
MTLearn: Extracting Temporal Rules Using Datalog Rule Learners

Dingmin Wang , Przemysław A. Wałęga , Bernardo Cuenca Grau
Department of Computer Science, University of Oxford

{dingmin.wang, przemyslaw.walega, bernardo.grau}@cs.ox.ac.uk

Abstract

We propose a framework for temporal rule learning from
datasets, which capitalises on the availability of increasingly
mature Datalog rule learners. Our approach is based on the
idea of splitting a temporal dataset into windows, extracting
static rules from each window with an off-the-shelf Datalog
rule learner, and then combining the obtained static rules into
temporal rules corresponding to the whole dataset. Tempo-
ral rules generated by our approach are expressed in Data-
logMTL and are assigned time-sensitive confidence scores.
We have implemented our approach in a system MTLearn
compatible with any Datalog rule learner, as well as with a
range of strategies for scoring the output temporal rules. Re-
sults on the task of temporal link prediction show that our pro-
posed approach is highly competitive, achieve performance
comparable to that of state-of-the-art machine learning mod-
els for both the extrapolation and the interpolation settings,
while at the same time providing interpretable results.

1 Introduction
Temporal data management is crucial in dynamic domains,
such as online payments, healthcare, weather forecasting,
and sensor networks (Chen et al. 2020; Zeroual et al. 2020;
Thennakoon et al. 2019; Hewage et al. 2021). Yet, super-
vised machine learning models for temporal data (Dasgupta,
Ray, and Talukdar 2018; Pareja et al. 2020; Jin et al. 2020;
Messner, Abboud, and Ceylan 2022; Park et al. 2022) suffer
from limited interpretability, hindering their use in some ap-
plications. In contrast, Knowledge Representation (KR) en-
ables the formalisation of expert knowledge as logical rules
and the deduction of new information via logical entailment
(Van Harmelen, Lifschitz, and Porter 2008). Expert knowl-
edge written as rules not only enhances the understanding
of inferred outcomes, but also promotes trust in system pre-
dictions, ensures compliance with norms, and facilitates the
verification of fairness standards. This is key in applica-
tions where accuracy and interpretability are essential. Thus,
rules equipped with temporal operators are increasingly be-
ing used as the foundation for dependable and explainable
AI systems (Thadeshwar et al. 2020; Vitelli et al. 2022).

Obtaining high-quality rules presents practical hurdles
due to the scarcity of expert knowledge and the substan-
tial human effort required. Research on automated rule ex-
traction from data encompasses areas such as inductive

logic programming (Muggleton and De Raedt 1994; Crop-
per and Dumančić 2022), neural logic programming (Yang,
Yang, and Cohen 2017), and rule learning (Fürnkranz,
Gamberger, and Lavrač 2012; Fürnkranz and Kliegr 2015).
Additionally, a number of ready-to-use systems such as
AnyBURL (Meilicke et al. 2019), AMIE+ (Galárraga
et al. 2013), RLvLR (Omran, Wang, and Wang 2018),
RARL (Pirrò 2020), and Popper (Cropper and Morel 2021),
have been developed. These systems, however, were not de-
signed to handle temporal data and the rules they generate
do not incorporate appropriate temporal constructs.

Recently, there has been a growing interest in rule
generation from temporal knowledge graphs (tKGs) in-
cluding StreamLearner (Omran, Wang, and Wang 2019),
TLogic (Liu et al. 2022), TILP (Xiong et al. 2024a), and
TEILP (Xiong et al. 2024b). StreamLearner is particularly
relevant to our research as it also relies on established Dat-
alog rule learners (unlike TLogic, TILP, and TEILP). In
particular, StreamLearner computes temporal Datalog rules
from a stream of KGs. To this end, it considers a fixed-length
initial fragment of the stream to generate non-temporal rules,
referred to as “structure rules”. These rules are then extended
with a temporal component so that the resulting temporal
rules hold in the stream. StreamLearner, however, comes
with some limitations. First, output rules are constrained to
temporal closed path rules, where all body atoms refer to the
same time point; this limits the system’s ability to capture
dependencies across different time points. Second, the initial
time points dictate the structure of all generated rules across
all time points; however, as time progresses beyond the ini-
tial time points, a distinct rule structure may be necessary to
effectively capture patterns emerging in the data. In contrast,
TLogic, TILP, and TEILP extract temporal rules by taking
into account the entire dataset. However, the form of ex-
tracted rules is limited; generated rules can propagate infor-
mation only to the future (they are “forward-propagating”)
and restrict the allowed form of joins between body atoms
(they are “temporal chain rules”).

Our aim is to tackle the aforementioned limitations and
offer a flexible and scalable solution for temporal rule learn-
ing. Similarly to StreamLearner, our framework capitalises
on the availability of increasingly mature systems for learn-
ing Datalog rules and leverages a sliding window algorithm.
Our approach, however, does not impose additional restric-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

962



tions on the structure of temporal rules and applies the Dat-
alog rule learner for each window of the dataset, rather than
just the initial fragment of the timeline as in StreamLearner.
The latter allows us to uncover regularities in arbitrary seg-
ments of the timeline, enabling a more comprehensive anal-
ysis of temporal patterns.

Furthermore, our approach extracts rule in a much more
expressive temporal language than those considered by
StreamLearner and TLogic. Indeed, rules extracted by our
approach are written in a fragment of DatalogMTL (Brandt
et al. 2018), a powerful extension of Datalog with operators
from metric temporal logic (MTL) which can represent de-
pendencies over intervals that span multiple adjacent time
points. For example, it allows us to extract rules such as

ProvideHumanitarianAid(x, z)

← ⊟[1,3]DemobilizeArmedForces(x, y) ∧
⊟[1,2] UseUnconventionalViolence(y, z), (1)

which predicts that a country x will provide humanitarian
aid to country z if x was demobilising armed forces of y
in the last three days (MTL operator ⊟[1,3] expresses “con-
tinuously between 1 and 3 days in the past”) and y was us-
ing unconventional violence against country z last two day
(⊟[1,2] expresses “continuously between 1 and 2 days in the
past”).1 Importantly, our approach is compatible with dif-
ferent strategies for computing a confidence score for the
generated temporal rules, thus providing users with adequate
means for assessing their reliability.

We have implemented this approach in a new system
MTLearn2 and evaluated its performance on link prediction
tasks over tKGs (Trivedi et al. 2017; Leblay and Chekol
2018; Dasgupta, Ray, and Talukdar 2018; Xu et al. 2021;
Lacroix, Obozinski, and Usunier 2020; Park et al. 2022).
Our experiments show that our approach achieves compara-
ble performance to that of state-of-the-art approaches, while
offering the advantage of interpretable predictions justified
by the application of the extracted rules to the given data.

2 Background
In this section, we recapitulate the basics of DatalogMTL,
rule learning, and temporal link prediction.

Rule Learners Datalog is a standard rule-based language
used in KR (Van Harmelen, Lifschitz, and Porter 2008),
Data Management (Garcia-Molina, Ullman, and Widom
2009; Abiteboul, Hull, and Vianu 1995), and Logic Pro-
gramming (Dantsin et al. 2001). Datalog rules are of the
form A′ ← A1 ∧ · · · ∧ An, where n ≥ 1; each expres-
sion A is a relational atom P (s) consisting of a predicate P
and a tuple s of terms (i.e., constants and variables) match-
ing the arity of P . The conjunction A1 ∧ · · · ∧ An is the
rule body, whereas A′ is the rule head. A Datalog pro-
gram is a finite set of rules and a dataset is a finite set

1This rule was extracted by the application of our approach to
the ICEWS18 dataset.

2Code of our system together with the benchmarks are available
at https://github.com/wdimmy/MTLearn.

of facts (i.e., variable-free atoms). Datalog rules are inter-
preted as universally quantified function-free Horn formu-
las in First Order Logic (Abiteboul, Hull, and Vianu 1995;
Dantsin et al. 2001).

Datalog rule learners are systems designed to extract Dat-
alog rules from a dataset, together with a confidence value
for each rule. Existing systems exhibit significant hetero-
geneity due to variations in the algorithms they are based
on, their underlying assumptions, and the syntactic form of
the rules they generate. AnyBURL (Meilicke et al. 2019) and
AMIE+ (Galárraga et al. 2015) were developed to efficiently
generate rules from large-scale KGs. Both systems accept a
set of facts involving binary predicates as input and com-
pute Datalog rules satisfying certain syntactic restrictions.
AnyBURL uses a bottom-up approach to generate rules. Ini-
tially, the system identifies a collection of paths from the in-
put KG; subsequently, these identified paths are generalised
into rules by substituting constants with variables. Rules ob-
tained by AnyBURL conform to the following forms:

A′(c′, x) ← A1(x, z2) ∧ · · · ∧ An(zn, c),

A′(c′, x) ← A1(x, z2) ∧ · · · ∧ An(zn, zn+1),

A′(y, x) ← A1(x, z2) ∧ · · · ∧ An(zn, y),

with c, c′ constants, x, y variables occurring in both the body
and the head, and each zi a variable occurring only in the
body. Rules generated by AMIE+ are connected (i.e., the
graph obtained from the rule body by interpreting each term
as a node and each atom as an undirected edge is con-
nected), thus precluding rules with unrelated atoms; further-
more, each variable in a rule is required to appear at least
twice in different atoms. Other systems following similar
approaches include RLvLR (Omran, Wang, and Wang 2018)
and RARL (Pirrò 2020). Popper (Cropper and Morel 2021)
is an inductive logic programming system which provides
flexibility in specifying the syntactic rule structure accord-
ing to the user’s requirements and preferences.

DatalogMTL DatalogMTL (Brandt et al. 2018; Wałęga et
al. 2019) is an extension of Datalog with operators from met-
ric temporal logic (Koymans 1990). These operators build
upon the standard linear temporal logic (LTL) operators,
such asx standing for “sometime in the past”, ⊟ for “always
in the past”, and S for “since”, as well as their future coun-
terparts | for “sometime in the future”, ⊞ for “always in
the future”, and U for “until”. In MTL, however, these LTL
operators are annotated with intervals; for instance, the ex-
pression x[1,2]LiveIn(x, y) is true at time t if entity x lived
in location y sometime between times t− 1 and t− 2. Sim-
ilarly, ⊟[1,2]LiveIn(x, y) holds at time t if x continuously
lived in y throughout the aforementioned time interval. In
this paper, we consider DatalogMTL interpreted over the in-
teger timeline (Wałęga et al. 2020) and restrict ourselves to
a fragment in which metric atoms are generated by the fol-
lowing grammar, where P (s) is a relational atom and ϱ an
interval including only non-negative numbers:

M ::= P (s) | ⊟ϱM | ⊞ϱM.

To simplify notation we will represent punctual intervals
(e.g., in subscripts of MTL operators) of the form [t, t] with

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

963

https://github.com/wdimmy/MTLearn


t. A rule in this fragment is an expression of the form

P (s)←M1 ∧ · · · ∧Mn, for n ≥ 1, (2)

where the body atoms M1, . . . ,Mn are metric atoms and
the head atom P (s) is relational. A program is a finite set
of rules. Temporal dataset is a finite set of temporal facts
P (c)@t with P (c) a ground relational atom (i.e., with no
variables) and t ∈ Z.

An interpretation I is a function assigning truth values to
ground relational atoms P (c) and time points t ∈ Z. It de-
termines if P (c) is satisfied at t, denoted as I, t |= P (c),
or not, denoted as I, t ̸|= P (c). This notion of truth assign-
ment extends to other ground metric atoms in the considered
fragment as follows:

I, t |= ⊟ϱM iff I, t′ |= M for all t′ with t− t′ ∈ ϱ,

I, t |= ⊞ϱM iff I, t′ |= M for all t′ with t′ − t ∈ ϱ.

For example, an interpretation making atom
LiveIn(Ann, Paris) true everywhere within [10, 30]
and false elsewhere makes ⊟[1,2]LiveIn(Ann, Paris) true
at the time point 31, but false at 32. An interpretation can be
alternatively seen as the (possibly infinite) set of facts that it
satisfies, which yields a natural meaning to containment and
minimality of interpretations. Interpretation I is a model of
a temporal fact P (c)@t, if I, t |= P (c) holds. Then, I is a
model of a rule of the form (2) if, for each substitution (of
constants to variables) ν grounding the rule and for each
t ∈ Z, the condition I, t |= P (s)ν is satisfied whenever
I, t |= Miν for all i ∈ {1, . . . , n}. We say that I as a model
of a dataset D (or program Π), if I is a model of all facts
in D (or rules in Π). A program Π and a temporal dataset
D entail a fact P (c)@t, written (Π,D) |= P (c)@t, if each
model of Π and D satisfies P (c)@t. Program Π entails a
rule r if every model of Π is also a model of r. Let ID
be the minimal model of D; then TΠ(D) is the minimal
interpretation containing ID and satisfying the following
property for each ground instance r of a rule in Π: whenever
ID satisfies each body atom of r at a time point t, then
TΠ(D) satisfies the head of r at t. Materialisation-based
reasoning algorithms syntactically apply rules to datasets in
order to mimic the semantics of the immediate consequence
operator. In particular, they compute a set r[D] of temporal
facts derived by rule r from D; more formally, r[D], for a
rule r of the form (2), consists of all temporal facts P (s)ν@t
such that ν is a substitution grounding r and D |= Miν@t
for each i ∈ {1, . . . , n}—that is, Miν holds at t in ID.

Temporal Link Prediction We identify a temporal knowl-
edge graph (tKG) with a temporal dataset D consisting of
temporal facts of the form R(c1, c2)@t. In the context of
link prediction, it is assumed that an incomplete tKG D is
given and the aim is to predict which temporal facts hold in
the (unknown) completion D∗ of D. We focus on answer-
ing prediction queries of the form R(x, b)@t or R(a, x)@t
where x is a variable, whereas a, b and t are fixed constants
and a time point, respectively. Hence, given D and a predic-
tion query q, we focus on the task of finding variable assign-
ments making the resulting temporal fact true in D∗.

The most common temporal link prediction variants are
referred to as interpolation and extrapolation (Jin et al.
2020; Sun et al. 2021; Chen and Wang 2022; Jia et al. 2023;
Ma et al. 2023; Wang et al. 2023). Let 0 and tmax be the
least and largest time points mentioned in the input tKG
D; for simplicity of presentation we will assume that 0
is the minimal time point in all datasets. In the interpola-
tion setting, a time point t in the prediction query satisfies
0 ≤ t ≤ tmax. In contrast, in the extrapolation (or forecast-
ing) setting, it holds that t > tmax. A common approach
to temporal link prediction tasks is to extend neural archi-
tectures and embedding techniques with a temporal dimen-
sion. Prominent models include RE-Net (Jin et al. 2020),
TTransE (Leblay and Chekol 2018), TA-DisMult (Garcia-
Duran, Dumančić, and Niepert 2018), CyGNet (Zhu et al.
2021), TeLM (Xu et al. 2021), TIMEPLEX (Jain et al.
2020), TComplEx (Lacroix, Obozinski, and Usunier 2020),
and LCGE (Niu and Li 2023).

3 Our Method
At a high level, the application of our approach to a temporal
dataset D consists of the following steps. First, we compute
a sequence of datasets Ft, each containing the facts in D
holding at t. Using a sliding window of size w (w is a con-
figurable parameter), the algorithm applies to each window
a rule learner to extract a Datalog program, with each gen-
erated rule accompanied by a confidence score. For every
window we rewrite the extracted Datalog rules into Data-
logMTL rules and then combine rules from various windows
(using one of the scoring strategies which we will introduce
later on) into a single DatalogMTL program with confidence
scores assigned to rules.

Unlike other approaches (Dasgupta, Ray, and Talukdar
2018; Jin et al. 2020; Zhu et al. 2021; Han et al. 2021;
Park et al. 2022; Liu et al. 2022), our method is not restricted
to tKGs as we do not impose any restrictions on the arity of
predicates occurring in D. Furthermore, our approach does
not introduce constraints on the form of the extracted Data-
log rules beyond those imposed by the Datalog rule learner.

3.1 The Rule Extraction Algorithm
Our rule extraction approach is specified in Algorithm 1 and
Figure 1 illustrates its execution on a concrete example. We
assume, for convenience of presentation, that the earliest
time point in any input dataset is 0.

Algorithm 1 takes as input a temporal dataset D and is
parameterised by a window size w ∈ N, an off-the-shelf
Datalog rule learner L, and a strategy for scoring tempo-
ral rules (we describe details of scoring strategies in Sec-
tion 3.2). In Line 1, the algorithm sets tmax to the maximal
time point in D and in Line 2, for each t ∈ {0, . . . , tmax},
it computes a dataset Ft. In particular, we rewrite each tem-
poral fact P (c)@t in the input temporal dataset D as a fact
Pt(c), where Pt is a fresh predicate uniquely associated to
time point t. Then, Ft consists of all facts associated to t.
We illustrate the construction of datasets Ft from D on the
left-hand side of Figure 1. Here, the input temporal dataset
D is transformed into datasets F0, F1, F2, and F3 through

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

964



D
———–

A(a,b)@0
B(b,c)@0
A(a,b)@1
B(b,c)@1
B(c,d)@1
A(c,d)@2
A(a,b)@2
B(c,d)@2
C(a,c)@2
A(a,b)@3
B(c,d)@3
C(a,c)@3

S2

S3
F3

———–
A3(a,b)
B3(c,d)
C3(a,c)

F2

———–
A2(a,b)
A2(c,d)
B2(c,d)
C2(a,c)

F1

———–
A1(a,b)
B1(b,c)
B1(c,d)

F0

———–
A0(a,b)
B0(b,c)

W3

———–
A1(a,b)
B1(b,c)
A2(a,b)
A2(c,d)
B2(c,d)
C2(a,c)
A3(a,b)
B3(c,d)
C3(a,c)

W2

———–
A0(a,b)
B0(b,c)
A1(a,b)
B1(b,c)
B1(c,d)
A2(a,b)
A2(c,d)
B2(c,d)
C2(a,c)

D
atalog

rule
learner

D
atalog

rule
learner

σ3 S3
———
1.0 : C3(x, z)← A1(x, y) ∧ A2(x, y) ∧ B1(y, z)

0.5 : A3(x, y)← A2(x, y)

1.0 : A2(x, y)← C2(x, z) ∧ C3(x, z) ∧ B1(y, z)

. . . . . . . . .

T
em

p

σ2 S2
———
1.0 : C2(x, z)← A0(x, y) ∧ A1(x, y) ∧ B0(x, z)

1.0 : A2(x, y)← A1(x, y)

. . . . . . . . .
T
em

p

Π3

———
C(x, z)← ⊟[1,2]A(x, y) ∧⊟2B(y, z)

A(x, y)← ⊟1A(x, y)

A(x, y)← ⊞[0,1]C(x, z) ∧⊟1B(y, z)

. . . . . . . . .

Π2

———
C(x, z)← ⊟[1,2]A(x, y) ∧⊟2B(y, z)

A(x, y)← ⊟1A(x, y)

. . . . . . . . .

scoring strategy “average”
τ Π

———
1.00 : C(x, z)← ⊟[1,2]A(x, y) ∧⊟2B(y, z)

0.75 : A(x, y)← ⊟1A(x, y)

0.50 : A(x, y)← ⊞[0,1]C(x, z) ∧⊟1B(y, z)

. . . . . . . . .
Π2,Π3

σ2, σ3

τ

Figure 1: Execution of Algorithm 1 on the running example, with window size w = 3 and a scoring strategy "average"; the input temporal
dataset is depicted on the left-hand-side and the output set of DatalogMTL rules together with their confidence scores are in the top-right

Algorithm 1: Temporal rule extraction
Input: A temporal dataset D
Parameters: A window size w ∈ N, a Datalog rule

learner L, and a scoring strategy
Output: A set of temporal rules and their scores

1 tmax := the maximal time point in D;
2 Ft := {(Pt(c) | P (c)@t ∈ D}, for each

0 ≤ t ≤ tmax;
3 for each t ∈ {w − 1, . . . , tmax} do
4 Wt := Ft−w+1 ∪ · · · ∪ Ft;
5 (St, σt) := L(Wt);
6 Πt := {Temp(r) | r ∈ St };
7 Π = Πw ∪ · · · ∪ Πtmax

;
8 Construct τ : Π 7→ [0, 1] using the scoring strategy;
9 return (Π, τ );

the introduction of fresh binary predicates Ai, Bi, and Ci

for each time point 0 ≤ i ≤ 3.
In Lines 3–6, the algorithm constructs windows from

datasets Ft, applies the Datalog rule learner to each win-
dow, and transforms the constructed rules into DatalogMTL
rules. In particular, each window Wt is the union of w + 1
consecutive datasets Ft−w+1, . . . ,Ft (Line 4). In our run-
ning example from Figure 1, we let w = 3, so the algo-
rithm constructs two windows W2 = F0 ∪ F1 ∪ F2 and
W3 = F1 ∪F2 ∪F3. Note that eachWt is a (non-temporal)
dataset. For each such Wt, Algorithm 1 applies an off-the-
shelf Datalog rule learner L to compute a set St of Datalog

rules together with a scoring function σt (Line 5) which as-
signs to each constructed rule a value from the interval [0, 1].
In our example, the rule learner extracts S2 and σ2 fromW2,
as well as S3 and σ3 fromW3.

In Line 6, each Datalog rule r in St is rewritten
into a temporal DatalogMTL rule using function Temp,
which implements the following computations. First, the
subscript t of the head predicate of r is removed; for
example if the head of r is Ct(x, y), then it is re-
placed with C(x, y). Second, every (maximal) sequence
of body atoms Pm(s), Pm+1(s), . . . , Pn(s) in r with
consecutive subscripts and m ≤ t is replaced with
⊟[t−n,t−m]P (s). Similarly, every (maximal) sequence of
body atoms Pm(s), Pm+1(s), . . . , Pn(s) in r with consecu-
tive subscripts and m ≥ t is replaced with ⊞[m−t,n−t]P (s).
Finally, we simplify presentation of the obtained temporal
rules by replacing atoms with punctual intervals of the form
⊟[k,k]P (s) with ⊟kP (s) and atoms of the form ⊟[0,0]P (s)
with P (s); We perform an analogous simplification for
atoms mentioning ⊞. For example, a Datalog rule

A2(x, y)← C2(x, z) ∧ C3(x, z) ∧B1(y, z)

extracted from windowW3 in our running example is rewrit-
ten as the DatalogMTL rule

A(x, y)← ⊞[0,1]C(x, z) ∧⊟[1,1]B(y, z).

Next, in Line 7, the algorithm computes the union Π of all
generated DatalogMTL rules from all windows. Finally, in
Line 8, the algorithm computes a scoring function τ which
assigns a value ranging from 0 to 1 to each rule in Π. The
construction of τ depends on the scoring strategy, which is

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

965



a parameter of the algorithm. We consider several types of
scoring strategies, as described in the following subsection,
and in Section 4 we will experimentally evaluate the impact
of choosing a particular scoring strategy.

3.2 Scoring Strategies
In this section, we describe different strategies implemented
in MTLearn for assigning scores to temporal rules.

The first type of strategy involves the computation of
scores τt : Πt 7→ [0, 1] for each time point t individually;
these are then combined to derive the overall scoring func-
tion τ . For each time point t and rule r ∈ Πt, we assign
τt(r) = σt(r

′), where r′ ∈ St represents the unique Dat-
alog rule such that Temp(r′) = r (uniqueness is guaran-
teed by the definition of Temp) and σt(r

′) is the score as-
signed by the Datalog rule learner to r′ in windowWt. The
computation of τ(r) for a generated DatalogMTL rule r is
based on the list Valr containing the defined values among
τw(r), . . . , τtmax(r), where for some t ∈ {w, . . . , tmax} we
may have r /∈ Πt and hence τt(r) may be undefined. We
propose four alternative ways of computing τ(r):

maximum: max(Valr),

average: avg(Valr),

weighted maximum: max(Valr) ·
|Valr|

tmax − w + 1
,

weighted average: avg(Valr) ·
|Valr|

tmax − w + 1
.

Example In our example from Figure 1, rule A(x, y) ←
⊟1A(x, y) is obtained in Π2 and Π3 with scores 1.0 and
0.5, respectively. We use “average” as the scoring strategy
for Π = Π2 ∪ Π3, and so τ assigning a score of 0.75 to the
DatalogMTL rule A(x, y)← ⊟1A(x, y).

Next, we define a scoring strategy which disregards the
scores computed by the off-the-shelf Datalog rule learner
and relies instead on temporalised versions SCT and HCT

of the standard confidence and head coverage metrics in the
field of rule learning. In particular, we set τ(r) to

β · SCT (r) + (1− β) ·HCT (r), (3)

for β ∈ [0, 1] a parameter controlling the influence of
SCT and HCT on the function τ . While confidence (SC)
and head coverage (HC) metrics are widely used in the
context of rule learning (Chen, Wang, and Goldberg 2016;
Meilicke et al. 2019; Galárraga et al. 2015), the definition
of their temporal counterparts varies depending on the form
of temporal rules, and different approaches adopt different
definitions (Liu et al. 2022; Omran, Wang, and Wang 2019).
As a starting point, we will first discuss the definition of SC
and HC in the Datalog setting and then, we will show how
to adapt them to the setting of DatalogMTL.

In the non-temporal case, for a Datalog rule r and a fixed
dataset D, SC and HC are usually given by the fractions

SC(r) =
supp(r)

body-supp(r)
, HC(r) =

supp(r)

head-supp(r)
,

where the rule support supp(r), body support
body-supp(r), and the head support head-supp(r)
are defined as follows, using the set G of all ground
instances of r. The rule support, supp(r), is the number
of distinct ground head atoms H such that there exists in
G a rule with head H and body B, both of which hold in
D. The definitions of body-supp(r) and head-supp(r) are
analogous, but they require only the body or only the head,
respectively, to hold in D. Formally:

supp(r) = |{H | (H ← B) ∈ G,D |= H,D |= B}|,
body-supp(r) = |{H | (H ← B) ∈ G,D |= B}|,
head-supp(r) = |{H | (H ← B) ∈ G,D |= H}|.

The notions of support for temporal rules should also take
into account the time points in which they hold. These can be
obtained, for example, by grounding the temporal variables
in a rule, as in TLogic (Liu et al. 2022), or by defining dy-
namic versions of SC and HC recursively through time, as
in StreamLearner (Omran, Wang, and Wang 2019). Our def-
inition is close to that in TLogic, except that in DatalogMTL
rules do not mention temporal variables (DatalogMTL rules
are meant to hold in all points of the timeline), so their tem-
poral component cannot be grounded. Instead, we define
temporalised variants of SC and HC as follows:

SCT (r) =
suppT (r)

body-suppT (r)
, HCT (r) =

suppT (r)

head-suppT (r)
,

where the temporalised variants of supports count the num-
ber of facts H@t, with t ranging over all time points:

suppT (r)= |{H@t |(H←B) ∈ G,D |= H@t,D |= B@t}|,
body-suppT (r) = |{H@t | (H ← B) ∈ G,D |= B@t}|,
head-suppT (r) = |{H@t | (H ← B) ∈ G,D |= H@t}|,

where D |= B@t is an abbreviation for stating that D |=
M@t, for each atom M in the conjunction B.

Note that in our setting, SCT and HCT can be equiva-
lently defined using the result r[D] of applying r to D and
Dr, which we define as the set of all facts H@t ∈ D such
that H is a grounding of the head of r, namely we obtain the
following equalities:

SCT (r) =
|r[D] ∩ D|
|r[D]|

, HCT (r) =
|r[D] ∩ D|
|Dr|

.

Indeed, observe first that |Dr| = head-supp(r), by the
definition. Moreover, |r[D]| is the number of facts which
can be derived from D by an application of r, that is, by
grounding r and checking if the obtained body holds in D.
Hence, |r[D]| = body-suppT . Finally, |r[D] ∩ D| is the
number of facts in r[D] which additionally hold in D, and
so, |r[D] ∩ D| = suppT (r). Thus, SCT and HCT can be
determined using a reasoner which can compute r[D]; in
particular, we obtain it using the DatalogMTL reasoner Me-
TeoR (Wang et al. 2022).

Example Let r be the DatalogMTL rule A(x, y) ←
⊟1A(x, y) which was extracted in Figure 1 from both win-
dows (so r belongs to both Π2 and Π3). The set r[D], of facts

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

966



derived by an application of r to D, consists of five tempo-
ral facts A(a, b)@1, A(a, b)@2, A(c, d)@3, A(a, b)@3, and
A(a, b)@4. Three of these, namely A(a, b)@1, A(a, b)@2,
and A(a, b)@3 belong to D, so |r[D] ∩ D| = 3. Hence,
SCT (r) = 3

5 = 0.6. In this example Dr coincides with
r[D], so |Dr| = 5, and so HCT (r) = 3

5 = 0.6. Hence, in
this particular example τ(r) = 0.6 no matter what the value
of the parameter β is.

4 Experiments
We have tested our approach on temporal link prediction
(see Section 2), which is commonly used for evaluating
temporal rule learners (Omran, Wang, and Wang 2019;
Liu et al. 2022; Xiong et al. 2024a). We conducted exper-
iments across standard benchmarks (ICEWS14, ICEWS18,
ICEWS0515) as well as our newly introduced synthetic
benchmarks (tLUBM and iTEMP) and considered both the
extrapolation and interpolation settings.

4.1 Experimental Setup and Metrics
We have adopted the standard protocol with temporal filter-
ing (Han et al. 2021). Each dataset (tKG) is split into train-
ing, validation, and testing sets according to the restrictions
on time points imposed by the extrapolation and interpola-
tion settings, where appropriate. We used the training and
validation datasets to extract a DatalogMTL program Π and
a function τ : Π 7→ [0, 1] assigning scores to rules of Π.

To test performance of (Π, τ) on temporal link prediction
we proceeded as follows. For each fact R(a, b)@t in the test
dataset, we construct a query R(x, b)@t, for which a is as-
sumed to be the correct answer, and a query R(a, x)@t, for
which b is the correct answer. Assume that the query is of
the form R(x, b)@t with the correct answer a. In the inter-
polation setting we let D be the union of the training and
validation sets, whereas in the extrapolation setting D con-
tains also all facts from the test set with time points smaller
than t, which corresponds to the so-called single-step set-
ting (Gastinger et al. 2022; Liu et al. 2022). Then, we com-
pute the set of constants c such that R(c, b)@t holds in the
interpretation TΠ(D) obtained by applying Π to D. We let
the score of each such answer c be the maximum amongst
τ(r) for each r ∈ Π deriving R(c, b)@t from D. Formally,
the score of c is maxτ(r){r ∈ Π | R(c, b)@t ∈ r[D]}.
We sort answers in descending order of scores (ties are
broken by considering the scores of the next highest-score
rules producing the answer, and if this does not differen-
tiate the answers we use the alphabetic ordering). We per-
form time-aware filtering (Han et al. 2021; Sun et al. 2021;
Li et al. 2022; Liu et al. 2022), where we delete from the list
of answers all constants c ̸= a such that R(c, b)@t holds in
the training, validation, or test dataset. The rank of an answer
is given by its position on the list. The process is analogous
for queries of the form R(a, x)@t.

We use mean reciprocal rank (MRR) and Hits@k, for
k ∈ {1, 3, 10}, as standard metrics. MRR is defined as
the mean of the reciprocals 1

ranki
over all queries qi, where

ranki is the rank of the correct answer in the list of answers
to a query qi (if the correct answer is not on the list, we let

1
ranki

= 0). Hits@k is the number of queries qi, for which
ranki ≤ k, divided by the number of all queries. Both met-
rics yield values within [0, 1] with higher values indicating
better performance. We report these values as percentages.

Some of our benchmarks are equipped with a set of gold-
standard temporal rules, which are used for generating the
validation and test sets. For such benchmarks we also intro-
duce the rule quality (RQ) metric. Given a program Π ex-
tracted by MTLearn, a gold-standard program Π′ from the
benchmark, a union of training, validation, and test sets D,
and a test set DT , the value of RQ is the percentage of rules
r in Π′ such that T{r}(D)∩DT ⊆ TΠ′(D). Hence RQ indi-
cates the percentage of rules in Π′ which derive facts in DT

that are also derived by Π.
Our approach takes as hyperparameters a window size,

a Datalog rule learner, and a scoring strategy. We have de-
termined the following hyperparameters which maximise
MRR scores on the validation sets: window size 10 for all
ICEWS benchmarks and 6 for the remaining benchmarks,
AnyBurl as a rule learner, and the scoring strategy from
Equation (3) with β = 0.5. Whenever the hyperparameters
are not specified in some experiment, we use the above val-
ues as default.

4.2 Extrapolation
Our main experiments consider the extrapolation setting,
where answers to queries are computed based on the facts
which did hold in the past.

Benchmarks We used several standard benchmarks con-
structed from the Integrated Crisis Early Warning Sys-
tem3 (ICEWS) dataset. These include CEWS14, ICEWS18,
and ICEWS0515, which contain data about years 2014,
2018, and from 2005 to 2015, respectively. We use their
splits into training, validation, and test sets as provided by
Han et al. (2021) and adopted also by Lin et al. (2023).
We also generated six synthetic benchmarks tLUBM and
iTEMP1–iTEMP5, each consisting of a training and vali-
dation datasets, together with a set of gold-standard Data-
logMTL rules. Testing data consists of all facts which can
be derived by one round of application of the gold-standard
rules to the union of the training and validation sets, and
such that the time points in these facts are greater than time
points in the training and validation sets (the latter condition
is required by the extrapolation setting). tLUBM is a tem-
poralised version of LUBM (Guo, Pan, and Heflin 2005),
whereas iTEMP1–iTEMP5 are designed using the iTempo-
ral4 (Bellomarini, Nissl, and Sallinger 2022) generator. Ta-
ble 1 provides key statistics of these benchmarks, namely
the number of entities, predicates, time points, as well as
the number of temporal facts in the training, validation, and
test sets, respectively. The table also provides the number of
gold-standard temporal rules in the synthetic benchmarks.

Baseline Models We used the following models as base-
lines. TTransE (Jiang et al. 2016) which is a temporal
extension of the KG embedding model TransE (Bordes

3https://dataverse.harvard.edu/dataverse/icews
4https://github.com/kglab-tuwien/iTemporal.git

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

967

https://dataverse.harvard.edu/dataverse/icews
https://github.com/kglab-tuwien/iTemporal.git


Entities Predicates Points Train Valid Test Rules

ICEWS14 7,128 230 365 63,685 13,823 13,222 –
ICEWS18 23,033 256 304 373,018 45,995 49,945 –
ICEWS0515 10,488 251 4017 322,958 69,224 69,147 –

tLUBM 29,265 28 145 389,498 50,523 61,026 46
iTEMP1 1,000 10 100 40,000 5,000 5,000 10
iTEMP2 1,000 14 100 40,000 5,000 5,000 12
iTEMP3 1,000 18 100 40,000 5,000 5,000 14
iTEMP4 1,000 20 100 40,000 5,000 5,000 16
iTEMP5 1,000 22 100 40,000 5,000 5,000 20

Table 1: Statistics of extrapolation benchmarks

et al. 2011), TA-DistMult (Garcia-Duran, Dumančić, and
Niepert 2018) which relies on recurrent neural networks to
learn time-aware representations, TNTComplEx (Lacroix,
Obozinski, and Usunier 2020) which learns complex-valued
temporal-aware embeddings, RE-NET (Jin et al. 2020)
which combines an RNN-based event encoder and a neigh-
borhood aggregator to capture both time and KG structure,
DE-SimplE (Goel et al. 2020) which proposes a diachronic
entity embedding with a static segment and a time-varying
segment, xERTE (Han et al. 2021) which is based on a sub-
graph extraction, TLogic (Liu et al. 2022) which extracts
temporal rules using random walks, and TECHS (Lin et al.
2023) which exploits a graph convolutional network to em-
bed topological structures and temporal dynamics. We could
not obtain a usable version of StreamLearner.

Results The results for the ICEWS14, ICEWS18, and
ICEWS0515 benchmarks are summarised in Table 2,
whereas the results for the synthetic benchmarks tLUBM
and iTEMP1–iTEMP5 are presented in Table 3. The results
for baseline models on the standard benchmarks CEWS14,
ICEWS18, and ICEWS0515 are as reported by Lin et
al. (2023), whereas the results on our synthetic benchmarks
tLUBM and iTEMP1–iTEMP5 have been obtained by ex-
ploiting default hyperparameters and using the validation set
to perform early stop of the training. Recall that MTLearn
exploits Datalog rule learners. Such rule learners are often
non-deterministic, for example due to reliance on random
sampling, and so, distinct runs of MTLearn are also non-
deterministic in the sense that they can lead to extraction
of different temporal rules. Thus, for each experiment we
performed five independent runs of MTLearn and reported
mean results.

As shown in Table 2, TECHS, TLogic, and MTLearn
obtained the highest scores on ICEWS14, ICEWS18, and
ICEWS0515, with TECHS being usually slightly better than
the other two models. It is worth to observe, however, that
MTLearn and TLogic are able to also provide interpretable
temporal rules—a key advantage—while providing results
comparable to those obtained by TECHS. On ICEWS18
MTLearn was able to slightly outperform TECHS for H@1.

Test data in the synthetic benchmarks tLUBM and
iTEMP1–iTEMP5 is generated by temporal rules, which
may be a more appropriate setting for temporal rule learn-
ing models. As Table 3 shows, in this case MTLearn ob-

tains very high scores and outperforms all the other ap-
proaches, with TLogic being the second-best model. Un-
fortunately, we could not gain access to TECHS’s code and
hence we could not test it on these benchmarks. All mod-
els typically obtained better results in synthetic benchmarks
than on ICEWS-based benchmarks, likely due to their regu-
lar and structured nature. In addition, Table 4 suggests that
MTLearn was able to achieve very high RQ scores; inter-
estingly, on iTEMP2 we obtained a score of 100%. These
results suggest a strong alignment between the benchmark
gold-standard rules and the rules generated by our system.

Choice of Hyperparameters Furthermore, we have anal-
ysed the impact of MTLearn parameters, namely the choice
of Datalog rule learner, size of a window, and scoring strat-
egy, on the performance of our approach. For these experi-
ments we used the ICEWS18 and tLUBM benchmarks.
Rule Learners We have tested MTLearn using AnyBURL,
AMIE+, and Popper as Datalog rule learners. It turns out that
using AnyBURL leads to the highest scores of MTLearn,
which seems to be correlated with high performance of Any-
BURL on Datalog rule learning task (Meilicke et al. 2019).
Indeed, when using AnyBURL (with window size 5 and
the scoring strategy from Equation (3) with β = 0.5), we
observed the following improvements compared to using
AMIE+: (i) for ICEWS18, an increase of 3.8% for MRR, of
4.3% for H@1, and of 3.1% for H@10; (ii) for tLUBM, an
increase of 2.2% for MRR, of 3.3% for H@1, and of 2.6%
for H@10. We obtained similar performance gaps when
comparing MTLearn using AnyBURL and Popper: (iii) for
ICEWS18 using AnyBURL leads to an increase of 5.3% for
MRR, 4.6% for H@1, and 4.7% for H@10; (iv) for tLUBM
using AnyBURL leads to an increase of 3.4% for MRR, of
3.5% for H@1, and of 3.7% for H@10.
Window Size We conducted experiments with window sizes
2–6, 8, and 10 using AnyBURL as a default rule learner and
the scoring strategy from Equation (3) with β = 0.5. As
shown in Figure 2, the performance of MTLearn improves
overall as the window size increases; indeed, larger win-
dow sizes may allow for the discovery of rules capturing
dependencies which take into account larger fragments of
the timeline. For larger window sizes, however, performance
levels off, indicating that further increasing the window size
does not lead to significant gains.
Scoring Strategies We compared the impact using dif-
ferent scoring strategies: maximum (max), average (avg),
weighted maximum (w-max), weighted average (w-avg),
and the one from Equation (3) with varying values of β.
For this experiment we used AnyBURL as a Datalog rule
learner and we set the window size to 10 and 5 for ICEWS18
and tLUBM benchmarks, respectively. As shown in Table 5,
w-max and w-avg scoring strategies outperform their non-
weighted counterparts, but the best results were achieved
using the strategy from Equation (3) with β = 0.5. It is
worth observing, that although this strategy leads to the best
performance, it requires most complex computations (it re-
quires running a DatalogMTL reasoner). Therefore, when-
ever computational resources are limited, it maybe prefer-
able to exploit other scoring strategies.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

968



ICEWS14 ICEWS18 ICEWS0515

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 13.4 3.1 17.3 34.5 8.3 1.9 8.6 21.9 15.7 5.0 19.7 38.0
TA-DistMult 26.5 17.1 30.2 45.4 16.8 8.6 18.4 33.6 24.3 14.6 27.9 44.2
DE-SimplE 32.7 24.4 35.7 49.1 19.3 11.5 21.9 34.8 35.0 25.9 39.0 52.8
TNTComplEx 32.1 23.4 36.0 49.1 21.2 13.3 24.0 36.9 27.5 19.5 30.8 42.9
CyGNet 32.7 23.7 36.3 50.7 24.9 15.9 28.3 42.6 35.0 25.7 39.1 52.9
RE-Net 38.3 28.7 41.3 54.5 28.8 19.1 32.4 47.5 43.0 31.3 46.9 63.5
xERTE 40.8 32.7 45.7 57.3 29.3 21.0 33.5 46.5 46.6 37.8 52.3 63.9
TLogic 43.0 33.6 48.3 61.2 29.8 20.5 34.0 48.5 47.0 36.2 53.1 67.4
TECHS 43.9 34.6 49.4 62.0 30.9 21.8 35.4 49.8 48.4 38.3 54.7 68.9
MTLearn 42.8 33.9 48.3 60.4 28.8 22.0 34.8 46.7 47.5 35.6 53.4 67.1

Table 2: Results for the extrapolation setting with the highest scores written in bold and the second highest underlined; baseline results are
provided by Lin et al. (2023)

tLUBM iTEMP1 iTEMP2 iTEMP3 iTEMP4 iTEMP5

MRR H@10 MRR H@10 MRR H@10 MRR H@3 MRR H@10 MRR H@10

TTransE 38.9 49.3 50.2 61.4 52.1 63.0 54.2 64.3 50.1 63.2 56.3 67.2
CyGNet 42.7 58.2 68.8 76.2 70.1 79.8 69.4 78.8 72.4 80.4 65.1 74.9
RE-Net 49.8 59.1 72.5 80.1 73.2 82.1 72.7 81.8 72.4 82.4 68.1 78.8
xERTE 59.4 70.1 78.3 84.2 89.2 93.4 73.4 83.2 76.4 84.8 84.3 90.8
TLogic 64.1 72.4 85.3 91.1 90.2 94.1 85.2 92.9 79.2 88.1 90.1 94.9

MTLearn 65.2 75.1 87.3 94.2 93.4 96.7 89.4 95.2 81.4 92.8 92.3 96.2

Table 3: Results for the extrapolation setting on the synthetic benchmarks; the highest scores are in bold and the second highest are underlined

tLUBM iTEMP1 iTEMP2 iTEMP3 iTEMP4 iTEMP5

84.1 90.1 100.0 86.1 88.3 85.2

Table 4: RQ scores for MTLearn on synthetic benchmarks

4.3 Interpolation
MTLearn is also applicable to the interpolation setting, and
in this section we discuss the results we obtained.

Benchmarks We used the versions of ICEWS14 and
ICEWS0515 provided by Dasgupta, Ray, and Taluk-
dar (2018), where the split into training, validation, and
test sets does not involve any restriction on ordering of
time points and hence is well-suited for interpolation set-
tings. We will use ICEWS14I and ICEWS0515I when re-
ferring to these benchmarks in order to emphasise the dif-
ference between them and their counterparts used for the
extrapolation setting. It is worth noting that ICEWS14I
and ICEWS0515I are commonly used in interpolation set-
tings (Lacroix, Obozinski, and Usunier 2020; Xu et al.
2021). The key statistics of these benchmarks are sum-
marised in Table 6.

Baseline Models As a baseline we considered five mod-
els applicable to the interpolation setting. All of them are
embedding-based approaches: HyTE (Dasgupta, Ray, and
Talukdar 2018) which uses a temporally aware KG em-

2 4 6 8 10

20

40

60
ICEWS18

2 4 6 8 10

60

70

80

90
tLUBM

Window size

MRR H@10 RQ

Figure 2: Impact of increasing window size on MTLearn

bedding method explicitly incorporating time in the entity-
relation space, ATiSE (Xu et al. 2019) which incorporates
time information into entity/relation representations by us-
ing additive time series decomposition, TeRo (Xu et al.
2020) which introduces a temporal evolution of entity em-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

969



ICEWS18 tLUBM
MRR H@10 MRR H@10

max 25.8 43.5 62.5 72.2
avg 26.4 44.4 62.1 71.4
w-max 27.7 45.2 63.1 73.1
w-avg 27.2 44.7 62.9 72.2

β = 0.3 28.5 46.6 64.3 75.7
β = 0.5 28.8 46.7 65.1 75.1
β = 0.7 27.9 46.1 63.9 74.6

Table 5: Impact of scoring strategies on MTLearn; the highest
scores are written in bold and the second highest are underlined

Entities Predicates Points Train Valid Test

ICEWS14I 7,128 230 365 72,826 8,941 8,963
ICEWS0515I 10,488 251 4,017 368,962 46,275 46,092

Table 6: Statistics of interpolation benchmarks

bedding as a rotation in the complex vector space, TeLM (Xu
et al. 2021) which performs a 4th-order tensor factorization
of a tKG, and LCGE (Niu and Li 2023) which adopts a
rule-guided predicate embedding regularisation strategy for
learning the causality among events.

Results Table 7 summarises the evaluation results, where
all results for the baseline methods are as provided by Niu
and Li (2023). We have compared these results with two ver-
sions of our method, namely MTLearn, which extracts rules
as described in Section 3 and MTLearnp, which restricts the
form of extracted rules so that future temporal operators are
not allowed. Thus, such rules represent only dependencies
between past and future facts. Notice that in the extrapola-
tion setting the distinction between MTLearn and MTLearnp
is not meaningful, as all queries are about future time points,
and so, rules with future operators in rule bodies do not al-
low us to derive answers to such queries. In the interpola-
tion setting, in contrast, the distinction between MTLearn
and MTLearnp allows us to verify the impact of allowing
future operators in rules on the performance of the method.
As shown in Table 7, MTLearn offers a competitive perfor-
mance with respect to embedding-based methods designed
for the interpolation setting. Although LCGE outperforms
all other methods, MTLearn is the second best approach and
comes with a significant added advantage of being able to
provide interpretable rules. It is worth observing also that
MTLearn significantly outperforms MTLearnp, which sug-
gests the importance of considering in the interpolation set-
ting temporal rules containing both past and future operators
in rule bodies.

4.4 Rule Application to Other Benchmarks
Since MTLearn enables the extraction of expressive tempo-
ral rules, another potential advantage of our method is that
(unlike many other approaches) once trained on some bench-
mark, it could be also used for other benchmarks. To verify
this hypothesis, we have used MTLearn to extract rules from

ICEWS14I ICEWS0515I

MRR H@1 H@10 MRR H@1 H@10

HyTE 29.7 10.8 65.5 31.6 11.6 68.1
ATiSE 55.0 43.6 75.0 51.9 37.8 79.4
TeRo 56.2 46.8 73.2 58.6 46.9 79.5
TeLM 62.5 54.5 77.4 67.8 59.9 82.3
LCGE 92.5 91.6 93.7 91.2 90.3 92.5
MTLearnp 60.4 52.3 68.6 56.7 47.2 63.6
MTLearn 73.4 62.5 80.1 74.9 66.4 84.3

Table 7: Results for the interpolation setting with the highest scores
written in bold and the second highest underlined; baseline results
are provided by Niu and Li (2023)

ICEWS14 (in the extrapolation setting) and evaluated the
performance of the obtained rules on temporal link predic-
tion on ICEWS18 (i.e., we have applied extracted rules to the
union of the training and validation sets from ICEWS18 and
checked performance of this method in answering queries
corresponding to ICEWS18). The results are presented in
the second row of Table 8 and compared to the scores from
the first row, where MTLearn extracts rules from ICEWS18.
As expected, scores in the second row all lower, but impor-
tantly the difference is not large. Moreover, the scores from
the second row are higher than the scores in Table 2 of sev-
eral baseline models trained in ICEWS18. This suggests that
rules extracted by MTLearn encode temporal dependencies
transferable to other benchmarks. It is worth observing that
although extracted rules can be applied to a benchmark men-
tioning any entities, it should mention similar relations to
those present in the benchmark used for rule extraction. For
example, ICEWS18 mentions 23, 033 entities and ICEWS14
only 7, 128, but they mention very similar predicates.

Extract from Evaluate on MRR H@1 H@3 H@10

ICEWS18 ICEWS18 28.8 22.0 34.8 46.7
ICEWS14 ICEWS18 26.4 20.2 31.9 43.1

Table 8: Evaluation of rules extracted from ICEWS14 on ICEWS18

5 Conclusion and Future Work
In this paper, we have introduced a framework named
MTLearn for learning DatalogMTL rules from temporal
datasets, using off-the-shelf Datalog rule learners. Our ap-
proach achieved comparable performance on temporal link
prediction (in both extrapolation and interpolation settings)
to state-of-the-art baselines, while at the same time pro-
viding interpretable rules in an expressive temporal logic
programming language DatalogMTL. We expect the perfor-
mance of MTLearn to improve as increasingly mature Dat-
alog rule learners become available in the future. As future
work, we aim to generate DatalogMTL rules using a wider
range of operators, which can capture a richer class of tem-
poral dependencies.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

970



Acknowledgments
This research was supported by the EPSRC projects OASIS
(EP/S032347/1), ConCuR (EP/V050869/1) and UK FIRES
(EP/S019111/1), as well as SIRIUS Centre for Scalable Data
Access and Samsung Research UK. For the purpose of Open
Access, the authors have applied a CC BY public copyright
licence to any Author Accepted Manuscript (AAM) version
arising from this submission.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
databases, volume 8. Addison-Wesley Reading.
Bellomarini, L.; Nissl, M.; and Sallinger, E. 2022. iTem-
poral: an extensible generator of temporal benchmarks. In
IEEE 38th International Conference on Data Engineering,
2021–2033.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 301–306.
Brandt, S.; Kalaycı, E. G.; Ryzhikov, V.; Xiao, G.; and Za-
kharyaschev, M. 2018. Querying log data with metric tem-
poral logic. Journal of Artificial Intelligence Research 829–
877.
Chen, S., and Wang, J. 2022. A survey on temporal knowl-
edge graphs-extrapolation and interpolation tasks. In The In-
ternational Conference on Natural Computation, Fuzzy Sys-
tems and Knowledge Discovery, 1002–1014.
Chen, Y.-C.; Lu, P.-E.; Chang, C.-S.; and Liu, T.-H. 2020. A
time-dependent SIR model for COVID-19 with undetectable
infected persons. IEEE Transactions on Network Science
and Engineering 3279–3294.
Chen, Y.; Wang, D. Z.; and Goldberg, S. 2016. ScaLeKB:
scalable learning and inference over large knowledge bases.
The VLDB Journal 893–918.
Cropper, A., and Dumančić, S. 2022. Inductive logic pro-
gramming at 30: a new introduction. Journal of Artificial
Intelligence Research 765–850.
Cropper, A., and Morel, R. 2021. Learning programs by
learning from failures. Machine Learning 801–856.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys (CSUR) 374–425.
Dasgupta, S. S.; Ray, S. N.; and Talukdar, P. P. 2018. Hyte:
Hyperplane-based temporally aware knowledge graph em-
bedding. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2001–2011.
Fürnkranz, J., and Kliegr, T. 2015. A brief overview of
rule learning. In Rule Technologies: Foundations, Tools, and
Applications: 9th International Symposium, RuleML, 54–69.
Fürnkranz, J.; Gamberger, D.; and Lavrač, N. 2012. Founda-
tions of rule learning. Springer Science & Business Media.
Galárraga, L. A.; Teflioudi, C.; Hose, K.; and Suchanek, F.
2013. AMIE: association rule mining under incomplete ev-
idence in ontological knowledge bases. In Proceedings of
the International Conference on World Wide Web, 413–422.

Galárraga, L.; Teflioudi, C.; Hose, K.; and Suchanek, F. M.
2015. Fast rule mining in ontological knowledge bases with
AMIE+. The VLDB Journal 707–730.
Garcia-Duran, A.; Dumančić, S.; and Niepert, M. 2018.
Learning sequence encoders for temporal knowledge graph
completion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 4816–4821.
Garcia-Molina, H.; Ullman, J. D.; and Widom, J. 2009.
Database systems: the complete book. Pearson Education.
Gastinger, J.; Sztyler, T.; Sharma, L.; and Schuelke, A. 2022.
On the evaluation of methods for temporal knowledge graph
forecasting. In NeurIPS 2022 Temporal Graph Learning
Workshop.
Goel, R.; Kazemi, S. M.; Brubaker, M.; and Poupart, P.
2020. Diachronic embedding for temporal knowledge graph
completion. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 34, 3988–3995.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: a benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 158–182.
Han, Z.; Chen, P.; Ma, Y.; and Tresp, V. 2021. Explainable
subgraph reasoning for forecasting on temporal knowledge
graphs. In International Conference on Learning Represen-
tations.
Hewage, P.; Trovati, M.; Pereira, E.; and Behera, A. 2021.
Deep learning-based effective fine-grained weather forecast-
ing model. Pattern Analysis and Applications 343–366.
Jain, P.; Rathi, S.; Chakrabarti, S.; et al. 2020. Temporal
knowledge base completion: New algorithms and evaluation
protocols. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing, 3733–3747.
Jia, Y.; Lin, M.; Wang, Y.; Li, J.; Chen, K.; Siebert, J.;
Zhang, G. Z.; and Liao, Q. 2023. Extrapolation over tem-
poral knowledge graph via hyperbolic embedding. CAAI
Transactions on Intelligence Technology 418–429.
Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Chang, B.; Li, S.; and Sui,
Z. 2016. Towards time-aware knowledge graph completion.
In International Conference on Computational Linguistics,
1715–1724.
Jin, W.; Qu, M.; Jin, X.; and Ren, X. 2020. Recurrent event
network: Autoregressive structure inferenceover temporal
knowledge graphs. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 6669–
6683.
Koymans, R. 1990. Specifying real-time properties with
metric temporal logic. Real-time Systems 255–299.
Lacroix, T.; Obozinski, G.; and Usunier, N. 2020. Tensor
decompositions for temporal knowledge base completion.
arXiv preprint arXiv:2004.04926.
Leblay, J., and Chekol, M. W. 2018. Deriving validity time
in knowledge graph. In Companion Proceedings of the Web
Conference, 1771–1776.
Li, Z.; Guan, S.; Jin, X.; Peng, W.; Lyu, Y.; Zhu, Y.; Bai, L.;
Li, W.; Guo, J.; and Cheng, X. 2022. Complex evolutional
pattern learning for temporal knowledge graph reasoning. In

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

971



Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics, 290–296.
Lin, Q.; Liu, J.; Mao, R.; Xu, F.; and Cambria, E. 2023.
TECHS: Temporal logical graph networks for explainable
extrapolation reasoning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics,
1281–1293.
Liu, Y.; Ma, Y.; Hildebrandt, M.; Joblin, M.; and Tresp, V.
2022. TLogic: Temporal logical rules for explainable link
forecasting on temporal knowledge graphs. In Proceedings
of AAAI Conference on Artificial Intelligence, 4120–4127.
Ma, R.; Mei, B.; Ma, Y.; Zhang, H.; Liu, M.; and Zhao, L.
2023. One-shot relational learning for extrapolation rea-
soning on temporal knowledge graphs. Data Mining and
Knowledge Discovery 1591–1608.
Meilicke, C.; Chekol, M. W.; Ruffinelli, D.; and Stucken-
schmidt, H. 2019. Anytime bottom-up rule learning for
knowledge graph completion. In Proceedings of the Inter-
national Joint Conferences on Artificial Intelligence.
Messner, J.; Abboud, R.; and Ceylan, I. I. 2022. Temporal
knowledge graph completion using box embeddings. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
7779–7787.
Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming 629–679.
Niu, G., and Li, B. 2023. Logic and commonsense-guided
temporal knowledge graph completion. In Proceedings of
the AAAI Conference on Artificial Intelligence, 4569–4577.
Omran, P. G.; Wang, K.; and Wang, Z. 2018. Scalable
rule learning via learning representation. In Proceedings of
the International Joint Conference on Artificial Intelligence,
2149–2155.
Omran, P. G.; Wang, K.; and Wang, Z. 2019. Learning tem-
poral rules from knowledge graph streams. In AAAI Spring
Symposium: Combining Machine Learning with Knowledge
Engineering.
Pareja, A.; Domeniconi, G.; Chen, J.; Ma, T.; Suzumura,
T.; Kanezashi, H.; Kaler, T.; Schardl, T.; and Leiserson, C.
2020. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, 5363–5370.
Park, N.; Liu, F.; Mehta, P.; Cristofor, D.; Faloutsos, C.; and
Dong, Y. 2022. EvoKG: Jointly modeling event time and
network structure for reasoning over temporal knowledge
graphs. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, 794–803.
Pirrò, G. 2020. Relatedness and TBox-driven rule learn-
ing in large knowledge bases. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2975–2982.
Sun, H.; Zhong, J.; Ma, Y.; Han, Z.; and He, K. 2021.
Timetraveler: Reinforcement learning for temporal knowl-
edge graph forecasting. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 8306–
8319.

Thadeshwar, H.; Shah, V.; Jain, M.; Chaudhari, R.; and
Badgujar, V. 2020. Artificial intelligence based self-driving
car. In International Conference on Computer, Communica-
tion and Signal Processing, 1–5.
Thennakoon, A.; Bhagyani, C.; Premadasa, S.; Mihiranga,
S.; and Kuruwitaarachchi, N. 2019. Real-time credit card
fraud detection using machine learning. In International
Conference on Cloud Computing, Data Science & Engineer-
ing, 488–493.
Trivedi, R.; Dai, H.; Wang, Y.; and Song, L. 2017. Know-
evolve: Deep temporal reasoning for dynamic knowledge
graphs. In International Conference on Machine Learning,
3462–3471.
Van Harmelen, F.; Lifschitz, V.; and Porter, B. 2008. Hand-
book of knowledge representation. Elsevier.
Vitelli, M.; Chang, Y.; Ye, Y.; Ferreira, A.; Wołczyk, M.; Os-
iński, B.; Niendorf, M.; Grimmett, H.; Huang, Q.; Jain, A.;
and Ondruska, P. 2022. SafetyNet: Safe planning for real-
world self-driving vehicles using machine-learned policies.
In International Conference on Robotics and Automation,
897–904.
Wałęga, P. A.; Grau, B. C.; Kaminski, M.; and Kostylev,
E. V. 2020. DatalogMTL over the integer timeline. In
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning, 768–777.
Wang, D.; Hu, P.; Wałęga, P. A.; and Grau, B. C. 2022. Me-
TeoR: practical reasoning in datalog with metric temporal
operators. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 5906–5913.
Wang, J.; Wang, B.; Qiu, M.; Pan, S.; Xiong, B.; Liu, H.;
Luo, L.; Liu, T.; Hu, Y.; Yin, B.; et al. 2023. A sur-
vey on temporal knowledge graph completion: Taxonomy,
progress, and prospects. arXiv preprint arXiv:2308.02457.
Wałęga, P. A.; Cuenca Grau, B.; Kaminski, M.; and
Kostylev, E. V. 2019. DatalogMTL: Computational com-
plexity and expressive power. In Proceedings of the Inter-
national Joint Conferences on Artificial Intelligence, 1886–
1892.
Xiong, S.; Yang, Y.; Fekri, F.; and Kerce, J. C. 2024a. TILP:
Differentiable learning of temporal logical rules on knowl-
edge graphs. arXiv preprint arXiv:2402.12309.
Xiong, S.; Yang, Y.; Payani, A.; Kerce, J. C.; and Fekri, F.
2024b. TEILP: Time prediction over knowledge graphs via
logical reasoning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 16112–16119.
Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H. S.; and
Lehmann, J. 2019. Temporal knowledge graph embedding
model based on additive time series decomposition. arXiv
preprint arXiv:1911.07893.
Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H. S.; and
Lehmann, J. 2020. TeRo: A time-aware knowledge graph
embedding via temporal rotation. In Proceedings of the
28th International Conference on Computational Linguis-
tics, 1583–1593.
Xu, C.; Chen, Y.-Y.; Nayyeri, M.; and Lehmann, J. 2021.
Temporal knowledge graph completion using a linear tem-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

972



poral regularizer and multivector embeddings. In Proceed-
ings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, 2569–2578.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differen-
tiable learning of logical rules for knowledge base reason-
ing. Advances in Neural Information Processing Systems
2319–2328.
Zeroual, A.; Harrou, F.; Dairi, A.; and Sun, Y. 2020.
Deep learning methods for forecasting COVID-19 time-
series data: A comparative study. Chaos, Solitons & Fractals
110121.
Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; and Zhang, Y.
2021. Learning from history: Modeling temporal knowledge
graphs with sequential copy-generation networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
4732–4740.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

973


	Introduction
	Background
	Our Method
	The Rule Extraction Algorithm
	Scoring Strategies

	Experiments
	Experimental Setup and Metrics
	Extrapolation
	Interpolation
	Rule Application to Other Benchmarks

	Conclusion and Future Work

