over the alphabet 2P such that

(1) L (D) = {h ∈ (2P)+ : (∗,h) |=χ χ}.
(2) D is Oχ -deterministic in the following sense: When-

ever h1,h2 ∈ (2P)+ such that h1|Oχ
= h2|Oχ

then
δχ(initχ ,h1) = δχ(initχ ,h2), where the transition func-
tion δχ : Xχ ×2P → Xχ is extended to a function Xχ ×
(2P)∗ →Xχ in the standard way and initχ its initial state.
For an example construction of history-DFA see Figure 3

and Example 4.4 on page 8.

Generic SLTL Model Checking Algorithm

Basis of Induction. In the basis of induction we are
given a standpoint formula χ = ⟨⟨a⟩⟩ϕ with ϕ an LTL for-
mula. Let Tχ = T R

a where R = Rχ = Pa ∪Oχ . We ap-
ply a mild variant of standard LTL model checking tech-
niques (Vardi and Wolper 1986; Vardi and Wolper 1994;

Baier and Katoen 2008; Clarke et al. 2018) to compute the
set SatT R

a
(∃ϕ) of states (s,O) in T R

a for which there is a
f ∈ TracesP(T R

a ,(s,O)) with f |=LTL ϕ . We then use a pow-
erset construction applied to T R

a (see Definition 4.3 below)
to construct an Oχ -deterministic history-DFA Dχ .

Step of Induction. Suppose now χ = ⟨⟨a⟩⟩ϕ and ϕ has
standpoint subformulas. Let χ1, . . . ,χk be the maximal
standpoint subformulas of ϕ , say χi = ⟨⟨bi⟩⟩ψi for i =
1, . . . ,k, and let D1 = Dχ1 , . . . ,Dk = Dχk be their history-
DFAs over 2P. Let Di = (Xi,δi, initi,Fi) and Oi =Oχi . Fur-
ther, we simply write R for Rχ = Pa ∪Oχ . We consider the
transition system

Tχ = T
Rχ

a ▷◁ D1 ▷◁ . . . ▷◁ Dk

that is obtained by putting T
Rχ

a in parallel to the product
of the Di’s. For this, we introduce pairwise distinct, fresh
atomic propositions p1, . . . , pk for each of the χi’s and define
the components Tχ = (Zχ ,→χ , Initχ ,Pχ ,Lχ) as follows.
The state space is Zχ = SR

a ×X1 × . . .×Xk. The transition
relation satisfies: ((s,O),x1, . . . ,xk) →χ ((s′,O′),x′1, . . . ,x

′
k)

iff there is H ⊆P such that H∩R=O′, (s,O)→R
a (s′,O′) and

x′i = δi(xi,H) for i = 1, . . . ,k. The set of atomic propositions
is Pχ = R∪{p1, . . . , pk}.

The labeling function Lχ : Zχ → 2Pχ is given by
Lχ((s,O),x1, . . . ,xk)∩ R = O and pi ∈ Lχ(s,x1, . . . ,xk) iff
xi ∈ Fi for i = 1, . . . ,k. Lastly, Initχ contains all states
((inita,O),x1, . . . ,xk) such that (inita,O) ∈ InitR

a (i.e., O ∩
Pa = La(inita)) and there exists H ⊆ P with xi = δi(initi,H)
for i = 1, . . . ,k and O = H ∩R.

We now replace ϕ with the LTL formula ϕ ′ =
ϕ[χ1/p1, . . . ,χk/pk] over P = P∪{p1, . . . , pk} that results
from ϕ by syntactically replacing the maximal standpoint
subformulas χi of ϕ with pi. We then apply standard LTL
model checking techniques to compute SatTχ

(∃ϕ ′) = {z ∈
Zχ : ∃ f ∈ TracesP(Tχ ,z) s.t. f |=LTL ϕ ′}.

Having computed SatTχ
(∃ϕ ′), the atomic propositions

p1, . . . , pk are no longer needed. We therefore switch from
Tχ to T ′

χ =Tχ |R which agrees with Tχ except that P ′
χ = R

and L′
χ(s,x1, . . . ,xk) = Lχ(s,x1, . . . ,xk)∩R. By applying a

powerset construction to T ′
χ we get an Oχ -deterministic his-

tory DFA Dχ for the language {h∈ (2P)+ : (∗,h) |=χ χ} (see
Definition 4.3 below, applied to T = T ′

χ , Oχ and the set
Uχ = SatTχ

(∃ϕ ′) to specify the final states in Dχ ).

Final Step. After treating all maximal standpoint subfor-
mulas of φ , we need to check whether φ holds for all traces
of T0. This is done like in the first part of the step of induc-
tion, i.e., we build the product Tφ of T0 with the history-
DFAs that have been constructed for the maximal standpoint
subformulas of φ and replace them with fresh atomic propo-
sitions, yielding an LTL formula φ ′ over an extension of P.
We then apply standard LTL model checking techniques to
check whether all traces of Tφ satisfy φ ′. This can be done
using an algorithm that is polynomially space-bounded in
the size of Tφ and the length of φ ′ (and φ ).
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Figure 3: Transition system and the reachable fragments of the de-
fault history-DFAs for χ = ⟨⟨a⟩⟩⃝ p under the step and the public-
history semantics constructed in Example 4.4. Boxes are used for
final states, circles for non-final states.

Computation of History-DFA The history-DFA Dχ for
standpoint subformulas χ = ⟨⟨a⟩⟩ϕ can be obtained by apply-
ing a powerset construction to the transition system T =Tχ

over R = Rχ . This construction is an adaption of the clas-
sical powerset construction for nondeterministic finite au-
tomata and can be seen as a one-agent variant of the power-
set construction introduced by Reif (Reif 1984) for partial-
information two-player games and its variant for CTL*K
model checking (Bozzelli, Maubert, and Murano 2024).
The acceptance condition in Dχ is derived from the set
U = SatT (∃ϕ) in the basis of induction and U = SatT (∃ϕ ′)
in the step of induction.
Definition 4.3. Let T = (S,→, Init,R,L) with R⊆P, O⊆P
an observation set, and U ⊆ S. Then, pow(T ,O,U) is the
following DFA D = (XD ,δD , initD ,FD ) over the alphabet
2P. The state space is XD = 2S ∪{initD}. The transition
function δD : XD ×2P → XD is given by (where x ∈ 2S):

δD (x,H) =
{

s′ ∈ S : there exists s ∈ x with
s → s′ and L(s′)∩O= H ∩O

}
δD (initD ,H) =

{
s ∈ Init : L(s)∩O= H ∩O

}
The set of final states is FD =

{
x ∈ XD : x∩U ̸=∅

}
.

We refer to pow(T ,O,U) as the default history-DFA.
Example 4.4. Consider the transition system Ta depicted in
Figure 3. To apply the construction from Definition 4.3, sup-
pose R=P= {p} and first that O=∅ (as it is the case when
constructing the default history-DFA for the steps seman-
tics). Further, let U = SatTa(∃⃝ p) = {s0,s2}. The reach-
able fragment of the default history-DFA D1 is depicted in
the middle of Figure 3. If instead we assume O= P (public-
history semantics), the resulting default history-DFA is D2.

5 Complexity-Theoretic Results
At first glance the time complexity of our generic model
checking algorithm is d-fold exponential for SLTL formu-
las ϕ where d is the maximal nesting depth of standpoint
modalities in ϕ . This yields a nonelementary upper bound
for the SLTL model checking problem.

For ∗ ∈ {step,pobs,public,decr, incr}, let SLTL∗ denote
SLTL under the semantics w.r.t. |=∗. We now study the com-
plexity of the different SLTL∗ model checking problems.

Bounds on the Sizes of History-DFA and Time Bounds.
Obviously, it suffices to construct the reachable fragment

of the default history-DFA. Furthermore, we may apply a
standard poly-time minimization algorithm to the default
history-DFA. Thus, to establish better complexity bounds it
suffices to provide elementary bounds on the sizes of min-
imal history-DFA for standpoint subformulas. Let us start
with a simple observation on how to exploit the property
that the history-DFA Dχ are Oχ -deterministic.
Remark 5.1. With the notations of the step of induction
for χ = ⟨⟨a⟩⟩ϕ , the history-DFA Dχ for χ is obtained by
(the reachable fragment) of pow(T ′

χ ,Oχ ,Uχ) where Uχ =

SatTχ
(∃ϕ ′). Recall that T ′

χ is defined via a product con-
struction T R

a ▷◁ D1 ▷◁ . . . ▷◁ Dk where the D j’s are history-
DFAs for the maximal subformulas χ j = ⟨⟨b j⟩⟩ψ j of ϕ .

Suppose now that i ∈ {1, . . . ,k} such that Di is Oχ -
deterministic. Then, for all histories h ∈ (2P)+ and states
((s,O),x1, . . . ,xk) in Reach(T ′

χ ,h) we have xi = δi(initi,h).
Hence, if x is a reachable state in D , say x = δDχ

(initD ,h),
then for all states ((s,O),x1, . . . ,xk) ∈ x we have xi =
δi(initi,h). Thus, we may redefine the default history-DFA
Dχ as a product

pow(T R
a ▷◁ ∏ j ̸=i D j,Oχ) ▷◁ Di

rather than a powerset construction of T R
a ▷◁ D1 ▷◁ . . . ▷◁

Dk. From now on, we write pow(T ,O) for the structure
(XD ,δD , initD ) defined as in Definition 4.3. The acceptance
condition FDχ

is (re)defined as the set of all states (x,xi) in
the above product (i.e., x is a subset of the state space of
T R

a ▷◁ ∏ j ̸=i D j and xi a state in Di) such that {(ξ ,xi) : ξ ∈
x}∩Uχ ̸= ∅. Let I denote the set of indices i ∈ {1, . . . ,k}
where the history-DFA for χi = ⟨⟨bi⟩⟩ψi is Oχ -deterministic.
W.l.o.g. I = {1, . . . , ℓ}. Then, we can think of Dχ as (the
reachable fragment of) a product

pow(T R
a ▷◁ Dℓ+1 ▷◁ . . . ▷◁ Dk,Oχ) ▷◁ D1 ▷◁ . . . ▷◁ Dℓ.

If χ = ⟨⟨a⟩⟩ϕ then Oχi = Oχ for all maximal standpoint
subformulas χi = ⟨⟨bi⟩⟩ψi of ϕ where a = bi. Thus, by in-
duction on d = ad(χ), Remark 5.1 yields that the size of the
reachable fragment of the default history-DFA for a stand-
point formula χ is d-fold exponentially bounded. Hence:
Lemma 5.2. Under all five semantics, the time complexity
of the algorithm of Section 4 is at most d-fold exponential
when d = ad(φ).

This d-fold exponential upper time bound will now be im-
proved using further consequences of Remark 5.1.

We start with |=step. Here, we have Oχ = ∅ for all χ .
With the notations used in Remark 5.1, the history-DFA
D1, . . . ,Dk are Oχ -deterministic. Thus, we can think of Dχ

as a product pow(Ta,∅) ▷◁ D1 ▷◁ . . . ▷◁ Dk. But now, each
of the Di’s also has this shape. In particular, if χi = ⟨⟨a⟩⟩ψi,
then the projection of the first coordinate of the states and
the transitions between them in the reachable fragment of Di
matches exactly those of pow(Ta,∅). Thus, one can incor-
porate the information on final states and drop pow(Ta,∅)
from the product. As a consequence, the default history-
DFA Dχ can be redefined for |=step such that the state space
of Dχ is contained in ∏b∈Ag(χ) 2Sb where Ag(χ) denotes
the set of agents b ∈ Ag such that χ has a (possibly non-
maximal) standpoint subformula of the form ⟨⟨b⟩⟩ψ .
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The situation is similar for |=public (where Oχ = P for all
χ) and for |=decr (where Oχi ⊆Oχ for all standpoint subfor-
mulas χi of χ). In the case of |=public there are history-DFA
where the state space is contained in (∏b∈Ag(χ) 2Sb)× 2P.
For |=decr, we assign history-DFA Dv to the nodes in the syn-
tax tree of v that have the shape ∏w pow(Taw ,O

decr
w ) where

w ranges over all nodes in the syntax subtree of v such that
the formula given by w is a standpoint formula ⟨⟨aw⟩⟩ϕw.

Under the above mentioned simplification of the default-
history DFAs, these observations yield:

Lemma 5.3. For ∗ ∈ {step,public,decr}, the algorithm of
Section 4 for SLTL∗ model checking runs in (single) expo-
nential time.

Let us now look at |=incr. Given a node v in the syntax tree
of φ , let φv denote the subformula of φ that is represented
by v and πv the unique path πv = v0v1 . . .vr in the syntax
tree from the root v0 to vr = v, and let Agv denote the set
of agents b ∈ Ag such that φw has the form ⟨⟨b⟩⟩ψw for some
w ∈ {v1, . . . ,vr−1}. By Remark 3.7, if φv = ⟨⟨a⟩⟩ϕ then:

Qincr
v =

⋃
b∈Agv

Pb and Oincr
v = Qincr

v ∪Pa

Let π ′
v = w1 . . .wℓ be the sequence resulting from πv when

all nodes w where φw is not a standpoint subformula are re-
moved. The observation sets along π ′

v are increasing, i.e.,

∅=Oincr
w1

⊆Oincr
w2

⊆ . . .⊆Oincr
wℓ

⊆ P.

Thus, the number of indices j ∈ {2, . . . , ℓ} where Oincr
w j−1

and
Oincr

w j
are different is bounded by N−1 where N = |Ag|. If

Oincr
w j−1

=Oincr
w j

, the history-DFA constructed for φw j is Oincr
w j−1

-
deterministic. We can now again apply Remark 5.1 to χ =
φw j−1 and χi = φw j . This yields:

Lemma 5.4. With N = |Ag|, our model checking algorithm
for SLTLincr is N-fold exponentially time bounded.

Space Bounds Lemma 3.9 shows that the SLTLpobs
d model

checking problem is polynomially reducible to the LTLKd
model checking problem under the perfect-recall semantics.
The latter is known to be (d−1)-EXPSPACE-complete for
d ⩾ 2 and PSPACE-complete for d = 1 (Bozzelli, Maubert,
and Murano 2024). In combination with the known PSPACE
lower bound for the LTL model checking problem (Sistla
and Clarke 1985) and Lemmas 3.8 and 3.9 we obtain:

Corollary 5.5. For ∗ ∈ {pobs,decr, incr}, the SLTL∗
1 model

checking problem is PSPACE-complete. For d ⩾ 2, the
SLTLpobs

d model checking problem is in (d−1)-EXPSPACE.

For the step and public-history semantics, the reduction
provided in the proof of Lemma 3.9 can be adapted by deal-
ing with an LTLK structure over a single agent. Thus, the
generated LTLK formula has alternation depth at most 1.

Theorem 5.6. For ∗ ∈ {step,public}, the SLTL∗ model
checking problem is polynomially reducible to the LTLK1
model checking problem, and therefore PSPACE-complete.

Lemma 3.9 and Theorem 5.6 show that the SLTL∗ model
checking problem for ∗ ∈ {step,public,pobs} can be viewed
as an instance of the LTLK model checking problem. An
analogous statement holds for |=decr and |=incr. The idea is

to modify the reduction described in the proof of Lemma
3.9 by adding new agents for all standpoint subformulas
χ = ⟨⟨a⟩⟩ψ where Pa ̸=Oχ . This yields a polynomial reduc-
tion of the SLTL*

d model checking problem to the LTLKM
model checking problem where M = min{|Ag|,d} and ∗ ∈
{incr,decr}. From a complexity-theoretic view, this obser-
vation is irrelevant for the decremental semantics where we
have PSPACE-completeness for alternation depth 1 (Corol-
lary 5.5) and a single exponential upper time bound in the
general case (Lemma 5.3). However, with the above men-
tioned results of (Bozzelli, Maubert, and Murano 2024), this
observation improves the complexity-theoretic upper bound
for the incremental semantics stated in Lemma 5.4:
Corollary 5.7. The SLTLincr model checking problem is in
(N−1)-EXPSPACE where N = |Ag|.

6 Conclusion
We considered five different semantics for SLTL that differ
in the amount of information the agents can extract from the
history, and presented a generic model-checking algorithm
applicable to all five semantics. The computational com-
plexity of the algorithm, however, varies between the seman-
tics due to the different numbers of necessary applications
of the powerset construction. More precisely, the generic
SLTL∗ model checking algorithm is m-fold exponentially
time-bounded with m = 1 for ∗ ∈ {step,public,decr}, m =
|Ag| for ∗= incr, and m = ad(φ) for ∗= pobs.

Algorithms with improved space complexity for |=step,
|=public, |=pobs, and |=incr are obtained via embeddings into
LTLK. To match the space bounds, the model-checking al-
gorithm of Section 5 can be adapted by combining classical
on-the-fly automata-based LTL model checking techniques
with an on-the-fly construction of history-DFA, similar to
the techniques proposed in (Bozzelli, Maubert, and Mu-
rano 2024) for CTL*K. Analyzing if analogous techniques
are applicable to obtain a polynomially space-bounded al-
gorithm for |=decr, providing lower bounds beyond PSPACE
for |=incr and |=pobs, as well as an experimental evaluation of
the presented algorithm remain as future work. Further di-
rections include extending the logic with common and dis-
tributed knowledge operators, as well as studying SLTL with
past modalities such as previous and since.
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