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Abstract

Standpoint linear temporal logic (SLTL) is a recently intro-
duced extension of linear temporal logic (LTL) with stand-
point modalities. Intuitively, these modalities allow to ex-
press that, from agent a’s standpoint, it is conceivable that a
given formula holds. Besides the standard interpretation of
the standpoint modalities, we introduce four new semantics,
which differ in the information an agent can extract from the
history. We provide a general model checking algorithm ap-
plicable to SLTL under any of the five semantics. Further
we analyze the computational complexity of the correspond-
ing model checking problems, obtaining PSPACE-complete-
ness in three cases, which stands in contrast to the known
EXPSPACE-completeness of the SLTL satisfiability problem.

1 Introduction

Automated reasoning about the dynamics of scenarios in
which multiple agents with access to different informa-
tion interact is a key problem in artificial intelligence and
formal verification. Epistemic temporal logics are promi-
nent, expressive formalisms to specify properties of such
scenarios (see, e.g., (Halpern and Vardi 1986; Halpern
1986; Fagin et al. 2004; Bozzelli, Maubert, and Murano
2024)). The resulting algorithmic problems, however, of-
ten have non-elementary complexity or are even undecidable
(see, e.g., (van der Meyden and Shilov 1999; Dima 2009;
Bozzelli, Maubert, and Murano 2024)).

Aiming to balance expressiveness and computational
tractability, (Alvarez and Rudolph 2021; Alvarez 2020) de-
fines static standpoint logics that extend propositional logic
with modalities {a))¢ expressing that “according to agent
a, it is conceivable that ¢” and the dual modalities [[a] ¢
expressing that “according to a, it is unequivocal that ¢”.
Standpoint logics and their extensions have proven useful
to, e.g., reason about inconsistent formalizations of concepts
in the medical domain to align different ontologies and in a
forestry application, where different sources disagree about
the global extent of forests (Alvarez and Rudolph 2021;
Alvarez 2020; Alvarez, Rudolph, and Strass 2022).

Recently introduced combinations of linear temporal
logic (LTL) with standpoint modalities (Gigante, Gémez Al-
varez, and Lyon 2023; Demri and Walega 2024) enable
reasoning about dynamical aspects of multi-agent systems.
Enriching standpoint logic with a temporal dimension is

essential for applications, e.g., in the verification of net-
work and communication protocols or distributed systems.
The focus of (Gigante, Gémez Alvarez, and Lyon 2023;
Demri and Walega 2024) is the satisfiability problem for the
resulting standpoint LTL (SLTL). In this paper, we consider
the model-checking problem that asks whether all execu-
tions of a transition system satisfy a given SLTL-formula.
To the best of our knowledge, this problem has not been ad-
dressed in the literature.

Whether the formula {a)¢ holds after a finite history,
that is, whether agent a finds it plausible that ¢ holds in
the future, depends on a’s standpoint and on what was ob-
servable to a in the past. To illustrate this, consider a situ-
ation in which different political agents have different per-
ceptions of how actions taken by the state influence future
developments.These perceptions are the standpoints of the
agents. After a series of events (i.e., a history), agents con-
sider different future developments possible, depending on
their standpoint and the parts of the history they are aware of.
When reasoning about each other’s standpoints, information
might be exchanged in various ways. For example, during
a discussion, agents may uncover previously unknown parts
of the history or choose to disregard others’ observations.

Besides the semantics for SLTL proposed in (Gigante,
Goémez Alvarez, and Lyon 2023; Demri and Walega 2024),
we introduce four additional semantics that differ in the
amount of information agent a can access from the history
and how information is transferred between agents. To for-
malize these semantics, we use the natural standpoint-logic
approach with separate transition systems 7, describing the
executions that are consistent with @’s standpoint as in (Gi-
gante, Gémez Alvarez, and Lyon 2023; Demri and Walega
2024), together with a main transition system 7 modeling
the actual system. Unlike (Gigante, Gémez Alvarez, and
Lyon 2023; Demri and Walega 2024), we assume the labels
of the states in .7, to be from a subset P, of the set P of
atomic propositions of .7. The difference from the use of
indistinguishability relations ~, over states of one transition
system for all agents a € Ag, common in epistemic temporal
logics, is that in LTLK they may be arbitrary equivalence re-
lations unrelated to the atomic propositions, making the em-
bedding of LTLK (without common knowledge) into SLTL
challenging, despite the reverse being straightforward.

Under all five semantics, the intuitive meaning of {a) ¢ is
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that there is a state s in .7, which is one of the potential cur-
rent states from agent a’s view of the history, and a path
in .7, from s such that 7 satisfies ¢ when a makes nondeter-
ministic guesses for truth values of the atomic propositions
outside P,. Informally, the different semantics are:

— The step semantics =, agrees with the semantics pro-
posed in (Gigante, Gémez Alvarez, and Lyon 2023; Demri
and Walega 2024). It assumes that only the number of steps
performed in the past are accessible to the agents.

— The pure observation-based semantics |= s is in the spirit
of the perfect-recall LTLK (LTL extended with knowledge
operators) semantics of (Bozzelli, Maubert, and Murano
2024) where a can access exactly the truth values of the
atomic propositions in P, from the history. We provide
an embedding of the pure observation-based semantics into
LTLK. So, the same application domains as for LTLK such
as multi-agent systems (Fagin et al. 2004) are applicable in
our setting. The restriction imposed by SLTL structures that
the indistinguishability relation of each agent a is given by a
set of atomic proposition P, in contrast to an arbitrary indis-
tinguishability relation in LTLK structures is quite natural.
—The public-history semantics Epmic can be seen as a
perfect-recall variant of the LTLK semantics where all
agents have full access to the history. It models agents shar-
ing a knowledge base but using different future-prediction
policies. This framework naturally extends to settings where
agents share identical observations, such as a comprehensive
medical dataset on the COVID-19 pandemic, yet adopt rad-
ically different interpretations of the data. For example, one
agent might interpret epidemiological statistics and clinical
reports as evidence that COVID-19 is a hoax, while another
uses scientifically grounded inference rules on the same
data to assess the pandemic’s real-world impacts. Public-
history semantics thus makes it possible to reason about both
common data access and heterogeneous prediction policies
within a single unified model.

— The incremental semantics =, is as |=,,» but under the
assumption that standpoint subformulas (b)) y of a stand-
point formula (a)¢ are interpreted from the view of the
coalition {a,b}, i.e., that a can access the atomic proposi-
tions in P, U P, to determine what agent b knows from the
history. This models scenarios in which information is ac-
tively exchanged between agents. For example, in negotia-
tions between two countries, where each country has access
only to a part of the intelligence information, incremental
semantics can help model the exchange of information and
the gradual improvement of understanding of the situation,
while decremental semantics can model how each country
draws conclusions based solely on common observations.
So, as potential applications, we can highlight the modeling
of conflicts and negotiations.

— The decremental semantics =, is a variant of =y in
which standpoint subformulas (b)) y inside a formula {a)) ¢
are interpreted from the perspective of agent a. While a
knows the transition system of agent b, it can only access the
atomic propositions in P, N P, to guess what b knows from
the history. That is, to make a guess on the current state of
b’s transition system 7, agent a may only use the atomic
propositions in the intersection rather than the full set P,.

For example, consider autonomous vehicles that share some
sensors, but each also has access to sensors unavailable to
the others. If the vehicles make decisions solely based on
the values of the common sensors, the decremental seman-
tics applies as each agent must reason based on overlapping
knowledge only. In contrast, under incremental semantics
agents share both common and individual sensor data, so
access to the combined observations lets them refine their
understanding beyond individual inference.

The decremental and incremental semantics share ideas of
distributed knowledge and the “everybody knows” operator
of epistemic logics (Fagin et al. 2004).

Main Contributions. Besides introducing the four new
semantics for SLTL (Section 3), our main contributions are
— a generic model-checking algorithm that is applicable for
all five semantics (Section 4)

— complexity-theoretic results for the model checking prob-
lem of SLTL under the different semantics (Section 5). More
precisely we show PSPACE-completeness for full SLTL un-
der [=gep and Epuic, and for SLTL formulas of alternation
depth 1 under F=pops, =y and =, This stands in contrast
to the EXPSPACE-completeness of the satisfiability prob-
lem for SLTL under the step semantics (Demri and Walega
2024). Furthermore, our results yield an EXPTIME up-
per bound for =, .. The same holds for |=,,, under the
additional assumption that the P,’s are pairwise disjoint.
We show that SLTL under all five semantics can be em-
bedded into LTLK. For the case of |=, , the embedding
yields an (N—1)-EXPSPACE upper bound where N = |Ag]|.
For the case of =, and the SLTL fragment of alternation
depth at most d, the embedding into LTLK implies (d—1)-
EXPSPACE membership.

While our algorithm builds on ideas from the LTLK
model-checking algorithm in (Bozzelli, Maubert, and Mu-
rano 2024) (and even for CTL*K), it exploits the simpler
nature of SLTL compared to LTLK and generates smaller
history-automata than those that would have been con-
structed when applying iteratively the powerset construc-
tions of (Bozzelli, Maubert, and Murano 2024). As such, our
algorithm can be seen as an adaption of (Bozzelli, Maubert,
and Murano 2024) that takes a more fine-grained approach
for the different SLTL semantics resulting in the different
complexity bounds described above.

Onmitted proofs can be found in the full version (Aghamov
et al. 2025).

2 Preliminaries

Throughout the paper, we assume some familiarity with lin-
ear temporal logic interpreted over transition systems and
automata-based model checking, see e.g. (Clarke et al. 2018;
Baier and Katoen 2008).

Notations for Strings. Given an alphabet X, we write X*
for the set of finite strings over X, X? for the set of infinite
strings over £ and £~ for £* UX®. As usual, X =X*\ {e}
where € denotes the empty string. Given a (in)finite string
¢=HyH,...H,or¢=HyH, ...overX,let first(¢) = Hp. If
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¢ =Hy...H,isfinite then last(¢) = H,. Fori,j € N, g[i... j]
denotes the substring H; ... H; if i < j (and assuming j < nif
¢ is a finite string of length n) and g[i... j]=¢ifi> j. Ifi=
jthen gli...i] = ¢l[i] = H;. So, ¢[0...j] denotes the prefix
HO...Hj. If ¢ is infinite then Q[JDO] ZHjHj+] Hj+2....
If £ = 2% is the powerset of P and R C P then the pro-
jection function LR : (2P)* — (2R)> is obtained by applying
the projection 2" — 2R H — HNR, elementwise, i.e., if
¢=HyH H;...then glR = (H() ﬂR) (Hl ﬂR) (HzﬂR) e

Transition Systems. A transition system is a tuple .7 =
(S,—,Init,R,L) where S is a finite state space, - C Sx §
a total transition relation (where totality means that every
state s has at least one outgoing transition s — s’), Init C S
the set of initial states, R a finite set of atomic propositions
and L : § — 2R the labeling function. If Init is a singleton,
say Init = {init}, we simply write .7 = (S, —,init,R,L).

A path in .7 is a (in)finite string T = sos1...5, € ST or
T =s505152... €S?such that s; — s;,1 for all i. 7 is initial if
Sfirst(m) € Init. The trace of 7 is trace(mw) = L(so) L(s1) ... €
(2Rt U (2R)@. If 5 € S then Paths(.7 ,s) contains all infinite
paths in .7 starting in s and Traces(7 ,s) = {trace(n) : w €
Paths(7 ,s)}. If P is a superset of R then

Traces™ (T ,s) = {p € (2P)w : p|r € Traces(T ,s)}.

Thus, Traces(.7 ,s) C (28)®, while Traces” (.7 ,s) C (2F)®.
Moreover, Paths(.7) = Usepis Paths(7 ,s). Traces(7 ) and
Traces” (7)) have the analogous meaning. If 4 € (2F)" then
Reach(.7 ,h) denotes the set of states s in .7 that are reach-
able from Init via a path & with trace(w) = h|g.

Linear Temporal Logic (LTL). The syntax of LTL over
P is given by (where p € P):

o == true | p| -0 | oA | Q0 | ¢ U

Other Boolean connectives are derived as usual, e.g., @1 V
@ = —(—@; A —@y). The modalities ¢ (eventually) and O
(always) are defined by ¢ = trueU @ and O¢ = —0—0.
The standard LTL semantics is formalized by a satisfaction
relation |=;;; where formulas are interpreted over infinite
traces (i.e., elements of (2°)?), see e.g. (Clarke et al. 2018;
Baier and Katoen 2008). An equivalent semantics can be
provided using a satisfaction relation |= that interprets for-
mulas over trace-position pairs (p,n) € (2°)? x N such that
(p,n) = @iff pn...oo| =i @.

We use here an equivalent formalisation of the seman-
tics of LTL (and later its extension SLTL) that interprets
formulas over future-history pairs (f,h) € (2F)® x (2F)*
with last(h) = first(f), see the upper part of Figure 1 where
fI1...0] = €. Then, f i @ iff (f,first(f)) E ¢. For in-
terpreting LTL formulas, the history is irrelevant: f |=im @
iff (f.first(f)) E @ iff (f,h) = ¢ for some h with last(h) =
Sirst(f) iff (f,h) = ¢ for all h with last(h) = first(f).

If 7 = (S,—,Init,R,L) is a transition system with R C P
and ¢ an LTL formula over P then .7 |=rr., @ iff f =i ¢ for
each f € Traces” (7). Sat 7(3¢) denotes the set of states
s € S where {f € Traces® (7 ,s) : f . ¢} # @.

3 SLTL: LTL with Standpoint Modalities

Standpoint LTL (SLTL) extends LTL by standpoint modali-
ties ({(a)) @ where a is an agent and ¢ a formula.

3.1 Syntax

Given a finite set P of atomic propositions and a finite set Ag
of agents, say Ag = {a,b,...}, the syntax of SLTL formulas
over P and Ag for p € P and a € Ag is given by

¢ u= tue|p[-o[ere:[ O¢|eUe | (a)e
The intuitive meaning of {a) ¢ is that from agent a’s stand-
point it is conceivable that ¢ will hold, in the sense that there
are indications from a’s view that there is a path starting in
the current state that fulfills ¢. The dual standpoint modality
is defined by [[a]¢ = —{a)—¢ and has the intuitive mean-
ing that from the standpoint of a, ¢ is unequivocal. That is,
under a’s view all paths starting in the current state fulfill ¢.

Formulas of the shape {a)¢@ are called standpoint for-
mulas. If ¢ is a SLTL formula, then maximal stand-
point subformulas of ¢ are subformulas that have the form
{a)¢ and that are not in the scope of another stand-
point operator. For example, ¢ = (p A Oyx1) V v with
11 = (@) ((bhqUr) and y = [c] O (rA (@) pU (a)q) has
two maximal standpoint subformulas, namely ); and ), =
{c)=O (rA{a)pU (a)q).

The alternation depth ad(@) of ¢ is the maximal number
of alternations between standpoint modalities for different
agents. E.g.. ad({a)(p A O[b]q)) = 2. while ad({a)(p A
Ollallq)) = ad({a) p A Olbllg) = 1 if a # b. Formally:
Definition 3.1. The alternation depth of SLTL formulas is
defined inductively:

* ad(true) = ad(p) =0 for p € P,

* ad(¢1 A\ @2) = ad(¢1 U @) = max{ad(¢1),ad(¢)},

* ad(—¢) = ad(O9) = ad(9).

For standpoint formulas ¢ = (a) @, the definition of ad(9)
is as follows. If ¢ is an LTL formula then ad({a)¢) = 1.
Otherwise let x1 = (1), ..., xx = {bi) Wi be the maximal
standpoint subformulas of ¢. We may suppose an enumer-
ation such that a =by = ... = by and a & {by,1,...,b;}.
Then, ad(§) is the maximum of max{ad(y;) :i=1,...,0}
and max{ad(y;) 1 i=40+1,...,k} + 1.

Each SLTL formula over a singleton agent set Ag = {a}
has alternation depth at most 1. For d € N, let SLTL, denote
the sublogic of SLTL where all formulas ¢ satisfy ad(¢) <
d. In particular, SLTL is LTL.

Remark 3.2. The original papers (Gigante, Gémez Alvarez,
and Lyon 2023; Demri and Walega 2024) on standpoint LTL
have an additional type of formula a < b where a,b € Ag.
The intuitive semantics of a < b is that the standpoint of
a is sharper than that of b. In our setting, where we are
given transition systems for a and b, formulas a < b are ei-
ther true or false depending on whether the set of traces of
the transition system representing a’s view is contained in
the set of b’s traces or not. As the trace inclusion problem
is PSPACE-complete (Kanellakis and Smolka 1990) like the
LTL model-checking problem (Sistla and Clarke 1985), the
complexity results of Section 5 are not affected when adding
sharpening statements a < b to SLTL.
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(fsh) Ep iff  p e f[0]

(fsh) EouAg iff (f,h) = @rand (f,h) = @2
(f,h) E@iUg, iff there exists £ € N such that (f[£.
(f,h) E (a)@  iff thereexists h' €

3.2 Semantics of SLTL

We consider different semantics of the standpoint modality
that differ in what the agents can observe from the history.

SLTL Structures. SLTL structures are tuples T =
(%0, (Ta)acag) With Fy = (So, —0,inito, Py, Lo) a transition
system over the full set Py = P of atomic propositions, and
Ty = (Sa, —>a,init,, P, L,) transition systems for the agents
a € Ag over some P, C P. For simplicity, we assume these
transition systems to have unique initial states.

Semantics of the Standpoint Modalities. We consider
five different semantics for {a)¢@, using satisfaction re-
lations =y, (step semantics as in (Gigante, Gémez Al-
varez, and Lyon 2023; Demri and Walega 2024)), }:pobs
(pure observation-based semantics which is essentially
the perfect-recall partial information semantics for LTLK
(Bozzelli, Maubert, and Murano 2024) adapted for SLTL
structures), =puwic (public-history semantics which are like
a perfect-recall semantics where agents have full informa-
tion about the history), =5, and =2, (variants of =, With
decremental resp. incremental knowledge) where Q C P.

We deal here with an interpretation over future-history
pairs (see Section 2). Let |= be one of the five satisfaction
relations. The semantics of SLTL can be presented in a uni-
form manner as shown in Figure 1. For the dual standpoint
operator we obtain: (f,h) = [a]j@ iff (f/,/') = ¢ for all
H e (ZP)Jr t € Reach(,, /) and f' € Traces” (7,,t) with
last(W') = first(f") and obs,(h) = obs,(}').

The five semantics rely on different observation functions
obs,. In all cases, obs, is a projection obs, : (2F)*
(294)*F, obs,(h) = h|g, for some O, C P. Intuitively, O,
formalizes which of the propositions are visible to agent a in
the history. (For the decremental and incremental semantics,
both O, and the induced observation function obs, do not
only depend on a, but on the context of the formula {a) ¢
as will be explained later.) Before presenting the specific
choices of £, in the five SLTL semantics, we make some
general observations:

Lemma 3.3. If f1, f> € (2)? and h € (2F) T with last(h) =
first(f1) = first(f2) then (f1,h) = (a) @ iff (f2.h) = (a)o.

By Lemma 3.3 one can drop the f-component and write

(*,h) = {a) @ when (f,h) = {a)) ¢ for some (each) future f
with first(f) = last(h). Truth values of standpoint formulas

{a) @ only depend on agent a’s observation of the history:
Lemma 3.4. Ifhy,hy € (2F)" with obs,(hy) = obs,(hy) then
(x,h1) = (a) @ iff (+,12) = (a)o.

(fih) =—e it (f.h) @
(fsl) = Oe it (f[1...oAf[l]) = ¢
-, hf[1...4]) |= @2 and (f[j...o],hf[L... j]) |= @i forall j < ¢

(2Pt e Reach(%,h’) and f’ € Traces” (,,t) such that last(h') = first(f'),
obs,(h) = obs,(K') and (f', 1) = @

Figure 1: Satisfaction relation = for SLTL over future-history pairs (f,h) € (2F)

@ 5 2Py with last(h) = first(f).

Remark 3.5. SLTL structures defined in (Gigante,
Go6mez Alvarez, and Lyon 2023; Demri and Walega 2024)
assign to each agent a a nonempty subset A(a) C (2F)?
and assume a universal agent, called *, such that A(a) C
A(*) for all other agents a. The latter is irrelevant for our
purposes. Assuming transition system representations for
the sets A(a) is natural for the model checking problem.
In contrast to (Gigante, Gomez Alvarez, and Lyon 2023;
Demri and Walega 2024), we suppose here that the stand-
point transition systems .7, are defined over some P, C P,
which appears more natural for defining the information
that an agent can extract from the history. In the seman-
tics of (a)) @, we thus switch from Traces(.7,,t) C (2f+)®
Traces” (7,,t) C (2F)® which essentially means that a may
guess the truth values of the atomic propositions in P\ P, to
predict whether ¢ can hold in the future. Alternatively, one
could define SLTL structures as tuples (%, (74, Pa)acag)
where % is as before, the 7,’s are transition systems over
some R, C P, and P, C R, where the P, serves to de-
fine the functions obs, for the histories. With R, = P and
A(a) = Traces(.7,), SLTL under |=., agrees with the logic
considered in (Gigante, Gémez Alvarez, and Lyon 2023;
Demri and Walega 2024) (except for sharpening statements;
see Remark 3.2). Our model checking algorithm can eas-
ily be adapted for this more general type of SLTL structures
without affecting our complexity results.

Step Semantics: The semantics of the standpoint modal-
ity {a)) @ introduced in (Gigante, Gémez Alvarez, and Lyon
2023; Demri and Walega 2024) relies on the assumption that
the only information that the agents can extract from the
history is the number of steps that have been performed in
the past. They formulate the semantics in terms of trace-
position pairs (p,n) € (2£)® x N and define (p,n) |= (a) ¢
iff (p’,n) = @ for some p’ € Traces(.7,). Reformulated to
our setting, the set of propositions visible for agent a in the
history is ©, = @, which yields the observation function
obs, : (2F)" = N, obs,(h) = |h|. Formulated for future-
history pairs, (f,%) Fuep (@) @ iff there is a word &' € (2F)F,
astate t € Reach(.7,,h') and a trace f’ € Traces” (.7,,t) such
that last(h') = first(f'), |h| = |W'| and (f',}) Euep -

Pure Observation-Based Semantics: In the style of the
(dual of the) classical K-modality in LTLK (Halpern and
Vardi 1986; Halpern and Vardi 1989; Bozzelli, Maubert, and
Murano 2024) (cf. Section 3.3) we can deal with the obser-
vation function that projects the given history 4 to the obser-
vations that agent a can make when exactly the propositions
in P, are visible for a. That is, for the pure observation-
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Figure 2: The transition systems used in Example 3.6.

based semantics, O, = P,. Then, (f,h) [=pops {a)) @ iff there
exista word i’ € (2F)*, a state t € Reach(7,,l) and a trace
f' € Traces® (F,,t) such that last(h') = first(f'), h|p, = /' |p,
and (f',h') Epobs @-

Public-History Semantics: In the public-history seman-
tics all agents a have full information about the history A,
ie., O, = P and obs,(h) = h. Then, (f,h) Epwic {a) @ iff
3t € Reach(J,,h) and a trace f' € Traces”(7,,t) such that
last(h) = first(f') and (f', 1) Epwic -

Decremental Semantics: The decremental semantics is a
variant of the pure observation-based semantics with a dif-
ferent meaning of nested standpoint subformulas: A stand-
point formula {a}) @ interpretes maximal standpoint subfor-
mulas (b)) y of @ from the view of agent a. The assumption
is that a knows agent b’s transition system .7}, and thus can
make the same guesses for the future as b, but can access
only the truth values of joint atomic propositions in P, N P,
from the history to make a guess what b has observed in the
past. Here, P, C P, is the set of atomic propositions accessi-
ble when interpreting {a)) @ which can itself be a subformula
of a larger standpoint formula (c})x (in which case {a)¢
is interpreted from the view of agent ¢ and P, C P. N P,).
Formally, we use a parametric satisfaction relation =5, for
Q C P. The intuitive meaning of (@)@ under =5, is that
a can extract from the history & exactly the truth values
of the propositions in O2 = QN P,. So, (f,h) E2,, (a)e
iff there exist a word ' € (2F)*, a state t € Reach(.7,,h')
and a trace f' € Traces” (.7,,t) such that last(h') = first(f'),
hlore, = I |onp, and (', 1) ESX @. For the satisfaction

decr

over a SLTL structure, we start with Q = P.

Incremental Semantics: The incremental semantics also
relies on a parametric satisfaction relation =2 where Q C
P. The intuitive meaning of {a))@ under =2, is that agent
a can extract from the history 4 exactly the propositions in
DaQ = QUP, and interpretes ¢ over QU P,. Thus, when
interpreting nested standpoint subformulas () y of {a) ¢
then agents a and b build a coalition to extract the infor-
mation from the history. Formally, (f,h) =2, (a)¢ iff
there exist a word /' € (2F)*, a state ¢t € Reach(.7,,h')
and a trace f' € Traces” (.7,,t) such that last(h') = first(f'),
hloue, = I |gup, and (f',h") EL.S* @. For the satisfaction
over a SLTL structure, we start with Q = @.

Example 3.6. We illustrate the differences between the se-
mantics: Consider two agents a and b with P, = {p,r},

P, = {q,r}, the transition system of Figure 2, and formu-
las ¢, = (@) O {(b)u, with u € P = P, UP,. As these for-
mulas ¢, are negation-free and contain only the existential
() modality, satisfaction becomes easier if less restrictive
requirements are imposed on histories. So, for all future-
history pairs (f,h), u € {p,q,r} and using the total order
public > incr > pobs > decr > step:

If (f,h) E=c ¢y and © > 7 then (f,h) E

where 0,7 € {public,incr, pobs,decr,step}. Now, we pro-
vide examples where the reverse implications do not hold.
We regard the future-history pair (f,4) where h = &{p,q}
and f = {p,qH{r}®.

For ¢ = {a) O (b)r, we have (f,h) ~puic ¢: In the quan-
tification of ((a)), all possible future traces f’ have to start
with {p,q}. So, according to .7, the future has to contain
r in the second position. When evaluating (b)), these first
two positions of f’ have to be respected, i.e., the history un-
der consideration is /' = @{p,q}H where H contains r. But
there is no trace in .7, with ¢ in the second and r in the third
position. However, (f,h) |=,,., ¢ as we can choose any trace
{p}{r}... as the future trace in the quantification of {a).
This means, the history @{p}{r} has to be respected when
evaluating (b})). When projecting to P, this can be respected
by the trace in .7}, satisfying r in the third position.

Next, consider ¢ = ({a) O (b)p. Then, (f,h) t~,.. ¢ as
the future trace f’ quantified in ((a)) starting after one step
in the history cannot have p in the second position because
there is no trace with p in the third position in .7,. In the in-
cremental semantics, the history chosen for (b)) has to agree
with f” on p in the second step and hence can also not con-
tain p there. In contrast, (f,4) |=pms ¢ as here agent b can
“choose” the truth value of p arbitrarily as p & P,.

With similar reasoning, f=pus and =, can be distin-
guished by the formula ¢ = {a) O (b)(gAr) and (f,h)
as above: (f,h) Fpms ¢ as g is false on any state reach-
able in .7}, after two steps. So, no matter which history A’
and future f” is chosen in the quantification of {a), there
is no future-history pair (f”,#"”) that agrees with a trace
in J, on all atomic propositions in P, and is such that ¢
holds at the third position. In contrast, (f,h) ., ¢: We
can choose /' = @{p} and f' = {p}{r}® for the quantifi-
cation of (a)) as h' agrees with h = @{p,q} on all atomic
propositions in P,. Then, the quantification of (b} in ¢ can
choose ' = @@ {r,q}® and " = {r,q}® as this agrees with
the trace of the right-hand side path in .}, for all atomic
propositions in P, NP, = {r}.

Finally, for =, and =y, consider ¢ = {a) O (b)-r
and (f,h) as above. Under =, in the first quantification of
{a)), the history A’ must contain p and potentially . Hence,
the future f’ must contain r in the second position as only
the left path in .7, is possible. So, the history 4’ quantified
in (b)) also must contain r in the third position as r € P, N P,.
Thus, ¢ cannot hold, i.e., (f,h) ~,... ¢. In the step seman-
tics, the quantification for (b)) can simply choose history
W' = @{q}2 and future f” = &® and so (f,h) Fep -

Satisfaction of SLTL Formulas Over Structures. Given
a structure ¥ = (%, (Z)aeAg) as in Section 3.2, an SLTL
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formula (P and ): S {Izslem |:P0b57 ):PUbliC’ ):decﬂ ):incr}:
TE¢ iff (f.first(f)) s ¢ forall f € Traces(%)

where =, equals = for step, pure observation-based and
public-history semantics, =, equals =/, for decremental
semantics and |=, equals =, for incremental semantics.

ncr

Remark 3.7. The meanings of {(a)¢ under =2, and =2,
are context-dependent through the parameter Q. If, e.g., ¢ =
{a)o Vv (b)Y (gN Ofa)e) for ¢ an SLTL formula then the

first occurrence of (@) @ is interpreted over =/, , while the

decr?

second is interpreted over p:j”gcr. The set Q = Q} with x €
{decr,incr} over which occurrences of subformulas y of ¢
are interpreted can be derived from the syntax tree of ¢.

Formally, we assign a set Q) with % € {decr,incr} to each
node v in the tree. Let ¢, denote the subformula represented
by v. If v is the root node then ¢, = ¢ and Q%" = P while
Qi“,‘“ = . Let now v and w be nodes such that v is the fa-
ther of w. If v is not labeled by a standpoint modality then
0} = 0. Otherwise ¢, has the form {a))¢,, for some a € Ag
and Q% = Q%N P, while Q" = Q" U P,. With abuse of
notations, we will simply write Q}, instead of Oy for a node
v representing the particular occurrence of ¥ = ¢, in ¢.

Obviously, the five semantics agree on the LTL fragment.
More precisely, for |= as above, T a SLTL structure and ¢ an
LTL formula we have ¥ |= ¢ iff % |=1r. ¢ in the sense that
Traces( %) C {f € (2)? : f = ¢} For SLTL formulas
with at least one standpoint subformula, but no alternation
of standpoint modalities, the pure observation-based, decre-
mental and incremental semantics agree, but might yield dif-
ferent truth values than the step or public-history semantics:

Lemma 3.8. If ¢ is a SLTL formula of alternation depth 1
then ‘I ':Pobs ¢ lff‘z 'Zdecr ‘p lﬁf‘z ):incr ¢’ While ‘I %Pobs (P and
T = ¢ (or vice versa) is possible where |= € {|=qeps Fpubic }-
Likewise, T [ puic ¢ and T =, ¢ (0r vice versa) is possible.

3.3 From Pure Observation-Based SLTL to LTLK

LTLK (also called CKL,,) (Halpern and Vardi 1986; Halpern
and Vardi 1989; Bozzelli, Maubert, and Murano 2024) ex-
tends LTL by an unary knowledge modality K, for every
a € Ag and a common knowledge operator C4 for coalitions
A C Ag. We drop the latter and deal with LTLK where the
grammar for formulas is the same as for SLTL when (a) ¢ is
replaced with K, . The alternation depth of LTLK formulas
and the sublogics LTLK, are defined as for SLTL.

LTLK structures are tuples (.7, (~q)acaq) Where 7 =
(S,—,init,R,L) is a transition system and the ~,, a € Ag,
are equivalence relations on S. The intended meaning is that
s ~q t if agent a cannot distinguish the states s and 7.

The perfect-recall semantics of LTLK extends the stan-
dard LTL semantics formulated for path-position pairs (7,n)
consisting of a path & = sps1s3 ... € Paths(7) and a position
n € N by (7,n) Eink K,@ iff (7',n) Fink @ for all paths
' = sy8)sh... € Paths(7) with s; ~, s} for i =0,1,...,n.
As such, the dual standpoint modality [[¢]] under the pure
observation-based semantics resembles the K, modality of
LTLK. Indeed, SLTL under =, can be considered as a spe-
cial case of LTLK under the perfect-recall semantics:

Lemma 3.9. Given a pair (T, ¢) consisting of a SLTL struc-
ture T = (,(Ta)acag) and a SLTL formula ¢, one can
construct in polynomial time an LTLK structure % g =
(T, (~a)acag) and an LTLK formula ¢z such that:

(1) T ):pobs (b lf and only l:f(zLTLK ':LTLK ¢LTLK
(2) ¢ and @1k have the same alternation depth.

Proof sketch. Assume w.l.o.g. that the initial state label-
ings in % and .9, are consistent for all a. First, for each
a € Agu{0}, we extend .7, to its completion .7 by adding

new states J_aQ for each Q C P,, where the set of atomic
propositions in Z;- is P = P,U{Ll,}. The labeling of
the original states is unchanged, i.e., L} (s) = L,(s), while
for the fresh states L-(19) = QU {L,}. We then con-
struct the synchronous product .7/ = Sg- x [Tueaq 7, such

that Ly (s) N P, = L} (s4) NP, for each a € Ag. The set of
atomic propositions is P = PU{ 1, :a € AgU{0}}, and
L'(s,(sa)acag) = Lo(s) U{La : a € AgU{0}, L, € Ly (sa)}-
The initial state of .7’ is init’ = (inito, (inity)aca,), and
the transitions are defined synchronously. The equiva-
lence relations ~, on §' satisfy ¢ ~, 0 iff L'(c) NP} =
L'(6) N P;. We then inductively translate SLTL formulas
¢ into “equivalent” LTLK formulas ¢@": ¢’ = ¢, (—¢@) =
¢, (pAY) =o' Ay, (Q9) =Q¢, (Ug) =
o, U@, ((a)e) = Kq(¢' ANO—-L,). Finally, we define
¢LTLK = ‘:l_|J_() — ¢/. D

4 Model Checking SLTL

Let [= be one of the five satisfaction relations defined in Sec-
tion 3.2. The task of the SLTL model checking problem is
as follows. Given a SLTL structure T = (.7, (Z4)acag) and
an SLTL formula ¢, decide whether T = ¢.

We present a generic model checking algorithm for the
five semantics, which can be seen as an adaptation of the
standard CTL*-like model checking procedure (Emerson
and Sistla 1984; Emerson and Lei 1987) and its variant
for LTLK and CTL*K under the perfect-recall semantics
(Bozzelli, Maubert, and Murano 2024). The central idea
is an inductive approach to compute deterministic finite au-
tomata (DFA) 2, for all standpoint subformulas y = {a}))¢
of ¢. The automaton for y, called history-DFA, represents
the language of all histories & € (2°)" with (x,h) =, x
where |=, stands for one of the satisfaction relations |=e,,

':pobs5 ):PUbliC’ ':((izecr or ):gcr with Q S {Q?Cccr Qixncr} as in Re-
mark 3.7

The inductive computation corresponds to a bottom-up
approach where the innermost standpoint subformulas, i.e.,
subformulas ¥ = {a)w where v is an LTL formula, are
treated first. When computing &, for a subformula y =
{a)w where y contains standpoint modalities, we may as-
sume that history-DFA for the maximal standpoint subfor-
mulas 1,..., X, of ¥ have been computed before.

Preprocessing for =, and |=, .. Inthe decremental and
incremental semantics, our iterative bottom-up approach re-
quires computing the relevant parameters Q C P of the satis-
faction relations =5, and =2, over which subformulas of ¢

incr
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are interpreted. This can be done in time linear in the length
of ¢ by a top-down analysis of the syntax tree of ¢ (see Re-
mark 3.7). In what follows, we shall write O, to denote the
corresponding subset Q;‘Cw or Q}‘”, respectively, of P for (an
occurrence of) a subformula . Thus, if ) is not in the
scope of a standpoint modality or a maximal standpoint sub-
formulas of ¢ then O, = P under the decremental semantics
and Q, = @ under the incremental semantics. If ¥ = (a)) y
is (an occurrence) of a standpoint subformula of ¢ and x’
a subformula of y that — as a subformula of y — is not in
the scope of a standpoint modality or a maximal standpoint
subformula of y then Q, = Q, N F, for the decremental se-
mantics and Q,r = Qy U P, for the incremental semantics.

Observation Sets ©,. Our algorithm uses subsets O, C
P for the standpoint subformulas ¥y = {a)¢ of ¢, whose
definition depends on the considered semantics: O, = & for
Eeps Oy = Py for [=pop, Oy = P for =puiic, Oy = Qdecr NP,
for =y, and Oy = Q4" UP, for |=,,,. Let obsy, : (2P ) —

(291)* be the induced observation function obsy (h) = h|o .

incr*

Transition Systems 7%, Define R, = P, under decremen-
tal and step semantics and R, = P otherwise. We denote
R = Ry, where R D F,, and switch from the transition sys-
tem .7, to an extended system ZIR over the domain R, which
preserves the behavior of .7,. , but makes nondeterministic
guesses for the truth values of propositions in R \ P, for the
starting state, as well as in every step of a computation. So,
the states of .7 are pairs (s,0) with s € S, and O C R such
that L,(s) = ONP,.

The switch from .7, to .ZX will be needed to deal with the
constraints last(h') = first(f') in the definitions of |=pupc
':incr and ':P"bs'

Remark 4.1. If R = P, then 7R and .7, are isomorphic,
so the switch from .7, to .ZF is obsolete. (Note that then
O = L,(s) for all states (s,0) in ZR.) This applies to Fp
where O, = @ and =, where O, C P,.

Definition 4.2. Let y be a standpoint subformula of ¢. A
history-DFA for X is a deterministic finite automaton 9 =
(2, 8y, inity,Fy) over the alphabet 2F such that

(1) L(2)={he (2P)" : (x,h) =, x}-

(2) 9 is Oy-deterministic in the following sense: When-
ever hi,hy € (2P)* such that hlo, = halo, then
Oy (inity,hy) = 8y (inity,hy), where the transition func-
tion Oy 1 Ay x 2k Zy is extended to a function Xy x
(2F)* — 2 in the standard way and inity its initial state.

For an example construction of history-DFA see Figure 3
and Example 4.4 on page 8.

Generic SLTL Model Checking Algorithm

Basis of Induction. In the basis of induction we are
given a standpoint formula ¥ = (@)@ with ¢ an LTL for-
mula. Let 7, = IK where R=R, = P,UD,. We ap-
ply a mild variant of standard LTL model checking tech-
niques (Vardi and Wolper 1986; Vardi and Wolper 1994;

Baier and Katoen 2008; Clarke et al. 2018) to compute the
set Sat 7r(3@) of states (s,0) in .} for which there is a

f € Traces” (TR, (s,0)) with f IL*LTL @. We then use a pow-
erset construction apphed to 7" (see Definition 4.3 below)
to construct an £, - deterministic history-DFA 7.

Step of Induction. Suppose now x = {a)¢ and ¢ has
standpoint subformulas. Let xp,...,xx be the maximal
standpoint subformulas of ¢, say x; = (b;)y; for i =

.k, and let 21 = Dy,,..., Dk = Dy, be their history-
DFAs over 2P, Let Z; = (X;, 5,,lmt,, i) and O; = O,. Fur-
ther, we simply write R for Ry = P, U9O,. We consider the
transition system

%C:%Rxmglm...mﬁk

that is obtained by putting %R" in parallel to the product
of the Z;’s. For this, we introduce pairwise distinct, fresh
atomic propositions p1, ..., py for each of the y;’s and define
the components .7, = (Z,,—,Inity, Py,Ly) as follows.
The state space is Z; = SR x X; x ... x X;. The transition
relation satisfies: ((s,0),x1,...,x) = ((¢, O’) XseXy)
iff there is H C Psuchthat HNR= 0/, (5,0) =& (s, 0’) and
x; = 0i(x;,H) fori=1,..., k. The set of atomic proposmons
iS@X:RU{pl,...,pk}. )

The labeling function Ly : Zy — 27% is given by
Ly((s,0),x1,...,xx) NR = O and p; € Ly(s,x1,...,x;) iff
x; € F; for i = 1,...,k. Lastly, Init, contains all states
((inity,0),x1, . ..,x;) such that (init,,0) € Init® (ie., ON
P, = L,(init,)) and there exists H C P with x; = &;(init;,H)
fori=1,....,kand O=HNR.

We now replace ¢ with the LTL formula ¢’ =
(p[%l/pl,...,xk/pk] over ¥ = PU{pl,...,pk} that results
from ¢ by syntactically replacing the maximal standpoint
subformulas x; of ¢ with p;. We then apply standard LTL
model checking techniques to compute Sat 7, (3¢') = {z €

Zy : 3f € Traces” (Ty,2) st. f = @'}

Having computed Satz,(3¢'), the atomic propositions
P1,---, Pk are no longer needed. We therefore switch from
I to Ty = Ty |r which agrees with .7, except that &, = R
and L), (s,x1,...,%) = Ly(s,x1,...,x) NR. By applying a
powerset construction to ﬂx’ we get an O, -deterministic his-
tory DFA 2, for the language {h € (2F) " : (x,h) =, x} (see
Definition 4.3 below, applied to .7 = .7, O, and the set
Uy = Sat 7,(3¢") to specify the final states in 7).

Final Step. After treating all maximal standpoint subfor-
mulas of ¢, we need to check whether ¢ holds for all traces
of Z. This is done like in the first part of the step of induc-
tion, i.e., we build the product 7 of J with the history-
DFAs that have been constructed for the maximal standpoint
subformulas of ¢ and replace them with fresh atomic propo-
sitions, yielding an LTL formula ¢’ over an extension of P.
We then apply standard LTL model checking techniques to
check whether all traces of .7 satisfy ¢’. This can be done
using an algorithm that is polynomially space-bounded in
the size of .7 and the length of ¢’ (and ¢).
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Figure 3: Transition system and the reachable fragments of the de-
fault history-DFAs for y = ((a)) O p under the step and the public-
history semantics constructed in Example 4.4. Boxes are used for
final states, circles for non-final states.
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Computation of History-DFA The history-DFA &, for
standpoint subformulas y = {a)) ¢ can be obtained by apply-
ing a powerset construction to the transition system .7 = 7,
over R = Ry. This construction is an adaption of the clas-
sical powerset construction for nondeterministic finite au-
tomata and can be seen as a one-agent variant of the power-
set construction introduced by Reif (Reif 1984) for partial-
information two-player games and its variant for CTL*K
model checking (Bozzelli, Maubert, and Murano 2024).
The acceptance condition in &, is derived from the set
U = Sat 7 (3¢) in the basis of induction and U = Sar 7 (3¢")
in the step of induction.

Definition 4.3. Ler 7 = (S, —, Init,R,L) withRC P, O CP
an observation set, and U C S. Then, pow(7,0,U) is the
Sollowing DFA 9 = (Z4,084,inity,Fg) over the alphabet
2P, The state space is o = 25 U{inity}. The transition
function 8 : Xy x 2P — Xy is given by (where x € 25):

8y(x,H) = {s' €S: there exists s € x with
s—s and L(s)NO=HNO}

8y (inity,H) = {s € Init : L(s)NO =HNO}
The set of final states is Fy = {x €EZy:xNU # @}.
We refer to pow(.7,90,U) as the default history-DFA.

Example 4.4. Consider the transition system .7, depicted in
Figure 3. To apply the construction from Definition 4.3, sup-
pose R =P = {p} and first that © = & (as it is the case when
constructing the default history-DFA for the steps seman-
tics). Further, let U = Sat g, (3O p) = {so,s2}. The reach-
able fragment of the default history-DFA 2, is depicted in
the middle of Figure 3. If instead we assume © = P (public-
history semantics), the resulting default history-DFA is Z,.

5 Complexity-Theoretic Results

At first glance the time complexity of our generic model
checking algorithm is d-fold exponential for SLTL formu-
las ¢ where d is the maximal nesting depth of standpoint
modalities in ¢. This yields a nonelementary upper bound
for the SLTL model checking problem.

For * € {step, pobs, public,decr,incr}, let SLTL* denote
SLTL under the semantics w.r.t. |=,. We now study the com-
plexity of the different SLTL* model checking problems.

Bounds on the Sizes of History-DFA and Time Bounds.
Obviously, it suffices to construct the reachable fragment

of the default history-DFA. Furthermore, we may apply a
standard poly-time minimization algorithm to the default
history-DFA. Thus, to establish better complexity bounds it
suffices to provide elementary bounds on the sizes of min-
imal history-DFA for standpoint subformulas. Let us start
with a simple observation on how to exploit the property
that the history-DFA 2, are O ,-deterministic.

Remark 5.1. With the notations of the step of induction
for x = (a) @, the history-DFA &, for x is obtained by
(the reachable fragment) of pow(ﬂx' ,Oy,Uy) where Uy =
Sat7,(3¢'). Recall that 7 is defined via a product con-

struction 78 1 P < ... 1 ) where the 2;’s are history-
DFAs for the maximal subformulas x; = (b;) y; of ¢.

Suppose now that i € {I,...,k} such that 7 is O,-
deterministic. Then, for all histories & € (2°)" and states
((5,0),x1,...,%) in Reach(.Fy,h) we have x; = §;(init;,h).
Hence, if x is a reachable state in 2, say x = 8g, (initg,h),
then for all states ((s,0),x1,...,X) € x we have x; =
Oi(init;, h). Thus, we may redefine the default history-DFA
Py as a product

pow( TR <[4 D), Oy) >4 D

rather than a powerset construction of ZX 1 9y > ... >
P. From now on, we write pow(7,9) for the structure
(Z9,09,inity) defined as in Definition 4.3. The acceptance
condition Fy, is (re)defined as the set of all states (x,x;) in
the above product (i.e., x is a subset of the state space of
TRl 2 and x; a state in Z;) such that {(§,x;): & €
x}NUy # @. Let I denote the set of indices i € {1,...,k}
where the history-DFA for y; = (b;) y; is O, -deterministic.
Wlo.g. I ={1,...,4}. Then, we can think of &, as (the
reachable fragment of) a product

pOW(ZlR > @[Jr] D>J... X @k,Dx) N = @g.

If x = (a)¢ then O, = O, for all maximal standpoint
subformulas y; = (b;) y; of @ where a = b;. Thus, by in-
duction on d = ad( ), Remark 5.1 yields that the size of the
reachable fragment of the default history-DFA for a stand-
point formula y is d-fold exponentially bounded. Hence:

Lemma 5.2. Under all five semantics, the time complexity
of the algorithm of Section 4 is at most d-fold exponential
when d = ad(9).

This d-fold exponential upper time bound will now be im-
proved using further consequences of Remark 5.1.

We start with =,. Here, we have O, = @ for all y.
With the notations used in Remark 5.1, the history-DFA
D, ..., Dy are Oy -deterministic. Thus, we can think of 2,
as a product pow(.7,, ) X1 21 X ... <1 Z. But now, each
of the &;’s also has this shape. In particular, if x; = {a})) y;,
then the projection of the first coordinate of the states and
the transitions between them in the reachable fragment of 2,
matches exactly those of pow(7,,@). Thus, one can incor-
porate the information on final states and drop pow(.7,,d)
from the product. As a consequence, the default history-
DFA 2, can be redefined for qep such that the state space
of Py is contained in [Tpcaq(y) 25 where Ag(y) denotes
the set of agents b € Ag such that )y has a (possibly non-
maximal) standpoint subformula of the form (b)) y.
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The situation is similar for =y (Where O 5 = P for all
x) and for =, (where O,, C O, for all standpoint subfor-
mulas x; of x). In the case of =y there are history-DFA
where the state space is contained in ([Tpeaq(y) 2%) x 2°.
For |=,...» we assign history-DFA &, to the nodes in the syn-
tax tree of v that have the shape [T, pow(.Z,,,0%") where
w ranges over all nodes in the syntax subtree of v such that
the formula given by w is a standpoint formula {a,,)) @,,.

Under the above mentioned simplification of the default-
history DFAsS, these observations yield:

Lemma 5.3. For % € {step,public,decr}, the algorithm of
Section 4 for SLTL* model checking runs in (single) expo-
nential time.

Let us now look at =,,.,. Given a node v in the syntax tree
of ¢, let ¢, denote the subformula of ¢ that is represented
by v and &, the unique path m, = vyv...v, in the syntax
tree from the root vg to v, = v, and let Ag, denote the set
of agents b € Ag such that ¢,, has the form (b)) y, for some
we {vi,...,v,—1}. By Remark 3.7, if ¢, = {a}) ¢ then:

01" = Upeng, Pp and O = QT U P,

Let 7, = w; ... w be the sequence resulting from 7, when
all nodes w where ¢,, is not a standpoint subformula are re-
moved. The observation sets along 7], are increasing, i.e.,

@ = O C D‘v‘:;r c...C Di‘j}zr CP.

w1
Thus, the number of indices j € {2,...,¢} where D;‘:‘L , and
Di‘;j‘ are different is bounded by N—1 where N = |Ag|. If
Qiner - — Dﬁ‘jl the history-DFA constructed for ¢, is O}

Wj-1 wi-1"
deterministic. We can now again apply Remark 5.1 to y =

¢w; , and x; = ¢,,;. This yields:

Lemma 5.4. With N = |Ag|, our model checking algorithm
for SLTL™" is N-fold exponentially time bounded.

Space Bounds Lemma 3.9 shows that the SLTLY™ model
checking problem is polynomially reducible to the LTLK,
model checking problem under the perfect-recall semantics.
The latter is known to be (d—1)-EXPSPACE-complete for
d > 2 and PSPACE-complete for d = 1 (Bozzelli, Maubert,
and Murano 2024). In combination with the known PSPACE
lower bound for the LTL model checking problem (Sistla
and Clarke 1985) and Lemmas 3.8 and 3.9 we obtain:

Corollary 5.5. For x € {pobs,decr,incr}, the SLTL} model
checking problem is PSPACE-complete. For d > 2, the
SLTLY™ model checking problem is in (d—1)-EXPSPACE.

For the step and public-history semantics, the reduction
provided in the proof of Lemma 3.9 can be adapted by deal-
ing with an LTLK structure over a single agent. Thus, the
generated LTLK formula has alternation depth at most 1.

Theorem 5.6. For x € {step,public}, the SLTL" model
checking problem is polynomially reducible to the LTLK;
model checking problem, and therefore PSPACE-complete.

Lemma 3.9 and Theorem 5.6 show that the SLTL* model
checking problem for * € {step, public, pobs} can be viewed
as an instance of the LTLK model checking problem. An
analogous statement holds for |=,. . and |=, . The idea is

incr®
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to modify the reduction described in the proof of Lemma
3.9 by adding new agents for all standpoint subformulas
x = {a) v where P, # O,. This yields a polynomial reduc-
tion of the SLTL, model checking problem to the LTLK,
model checking problem where M = min{|Ag|,d} and x €
{incr,decr}. From a complexity-theoretic view, this obser-
vation is irrelevant for the decremental semantics where we
have PSPACE-completeness for alternation depth 1 (Corol-
lary 5.5) and a single exponential upper time bound in the
general case (Lemma 5.3). However, with the above men-
tioned results of (Bozzelli, Maubert, and Murano 2024), this
observation improves the complexity-theoretic upper bound
for the incremental semantics stated in Lemma 5.4:

Corollary 5.7. The SLTL™ model checking problem is in
(N—1)-EXPSPACE where N = |Ag]|.

6 Conclusion

We considered five different semantics for SLTL that differ
in the amount of information the agents can extract from the
history, and presented a generic model-checking algorithm
applicable to all five semantics. The computational com-
plexity of the algorithm, however, varies between the seman-
tics due to the different numbers of necessary applications
of the powerset construction. More precisely, the generic
SLTL* model checking algorithm is m-fold exponentially
time-bounded with m = 1 for * € {step, public,decr}, m =
|Ag| for * = incr, and m = ad(¢) for x = pobs.

Algorithms with improved space complexity for Fqep,
FEpubtic; Fpobs> and |=;,., are obtained via embeddings into
LTLK. To match the space bounds, the model-checking al-
gorithm of Section 5 can be adapted by combining classical
on-the-fly automata-based LTL model checking techniques
with an on-the-fly construction of history-DFA, similar to
the techniques proposed in (Bozzelli, Maubert, and Mu-
rano 2024) for CTL*K. Analyzing if analogous techniques
are applicable to obtain a polynomially space-bounded al-
gorithm for |=,,,, providing lower bounds beyond PSPACE
for |=;,., and [=pas, as well as an experimental evaluation of
the presented algorithm remain as future work. Further di-
rections include extending the logic with common and dis-
tributed knowledge operators, as well as studying SLTL with
past modalities such as previous and since.
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