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Abstract
We consider a general class of data transformations based on
Graph Neural Networks (GNNs), which can be used for a
wide variety of tasks. An important question in this setting is
characterising the expressive power of these transformations
in terms of a suitable logic-based language. From a practical
perspective, the correspondence of a GNN with a logical the-
ory can be exploited for explaining the model’s predictions
symbolically. In this paper, we introduce a broad family of
GNN-based transformations which can be characterised us-
ing Datalog programs with negation-as-failure, which can be
computed from the GNNs after training. This generalises ex-
isting approaches based on positive programs by enabling the
learning of nonmonotonic transformations. We show empiri-
cally that these GNNs offer good performance for knowledge
graph completion tasks, and that we can efficiently extract
programs for explaining individual predictions.

1 Introduction
Numerous tasks over knowledge graphs (KGs) such as KG
completion (Lin et al. 2015), node classification (Portisch
and Paulheim 2022) and recommendation (Wang et al. 2019)
can be conceptualised as transformations of datasets con-
sisting of logical facts. For example, in a recommender
system, we can represent user–item interactions and back-
ground knowledge in a KG as a set of facts, and the system
can then transform this dataset into another dataset contain-
ing the recommended user–item interactions.

Graph Neural Networks (GNNs)—models specifically
developed for processing graph data (Wu et al. 2023)—
are increasingly being used to learn these transforma-
tions (Schlichtkrull et al. 2018; Pflueger, Tena Cucala, and
Kostylev 2022; Pflueger, Tena Cucala, and Kostylev 2024;
Liu et al. 2021; Ioannidis, Marques, and Giannakis 2019;
Qu, Bengio, and Tang 2019; Yang, Cohen, and Salakhutdi-
nov 2016; Kipf and Welling 2017; Zhang and Chen 2018;
Teru, Denis, and Hamilton 2020). The key advantage of
GNNs is that their output is resilient to the renaming of ver-
tices (i.e., applying a GNN to isomorphic graphs produces
the same output). Dataset transformations are often expected
to exhibit analogous properties; for example, we would ex-
pect distinct users interacting with sets of items in exactly
the same way to receive the same recommendations.

An important question in such applications is understand-
ing the expressive power of the underpinning GNNs by iden-

tifying a logic-based language that can express the same
class of dataset transformations. Such correspondences al-
low for a rigorous understanding and comparison of differ-
ent families of GNN-based models. Furthermore, they fa-
cilitate practical applications such as the formal verification
of model properties and the explanation of their predictions.
For instance, a property of interest can be expressed as a
logical formula, and logical methods can then be used to
determine if it is a consequence of the logical theory char-
acterising the model. Additionally, any output fact of the
ML-based transformation can be explained by using a sym-
bolic engine to generate a proof showing how the fact logi-
cally follows from the theory describing the transformation.
These rigorous, yet human-readable explanations can help
users understand why the model derived a given output fact
and check, for example, whether a given input fact was rel-
evant to its derivation. The ability to explain symbolically
each prediction can also be used to ensure that a model com-
plies with algorithmic explainability policies (Tzimas 2023).

In a pioneering study, Barceló et al. (2020) showed that
each GNN-induced transformation expressible in first-order
logic is equivalent to a concept query of the ALCQ descrip-
tion logic (Baader et al. 2007). Huang et al. (2023) proved
an analogous result for a slightly different class of GNNs,
and Grohe (2023) generalised these results by showing that
GNN-induced transformations can, under mild restrictions,
be captured by the guarded fragment of FOL with counting
terms GFO+C. Finally, Benedikt et al. (2024) have shown
that transformations realised by GNNs with bounded piece-
wise linear activation functions correspond to formulas ex-
pressed in Presburguer logic, a language that is decidable but
not comparable with first-order logic.

In our previous work (Tena Cucala et al. 2022; Tena Cu-
cala et al. 2023), we introduced a family of GNN-based
transformations which can be characterised using tree-like
Datalog programs and we presented practical algorithms
for extracting an equivalent program from any such trained
GNN. This enables the application of Datalog engines to ob-
tain a step-by-step logical proof of each fact predicted by
the GNN. These transformations were carefully crafted to
ensure that they can be described symbolically using rules
and, in particular, that they are monotonic under homomor-
phisms. As a result, GNNs in these transformations are re-
stricted to use max aggregation functions in each layer, ma-
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trix weights are required to be nonnegative, and the activa-
tion and classification functions must satisfy certain restric-
tions, such as being monotonically increasing.

In this paper, we lift some of the restrictions in our prior
work, such as the requirement that matrix weights need to be
nonnegative and the restrictions on activation and classifica-
tion functions. This leads to a significant increase in expres-
sive power, enabling the learning of nonmonotonic trans-
formations. Our main result is that the transformations in-
duced by these GNNs can be characterised by tree-like Dat-
alog programs with negation-as-failure (Dantsin et al. 2001),
which can be computed from the GNN. These programs,
however, can be large and difficult to compute. Thus, we
propose a practical algorithm for explaining individual pre-
dictions, which reduces the search space of relevant rules.
Our transformations are “pay-as-you-go”: if the classifica-
tion and activation functions are monotonic, and all matrix
weights are nonnegative, we obtain a program from which
negation-as-failure can be eliminated, thus obtaining a (pos-
itive) Datalog program as in (Tena Cucala et al. 2022). We
demonstrate the effectiveness of our transformations by ap-
plying them to knowledge graph completion tasks. Our ex-
periments show that our approach delivers competitive per-
formance while at the same time enabling rule extraction for
the explanation of individual predictions.

2 Preliminaries
Datalog with Negation We fix a signature consisting of
countably infinite, disjoint sets of unary predicates, binary
predicates, and constants. We also consider a countably in-
finite set of variables disjoint with the sets of predicates and
constants. A term is a variable or a constant. A unary atom
is an expression of the form P (t), with P a unary predicate
and t a term, and a binary atom is of the form P (t1, t2) with
P a binary predicate and t1, t2 terms. A term or an atom is
ground if it is variable-free. A fact is a ground atom and a
dataset is a finite set of facts. We consider rules of the form
(1), with n,m ≥ 0, where H is an atom called the head of
the rule, and each Pi (resp. Qi) is a unary or binary atom
called a positive (resp. negated) body atom.

P1 ∧ · · · ∧ Pn ∧ not Q1 ∧ · · · ∧ not Qm → H (1)

A (Datalog¬) program is a finite set of rules.
A substitution µ is a mapping of finitely many variables

to constants. For α a variable, atom, or conjunction thereof,
αµ is the result of replacing in α each variable x in the
domain of µ with µ(x). For a rule r of the form (1), the
operator Tr maps a dataset D to the dataset that contains
Hµ for each substitution µ mapping the variables of r to
constants in D such that Piµ ∈ D for each 1 ≤ i ≤ n,
and Qiµ /∈ D for each 1 ≤ i ≤ m. For P a pro-
gram, TP(D) =

⋃
r∈P Tr(D). Furthermore, for a non-

negative integer n, Tn
P (D) is defined inductively as follows:

T 0
P(D) = D, and Tn

P (D) = TP(T
n−1
P (D)), for n ≥ 1.

A homomorphism from dataset D to dataset D′ is a map-
ping h of constants to constants defined at least on the set
of constants of D and satisfying h(D) ⊆ D′, where h(D)
is the dataset obtained by replacing each constant a in D

with h(a) and removing duplicate facts. If T is an operator
mapping datasets to datasets over the same constants, then
T is monotonic under homomorphisms if, for each D and
D′ in its domain, each homomorphism from D to D′ is also
a homomorphism from T (D) to T (D′).
Graph Neural Networks We consider real-valued vectors
and matrices. For v a vector and i ≥ 1, (v)i is the i-th el-
ement of v. Similarly, for A a matrix and i, j ≥ 1, (A)i,j
is the element in row i, column j of A. A vector is null if
all its elements are 0. We apply scalar functions to vectors
element-wise; for example, for v1, . . . ,vn vectors of equal
dimension, max{v1, . . . ,vn} is the vector whose i-th ele-
ment is max{(v1)i, . . . , (vn)i}.

For Col a finite nonempty set of colours and δ ∈ N a di-
mension, a (Col, δ)-graph is a tuple G = ⟨V , {Ec}c∈Col, λ⟩
where V is a finite set of vertices; Ec ⊆ V × V is a set of
(directed) edges for each colour c ∈ Col; and labelling λ as-
signs to each v ∈ V a feature vector v of dimension δ. Graph
G is Boolean if (v)i ∈ {0, 1} for each v ∈ V and 1 ≤ i ≤ δ.
A vertex u is a c-neighbour of a vertex v in a (Col, δ)-graph
if ⟨v, u⟩ ∈ Ec. We consider a class of GNNs that use max as
aggregation function. A (Col, δ)-max graph neural network
(GNN) N with L ≥ 1 layers is a tuple

⟨ {Aℓ}1≤ℓ≤L, {Bc
ℓ}c∈Col

1≤ℓ≤L, {bℓ}1≤ℓ≤L, σ, cls ⟩, (2)

where, for each 1 ≤ ℓ ≤ L and c ∈ Col, Aℓ and Bc
ℓ are

matrices of dimension δℓ × δℓ−1 with δ0 = δL = δ, bℓ is a
vector over R of dimension δℓ, σ : R → R is an activation
function, and cls : R → {0, 1} is a classification function.

Applying (Col, δ)-GNN N to (Col, δ)-graph G induces
the sequence λ0, . . . , λL of vertex labelling functions such
that λ0 = λ and, for each 1 ≤ ℓ ≤ L, λℓ assigns to each
v ∈ V the vector vℓ given by

σ
(
Aℓvℓ−1+

∑
c∈Col

Bc
ℓ max{wℓ−1 | ⟨v, w⟩ ∈ Ec}+bℓ

)
, (3)

where max{} is the null vector of dimension δℓ. The re-
sult N (G) of applying N to G is the Boolean (Col, δ)-graph
with the same vertices and edges as G, but where each vertex
v ∈ V is labelled by cls(vL).
GNN-based Transformations To apply a max GNN to
a dataset, we must first encode the dataset into a suit-
able graph, and then decode the GNN’s output back into a
dataset. The canonical scheme (Tena Cucala et al. 2023)
provides a direct encoding, where constants map into ver-
tices, edges describe binary facts, and unary facts are en-
coded as elements of the feature vectors labelling vertices.
Let δ ∈ N and Col a finite, nonempty set of colours. Con-
sider a signature containing δ unary predicates U1, . . . , Uδ

and a binary predicate Ec for each c ∈ Col. A (Col, δ)-
dataset is a dataset over predicates {Ui}δi=1 and {Ec}c∈Col.

The canonical encoding enc(D) of a (Col, δ)-dataset D is
the Boolean (Col, δ)-graph ⟨V , {Ec}c∈Col, λ⟩ where V con-
sists of vertex va for each constant a occurring in D, an
edge ⟨va, vb⟩ ∈ Ec for each fact Ec(a, b) ∈ D, and where
(va)i = 1 if and only if Ui(a) ∈ D. The canonical decoding
dec(G) of a Boolean (Col, δ)-graph G = ⟨V , {Ec}c∈Col, λ⟩
is the dataset that contains the fact Ec(a, b) for each
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⟨va, vb⟩ ∈ Ec and c ∈ Col, and the fact Ui(a) for each
va ∈ V and 1 ≤ i ≤ δ such that (va)i = 1.

A max (Col, δ)-GNN N induces the canonical transfor-
mation TN mapping each (Col, δ)-dataset D to the (Col, δ)-
dataset TN (D) = dec(N (enc(D))).

3 From Max-GNNs to Rules
In this section, we show that the transformation induced by a
max-GNN with L layers can be captured by a Datalog¬ pro-
gram that can be constructed algorithmically from the GNN.

In Section 3.1 we show that, although the number of pos-
sible input graphs to the transformation is unbounded, the
number of possible real values that can occur in feature vec-
tors throughout the application of a given GNN is actually
finite. Hence, thanks to the restriction to max aggregation,
there is only a finite number of different vectors that can
occur during GNN application. In Section 3.2 we exploit
this result to formalise the construction of the equivalent
Datalog¬ program. This program introduces auxiliary pred-
icates to represent the possible numeric feature vectors and
can be seen as the union of L + 2 subprograms, one for
each layer of the GNN, plus two programs representing the
canonical encoding and decoding, respectively. The latter
two subprograms mention predicates occurring in the data,
while the remaining L subprograms mention only the rele-
vant auxiliary predicates.

For the remainder of this section, let us assume a fixed,
but arbitrary max (Col, δ)-GNN N of the form (2) with L
layers and dimensions δ0, δ1, . . . , δL.

3.1 Characterising Possible Feature Vectors
For each layer 0 ≤ ℓ ≤ L and position 1 ≤ i ≤ δℓ in N , we
introduce a set Xℓ,i containing each real number that can oc-
cur in the ith position of a feature vector computed in layer
ℓ when applying N to an arbitrary Boolean (Col, δ)-graph.
The number of input graphs to N is unbounded; however,
the sets Xℓ,i are actually finite, as a consequence of restrict-
ing the aggregation to max.

Definition 1. For each 1 ≤ i ≤ δ0, X0,i = {0, 1}. For each
1 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ, Xℓ,i is the set containing 0 and
each of the real values defined by the following expression:

Val(ℓ, i,x, (yc)c∈Col) = (σ(Aℓx+
∑
c∈Col

Bc
ℓ y

c+bℓ))i (4)

where x ranges over all vectors of dimension δℓ−1 such that
each (x)j ∈ Xℓ−1,j , and (yc)c∈Col ranges over |Col|-tuples
of vectors of dimension δℓ−1 such that each (yc)j ∈ Xℓ−1,j .

The following lemma ensures that these sets carry the in-
tended meaning.

Lemma 2. For each 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ, the set Xℓ,i

is finite. Moreover, for each Boolean (Col, δ)-graph G and
vertex v of G, it holds that (vℓ)i ∈ Xℓ,i, where vℓ is the ℓth
layer feature vector for v obtained when applying N to G.

Proof. We proceed by induction on ℓ. For the base case, let
ℓ = 0 and consider an arbitrary 1 ≤ i ≤ δ. Set X0,i is fi-
nite by definition. Furthermore, for G an arbitrary Boolean

(Col, δ)-graph and v an arbitrary vertex of it, (v0)i is either
0 or 1, and so it is in X0,i. For the induction step, consider
1 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ. We first show that Xℓ,i is finite.
Since each Xℓ−1,j is finite by induction hypothesis, there ex-
ist only a finite number of vectors x and {yc}c∈Col such that
each (x)j and (yc)j are in Xℓ−1,j . Moreover, each element
of Xℓ,i is equal to Val(ℓ, i,x, (yc)c∈Col) for some such x
and {yc}c∈Col by definition, and so the number of elements
in Xℓ,i is finite. Now, let G be an arbitrary (Col, δ)-graph
and let v be an arbitrary vertex in it. The value (vℓ)i is de-
fined by the ith element of equation (3). Let x = vℓ−1 and,
for each c ∈ Col, let yc = max{wℓ−1 | ⟨v, w⟩ ∈ Ec}. The
induction hypothesis and the inclusion of 0 in Xℓ−1,j ensure
that the jth element in each of these vectors is in Xℓ−1,j ,
and so Val(ℓ, i,x, (yc)c∈Col) ∈ Xℓ,i. Comparing equations
(3) and (4) shows that Val(ℓ, i,x, (yc)c∈Col) = (vℓ)i and so
(vℓ)i ∈ Xℓ,i as required.

3.2 Construction of the Equivalent Program
In this section, we describe the construction of a Datalog¬

program PN such that applying the transformation TL+2
PN

to an arbitrary (Col, δ)-dataset D yields the same result as
applying TN to D. In other words, if we successively apply
to D the immediate consequence operator TPN a total of
L + 2 times, then the resulting dataset coincides with that
obtained by applying TN once to D. Intuitively, the first
application of TPN captures the canonical encoding; each of
the L subsequent applications captures the application of a
layer of N , and the last application captures simultaneously
N ’s classification function and the canonical decoder.

Program PN introduces auxiliary predicates of the form
Uℓ,i,α, where ℓ ranges from 0 to L, i ranges from 1 to δℓ,
and α is an element of Xℓ,i. These predicates are used to
represent the feature vectors obtained through the applica-
tion of N . For example, if TPN derives Uℓ,i,α(a) after one
or more applications to a (Col, δ)-dataset D, this means that
when N is applied to the canonical encoding of D, the ith
element of the feature vector computed in layer ℓ for ver-
tex va will take value α. Program PN also introduces fresh
predicates of the form Vc,ℓ,i,α, where c is a colour in Col,
and ℓ, i, and α range over the same values as in Uℓ,i,α. Intu-
itively, if TPN derives the fact Vc,ℓ,i,α(a) after one or more
applications to a (Col, δ)-dataset D, this indicates that the
vertex va has a c-neighbour vertex w such that when N is
applied to the canonical encoding of D, the jth element of
the vector computed by N in layer ℓ for w is α. Finally, pro-
gram PN introduces an auxiliary binary predicate W c for
each c ∈ Col, which has the same meaning as Ec. Using
this predicate instead of Ec helps ensure that TL+2

PN
will not

derive spurious facts over auxiliary predicates.
Program PN is the union of L + 2 programs PN ,0, . . . ,

PN ,L+1. Rule bodies in PN ,0 and rule heads in PN ,L+1

mention only predicates in the data signature. Furthermore,
for 1 ≤ ℓ ≤ L+ 1, predicates in rule bodies in PN ,ℓ appear
only in rule heads in PN ,ℓ−1. Thus, the application of TL+2

PN
to a (Col, δ)-dataset D can be understood in L + 2 stages
where, in the ℓth stage, only rules from PN ,ℓ−1 will fire.

The first program, PN ,0, captures the canonical encoding.
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Definition 3. PN ,0 is the Datalog¬ program that con-
tains the following rules instantiated for each two positions
i, j ≤ δ0 and each colour c ∈ Col:

Ui(x) → U0,i,1(x), (5)
Uj(x) ∧ not Ui(x) → U0,i,0(x), (6)

Ec(x, y) ∧ not Ui(x) → U0,i,0(x), (7)
Ec(y, x) ∧ not Ui(x) → U0,i,0(x), (8)

Ec(x, y) ∧ Ui(y) → Vc,0,i,1(x), (9)
Ec(x, y) → W c(x, y). (10)

Rules (6), (7), and (8) together encode the rule
not Ui(x) → U0,i,0(x), but their positive body atoms ensure
that they will only be fired during the first application of PN .

Programs PN ,1, . . . ,PN ,L, capture the behaviour of
equation (2) for layers 1, . . . , L of the GNN, respectively.
Definition 4. For each 1 ≤ ℓ ≤ L, PN ,ℓ is the Datalog¬

program consisting of the following rules instantiated for
each i ≤ δℓ, each vector x of dimension δℓ−1 with (x)j ∈
Xℓ−1,j , each |Col|-tuple (yc)c∈Col of vectors of dimension
δℓ−1 where (yc)j ∈ Xℓ−1,j , and each c′ ∈ Col:∧

1≤ j ≤δℓ−1

Uℓ−1,j,(x)j (x) ∧
∧

c∈Col
1≤j≤δℓ−1

Γc,j → Uℓ,i,α(x), (11)

W c′(y, x) ∧
∧

1≤ j ≤δℓ−1

Uℓ−1,j,(x)j(x) ∧
∧

c∈Col
1≤j≤δℓ−1

Γc,j → Vc′,ℓ,i,α(y), (12)

W c′(x, y) → W c′(x, y), (13)

where α = Val(ℓ, i,x, (yc)c∈Col) and Γc,j is the conjunction

W c(x, yc,j) ∧ Uℓ−1,j,(yc)j(yc,j)∧
∧

β∈Xℓ−1,j

s.t. β>(yc)j

not Vc,ℓ−1,j,β(x), (14)

and also, each rule obtained by replacing, for one or more c
such that yc is null, the conjunction

∧δℓ−1

j=1 Γc,j in rule (11)
or (12) by the negated body atom not W c(x, yc).

We explain the intuition of these rules for the case ℓ = 1,
which is analogous to the other cases. The instances of rule
(11) in program PN ,1 encode the behaviour of the first layer
of N on the canonical encoding of (Col, δ)-datasets. To see
this, consider an arbitrary (Col, δ)-dataset D and a constant
a mentioned in it. By equation (2), if x is the initial fea-
ture vector for va in the canonical encoding of D, and for
each colour c ∈ Col, yc is the result of the max aggre-
gation of the initial feature vectors for c-neighbours of va,
then the ith element of feature vector for va in layer 1 is
equal to Val(ℓ, i,x, (yc)c∈Col). This behaviour is precisely
captured by the instances of rule (11) for i, x, and yc. To
see this, observe that the body of the rule contains an atom
U0,j,1(x) if the jth component of x is 1, and otherwise it
contains an atom U0,j,0(x). However, rules (5), (6) , (7), and
(8) ensure that the input contains U0,j,1(a) (resp. U0,j,0(a))
if and only if Uj(a) ∈ D (resp. Uj(a) /∈ D). Therefore,
the first conjunction in the rule matches a if and only if the
initial feature vector (via the canonical encoding) of va is

precisely x. Furthermore, for each colour c and position j,
the body of rule (11) includes a conjunction Γc,j ensuring
that, if the rule applies for constant a, then (yc)j has the
intended meaning as the position j of the max aggregation
of feature vectors of c-neighbours of va. For example, if
(yc)j = 0, Γc,j includes W c(x, yc,j) ∧ U0,j,0(yc,j) to rep-
resent that there is a neighbour contributing with this value,
and furthermore it includes a negated atom not Vc,0,j,1(x)
to ensure that there exists no c-neighbour of va with a 1 in
its j-th position. If yc is null, it might be the case that va
has no c-neighbours; for this, we have a copy of rule (11)
where the conjunction of all Γc,j for 1 ≤ j ≤ δℓ−1 is re-
placed by the atom not W c(x, yc). When the rule fires, it
derives U1,i,α(a) which, as we have seen, represents that the
ith component of the feature vector for va in layer 1 has
value α = Val(ℓ, i,x, (yc)c∈Col).

Rule (12) includes all the atoms in the body of rule (11)
plus an atom of the form W c′(y, x). Intuitively, it simulates
in a single step an application of rule (11) followed by an ap-
plication of the rule W c′(y, x) ∧ U1,i,α(x) → Vc′,1,i,α(y),
and so it defines the value of the auxiliary predicates Vc,1,i,α

for layer 1. These predicates might appear in negated body
atoms in the next subprogram, PN ,2 Finally, rule (13) en-
sures that the information about connectivity between con-
stants is preserved.

The last subprogram PN ,L+1 simulates the application of
N ’s classification function cls and the canonical decoder.

Definition 5. Program PN ,L+1 is the Datalog¬ program
containing the following rule instantiated for each i ≤ δL,
each α ∈ XL,i such that cls(α) = 1, and each c ∈ Col:

UL,i,α(x) → Ui(x) (15)
W c(x, y) → Ec(x, y) (16)

Finally, we define PN as
⋃L+1

ℓ=0 PN ,ℓ.
The following lemma confirms the correctness of our in-

terpretation of the facts over auxiliary predicates derived in
each stage of the application of TL+1

PN
to D.

Lemma 6. For each (Col, δ)-dataset D and constant a in it,
each layer 0 ≤ ℓ ≤ L, i ≤ δℓ, α ∈ Xℓ,i, and c ∈ Col, it
holds that: Uℓ,i,α(a) ∈ T ℓ+1

PN
(D) if and only if (va

ℓ )i = α;
furthermore, Vc,ℓ,i,α(a) ∈ T ℓ+1

PN
(D) if and only if there ex-

ists ⟨a, b⟩ ∈ Ec such that (vb
ℓ)i = α; finally, if ℓ ≥ 1,

W c(a, b) ∈ T ℓ
PN

(D) if and only if Ec(a, b) ∈ D.

Proof. We use induction over ℓ to prove all three claims in
the lemma simultaneously. For the base case (ℓ = 0), all
claims follow from the rules of PN ,0 and the fact that the
canonical encoding ensures (vb

0)i = 1 iff Ui(b) ∈ D for any
constant b in D, and ⟨a, b⟩ ∈ Ec if and only if Ec(a, b) ∈ D.
For the inductive step, consider 1 ≤ ℓ ≤ L; we prove the
first claim by showing the implication in each direction.

(⇒). Assume Uℓ,i,α(a) ∈ T ℓ+1
PN

(D). The definition
of PN ensures that there exists a rule r ∈ PN ,ℓ of the
form (11) introduced for δℓ−1-dimensional Boolean vec-
tors x and (yc)c∈Col with jth elements in Xℓ−1,j such that
α = Val(ℓ, i,x,yc), and possibly with some

∧δℓ−1

j=1 Γc,j
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replaced by not W c(x, yc), and a substitution ν such that
Pν ∈ T ℓ

PN
(D) (resp. Qν /∈ T ℓ

PN
(D)) for each positive

(resp. negated) body atom P (resp. Q) in r. Applying
the induction hypothesis to these facts Pν and Qν ensures
that x is the feature vector in layer ℓ − 1 for vxν , and for
each c ∈ Col, yc is the result of max aggregation over c-
neighbours in layer ℓ − 1 of the application of N to D.
Hence, (va

ℓ )i = α, as required.
(⇐). Assume (va

ℓ )i = α for some constant a and value
α ∈ Xℓ,i. Let x be the feature vector in layer ℓ − 1 for
vertex va and yc the result of the max aggregation over c-
neighbours of vectors in layer ℓ − 1. By Lemma 2, the jth
element in each of these vectors is in Xℓ−1,j , and so there is a
corresponding rule r of the form (11) in PN with

∧δℓ−1

j=1 Γc,j

replaced by not W c(x, yc) for each c ∈ Col such that va has
no c-neighbours. Let ν be the substitution that maps x to a
and each variable yc,j in r to the constant bc,j corresponding
to the c-neighbour of vxν which contributes with the max-
imum jth value to the max aggregation in layer ℓ − 1 over
colour c. The induction hypothesis ensures that ν grounds
all positive body atoms of r in T ℓ

PN
(D). Suppose now, for

the sake of contradiction, that Q is a negated body atom in
this rule such that Qν ∈ T ℓ

PN
(D). If Q = W c(x, yc), then

our induction hypothesis implies that va has a c-neighbour,
contradicting our choice of r. Otherwise, there exists a c-
neighbour of vxν with an element in the jth position that is
strictly greater than (yc)j , which contradicts our definition
of yc. Finally, the head of rule r is of form Uℓ,i,α(x); hence,
Uℓ,i,α(a) ∈ T ℓ+1

PN
(D) as required.

The proof for the second claim in the lemma is analogous
to that of the first, and the third follows directly from the
induction hypothesis and rules (10) and (13).

The following theorem relies on Lemma 6 to ensure that
PN faithfully captures N ’s behaviour: for a dataset D, the
result of applying the immediate consequence operator TPN
to D once per layer of the GNN, plus two additional applica-
tions (for encoding and decoding, respectively) is equivalent
to applying the GNN-based transformation to D.

Theorem 7. For each (Col, δ)-dataset D, we have that
TN (D) = TL+2

PN
(D).

Proof. A simple induction on ℓ shows that TL+2
PN

(D) may
only contain facts Ui(a) for some i ≤ δ or Ec(a, b) for some
c ∈ Col and constants a, b in D. The definition of TN en-
sures that TN (D) also contains only facts of these forms.
Thus, we show that each fact of one of these forms is in
TN (D) if and only if it is in TL+2

PN
(D).

For each Ec(a, b) with c ∈ Col and a, b constants in D,
rule (16) in PN and the third claim in Lemma 6 ensure that
Ec(a, b) ∈ TL+2

PN
(D) iff Ec(a, b) ∈ D, from which the

claim follows since TN does not alter binary facts.
For each i ≤ δ, constant a in D, and α ∈ XL,i,

we have that by Lemma 6, UL,i,α(a) ∈ TL+1
PN

(D) iff
(va

L)i = α. This and Lemma 2 together ensure that
UL,i,(va

L)i(a) ∈ TL+1
PN

(D) and that there is no other fact
of the form UL,i,α′(a) in TL+1

PN
(D) for α′ ∈ XL,i. Then,

the rules in PN with predicate Ui in the head, which are of
form (15), ensure that Ui(a) ∈ TL+2

PN
(D) iff cls((va

L)i) = 1,
which in turn holds iff Ui(a) ∈ TN (D) by definition of
the canonical decoding. Hence, Ui(a) ∈ TL+2

PN
(D) iff

Ui(a) ∈ TN (D).

Each rule in PN with a unary predicate in the head is tree-
shaped. Consider the primal graph of the rule, obtained by
introducing a vertex for each variable and an (undirected)
edge between vertices for variables occurring together in a
binary body atom. Looking at rules (5) through (15), it is
easy to see that the primal graph is a tree rooted in the vari-
able in the head of the rule. The height of this tree is at
most 2 and each vertex in the tree participates in at most
|Col| ·max(δ0, . . . , δL) edges.

4 Monotonic Max GNNs
In this section, we consider the family of monotonic max
GNNs proposed in (Tena Cucala et al. 2023).

Definition 8. A max (Col, δ)-GNN is monotonic if the val-
ues of all its matrices Aℓ and Bc

ℓ are non-negative, its ac-
tivation function σ is unbounded above, has a non-negative
range, and is monotonically increasing, and if its classifica-
tion function cls is a step function with a threshold t ∈ R
such that cls(x) = 1 if x ≥ t, and otherwise cls(x) = 0, for
each x ∈ R.

For the remainder of this entire section, let us consider a
fixed, but arbitrary monotonic max (Col, δ)-GNN N .

It was shown in (Tena Cucala et al. 2023) that the op-
erator TN is monotonic under homomorphisms and can be
captured by a Datalog program without negation. Although
the Datalog¬ program PN constructed from N as in Section
3.2 still contains negated body atoms, multiple applications
of a non-monotonic Datalog¬ program can result in an oper-
ator that is monotonic under homomorphisms. For example,
for a program P consisting of the following rules:

P (x) → Q1(x), Q1(x) → R(x)

not P (x) → Q2(x), Q2(x) → R(x),

operator T 2
P is monotonic under homomorphisms, even

though TP is not. This is indeed the case in our setting:
if N is monotonic, then by Theorem 7, operator TL+2

PN
is

monotonic under homomorphisms despite the fact that PN
contains negation and the immediate consequence operator
TPN is nonmonotonic.

In what follows, we show that, by simply removing all
negated atoms from rule bodies in PN , the resulting Data-
log program P+

N satisfies the statement in Theorem 7—that
is, TL+2

P+
N

(D) = TN (D) for any (Col, δ)-dataset D. Further-

more, P+
N can be unfolded into a program P ′

N that does not
contain auxiliary predicates and which is equivalent to that
obtained in (Tena Cucala et al. 2023).

4.1 Eliminating Negation
Consider the program P+

N obtained from PN by remov-
ing all negated body atoms, and let D be a (Col, δ)-dataset.
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When applied to D, the set of facts derived from the applica-
tion of PN is (often strictly) contained in those derived from
the application of P+

N . Indeed, by eliminating body atoms,
we have dropped some preconditions required for the appli-
cation of the affected rules. We next show, however, that
both programs yield exactly the same facts when applied
L + 2 times—that is, the number of applications required
to simulate TN —to D. This is so despite the fact that, dur-
ing the first L + 1 applications, P+

N may derive additional
facts.

As discussed in Section 3.2, rules (11) in PN simulate
the application of layer ℓ of N to D. In particular, the rule
matches a set of facts representing a vertex va with feature
vector x in layer ℓ − 1 and elements of feature vectors of
c-neighbours of va in layer ℓ− 1 that contribute to the result
yc of the max aggregation for each colour c. The rule de-
rives Uℓ,i,α(a), where α = Val(ℓ, i,x, (yc)c∈Col) coincides
with (va

ℓ )i, the value of the ith element of the feature vector
for va computed in layer ℓ by N . The negated body atoms,
in particular, ensure that yc is the result of max aggrega-
tion of all c-neighbours, by negating the existence of any
additional c-neighbour with a feature vector whose jth ele-
ment is greater than (yc)j—or negating the existence of c-
neighbours altogether. Once negated body atoms have been
removed, yc no longer represents the result of the max ag-
gregation; instead, the rule would now match any set of facts
that represent a vertex va with feature vector x in layer ℓ−1
and (possibly) an arbitrary c-neighbour whose feature vec-
tor in layer ℓ − 1 has a jth element equal to (yc)j for each
colour c—not necessarily a neighbour that contributes to the
max aggregation.

Since N is monotonic, however, all matrix weights
are non-negative and the activation function is monotonic.
Then, value α = Val(ℓ, i,x, (yc)c∈Col) in Uℓ,i,α(a) is now at
most that of (va

ℓ )i. This is the key property ensuring that P+
N

and PN yield the same facts after L + 2 rounds of applica-
tion to D. To see this, suppose that P+

N uses a fact UL,i,α(a)
to derive fact Ui(a) in the last round (i.e. using rule (15)).
Since N is monotonic, its classification function is a mono-
tonic step function with a threshold, and so we know that α
is greater than this threshold. But then, since α ≤ (va

L)i, we
have that (va

L)i also exceeds the threshold and so TN also
derives Ui(a) on D; by Theorem 7, so does TL+2

PN
. Hence,

all facts derived by TL+2

P+
N

on D are also derived by TL+2
PN

.

Theorem 9. Let P+
N be the program obtained from PN

by removing all negated body atoms from bodies of rules.
If N is a monotonic max (Col, δ)-GNN, then, TN (D) =

TL+2

P+
N

(D) for each (Col, δ)-dataset D.

Proof. The inclusion TN (D) ⊆ TL+2

P+
N

(D) follows from
Theorem 7. To prove the converse, we show inductively on
ℓ that, for each 0 ≤ ℓ ≤ L, i ≤ δℓ, constant a in D, and
α ∈ Xℓ,i, if Uℓ,i,α(a) ∈ T ℓ+1

P+
N
(D), then (va

ℓ )i ≥ α, and if

ℓ ≥ 1, W c(a, b) ∈ T ℓ
P+

N
(D) iff Ec(a, b) ∈ D.

In the base case (ℓ = 0), each X0,i is equal to {0, 1},
and each (va

0)i can also take values only from {0, 1}. Thus,

for α = 0, (va
0)i ≥ 0 holds immediately. For α = 1,

U0,i,1(a) ∈ TP+
N
(D) implies Ui(a) ∈ D and so (va

0)i = 1.
The second claim follows as in the proof of Lemma 6.

For the induction step (1 ≤ ℓ ≤ L), we assume that
Uℓ,i,α(a) ∈ T ℓ+1

P+
N
(D) and show that (va

ℓ )i ≥ α. From

the definition of P+
N , there is a rule r ∈ PN and a substi-

tution ν mapping x to a such that for each positive body
atom P in r, we have Pν ∈ T ℓ

P+
N
(D). This rule is in

PN ,ℓ and of the form (11). Thus, Uℓ−1,j,(x)j (a) ∈ T ℓ
P+

N
(D)

for each j. Since (x)j ∈ Xℓ−1,j , the induction hypothe-
sis implies that (va

ℓ−1)j ≥ (x)j . By an analogous argu-
ment, for each c ∈ Col we obtain that if r mentions yc,j ,
then W c(a, bc,j) ∈ T ℓ

P+
N
(D), for bc,j = ν(yc,j), so by the

induction hypothesis it follows that Ec(a, bc,j) ∈ D and
so ⟨va, vbc,j ⟩ ∈ Ec, and (v

bc,j
ℓ−1)j ≥ (yc)j . Vectors x and

yc have no negative elements because σ has a nonnegative
range. Applying this observation to equation (3), substitut-
ing the inequalities derived so far, and using the facts that
weights of N are nonnegative and σ is monotonically in-
creasing, we obtain (va

ℓ )i ≥ Val(ℓ, i,x, (yc)c∈Col) = α, as
required.

To complete the proof, consider Ui(a) ∈ TL+2

P+
N

(D). No
rule other than those of the form (15) in PN has predicate
Ui in the head, and thus UL,i,α(a) ∈ TL+1

P+
N

(D) for some

α such that cls(α) = 1. The claim shown above implies
(va

L)i ≥ α, and so, since cls is monotonically increasing,
cls((va

L)i) = 1; hence, Ui(a) ∈ TN (D). Similarly, for a bi-
nary Ec(a, b) ∈ TL+2

P+
N

(D) rule (16) ensures that W c(a, b) ∈

TL+1

P+
N

(D), and by the claim shown by induction we have

Ec(a, b) ∈ D, and so Ec(a, b) ∈ TN (D), since GNNs do
not affect binary facts. Thus, TL+2

P+
N

(D) ⊆ TN (D).

4.2 Unfolding the Negation-free Program
We conclude this section by describing the unfolding of P+

N
into a program P ′

N without auxiliary predicates and such
that its application to a (Col, δ)-dataset is equivalent to a
single application of TN . To this end, we exploit standard
techniques based on hyperresolution (Robinson 1974).

Let r be a Datalog (i.e. negation-free) rule B1(z1)∧ · · · ∧
Bn(zn) → H . For each 1 ≤ i ≤ n, let ri be a Datalog rule
Γi → Bi(xi), and assume w.l.o.g. that no rules share vari-
ables. A hyperresolution step with main premise r and side
premises r1, . . . , rn yields Γ1{x1 7→ z1} ∧ · · · ∧ Γn{xn 7→
zn} → H . The unfolding procedure initialises a set of
rules S to P+

N ,L+1 and eagerly performs hyperresolution
steps with a rule in S as the main premise and rules in⋃L

ℓ=0 P
+
N ,ℓ as side premises, adding the resulting inferences

to S and renaming away shared variables, until no more
rules can be added to S . The output program P ′

N is the
subset of S mentioning only predicates in the data signature
{Ui}i≤δ ∪ {Ec}c∈Col.

Termination relies on the restriction that rules of P+
N ,L+1

are never used as side premises. Indeed, each hyperreso-
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lution step produces a rule with body atoms of the form
Uℓ−1,j,β(z

′) from a main premise with body atoms of the
form Uℓ,i,α(z); thus, after L + 2 consecutive eager hyper-
resolution steps, all body predicates of the resulting rule are
contained in the data signature, and since no allowed side
premise mentions any of these predicates in the head, no
more hyperresolution steps are possible.

Theorem 10. If N is a monotonic max (Col, δ)-GNN, then
TN (D) = TP′

N
(D) for each (Col, δ)-dataset D.

Proof. We show that TP′
N
(D) = TL+2

P+
N

(D) which, together
with Theorem 9 implies our claim. We first prove that each
fact α ∈ TL+2

P+
N

(D) is also in TP′
N
(D). Let DL+2 = {α}

and S the saturated rule set produced by hyperresolution.
For each 0 ≤ ℓ ≤ L + 1, we inductively construct (in de-
creasing order of ℓ) a dataset Dℓ and rule rℓ such that: (1)
Dℓ ⊆ T ℓ

P+
N
(D); (2) α ∈ Trℓ(Dℓ) , and (3) rℓ ∈ S . Con-

sider one such ℓ and assume that Dℓ′ is defined for each
L+ 2 ≥ ℓ′ > ℓ, satisfying all three conditions. Condition 1
ensures that each fact in Dℓ+1 can be derived from a rule in
P+
N and facts in T ℓ

P+
N
(D); let Qℓ be the set of all such rules.

By the form of atoms in Dℓ+1, we have that Qℓ ⊆ P+
N ,ℓ. We

define Dℓ as the support for these rules in T ℓ
P+

N
(D), and so

Condition 1 holds. If ℓ = L + 1, then Dℓ+1 = {α} and so
clearly Qℓ+1 consists of a single rule from P+

N ,L+1, which
we choose as rℓ; Condition 2 then holds trivially. Condition
3 also holds due to our initialisation of S . If ℓ < L + 1,
then we define rℓ as the result of a hyperresolution step us-
ing rℓ+1 as main premise and rules in Qℓ as side premises;
this step is possible because, by Condition 2 in the induction
hypothesis, there is a substitution ν grounding each body
atom P of rℓ+1 in Dℓ+1, and so for each body atom of rℓ+1

we use the rule rPν in Qℓ that derives Pν from Dℓ using
a substitution µPν ; such rule exists since we have already
shown that Condition 1 is satisfied. Taking the union ν and
all µPν yields a substitution that grounds the body of rℓ in
Dℓ and makes its head equal to α, and so Condition 2 holds.
Furthermore, rℓ ∈ S since so is rℓ+1 and we performed a
hyperresolution step with Qℓ ⊆ P+

N ,ℓ, so Condition 3 is ver-
ified. This concludes the inductive construction. We now
have that r0 ∈ S by Condition 3; furthermore, D0 ⊆ D by
Condition 1 and so r0 mentions only predicates in the data
signature, so r0 ∈ P ′

N . Finally, Condition 2 guarantees that
α ∈ Tr0(D0), and so α ∈ Tr0(D), as Tr0 is monotonic
under homomorphisms; hence, α ∈ TP′

N
(D).

We finally argue that TP′
N
(D) ⊆ TL+2

P′
N

(D). Let
r0 ∈ P ′

N and let r1, . . . , rL+2 be its hyperresolution
proof, with rL+2 ∈ P+

N ,L+1, and rℓ obtained via a hy-
perresolution step with rℓ+1 as main premise and a set
Qℓ ⊆ P+

N ,ℓ of side premises. We argue that Tr0(D) ⊆
Trℓ+1

(TQℓ
(. . . TQ0

(D))) by induction on ℓ. The base case
holds directly by soundness of hyperresolution. For the in-
duction step, assume that the claim holds for ℓ−1. By sound-
ness of hyperresolution, Trℓ(D

′) ⊆ Trℓ+1
(TQℓ

(D′)) for any
dataset D′. Let D′ = TQℓ−1

(. . . TQ0
(D)). We then have

that Trℓ(TQℓ−1
(. . . TQ0(D)) ⊆ Trℓ+1

(TQℓ
(. . . TQ0(D)).

By applying the induction hypothesis on the left-hand side,
we obtain the desired expression. This concludes the in-
ductive argument. Using our expression for L + 1, we
have that Tr0(D) ⊆ TrL+2

(TQL+1
(. . . TQ0

(D))). How-
ever, recall that rL+2 ∈ P+

N ,L+1 and Qℓ ⊆ P+
N ,ℓ for

each ℓ. Thus, monotonicity under homomorphisms ensures
Tr0(D) ⊆ TL+2

P′
N

(D). Since r0 is an arbitrary rule of P ′
N ,

we have TP′
N
(D) ⊆ TL+2

P′
N

(D), as required.

5 Explanation of Individual Facts
The results of Section 3.2 suggest a method for computing
the equivalent program PN for a given (Col, δ)-GNN N .
First, initialise PN as PN ,0 and each X0,i as {0, 1}; then,
for each layer ℓ, enumerate all combinations of vectors x
and {yc}c∈Col with jth component in Xℓ−1,j , and use them
to compute Xℓ,i with equation (4) as well as to enumerate the
rules of PN ,ℓ and add them to PN . This approach is, how-
ever, impractical for large Xℓ,i, in which case PN contains a
large number of rules which become difficult to enumerate.

We address this practical challenge by presenting an algo-
rithm for directly extracting a (typically small) subset of PN
that suffices to derive a specific unary fact from the output
of TN for a given dataset. Thus, we can explain predic-
tions of the GNN without having to extract the full equiva-
lent program PN . We focus on unary facts since TN neither
introduces nor removes binary facts from the input, so it is
obvious why each binary fact appears in the output of TN .

Algorithm 1 takes as input a (Col, δ)-GNN N , a dataset
D, and a fact Ui(a) ∈ TN (D), and yields a program
PN ,D,Ui(a) ⊆ PN such that Ui(a) ∈ TL+2

PN ,D,Ui(a)
(D). The

first step is to apply N to the canonical encoding of D while
storing all feature vectors generated for each layer and ver-
tex. The output program is initialised in line 2 with the
unique rule UL,i,α(x) → Ui(x) from PN that may derive
Ui(a). Substitution θ initially maps x to a (line 3) and will
be extended to include all variables in PN ,D,Ui(a). Substi-
tution θ′ is an auxiliary variable that is used to update θ.

The outer loop iterates through layers ℓ in descending or-
der and each variable y in the domain of θ (line 4). Each
iteration extends the program with δℓ rules with different
heads representing the elements of the feature vector for vyθ
in layer ℓ but with the same body Γ describing the neigh-
bourhood of vyθ in layer ℓ − 1. The body Γ is initialised
with δℓ−1 atoms describing the feature vector for vyθ in
layer ℓ − 1 (line 5). Then, for each colour c and position
k ∈ {1, . . . , δℓ−1} (line 6), the algorithm searches for a c-
neighbour vb of vyθ contributing to the kth value of max
aggregation over c-neighbours of vyθ in layer ℓ − 1 (line
8). If found (line 9), then it introduces a fresh variable z
mapped to b (line 10), and extends Γ with atoms W c(y, z)
and Uℓ−1,k,(vb

ℓ−1)k
(z) describing the contribution (line 11).

It also adds rule W c(y, z) → W c(y, z) to PN ,D,Ui(a), en-
suring that fact W c(yθ, b), stating that vb is a c-neighbour of
vyθ, is preserved in each application of TPN ,D,Ui(a)

(line 12).
Finally, it extends Γ with negated atoms not Vc,ℓ−1,k,γ(x)
for each γ ∈ Xℓ−1,k greater than β, ensuring that no other

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Reasoning, Learning & Decision-Making Track

956



neighbours of vyθ may contribute with a value γ (line 13)
to position k of the max aggregation over colour c (line 14).
If no neighbour vb is found for position δℓ−1 (and thus, no
neighbour was found for any other position), the algorithm
extends Γ with negated body atom not W (y, z) for fresh z
(line 16). Having defined Γ, the algorithm iterates through
positions j ≤ δℓ (line 17) and adds a rule with body Γ and
head predicate representing the jth value of the vector for
vyθ in ℓ (line 18). Upon completion of the outer loop, the al-
gorithm adds all the rules from PN ,0 that define predicates
in PN ,D,Ui(a) (line 21) and returns PN ,D,Ui(a).

Algorithm 1 Extracting a subset of PN to explain a fact

Input: N , a max (Col, δ)-GNN of L layers;
D, a (Col, δ)-dataset; Ui(a), a fact in TN (D);

1: compute N (enc(D)) storing each vℓ for each vertex v
2: PN ,D,Ui(a) := UL,i,(va

L)i(x) → Ui(x)

3: θ(x) := θ′(x) := a
4: for ℓ from L to 1 and each y in the domain of θ do
5: Γ :=

∧δℓ−1

k=1 Uℓ−1,k,(vyθ
ℓ−1)k

(y)

6: for c ∈ Col do
7: for k ∈ {1, · · · , δℓ−1} do
8: b := argmax{(vℓ−1)

b
k |b :Ec(yθ, b) ∈ D}

9: if b is defined then
10: θ′(z) := b for z fresh
11: Γ := Γ ∧W c(y, z) ∧ Uℓ−1,k,(vℓ−1)bk

(z)

12: add W c(y, z)→W c(y, z) to PN,D,Ui(a)

13: for γ ∈ Xℓ−1,k s. t. γ > (vℓ−1)
b
k do

14: Γ := Γ ∧ not Vc,ℓ−1,k,γ(y)

15: if b is undefined then
16: Γ := Γ ∧ not W c(y, z) for z fresh
17: for j ∈ {1, . . . , δℓ} do
18: add Γ → Uℓ,i,(vyθ

ℓ )j
(y) to PN ,D,Ui(a)

19: θ := θ′

20: for r ∈ PN ,0 with head predicate in PN ,D,Ui(a) do
21: PN ,D,Ui(a) := PN ,D,Ui(a) ∪ {r}

return PN ,D,Ui(a)

Theorem 11. For a max (Col, δ)-GNN N , a dataset D,
and a fact Ui(a) ∈ TN (D), Algorithm 1 yields a program
PN ,D,Ui(a) ⊆ PN such that Ui(a) ∈ TL+2

PN ,D,Ui(a)
(D).

Proof. Lemma 2 and the algorithm’s construction ensure
that PN ,D,Ui(a) ⊆ PN , modulo variable renaming. It re-
mains to show that Ui(a) ∈ TL+2

PN ,D,Ui(a)
(D).

Let θ be the substitution constructed by the algorithm.
For each 1 ≤ ℓ ≤ L, let Dℓ be the dataset containing
the grounding by θ of each positive body atom in a rule
added in the iteration of the loop in line 4 for ℓ, and let
DL+1 = {UL,i,(va

L)i(a)}. We now prove by induction that
Dℓ ⊆ T ℓ

PN ,D,Ui(a)
(D) for each 1 ≤ ℓ ≤ L+ 1. For the base

case, ℓ = 1, consider an arbitrary U0,k,1(b) ∈ D1. By line
11, we have that (vb

0)k = 1, and hence Uk(b) ∈ D. Line

21 ensures that rule Uk(x) → U0,k,1(x) is in PN ,D,Ui(a);
thus, we have U0,k,1(b) ∈ TPN ,D,Ui(a)

(D). For facts of
the form U0,k,0(b) ∈ D1, an analogous argument gives
us (vb

0)k = 0. Since b appears in some unary or binary
fact of D, line 21 ensures that there is a rule of the form
(6), (7), or (8) in PN ,D,Ui(a) such that its positive atom is
grounded in D mapping x to b, but without grounding the
negated Uk(x) in D since this would imply (vb

0)k = 1,
contradicting our previous claim. Thus, the rule fires and
U0,k,0(b) ∈ TPN ,D,Ui(a)

(D). The proof for binary facts in
D1 is analogous. For the induction step, consider 2 ≤ ℓ ≤
L + 1; we assume that Dℓ−1 ⊆ T ℓ−1

PN ,D,Ui(a)
(D) and prove

Dℓ ⊆ T ℓ
PN ,D,Ui(a)

(D). Consider an arbitrary unary fact in

Dℓ, which must be of the form Uℓ−1,k,α(b) for α = (vb
ℓ−1)k,

according to lines 2 or 11 (depending on whether ℓ = L+ 1
or ℓ < L + 1, respectively); furthermore, there must exist
some variable y such that θ(y) = b after the loop for layer
ℓ. Thus, variable y is considered in the loop for layer ℓ− 1,
and so the algorithm introduces a rule Γ → Uℓ,j,α(y) in
layer 18. By definition, dataset Dℓ−1 contains the ground-
ing via θ of all positive body atoms in Γ; hence, by induction
hypothesis, so does T ℓ−1

PN ,D,Ui(a)
(D). We now argue by con-

tradiction that θ cannot ground a negated body atom of this
rule in T ℓ−1

PN ,D,Ui(a)
(D). If it is of the form not Vc,ℓ−1,k,γ(y),

then we cannot ground it in T ℓ−1
PN ,D,Ui(a)

(D) since this pred-
icate does not appear in a rule head in PN ,D,Ui(a). If it is of
the form not W c(y, z), we have a contradiction as ground-
ing the atom would imply that there is a c-neighbour vzθ

of vyθ, but then the condition in line 15 would not have
been triggered, and so not W c(y, z) would not be in Γ.
Hence, rule Γ → Uℓ,j,α(y) fires via θ and so Uℓ,j,α(b) ∈
T ℓ
PN ,D,Ui(a)

(D). The proof for binary atoms in Dℓ is anal-
ogous. This concludes the proof by induction. We have
proved, in particular, that UL,i,(va

L)i(a) ∈ TL+1
PN ,D,Ui(a)

(D),

and so Ui(a) ∈ TL+2
PN ,D,Ui(a)

(D) by the rule in line 2.

6 Related Work
There has been significant interest in the extraction of log-
ical rules from ML models. Early approaches focused
on the extraction of propositional rules from trained feed-
forward neural networks (Andrews, Diederich, and Tickle
1995). Neural-LP (Yang, Yang, and Cohen 2017), DRUM
(Sadeghian et al. 2019) and related approaches (Liu et al.
2023; Qu et al. 2021; Xiong, Hoang, and Wang 2017;
Das et al. 2018; Omran, Wang, and Wang 2018; Zhang et al.
2019) provide means for extracting chain rules of the form
R1(x0, x1)∧R2(x1, x2)∧. . .∧Rn(xn−1, xn) → R(x1, xn)
from different classes of models. A limitation of these
approaches, however, is that the extracted program is not
equivalent to the model; that is, predictions made by the
model differ from the results of rule application. These
limitations have been studied in recent work (Tena Cucala,
Cuenca Grau, and Motik 2022; Wang et al. 2024).

Rule mining approaches focus on heuristically identify-
ing patterns in data, which are then lifted as rules. These
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Precision Recall Accuracy F1 Score AUC Training (s)
Max Sum Anb Drm Max Sum Anb Drm Max Sum Anb Drm Max Sum Anb Drm Max Sum Anb Drm Max Sum Drm

FB
15

K
-2

37 v1 97.7 98.8 100 82.2 43.0 41.0 25.6 40.5 71.0 70.3 62.9 65.9 59.7 58.0 41.1 54.2 65.7 65.5 62.0 68.6 2,118 1,006 15,540
v2 99.5 100 100 85.3 48.2 48.7 47.9 48.5 74.0 74.3 74.0 70.0 65.0 65.5 64.5 61.9 72.9 75.5 73.8 76.0 2,795 1,658 19,080
v3 99.3 99.4 100 85.6 36.2 71.4 43.6 45.2 68.0 85.5 71.2 68.8 53.0 83.1 60.7 59.2 64.4 87.5 71.7 73.3 14,064 316 37,776
v4 98.5 98.6 100 88.8 48.8 48.3 46.0 41.6 74.0 73.8 73.0 68.2 65.2 64.8 63.0 56.7 71.4 75.7 73.0 73.7 14,101 10,287 86,991

N
E

L
L

-9
95

v1 33.3 100 97.5 94.7 1.2 17.6 77.0 18.0 49.4 58.9 87.5 58.5 2.3 30.0 86.0 30.3 3.4 59.9 85.7 52.6 3,647 79 402
v2 98.8 99.0 100 80.7 36.4 41.4 53.1 41.2 67.9 70.5 76.6 65.7 53.2 58.4 69.4 54.5 57.3 69.4 76.3 74.6 707 183 6,354
v3 56.7 80.0 100 85.8 76.2 42.1 47.3 45.6 59.0 65.8 73.7 69.0 65.0 55.1 64.2 59.6 78.7 64.3 69.3 75.3 1,155 1,814 36,090
v4 93.8 97.3 100 80.3 59.7 46.3 44.3 26.8 77.9 72.5 72.2 60.1 73.0 62.8 61.4 40.2 75.2 72.8 71.6 67.1 583 358 3,990

W
N

18
R

R v1 97.3 97.8 99.1 97.9 86.7 82.4 58.5 73.4 92.1 90.3 79.0 85.9 91.7 89.5 73.6 83.4 91.1 90.7 78.8 92.5 290 132 312
v2 100 100 100 96.3 82.5 81.7 75.7 69.8 91.2 90.9 87.9 83.6 90.4 89.9 86.2 80.9 89.2 90.0 59.8 87.4 422 575 2,856
v3 100 98.4 99.7 91.3 57.4 58.3 48.4 59.7 78.7 78.7 74.1 77.0 72.9 73.2 65.2 72.2 71.6 73.2 60.6 85.2 2,381 594 9,984
v4 98.9 98.6 99.9 98.3 81.8 81.9 71.6 65.6 90.5 90.3 85.8 82.2 89.5 89.4 83.4 78.7 87.8 88.4 59.0 93.9 209 171 1,638

Table 1: Results for max GNNs (Max), sum GNNs (Sum), AnyBURL (Anb), and DRUM (Drm) in percentages

approaches do not involve training a ML model prior to
rule generation. Prominent such approaches include AMIE+
(Galárraga et al. 2015), AnyBURL (Meilicke et al. 2019) as
well as (Ahmadi et al. 2020; Gu, Guan, and Missier 2020).

Inductive Logic Programming (ILP) is a traditional ap-
proach where rules are generated from data and examples
of positive and negative inferences so that the application of
the output rules yields all the positive examples and none
of the negative ones (Muggleton 1991; Cropper and Du-
mancic 2022). ILP techniques aiming to satisfy these re-
quirements exactly are, however, sensitive to inconsisten-
cies in the input examples (Cropper and Muggleton 2014;
Si et al. 2019; Raghothaman et al. 2020). Other ILP systems
achieve robustness to noise by interpreting the ILP task as a
binary classification problem and providing a differentiable
implementation of deduction (Evans and Grefenstette 2018).
These techniques focus on learning expressive rules from
small datasets; their application to KGs needs investigation.

Explanation methods for GNNs identify relevant parts
of the input graph (Ying et al. 2019; Luo et al. 2020;
Lin, Lan, and Li 2021). They are agnostic to the specifics of
the model, but do not generate logical proofs. Characterising
the expressivity of GNNs has also gained importance, and
we have already mentioned many relevant works (Barceló
et al. 2020; Huang et al. 2023; Pflueger, Tena Cucala, and
Kostylev 2024; Grohe 2023). Morris et al. (2019) showed
that GNNs can express certain graph isomorphism tests.

7 Evaluation
We have implemented the max GNN model using Python
3.8.5 and Pytorch Geometric v1.7.1. All experiments have
been performed on a MacBook Pro with an M2 processor
and 8GB of RAM, running macOS Ventura 13.3.
KG Completion We consider the task of of knowledge
graph (KG) completion. When seen as a classification prob-
lem, the aim of KG completion is to learn a Boolean function
f(· , ·) taking as input an incomplete dataset D and a fact α
over a fixed set of unary and binary predicates and accepting
iff α holds in the (unknown) completion D′ of D contain-
ing all missing facts. We consider inductive KG completion,
where the test data may mention constants not occurring in
the training or validation datasets (Teru, Denis, and Hamil-
ton 2020; Liu et al. 2021).

The canonical transformation TN induced by a max GNN
can only derive new unary facts, while KG completion re-
quires also the derivation of binary facts. To address this
limitation, we use an alternative encoding/decoding scheme
(Liu et al. 2021; Tena Cucala et al. 2022) where binary facts
are also encoded in feature vector components and edges in
the graph correspond to different types of possible joins be-
tween unary and binary atoms. As shown in (Tena Cucala
et al. 2023), such scheme can be captured by fixed encod-
ing and decoding programs Penc and Pdec so that the overall
transformation is given by TPdec

(TN (TPenc(D))), which in
turn coincides with TPdec

(TL+2
PN

(TPenc(D))) by Theorem 7.
Benchmarks, metrics, and baselines We used the induc-
tive KG completion benchmarks by Teru, Denis, and Hamil-
ton (2020), based on the FB15K-237 (Bordes et al. 2013),
NELL-995 (Xiong, Hoang, and Wang 2017), and WN18RR
(Dettmers et al. 2018) KGs. Each benchmark provides dis-
joint datasets for training, validation, and testing, and a
method for randomly splitting the test data into the incom-
plete dataset and a set of missing facts, which act as positive
test examples. Additionally, we sampled an equal number of
negative examples using the method in (Liu et al. 2021). We
used standard classification metrics: precision, recall, accu-
racy, and F1 score, and area under the precision-recall curve
(AUC) with thresholds in the range [0.01, 0.99].

We compared our approach with DRUM and AnyBURL,
state-of-the-art approaches for inductive KG completion that
enable extraction of chain Datalog rules associated with a
confidence score. We also considered a sum GNN, de-
fined analogously to a max GNN but using sum aggregation.
This is a type of Relational Convolutional Graph Network
(RGCN) (Schlichtkrull et al. 2018), a widely used model.
Training and evaluation results We trained an instance of
each model for each benchmark. We considered GNNs with
two layers, with the dimension of the hidden layer twice that
of the input layer. The training dataset was first split ran-
domly with a 9:1 ratio into an incomplete dataset and a set
of facts that should hold in its completion. We used cross-
entropy loss, and we trained our models using Adam optimi-
sation with standard learning rate (0.01) and weight decay
(5× 10−4), and a maximum of 50, 000 epochs. For DRUM
and AnyBURL we used their public code and their default
configurations. Training times are shown in Table 1. Times
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# of rules in the program extraction time (s)

FB
15

K
-2

37 v1 1,127 23
v2 1,015 27
v3 1,054 32
v4 1,071 37

N
E

L
L

-9
95

v1 85 8
v2 493 14
v3 747 20
v4 469 11

W
N

18
R

R v1 54 8
v2 64 9
v3 77 10
v4 48 9

Table 2: Rule extraction for individual facts.

for max GNN and sum GNN were comparable, but consid-
erably shorter than those for DRUM. No times are shown for
AnyBURL since this system does not train a model.

Table 1 shows the results of our evaluation. Max GNNs
achieve comparable performance to that of other systems,
attaining the highest accuracy and F1 score in 7 out of
12 benchmarks; in comparison, AnyBURL and sum GNNs
achieved the highest accuracy (resp. F1 score) in 3 bench-
marks each (3 and 2 benchmarks, respectively). AUC results
were more balanced: each system achieved the best AUC in
at least 2 and at most 4 of the benchmarks.

For each benchmark, we attempted to extract the full pro-
gram PN defined as in Section 3.2 for a trained max GNN
N . As expected, this proved challenging due to the large
number of generated rules. We also evaluated our imple-
mentation of Algorithm 1 for explaining individual facts.
As shown in Table 2, the number of rules was highest for
FB15K-237 benchmarks, and lowest for models trained on
WN18RR benchmarks. This matches our expectations since
the size of the rule sets generated by Algorithm 1 is pro-
portional to the model dimensions, which in turn depends
on the number of predicates in the dataset, and we note
that FB15K-237 benchmarks have almost 20 times as many
predicates as WN18RR benchmarks. Unlike PN , programs
explaining individual facts can be efficiently extracted.

8 Conclusion
We have shown the equivalence between max GNNs applied
to relational data and Datalog programs with negation-as-
failure. We have also shown that max GNNs can be trained
in practice and achieve good performance in KG comple-
tion tasks. For future work, we plan to extend our results
to GNNs using sum aggregation and attention mechanisms,
and to develop approximation techniques for extracting rule
sets with weaker semantic guarantees. A limitation of our
approach is that the programs extracted to explain individ-
ual facts still contain a large number of rules, which can
make them difficult to interpret. To address this, we will
aim to develop techniques for extracting more concise ex-
planations using optimised extraction algorithms, more ex-
pressive rules, and rules with weaker semantic guarantees.
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