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Abstract
Removing unwanted consequences from a knowledge base
has been investigated in belief change under the name con-
traction and is called repair in ontology engineering. Simple
repair and contraction approaches based on removing state-
ments from the knowledge base (respectively called belief
base contractions and classical repairs) have the disadvantage
that they are syntax-dependent and may remove more conse-
quences than necessary. Belief set contractions do not have
these problems, but may result in belief sets that have no finite
representation if one works with logics that are not fragments
of propositional logic. Similarly, optimal repairs, which are
syntax-independent and maximize the retained consequences,
may not exist. In this paper, we want to leverage advances
in characterizing and computing optimal repairs of ontolo-
gies based on the description logics EL to obtain contraction
operations that combine the advantages of belief set and be-
lief base contractions. The basic idea is to employ, in the
partial meet contraction approach, optimal repairs instead of
optimal classical repairs as remainders. We introduce this
new approach in a very general setting, and prove a charac-
terization theorem that relates the obtained contractions with
well-known postulates. Then, we consider several interest-
ing instances, not only in the standard repair/contraction set-
ting where one wants to get rid of a consequence, but also in
other settings such as variants of forgetting in propositional
and description logic. We also show that classical belief set
contraction is an instance of our approach.

1 Introduction
Representing knowledge in a logic-based knowledge rep-
resentation language allows one to derive implicit conse-
quences from a given knowledge base (KB). Modifying a
given KB such that a certain unwanted consequence no
longer follows is a nontrivial task, which has been investi-
gated in the area of belief change under the name of con-
traction (Alchourrón, Gärdenfors, and Makinson 1985) and
in ontology engineering under the name of repair (Kalyan-
pur et al. 2006; Schlobach et al. 2007; Baader et al. 2018;
Troquard et al. 2018). Whereas research in ontology engi-
neering was mainly concerned with designing, implement-
ing, and testing concrete repair algorithms, research in belief
change concentrated on characterizing reasonable classes
of contraction operations by formulating certain properties,
called postulates, they are supposed to satisfy. Connec-
tions between these two areas have, e.g., been investigated

in (Flouris, Plexousakis, and Antoniou 2005; Qi and Yang
2008; Ribeiro and Wassermann 2009; Nikitina, Rudolph,
and Glimm 2012; Euzenat 2015; Matos et al. 2019; Baader
2023).

The purpose of the present paper is to leverage re-
cent advances in characterizing and computing optimal re-
pairs (Baader, Koopmann, and Kriegel 2023) of ontologies
based on Description Logics (DLs) (Baader et al. 2017) to
obtain contraction operations that combine the advantages of
belief set (Alchourrón, Gärdenfors, and Makinson 1985) and
belief base (Hansson 1992) contractions. To be more pre-
cise, we will introduce a general framework for constructing
contraction operations satisfying certain well-known pos-
tulates, which generalizes the partial meet contraction ap-
proach. Like base contraction approaches, it has the advan-
tage that (under certain conditions) it can work with finite
KBs. However, unlike base contraction, it is syntax inde-
pendent and loses less consequences.

Partial meet contraction is a well-know approach for con-
structing contraction operations that satisfy a collection of
reasonable postulates. For belief sets, i.e., KBs that are
closed under logical consequence, this approach was in-
vestigated in the seminal AGM paper (Alchourrón, Gär-
denfors, and Makinson 1985). Basically, it considers all
maximal subsets of the given belief set that do not con-
tain a certain undesired consequence, selects a non-empty
collection of these maximal subsets, and then builds their
intersection (i.e., the “meet”). This results in a very ele-
gant theory with intuitive postulates, but has the disadvan-
tage that the belief sets obtained by applying this opera-
tion may not be representable as the logical closure of a fi-
nite KB, even if one starts with belief sets that are finitely
representable. To overcome this problem, Nebel (1989)
and Hansson (1992) use finite KBs (called belief bases),
take their maximal subsets that do not entail the undesired
consequence, and again builds the intersection of a non-
empty collection of these maximal subsets. In the belief
change literature, these maximal subsets are called remain-
ders, whereas they are called optimal classical repairs in
the DL community (Baader et al. 2018). Both partial meet
contractions in the belief base setting and optimal classi-
cal repairs in ontology engineering have the disadvantage
that these operations are syntax-dependent and may remove
too many consequences (Hansson 1993; Baader et al. 2018;
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Santos et al. 2018; Matos et al. 2019; Baader 2023).
On the DL side, optimal repairs have been introduced,

which maximize the set of consequences of the knowledge
base rather than the set of its explicit statements, while still
being representable by a finite KB (Baader et al. 2018). In
general, such optimal repairs need not exists even in cases
where there is a repair (see Proposition 2 in (Baader et al.
2018)). In cases where they exist (Baader et al. 2021a;
Baader et al. 2022; Baader and Kriegel 2022; Baader, Koop-
mann, and Kriegel 2023), optimal repairs yield a syntax-
independent repair approach that does not lose consequences
unnecessarily. The main idea underlying the approach pro-
posed in this paper is to replace, in the partial meet con-
traction approach, remainders (i.e., optimal classical repairs)
with optimal repairs. This approach has been used in (Rien-
stra, Schon, and Staab 2020; Baader 2023) in the context of
designing contraction operations for concepts of the DL EL,
though there it was not phrased in this way.

Instead of introducing and applying this new approach in
a specific instance, we consider here a very general setup,
which clarifies the basic properties needed to apply it. Basi-
cally, we consider an entailment relation between KBs, with-
out making explicit assumption on the structure of the KBs
and their semantics. For a start, we only require that entail-
ment is reflexive and transitive. In addition, we abstract from
non-entailment of a certain consequence as repair goal and
only require that the set of repairs is closed under entailment.
To apply a variant of the partial meet contraction approach in
this setting, we need to make some additional assumptions.
First, we assume that operations akin to (but not necessarily
equal to) conjunction and disjunction are available, which
we will respectively call sum and product. These operations
correspond to union and intersection of belief sets, but are
performed on (possibly finite) KBs representing them. From
a technical point of view, sum is needed to formulate some
of the relevant postulates whereas product plays the role of
meet in the construction of the contraction operation. In ad-
dition, we require the existence of remainders, which are op-
timal repairs in our setting. An important property needed in
the proof of the characterization theorem (i.e., the theorem
that states the connections between the constructed contrac-
tion operations and the postulates) is that finitely many of
these optimal repairs cover all repairs in the sense that every
repair is entailed by an optimal one.

In the next section, we describe the general setup and
illustrate it with two simple examples, one describing a
standard repair/contraction setting, where the repair goal is
non-entailment of a certain consequence, and the other one
inspired by variable forgetting in propositional logic (Lin
and Reiter 1994; Lang, Liberatore, and Marquis 2003;
Sauerwald, Beierle, and Kern-Isberner 2024). Then, we in-
troduce our new contraction approach (called partial prod-
uct contractions since the product is used as the meet oper-
ation), and state the characterization theorem. Finally, we
introduce several concrete instances of the general approach
where KBs are formulated using the DL EL. Due to space
constraints, we cannot give detailed proofs of our results
and detailed descriptions of all instances here. They can be
found in (Baader and Wassermann 2024).

2 The General Setup
We assume that we are given a set of knowledge bases (KBs)
and an entailment relation between knowledge bases. We
usually write KBs as K, possibly primed (K′) or with an
index (Ki), and entailment as |=, i.e., K |= K′ means that
K entails K′, or equivalently that K′ is entailed by K. We
assume that entailment satisfies the following properties:

• K |= K (reflexivity),

• K |= K′ and K′ |= K′′ implies K |= K′′ (transitivity).

We define Con(K) := {K′ | K |= K′}, and also call an
element of Con(K) a consequence of K. Clearly, reflexivity
and transitivity of |= yield the following properties of the
Con operator:

• K ∈ Con(K) (inclusion),

• K |= K′ iff Con(K′) ⊆ Con(K) (correspondence).

We call two knowledge bases K and K′ equivalent (and
write K ≡ K′) if Con(K) = Con(K′). Obviously, this is
the case iff K |= K′ and K′ |= K. We say that K strictly
entails K′ if K |= K′, but K′ 6|= K. In this case we write
K |=s K′. The relation ≡ on KBs is indeed an equivalence
relation, and we write the equivalence class of a KB K as
[K], i.e., [K] := {K′ | K ≡ K′}. Note that Con(K) uniquely
determines the equivalence class of K.

To illustrate the notions introduced in this section, we use
a very simple example. More practically relevant examples
dealing with KBs for the Description Logic EL are presented
in Section 4.2.

Example 1. Given a countably infinite set of propositional
variables V , a knowledge base is a finite conjunction of such
variables, where the empty conjunction is the always true
constant >. Entailment |= between KBs is then classical
entailment in propositional logic, which obviously satisfies
reflexivity and transitivity. For such a KB K, we denote the
set of variables occurring in it with Var(K). It is easy to see
that K |= K′ iff Var(K′) ⊆ Var(K). Consequently, K ≡ K′
iff Var(K′) = Var(K).

In the general case, we make no assumptions on the inner
structure of knowledge bases, but we assume that we have
operations sum and product available that are akin to con-
junction and disjunction.

Definition 2. We call the operations⊕ and⊗ on finite, non-
empty sets of KBs sum and product operations, respectively,
if they satisfy the following properties for each finite, non-
empty set of KBs K:

• Con(⊕K) ⊇ Con(K) for all K ∈ K and ⊕K is the least
KB satisfying this property, i.e., if K′ is a KB satisfying
Con(K′) ⊇ Con(K) for all K ∈ K, then Con(⊕K) ⊆
Con(K′).

• Con(⊗K) ⊆ Con(K) for all K ∈ K and ⊗K is the
greatest KB satisfying this property, i.e., if K′ is a KB
satisfying Con(K′) ⊆ Con(K) for all K ∈ K, then
Con(⊗K) ⊇ Con(K′).

Readers familiar with the definition of product and co-
product (sum) in category theory (Barr and Wells 1990)
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should be aware of the fact that, viewed from the categor-
ical point of view, we assume that the entailment K |= K′
yields a morphism K′ → K in the other directions. With
this translation, our product and sum coincide with the cor-
responding notions in category theory. The reason for turn-
ing the arrow around is motivated by the fact that this is
what happens in several instances of our framework (see
Section 4.2). For example, subsumption C v∅ D between
concepts of the DL EL can be characterized by the existence
of a homomorphism from the description tree representation
of D to the description tree representation of C. The least
common subsumer operation, generalizing disjunction in a
logic that does not have disjunction as a constructor, is then
obtained by building the direct product of the description
trees (Baader, Küsters, and Molitor 1999).

Note that “least” and “greatest” in the above definition
must be read modulo equivalence of KBs. In fact, it is easy
to see that the above conditions imply that sum and prod-
uct of a finite set of KBs are unique up to equivalence. If
K = {K} is a singleton set, then ⊕K ≡ K ≡ ⊗K. If
K = {K1, . . . ,Kn} for n ≥ 2, then we will sometimes write
its sum as K1 ⊕ . . .⊕Kn and its product as K1 ⊗ . . .⊗Kn.
The following are easy consequences of Definition 2.

Lemma 3. Let K be a KB and K a finite, non-empty set of
KBs. Then the following holds:

1. ⊕K |= K′ and K′ |= ⊗K for all K′ ∈ K.
2. K |= ⊕K iff K |= K′ for all K′ ∈ K.
3. ⊗K |= K iff K′ |= K for all K′ ∈ K.

Example 1 (continued). It is easy to see that sum corre-
sponds to conjunction of KBs, and thus to the union of the
corresponding variable sets. Dually, product corresponds to
the intersection of the variable sets. Thus, we define

⊕K := KB

( ⋃
K∈K

Var(K)

)
, ⊗K := KB

( ⋂
K∈K

Var(K)

)
,

where, for a finite set P ⊆ V , we denote the conjunction of
its elements as KB(P ). E.g.: p∧q∧r⊕q∧s = p∧q∧r∧s
and p ∧ q ∧ r ⊗ q ∧ s = q. It is easy to see that the prod-
uct and sum operations defined this way satisfy the proper-
ties required by Definition 2 (see (Baader and Wassermann
2024) for details).

When defining repairs, we assume that we have additional
syntactic entities called repair requests.

Definition 4. Given a KB K, a repair request α determines
a set of KBs Rep(K, α) such that

• K |= K′ holds for every element K′ ∈ Rep(K, α), and
• K′ ∈ Rep(K, α) and K′ |= K′′ imply K′′ ∈ Rep(K, α).

We call the elements of Rep(K, α) repairs of K for α. Two
repair requests α and α′ are equivalent w.r.t. K (α ≡K α′)
if they induce the same repairs of K, i.e., Rep(K, α) =
Rep(K, α′).

Example 1 (continued). In this example, we consider a
standard repair setting, where each KB can also be used

as a repair request. Given a KB K and a repair request
α, the goal then is to find a KB entailed by K that does
not entail α, i.e., the induced set of repairs is defined as
Rep(K, α) := {K′ | K |= K′,K′ 6|= α}, where K′ range
over KBs. The first condition on repair sets of Definition 4
is satisfied by definition and the second by transitivity of |=.

Continuing with presenting our general setup, we addi-
tionally assume the optimal repair property, which says that,
for every pair K, α consisting of a KB and a repair request
(called a repair problem), there exists a finite set of KBs
Orep(K, α) satisfying
• Orep(K, α) ⊆ Rep(K, α) (repair property),
• every element K′ of Orep(K, α) is optimal, i.e., there is

no K′′ ∈ Rep(K, α) such that K′′ |=s K′ (optimality),
• Orep(K, α) covers all repairs, i.e., for every K′′ ∈

Rep(K, α) there is K′ ∈ Orep(K, α) such that K′ |= K′′
(coverage).

Example 1 (continued). In this example, the optimal repair
property is satisfied. Let K and α be KBs. If K 6|= α, then
we set Orep(K, α) := {K}, which in this case clearly is
a set of optimal repairs that covers all repairs. If α = >,
then there is no repair, and we can set Orep(K, α) := ∅.
Finally, assume that K |= α and α 6= >, which means that
∅ 6= Var(α) ⊆ Var(K). For every p ∈ Var(α) we define
K−p := KB(Var(K) \ {p}). It is easy to see that each such
KB K−p is a repair of K for α, i.e., is entailed by K and
does not entail α. It is not hard to show that Orep(K, α) :=
{K−p | p ∈ Var(α)} is a set of optimal repairs of K for α
that covers all repairs (see (Baader and Wassermann 2024)
for details).

We conclude this section with a simple example that con-
siders repair requests that do not require non-entailment.
It is inspired by variable forgetting in propositional
logic (Lang, Liberatore, and Marquis 2003).
Example 5. Given a countably infinite set of propositional
variables V , a knowledge base is a formula of propositional
logic (built using the connectives ∧, ∨, ¬, and the truth con-
stants > and ⊥). Entailment |= between KBs is the follow-
ing restriction of classical entailment |=PL in propositional
logic: K |= K′ if K |=PL K′ and additionally Var(K) ⊇
Var(K′) is satisfied. This entailment relation is clearly re-
flexive and transitive. As repair requests, we consider finite
subsets of the set of propositional variables V . Given a KB
K and a repair request α, the induced set of repairs is de-
fined as Rep(K, α) := {K′ | K |= K′,Var(K′) ∩ α = ∅}.
Due to the additional requirement on entailment, the second
condition of Definition 4 is satisfied.

Given a repair problem K, α, we construct the associated
set of optimal repairs as follows. For every mapping τ :
α → {>,⊥}, let Kτ be the propositional formula obtained
from K by replacing every variable p ∈ α with τ(p). We
set Orep(K, α) := {K−α}, where K−α is the disjunction
of the formulas Kτ with τ ranging over all mappings from
α to {>,⊥}. Clearly, the formulas Kτ do not contain any
of the variables of α, and thus the same is true for K−α.
To show optimality and coverage, it is proved in (Baader
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and Wassermann 2024) that every repair K′ of K for α is
entailed by K−α.

It is easy to see that the sum operation again corresponds
to conjunction, i.e., K1 ⊕ . . . ⊕ Kn := K1 ∧ . . . ∧ Kn. For
the product, one could be tempted to use the disjunction op-
eration of propositional logic. While disjunction behaves
correctly w.r.t. |=PL, there is a problem with the containment
condition for the variables. The set of variables occurring
in a disjunction is again the union of the set of variables
occurring in its disjuncts, but we would need it to be the in-
tersection. We overcome this problem by repairing the dis-
junction. To be more precise, consider KBsK1, . . . ,Kn, and
set β :=

⋃
1≤i≤n Var(Ki) \

⋂
1≤i≤n Var(Ki). We define

K1⊗ . . .⊗Kn := (K1 ∨ . . .∨Kn)−β . It is easy to see that,
with this definition, the properties required for the product
are satisfied (see (Baader and Wassermann 2024)).

3 Partial Product Contractions
In this section, we assume that we are given a set of KBs, a
set of repair requests inducing repair sets that satisfy the con-
ditions in Definition 4, and an entailment relation |= with the
associated consequence operator Con such that all the prop-
erties introduced in the previous section are satisfied. In the
following, we adapt the partial meet contraction approach to
this setting, but call the resulting approach the partial prod-
uct contraction (PPC) approach since intersection (meet) is
replaced with the product. Since the properties of entailment
relations introduced in the previous section are needed for
this contraction approach to work, we call such entailment
relations PPC enabling.

Definition 6. Given a set of knowledge bases (KBs), a set of
repair requests inducing repair sets, and a binary relation
|= between KBs, we call |= PPC enabling if it is reflexive
and transitive, has sum and product operations ⊕ and ⊗
satisfying the properties stated in Definition 2, and for every
repair problem K, α the induced set of repairs Rep(K, α)
satisfies the conditions in Definition 4 and has a finite subset
Orep(K, α) that consists of optimal repairs and covers all
repairs.

Let K be a KB and Orep(K, α) for each repair request
α the corresponding set of optimal repairs, which covers all
repairs of K for α. A selection function γ for K takes such
sets of optimal repairs as input and satisfies the following
properties, for each repair request α:

• If Orep(K, α) 6= ∅, then the selected set γ(Orep(K, α))
satisfies ∅ 6= γ(Orep(K, α)) ⊆ Orep(K, α).

• If Orep(K, α) = ∅, then γ(Orep(K, α)) = {K}.
Note that coverage of Orep(K, α) implies that this set is
empty iff Rep(K, α) = ∅.

In addition, we require that selection functions are invari-
ant under equivalence of their input sets, where we say that
two sets K and K′ of knowledge bases are equivalent (written
K ≡ K′) if they induce the same sets of equivalence classes,
i.e., {[K] | K ∈ K} = {[K′] | K′ ∈ K′}. More formally, the
third condition on selection functions requires that, for all
repair requests α and α′, the following property is satisfied:

• If Orep(K, α) ≡ Orep(K, α′), then γ(Orep(K, α)) ≡
γ(Orep(K, α′)).

Each selection function γ induces a PPC operation ctrγ :
ctrγ(K, α) := ⊗γ(Orep(K, α)).

A PPC operation defined using a selection function γ sat-
isfying |γ(Orep(K, α))| = 1 for all repair requests α is
called a MaxiChoice PPC operation. In this setting, the se-
lection function returns a singleton set consisting of K (if
there is no repair) or an optimal repair (otherwise). In the
latter case, ctrγ(K, α) is then this optimal repair.

In the AGM setting, MaxiChoice operations have been
criticized for producing belief sets that are too large (Al-
chourrón, Gärdenfors, and Makinson 1985). However, this
only happens when dealing with logics that contain full
propositional logic. In some cases, it is the most appro-
priate way to define contractions (Makinson 1987; Wasser-
mann 2000). Another criticism of the MaxiChoice approach
is that, from a purely logical point of view, the choice of a
single optimal repair may seem arbitrary (Fermé and Hans-
son 2018). In the context of using optimal repairs in ontol-
ogy engineering, however, non-arbitrariness is achieved by
how the selection function is obtained. Basically, the on-
tology engineer (which is assumed to be a domain expert)
chooses a single optimal repair by answering a polynomial
number of questions regarding whether certain statements
hold in the application domain (this interactive approach for
choosing an optimal repair is briefly sketched in (Baader and
Kriegel 2022), and in more detail in the accompanying tech-
nical report).

Postulates
We show that each PPC operation ctr satisfies the following
postulates:

• ctr(K, α) ∈ Con(K) (logical inclusion),

• ctr(K, α) ∈ Rep(K, α) if Rep(K, α) 6= ∅ (success),

• ctr(K, α) ≡ K if Rep(K, α) = ∅ (failure),

• if K ∈ Rep(K, α), then ctr(K, α) ≡ K (vacuity),

• if α ≡K α′, then ctr(K, α) ≡ ctr(K, α′) (preservation),

• if K′ ∈ Con(K) and K′ 6∈ Con(ctr(K, α)), then there is
K′′ such that K |=s K′′ |= ctr(K, α), K′′ ∈ Rep(K, α),
and K′′ ⊕K′ 6∈ Rep(K, α) (relevance).

MaxiChoice PPC operations also satisfy the postulate full-
ness, which is stronger than relevance:

• if K′ ∈ Con(K) and K′ 6∈ Con(ctr(K, α)), then
ctr(K, α)⊕K′ 6∈ Rep(K, α) (fullness).

It is easy to see that, in the presence of logical inclusion,
success, and failure, the postulate fullness implies relevance.

Proposition 7. Let γ be a selection function. Then the PPC
operation ctrγ induced by γ satisfies the postulates logical
inclusion, success, failure, vacuity, preservation, and rele-
vance. If γ is such that |γ(Orep(K, α))| = 1 for all repair
requests α, then ctrγ additionally satisfies fullness.

The proof of this proposition is similar to standard proofs
of such results from the belief change community, and in
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particular to the proof of the corresponding result in (Rien-
stra, Schon, and Staab 2020) for the special case of concept
contraction in the DL EL. It is nevertheless important to
have a detailed proof of this proposition since one needs to
check that such a proof also goes through under the sparse
assumptions made by our framework. Such a detailed proof
can be found in (Baader and Wassermann 2024).

The postulates logical inclusion, success, vacuity, and
preservation are variants of the original AGM postulates for
belief set contraction (Alchourrón, Gärdenfors, and Makin-
son 1985), but adapted to a setting where the belief set is rep-
resented by a KB K and the goal of the contraction may be
different from getting rid of an unwanted consequence (see
Example 5). In case the repair request α is itself a knowl-
edge base, and Rep(K, α) consists of the KBs entailed by
K, but not entailing α, the AGM recovery postulate can be
formulated in our setting as

• Con(K) ⊆ Con(ctr(K, α)⊕ α) (recovery).

However, even in this restricted setting, it need not hold.
It is replaced by failure and relevance (or fullness for the
MaxiChoice case), which are adaptations of postulates em-
ployed in the belief base setting (Hansson 1992). For the
simple instance of our setup introduced in Example 1, re-
covery does actually hold. In the setting of Example 5, writ-
ing ctrγ(K, α)⊕ α does not even make sense since α is not
a KB. An instance where formulating recovery make sense,
but nevertheless recovery fails, is concept contraction in the
DL EL (Rienstra, Schon, and Staab 2020).

Characterization theorem
We now show that, modulo equivalence, the converse of
Proposition 7 holds as well. We say that two contrac-
tion operations ctr and ctr′ are equivalent if ctr(K, α) ≡
ctr′(K, α) holds for all KBs K and repair requests α. The
following theorem states this result simultaneously for the
general and the MaxiChoice setting.

Theorem 8. Assume that |= is PPC enabling, and let ctr
be an operation that receives as input a KB and a repair
request, and returns as output a KB. Then the following are
equivalent:

1. The operation ctr satisfies logical inclusion, success, fail-
ure, vacuity, preservation, and relevance (fullness).

2. The operation ctr is equivalent to a (MaxiChoice) PPC
operation.

Proof. (sketch) The implication “2 ⇒ 1” is an immediate
consequence of Proposition 7.

To prove “1⇒ 2,” we first consider the MaxiChoice case.
Thus, assume that ctr satisfies the postulates logical inclu-
sion, success, failure, vacuity, preservation, and fullness. To
show that ctr is a MaxiChoice PPC operation, we define an
appropriate selection function. For a KB K and repair re-
quest α, we set

γ(Orep(K, α)) :=


{K′} if there is K′ ∈ Orep(K, α)

such that K′ ≡ ctr(K, α),

{K} otherwise.

It is shown in (Baader and Wassermann 2024) that this def-
inition yields a well-defined selection function γ satisfying
|γ(Orep(K, α))| = 1 and ctr ≡ ctrγ .

For the general case, we assume that ctr satisfies the pos-
tulates logical inclusion, success, failure, vacuity, preserva-
tion, and relevance. To show that ctr is a PPC operation, we
again define an appropriate selection function. For a KB K
and repair request α, we set

γ(Orep(K, α)) :=


{K′ ∈ Orep(K, α) | K′ |= ctr(K, α)}

if Orep(K, α) 6= ∅,
{K} otherwise.

The proof that this definition yields a well-defined selec-
tion function γ satisfying ctr ≡ ctrγ can again be found
in (Baader and Wassermann 2024).

4 Instances of the General Setup
First, we show that under weak assumptions on the underly-
ing logic, partial meet contractions for belief sets are an in-
stance of our framework. Then, we consider instances with
finite KBs defined using the DL EL. The main result in each
of the following subsections is that the entailment relation
under consideration is PPC enabling, and thus Theorem 8
applies.

4.1 Belief Set Contraction as Instance
Contraction operations and in particular partial meet con-
tractions were introduced in the seminal AGM paper (Al-
chourrón, Gärdenfors, and Makinson 1985) for belief sets,
i.e., sets of formulas that are closed under the inference re-
lation of an underlying logic. We show that this can be
seen as an instance of the approach introduced in this pa-
per. However, the instance we investigate here is more gen-
eral than the original AGM setting (Alchourrón, Gärdenfors,
and Makinson 1985) since we make less assumptions on the
underlying logic.

We assume that we are given a set of formulas F (without
any assumptions on their syntactic form) and a closure oper-
ator Cl mapping sets of formulas to sets of formulas (which
generalizes inference closure w.r.t. some logic). A belief set
B is a closed subset of F , i.e. Cl(B) = B ⊆ F . The closure
operator is assumed to satisfy the following properties (for
all A,A′ ⊆ F ):
• A ⊆ Cl(A) (inclusion),
• A ⊆ A′ implies Cl(A) ⊆ Cl(A′) (monotonicity),
• Cl(Cl(A)) = Cl(A) (idempotency),
• ϕ ∈ Cl(A) implies that there is a finite set E ⊆ A such

that ϕ ∈ Cl(E) (compactness).
The first three properties imply that, for every set of formu-
las A, its closure Cl(A) is the least belief set containing A.
These are exactly the conditions needed for a closure opera-
tor to be compliant with the relevance postulate (Ribeiro et
al. 2013), and they are satisfied by Tarskian logics (Flouris
2006; Falakh, Rudolph, and Sauerwald 2022). We use F
and a closure operator Cl satisfying inclusion, monotonic-
ity, idempotency, and compactness to define the following
instance of our general framework:
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• Knowledge bases are belief sets, i.e., subsets of F that are
closed under Cl.

• Entailment is the superset relation between belief sets,
i.e., B1 entails B2 (written B1 |=⊇ B2) if B1 ⊇ B2.

• Repair requests are formulas ϕ ∈ F , and they induce the
repair sets Rep(B, ϕ) := {B′ | B ⊇ B′ and ϕ 6∈ B′}.

Note that the consequence operator Con⊇ induced by |=⊇
does not coincide with Cl. The operator Cl applies to ar-
bitrary sets of formulas and defines what we consider to be
KBs (i.e., sets that are closed under Cl). The operator Con⊇

applies to KBs and yields all KBs that are subsets of its in-
put KB. Since the superset relation is reflexive and transitive,
the entailment relation |=⊇ satisfies these two properties re-
quired by our framework. The repair operator Rep satisfies
the first condition of Definition 4 by definition and the sec-
ond one since ϕ 6∈ B′ ⊇ B′′ clearly implies ϕ 6∈ B′′.

As sum operation on belief sets we defineB1⊕. . .⊕Bn :=
Cl(B1∪ . . .∪Bn) and as product operation on belief sets we
take intersection, i.e., B1 ⊗ . . .⊗ Bn := B1 ∩ . . . ∩ Bn.
Lemma 9. The operation ⊕ (⊗) on belief sets satisfies the
properties of sum (product) for the entailment relation |=⊇.

Regarding repairs, given a belief set B and a repair request
ϕ, we define Orep(B, ϕ) to consist of the maximal subsets
of B whose closure does not contain ϕ.
Lemma 10. The set Orep(B, ϕ) consists of belief sets that
are optimal repairs of B for ϕ, and it covers all repairs of B
for ϕ.

Proofs of these two lemmas can be found in (Baader and
Wassermann 2024). For Lemma 10, this proof is similar to
standard proofs in the belief change literature, but again one
must check in detail whether it works under the assumptions
made here.

Summing up, we have thus shown that the entailment re-
lation |=⊇ on belief sets induced by a closure operator Cl
that satisfies the conditions introduced above fulfills all the
properties introduced in Section 2.
Theorem 11. Consider as knowledge bases belief sets that
are closed w.r.t. a closure operator Cl that satisfies inclu-
sion, monotonicity, idempotency, and compactness, and as
repair requests single formulas with associated repair sets
of the form Rep(B, ϕ) := {B′ | B ⊇ B′ and ϕ 6∈ B′}. Then
the entailment relation |=⊇ corresponding to the superset
relation between belief sets is PPC enabling.

As a consequence, we can use the PPC approach intro-
duced in Section 3 to obtain contraction operations for be-
lief sets that satisfy the postulates logical inclusion, success,
failure, vacuity, preservation, and relevance (and addition-
ally fullness in the MaxiChoice case). Since in this case
product is intersection and optimal repairs are obtained as
maximal sets that do not have the consequence, the con-
struction of partial product contractions as described in Sec-
tion 3 coincides with the construction of the partial meet
contractions for belief sets introduced in the seminal AGM
paper. Nevertheless, our postulates do not coincide with
the ones given there. In particular, instead of recovery we
have relevance or fullness. The reason is that Alchourrón,

Gärdenfors, and Makinson make additional assumptions on
the formulas and the closure operator. Their proof of re-
covery actually employs the fact that their closure opera-
tor corresponds to logical consequence for a logic that has
negation and disjunction. The setting introduced in this
subsection does not make any assumptions on the formu-
las, and only requires the closure operator to satisfy inclu-
sion, monotonicity, idempotency, and compactness. For
example, we could use as formulas Horn implications or
more generally concepts of the Description Logic EL, and
as closure operator logical consequence for Horn formulas
or subsumption between EL concepts. In these setting, re-
covery does not hold (Delgrande and Wassermann 2013;
Zhuang and Pagnucco 2009). Intuitionistic Logic (Heyt-
ing 1956) is another example where recovery does not
hold (Ribeiro et al. 2013). A detailed study of the postu-
lates recovery and relevance for logics that do not satisfy all
the assumptions of the original AGM paper can be found
in (Ribeiro et al. 2013)

4.2 Instances with Finite KBs
Considering belief sets as knowledge bases has the disad-
vantage that, for logics that are not fragments of proposi-
tional logic, belief sets may be infinite. This is unproblem-
atic as long as such belief sets can be represented by a finite
KB (i.e., are the closure of a finite set of formulas). How-
ever, there are cases where the optimal repairs, and thus also
the belief sets produced by applying the contraction opera-
tor, may become infinite without appropriate finite represen-
tation, even if one starts with finitely generated belief sets
(see, e.g., Proposition 2 in (Baader et al. 2018)).

As practically relevant instances of the general setup for
which KBs are finite, we consider KBs and entailment re-
lations connected with the DL EL (Baader et al. 2017). In
this setting, when showing that a set of KBs, repair requests,
and an entailment relation satisfy the properties required for
the entailment relation to be PPC enabling, the most chal-
lenging task is to prove that the properties related to optimal
repairs are satisfied. Fortunately, in most of the cases con-
sidered below, this task has already been solved by recent
work on optimal repairs in EL. Nevertheless, the overall
task of showing that the considered entailment relations are
PPC enabling remains non-trivial since we must prove the
existence of appropriate product and sum operations.

EL Concept Contraction and Forgetting In this setting,
knowledge bases are EL concepts and entailment is sub-
sumption w.r.t. an EL TBox (Baader et al. 2017).
EL concepts are built inductively, starting with concept

names A from a set NC of such names, and using the con-
cept constructors> (top concept), C uD (conjunction), and
∃r.C (existential restriction), where C,D are EL concepts
and r belongs to a set NR of role names. A general concept
inclusion (GCI) of EL is of the formC v D for EL concepts
C,D, and an EL TBox is a finite set of such GCIs. Given an
EL concept C, its signature Sig(C) consists of the concept
and role names occurring in C.

The semantics of EL is defined in a model-theoretic way,
using the notion of an interpretation I, which is a pair
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I = (∆I , ·I), where the domain ∆I is a non-empty set
and the interpretation function ·I maps each concept name
A ∈ NC to AI ⊆ ∆I and each role name r ∈ NR to a
binary relation rI ⊆ ∆I × ∆I . The interpretation of an
EL concept is defined inductively as follows: >I := ∆I ,
(C u D)I := CI ∩ DI , and (∃r.C)I := {d ∈ ∆I | ∃e ∈
∆I such that (d, e) ∈ rI and e ∈ CI}. A model I of the
EL TBox T is an interpretation that satisfies all its GCIs,
i.e., CI ⊆ DI holds for all C v D ∈ T . Given EL con-
cepts C,D and an EL TBox T , we say that C is subsumed
by D w.r.t. T (and write C vT D) if CI ⊆ DI holds in
all models I of T . The EL concepts C,D are equivalent
(written C ≡T D) if C vT D and D vT C.

For a given EL TBox T , we obtain the following two in-
stances of our general framework:

• Knowledge bases are EL concepts.

• Entailment is given by the subsumption relation w.r.t. T ,
i.e., C entails D (written C |=vT D) iff C vT D.

• Repair requests are EL concepts, and repairs are defined
as RepTent(C,D) := {C ′ | C vT C ′, C ′ 6vT D}, or

• Repair requests are finite sets of concept and role names,
and repairs are defined as
RepTfor(C,α) := {C ′ | C vT C ′, Sig(C ′) ∩ α = ∅}.
The first instance has first been considered in (Rienstra,

Schon, and Staab 2020) for subsumption w.r.t. the empty
TBox (v∅) and was then extended to subsumption w.r.t. a
cycle-restricted EL TBox T (vT ) in (Baader 2023).

It is easy to see that the sum operation for the entailment
relation |=vT is conjunction of concepts, and the product is
the least common subsumer (lcs) w.r.t. the TBox T :

• the EL concept C is a least common subsumer of the EL
concepts C1, . . . , Cn w.r.t. T if Ci vT C for all i =
1, . . . , n, and C is the least EL concept (forvT ) with this
property, i.e., if D is an EL concept satisfying Ci vT D
for all i = 1, . . . , n, then C vT D.

Obviously, if it exists, then such an lcs is unique up to equiv-
alence ≡T . For the case of the empty TBox, the lcs in EL
always exists (Baader, Küsters, and Molitor 1999), but this
is not the case w.r.t. an arbitrary EL TBox. The character-
ization of the existence of the lcs w.r.t. an EL TBox given
in (Zarrieß and Turhan 2013) implies that the lcs always ex-
ists for cycle-restricted TBoxes:

• The EL TBox T is cycle-restricted if there is no EL con-
cept C and m ≥ 1 (not necessarily distinct) role names
r1, . . . , rm such that C vT ∃r1. · · · ∃rm.C.

As stated in (Baader, Borgwardt, and Morawska 2012), it
can be decided in polynomial time whether a given EL TBox
is cycle-restricted or not. Cycle-restrictedness is also re-
quired to obtain the necessary repair properties. As ex-
plained in more detail in (Baader 2023), satisfaction of these
properties is an easy consequence of the results on optimal
ABox repairs shown in (Baader et al. 2022).

Theorem 12. Let T be a cycle-restricted EL TBox and |=vT

subsumption w.r.t. T between EL concepts, and consider EL
concepts as repair requests inducing repair sets defined as

RepTent(C,D) := {C ′ | C vT C ′, C ′ 6vT D}. Then |=vT

is PPC enabling.

The second instance has as repair goal the removal of con-
cepts and role names, which is usually called forgetting. In
the DL literature, different versions of forgetting have been
investigated (see, e.g., (Konev, Walther, and Wolter 2009;
Lutz and Wolter 2011; Ludwig and Konev 2014; Koopmann
and Schmidt 2015; Sakr and Schmidt 2021), but the variant
considered here seems to be new.

To ensure that the second condition of Definition 4 is sat-
isfied, we must impose an additional restriction on repair re-
quests: α must be compatible with T . A finite set α of con-
cept and role names is compatible with T if Sig(E)∩α = ∅
implies Sig(F ) ∩ α = ∅ for all GCIs E v F in T . The
following lemma shows that, with this additional restriction,
the second condition of Definition 4 is indeed satisfied.

Lemma 13. Let α be a repair request and D an EL concept
with Sig(D) ∩ α = ∅. If D vT D′, then Sig(D′) ∩ α = ∅.

By adapting results for entailment between qABoxes
from (Baader et al. 2021a) (see (Baader and Wassermann
2024) and the next subsection), we obtain the following
characterization of subsumption w.r.t. a cycle-restricted EL
TBox.

Lemma 14. Let T be a cycle-restricted EL TBox and C
an EL concept. Then one can compute in at most expo-
nential time an EL concept satT (C) such that C vT D
iff satT (C) v∅ D holds for all EL concepts D.

We have already seen above that |=vT has products and
sums. Thus, it remains to prove that the optimal repair prop-
erty is satisfied as well. Given a cycle-restricted EL TBox
T , an EL concept C, and a finite set α of concept and role
names, we first saturate C w.r.t. T , i.e., compute the con-
cept satT (C). Then we remove from satT (C) all concept
names occurring in α and all existential restrictions of the
form ∃r.E for r ∈ α. We denote the resulting concept as
satT (C)−α and set Orep(C,α) := {satT (C)−α}.
Example 15. Let T := {A v B u ∃r.B}, C := A, and
α := {A, r}. Then α is compatible with T , and satT (C) =
A u B u ∃r.B. Removing A and ∃r.B from this concept
yields satT (C)−α = B, and thus Orep(C,α) = {B}.

That fact that Orep(C,α) consists of optimal repairs and
covers all repairs is an immediate consequence of the fol-
lowing lemma, whose proof can be found in (Baader and
Wassermann 2024).

Lemma 16. The concept satT (C)−α is a repair of C for α
that entails every repair of C for α.

Summing up, we have thus shown that the entailment rela-
tion |=vT satisfies also all the properties introduced in Sec-
tion 2 if we use Repfor to construct repair sets.

Theorem 17. Let |=vT be subsumption w.r.t. a cycle-
restricted EL TBox T , and consider as repair requests fi-
nite sets of concept and role names that are compatible with
T and induce repair sets defined as Repfor(C,α) := {D |
C vT D and Sig(D) ∩ α = ∅}. Then |=vT is PPC en-
abling.
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Contractions for Quantified ABoxes ABoxes of EL are
finite sets of concept assertions C(a) and role assertions
r(a, b), whereC is an EL concept, r a role name, and a, b are
individuals from a set NI . In the presence of an ABox, an
interpretation I additionally interprets individuals a as ele-
ments aI of ∆I . The interpretation I is a model of the EL
ABox A if aI ∈ CI and (aI , bI) ∈ rI respectively holds
for all concept and role assertions C(a) and r(a, b) in A.

Quantified ABoxes were first introduced in (Baader et al.
2020) since they allow for the existence of optimal repairs in
situations where this would not be the case if only ABoxes
were used. Basically, they are variants of ABoxes where
some of the individual names are assumed to be anonymous,
which we express by writing them as existentially quantified
variables. More formally, a quantified ABox (qABox) ∃X.A
consists of a finite set X of variables, which is disjoint with
NI , and a matrix A, which is a finite set of concept as-
sertions A(u) and role assertions r(u, v), where A ∈ NC ,
r ∈ NR and u, v ∈ NI ∪ X . Thus, the matrix is an ABox
built using the extended set of individuals NI ∪X , but can-
not contain complex concept descriptions. Semantically, the
latter is not a restriction since it is easy to see that a con-
cept assertions C(a) for a complex EL concept C can be
expressed by a qABox.

The interpretation I is a model of the qABox ∃X.A if
there is a variable assignment Z : X → ∆I such that the
augmented interpretation I[Z] that additionally maps each
variable x to Z(x) is a model of the matrix A, i.e, uI[Z] ∈
AI for each A(u) ∈ A and (uI[Z], vI,Z) ∈ rI for each
r(u, v) ∈ A. The qABox ∃X.A entails the qABox ∃Y.B
w.r.t. the EL TBox T (written ∃X.A |=T ∃Y.B) if every
model of ∃X.A and T is also a model of ∃Y.B. Note that
this also defines entailment of a concept assertion C(a) by
a qABox w.r.t. an EL TBox since C(a) can be expressed
by a qABox. For the empty TBox, we write the entailment
relation as |= rather than |=∅.

The entailment relation |= between qABoxes can be char-
acterized using the notion of a homomorphism. Given
qABoxes ∃X.A and ∃Y.B, a homomorphism from ∃X.A
to ∃Y.B is a mapping h from the objects (i.e., variables or
individuals) of A to the objects of B such that

• h(a) = a for all individuals a,

• A(u) ∈ A implies A(h(u)) ∈ B,

• r(u, v) ∈ A implies r(h(u), h(v)) ∈ B.

The following characterization of entailment was shown in
(Baader et al. 2020): ∃Y.B |= ∃X.A iff there is a homo-
morphism from ∃X.A to ∃Y.B.1 This characterization also
works in the setting with a background TBox T if one first
saturates the qABox ∃Y.B w.r.t. T . However, a finite sat-
uration only exists if the TBox is cycle-restricted. Given a
qABox ∃Y.B and a cycle-restricted TBox T , one can com-
pute the saturation satT (∃Y.B) of ∃Y.B w.r.t. T in expo-
nential time, and this saturation satisfies ∃Y.B |=T ∃X.A
iff satT (∃Y.B) |= ∃X.A for each qABox ∃X.A (Baader et

1Note that checking for the existence of homomorphisms be-
tween qABoxes is an NP-complete problem (Baader et al. 2020).

al. 2021a). Thus, we have the following characterization of
entailment w.r.t. a cycle-restricted TBox.
Lemma 18. Let ∃X.A, ∃Y.B be qABoxes, and T a cycle-
restricted EL TBox. Then the following are equivalent:
• ∃Y.B |=T ∃X.A,
• satT (∃Y.B) |= ∃X.A,
• there is a homomorphism from ∃X.A to satT (∃Y.B).

The saturation of a qABox is of at most exponential size,
and there are examples showing that this size-bound is tight
(see Example III in (Baader et al. 2021b)). Nevertheless, as
pointed out in (Baader et al. 2021a), deciding the entailment
relation |=T is an NP-complete problem (where hardness al-
ready holds without TBox).

In the following, we use qABoxes as KBs, |=T for a
cycle-restricted TBox T as entailment, and finite sets of EL
concept assertions as repair requests. Since repair requests
are not single concept assertions, but sets of them, there are
(at least) two options for how to define repairs, correspond-
ing to choice and package contraction in the belief change
literature (Fuhrmann and Hansson 1994; Fermé, Saez, and
Sanz 2003; Resina, Ribeiro, and Wassermann 2014). Pack-
age repairs are defined as RepTp (∃X.A, α) := {∃Y.B |
∃X.A |=T ∃Y.B, ∃Y.B 6|=T C(a) for all C(a) ∈ α},
i.e., all the assertions of α must be removed from the con-
sequence set. For a choice repair, it is sufficient to remove
at least one element of α, i.e., RepTc (∃X.A, α) := {∃Y.B |
∃X.A |=T ∃Y.B, ∃Y.B 6|=T C(a) for some C(a) ∈ α}.
We show that in both cases we obtain an entailment rela-
tion such that all the properties introduced in Section 2 are
satisfied, i.e., we show that |=T is PPC enabling.

Reflexivity and transitivity of |=T are obvious. Next, we
introduce an appropriate sum operation. For a singleton set
K = {∃X.A}, its sum is simply ∃X.A itself. Given a
set of n ≥ 2 qABoxes K = {∃X1.A1, . . . , ∃Xn.An}, we
construct its disjoint union as follows: we first rename the
qABoxes in K into equivalent ones ∃X ′1.A′1, . . . , ∃X ′n.A′n
with pairwise disjoint sets of variablesX ′1, . . . , X

′
n, and then

set ]K := ∃(X ′1 ∪ . . . ∪X ′n).(A′1 ∪ . . . ∪ A′n).

Lemma 19. Disjoint union ] of qABoxes satisfies the prop-
erties of sum for |=T .

The product of a set of qABoxes K = {∃X1.A1, . . . ,
∃Xn.An} is ∃X1.A1 if n = 1. For n ≥ 2, we consider
the saturations ∃Y1.B1 := satT (∃X1.A1), . . . , ∃Yn.Bn :=
satT (∃Xn.An) of ∃X1.A1, . . . , ∃Xn.An. Let Ind be the
set of individuals occurring in at least one of the ABoxes
B1, . . . ,Bn and Obji := Yi ∪ Ind for i = 1, . . . , n. We set
Ind× := {(a, . . . , a) | a ∈ Ind} and Y := Obj1× . . . ×
Objn \ Ind×, and define ⊗K := ∃Y.B where

B := {A(u1, . . . , un) | A(ui) ∈ Bi for i = 1, . . . , n} ∪
{r((u1, . . . , un), (v1, . . . , vn)) | r(ui, vi) ∈ Bi

for i = 1, . . . , n}.

In this qABox, each tuple (a, . . . , a) ∈ Ind× is viewed as
representing the individual a ∈ Ind.
Lemma 20. The product ⊗ of qABoxes satisfies the proper-
ties of product for |=T .
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Proofs of these two lemmas can be found in (Baader and
Wassermann 2024). They make heavy use of the homomor-
phism characterization of entailment.

Package repairs of qABoxes w.r.t. cycle-restricted TBoxes
for repair requests given as finite sets of EL concept asser-
tions have been investigated in (Baader et al. 2021a). It is
shown there that, up to equivalence, the set of all optimal re-
pairs of a qABox for a repair request w.r.t. a cycle-restricted
TBox can be computed in exponential time using an NP ora-
cle (Theorem 9 in (Baader et al. 2021a)). To be more precise,
the paper introduces the notion of canonical repairs induced
by repair seed functions. There are at most exponentially
many such canonical repairs, each of which is of at most
exponential size. These canonical repairs are indeed repairs,
and the set of canonical repairs covers all repairs (see Propo-
sition 8 in (Baader et al. 2021a)). As a consequence, up to
equivalence, this set contains all optimal repairs, which can
be obtained by removing elements that are strictly entailed
by another element.2 The coverage property for the obtained
set of optimal repairs OrepTp (∃X.A, α) is then an easy con-
sequence of the coverage property for the set of canonical
repairs. Summing up, we have thus shown for the package
repair case that |=T for a cycle-restricted TBox T as entail-
ment satisfies all the properties introduced in Section 2.
Theorem 21. Let T be a cycle-restricted TBox and |=T en-
tailment w.r.t. T between qABoxes, and consider as repair
requests finite sets of EL concept assertions inducing repair
sets according to the package approach. Then |=T is PPC
enabling.

The same result holds if we use the choice approach
for defining repairs. To show this we must demonstrate
that the optimal repair property is satisfied in this set-
ting. Given a qABox ∃X.A and a repair request α =
{C1(a1), . . . , Cn(an)}, we consider the union of the sets
OrepTp (∃X.A, {Ci(ai)}). It is easy to see that this set cov-
ers RepTc (∃X.A, α). Thus, the set of all optimal repairs in
the choice setting is obtained by removing elements that are
strictly entailed by another elements.
Corollary 22. Let T be a cycle-restricted TBox and |=T
entailment w.r.t. T between qABoxes, and consider as repair
requests finite sets of EL concept assertions inducing repair
sets according to the choice approach. Then |=T is PPC
enabling.

As a consequence, in both the package and the choice set-
ting, we can use the PPC approach to obtain contraction op-
erations for qABoxes w.r.t. cycle-restricted TBoxes that sat-
isfy the postulates logical inclusion, success, failure, vacu-
ity, preservation, and relevance (and additionally fullness in
the MaxiChoice case).

Additional Instances In (Baader and Wassermann 2024),
we describe three additional instances of our framework.

First, we consider a variant of contraction for qABoxes
where classical entailment is replaced with IQ-entailment.
In fact, if one is only interested in answering instance queries
(i.e., checking which concept assertions a qABox entails),

2The NP oracle is used to realize these entailment tests.

then it makes sense to compare qABoxes w.r.t. the instance
relationships they entail rather than w.r.t. the models they
have or (equivalently) w.r.t. the conjunctive queries they en-
tail (as classical entailment does) (Baader, Koopmann, and
Kriegel 2023). We say that ∃X.A IQ-entails ∃Y.B w.r.t.
the TBox T (written ∃X.A |=TIQ ∃Y.B) if every concept as-
sertion entailed by ∃Y.B w.r.t. T is also entailed by ∃X.A
w.r.t. T . IQ-entailment has the advantage that it can be de-
cided in polynomial time and that the restriction to cycle-
restricted TBoxes can be dispensed with since finite IQ-
saturations always exist. In the IQ-setting, the product can
be defined as in the case of classical entailment. However,
the sum is not simply disjoint union, it requires a more so-
phisticated construction. Using results on how to compute
optimal IQ-repairs (Baader et al. 2021a), we can show that
IQ-entailment is PPC enabling. This holds both for the pack-
age and the choice approach for defining repairs and does
not require any restriction on the EL TBox.

Second, following (Kriegel 2022), we consider contrac-
tion and repair for EL TBoxes, where the goal is to get rid
of an entailed GCI, but keep the left-hand sides of GCIs in
the TBox intact in the repair process. Interestingly, this re-
quires the use of two different entailment relations, one for
comparing TBoxes and one for defining the repair goal. This
situation can nicely by covered by our general notion of re-
pair requests and the repairs induced by them.

Third, we illustrate the generality of our approach by con-
sidering a setting where KBs define formal languages and
entailment corresponds to the superset relation between lan-
guages. The repair request is then a finite language α, and
the repair goal is to remove at least one element (choice ap-
proach) or all elements (package approach) of α. We show
that the superset relation is PPC enabling if KBs are finite
automata, linear bounded automata, or Turing machines.
However, if we use context-free grammars instead, then this
entailment relation is not PPC enabling since the product
need not exist.

5 Conclusion
We have shown that the partial meet contraction approach
can be generalized to the setting of a reflexive and transitive
entailment relation between KBs with associated sum and
product operations generalizing conjunction and disjunc-
tion. The main novelty of the approach is that we employ op-
timal repairs in place of remainders. Under the additional as-
sumption that the optimal repairs cover all repairs, we were
able to prove a characterization theorem linking the obtained
contraction operations, called partial product contraction
(PPC) operations, with reasonable postulates, both for the
MaxiChoice and the general case. In contrast to belief base
contractions, our PPC operations are syntax-independent
and usually preserve more consequences. Though PPC op-
erations can express belief set contractions, they also work
in settings where finite KBs generating the belief sets are
required. In these settings, the main challenge is usually to
show that the required repair properties are satisfied. In Sec-
tion 4.2 we were able to use recent results on optimal repairs
for the DL EL to obtain instances of our approach that are
relevant for ontology engineering.
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A second important novelty of our approach is that it gen-
eralizes the notion of contraction and repair towards repair
goals different from non-entailment of a certain formula or
knowledge base. This allows us, for instance, to treat dif-
ferent approaches to multiple contraction, such a choice and
package contraction, in a uniform way. Additionally, we
have shown that certain notions of variable forgetting in
propositional logic (see Example 5) and concept and role
forgetting in DLs (see the corresponding subsection in Sec-
tion 4.2) can be seen as instances of our approach, and thus
satisfy the same postulates as the more standard contraction
approaches that have non-entailment as a goal.

One interesting direction for future research is to iden-
tify instances of our approach also for other logics, or for
repair goals other than non-entailment or signature forget-
ting. Another is to determine whether other contraction ap-
proaches, such as kernel contractions (Hansson 1994), can
be generalized in a similar way. Finally, the relationship
to previous work on forgetting, both in the DL community
(Konev, Walther, and Wolter 2009; Lutz and Wolter 2011;
Ludwig and Konev 2014; Koopmann and Schmidt 2015;
Sakr and Schmidt 2021) and in the belief change community
(Lang and Marquis 2010; Delgrande 2017; Kern-Isberner et
al. 2019a; Kern-Isberner et al. 2019b) needs to be investi-
gated in more detail.
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