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Abstract
Causal discovery amounts to unearthing causal relationships
amongst features in data. It is a crucial companion to causal
inference, necessary to build scientific knowledge without
resorting to expensive or impossible randomised control tri-
als. In this paper, we explore how reasoning with symbolic
representations can support causal discovery. Specifically,
we deploy assumption-based argumentation (ABA), a well-
established and powerful knowledge representation formal-
ism, in combination with causality theories, to learn graphs
which reflect causal dependencies in the data. We prove that
our method exhibits desirable properties, notably that, under
natural conditions, it can retrieve ground-truth causal graphs.
We also conduct experiments with an implementation of our
method in answer set programming (ASP) on four datasets
from standard benchmarks in causal discovery, showing that
our method compares well against established baselines.

1 Introduction
Causal Discovery is the process of extracting causal rela-
tionships amongst variables in data, represented as graphs.
These graphs are crucial for understanding causal effects and
perform causal inference (Peters, Janzing, and Schölkopf,
2017; Pearl, 2009; Spirtes, Glymour, and Scheines, 2000),
e.g. to determine the impact of an action or treatment on
an outcome. Causal effects are ideally discovered through
interventions or randomised control trials, but these can be
expensive, time consuming or outright impossible, e.g. in
healthcare, trying to establish whether smoking causes can-
cer through a randomised control trial would require the
study group to take up smoking to measure its (potentially
deadly) effect. Hence the need to use observational, as op-
posed to interventional, data to study causes and effects (Pe-
ters, Janzing, and Schölkopf, 2017; Schölkopf et al., 2021).

Prominent approaches to perform causal discovery in-
clude constraint-based, score-based and functional causal
model-based methods (see e.g. (Glymour, Zhang, and
Spirtes, 2019; Vowels, Camgoz, and Bowden, 2022; Zanga,
Ozkirimli, and Stella, 2022) for overviews). These ap-
proaches employ statistical methods to retrieve the causal
relations between variables. However, statistical methods,
even if consistent with infinite data, are prone to errors due
to finite data. As a result, the extracted causal relations can
deviate from the ground truth and, crucially, also from the
observed data. Let us consider an example.

Example 1.1. We set out to discover the causal relations
between rain (r), wet roof terrace (wr), wet street (ws) and
watering plants (wp) (on the roof terrace). After collecting
sufficient data, we carry out conditional independence tests.
These correctly return that r and wp are independent (writ-
ten r⊥⊥wp); but also find r andwp independent when condi-
tioned on {wr} (written r⊥⊥wp | {wr}) which goes against
our intuition: since something must have caused wr, we can
infer r when knowing ¬wp and vice versa. That is, r and
wp become dependent when conditioning on {wr}.

Below, we depict the ground truth causal graph (left) and
the output of Majority-PC (right), proven to be sound and
complete with infinite data (Colombo and Maathuis, 2014).

r

wp

wr ws

r

wp

wr ws

A directed edge is interpreted as cause, e.g., wp causes
wr; the absence of an edge indicates causal independence;
an undirected edge indicates a causal relationship but the
direction of the cause and effect relation remains unclear.

Since the conditional independence test wrongly rendered
r and wp independent given {wr}, it is impossible to retrieve
the ground truth whilst satisfying all reported causal rela-
tions between the variables. In fact, it can happen that no
graph exists that faithfully captures the results of the tests.

To account for the issues observed in the example, re-
searchers have investigated several methods to handle con-
flicting data; e.g., Corander et al. (2013) utilised Answer
Set Programming (ASP) to learn chordal Markov networks;
Hyttinen, Eberhardt, and Järvisalo (2014) provide an en-
coding of graphical interventions to compute causal graphs;
Rantanen, Hyttinen, and Järvisalo (2020) use constraint pro-
gramming. However, argumentative methods, which are
ideally suited for conflict resolution, have not received much
attention in the context of causal discovery so far. A no-
table exception is the work by Bromberg and Margaritis
(2009) who employ a form of preference-based argumen-
tation (Amgoud and Cayrol, 2002), instantiated with de-
ductive argumentation (see (Philippe Besnard, 2018) for an
overview), to choose a set of tests to use within the PC algo-
rithm (Spirtes, Glymour, and Scheines, 2000). Their method
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Figure 1: Overview of the workflow of our Causal ABA algorithm, which combines statistical methods and expert domain knowledge with
non-monotonic reasoning and performs argumentative reasoning to output causal graphs consistent with the reported causal relationships.

is however based on Pearl’s graphoid axioms which are in-
complete; thus, some inconsistencies between the reported
(in)dependences might not be detected by their approach.

In this paper, we provide a novel argumentative approach
to account for inconsistencies in the reported tests and re-
flect a consistent subset of them into a directed acyclic graph
(DAG). In line with the causal discovery literature, we as-
sume faithfulness of the data, i.e., that all the independencies
in the data are compatible with some DAG structure (Spirtes,
Glymour, and Scheines, 2000) as well as sufficiency i.e.
there are no latent confounders. To handle conflicts in data,
we employ assumption-based argumentation (ABA) which
is a versatile non-monotonic reasoning formalism (Čyras et
al., 2018) based on assumptions (i.e., defeasible elements)
and inference rules. ABA has been studied under numerous
semantics, which are criteria to determine the acceptance of
assumption sets and their conclusions. A single ABA frame-
work can possess several different extensions, i.e., sets of ac-
ceptable assumptions w.r.t. a given semantics, which reflect
the different viewpoints that exist within a single framework.

Fig. 1 summarises the workflow of our method. Based on
(i) the output of statistical methods and (ii) domain knowl-
edge provided by experts, we construct an ABA framework
whose extensions provide all the DAGs compatible with (i)
and (ii). Overall, our contributions are as follows:
• We formalise causal graphs in the language of ABA

(Causal ABA). We use rules to model the d-separation cri-
terion (Pearl, 2009), which characterises conditional inde-
pendence in DAGs; and assumptions to model conditional
independence and causal relations.

• We provide an ASP implementation of our theoreti-
cal framework using the independence tests from the
Majority-PC algorithm (Colombo and Maathuis, 2014) as
hard or weak constraints, resulting in ABA-PC. We em-
ploy weights for fact selection when necessary.

• We experimentally evaluate our ABA-PC algorithm with
four (standard) datasets. Our experiments show that our
proposed framework improves on current state-of-the-art
baselines in Causal Discovery. In particular, we recon-
struct the ground-truth causal DAG better than Majority-
PC using the same set of independence relations.

A long version of this article including supplementary mate-
rial can be found in (Russo, Rapberger, and Toni, 2024).

2 Preliminaries
Graphs are crucial for causal and argumentation theories. A
graph G = (V, E) has nodes V and edges E ⊆ V ×V; G
is directed if either (x, y) ∈ E or (y, x) ∈ E; undirected if
(x, y) ∈ E and (y, x) ∈ E; and partially directed otherwise.
The skeleton ofG is the result of replacing all directed edges
with undirected ones. x, y ∈ V are adjacent iff (x, y) ∈ E
or (y, x) ∈ E. A (x1-xn-)path path is a sequence of distinct
nodes x1 . . . xn s.t. for 1 ≤ i < n, xi and xi+1 are adjacent.
We omit ‘x1-xn’ if it is clear from the context. Given a path
p = x1 . . . xn and a node x, we sometimes abuse notation
and write x ∈ p to specify that x is contained in p, i.e.,
there is i ≤ n s.t. x = xi. A path x1 . . . xn is directed if
(xi, xi+1) ∈ E for all i ≤ n; cyclic if it is directed and
x1 = xn. A directed acyclic graph (DAG) is a directed
graph without cycles.

2.1 Causal Graphs
A causal graph represents causal relations between variables
(Pearl, 2009; Spirtes, Glymour, and Scheines, 2000). In this
paper, we focus on causal graphs that admit a DAG structure.
Pearl’s d-separation criterion establishes the link between
DAGs and conditional independence.

Conditional (In)dependence We consider a finite set of
variables V. For pairwise disjoint sets X,Y,Z ⊆ V we let
(X⊥⊥Y |Z) indicate that X and Y are independent given the
conditioning set Z; (X⊥⊥Y |∅) is simply written as (X⊥⊥Y)
and singleton sets {x} are denoted by x (e.g., ({x}⊥⊥{y}|∅)
is written as (x⊥⊥y). Also, (X 6⊥⊥Y |Z) means that X and
Y are dependent given Z. A fundamental property of con-
ditional independence is symmetry (Pearl and Paz, 1986);
we identify (X⊥⊥Y | Z) and (Y⊥⊥X | Z) with each other
(analogously for dependence statements).

A triple (xi, xj , xk) of variables in a DAG is an Un-
shielded Triple (UT) if two variables are not adjacent but
each is adjacent to the third. An UT (x, y, z) is a v-structure
iff (x, y) ∈ E and (z, y) ∈ E; y is a collider (w.r.t. x, z).
Definition 2.1. Let G = (V, E) be a DAG. A x-y-path p,
x, y ∈ V, x 6= y, is Z-active for a set Z ⊆ V \ {x, y} in G
iff for each node z ∈ p: if z is a collider in p, then z ∈ Z or
there is a descendant z′ of z s.t. z′ ∈ Z; otherwise, z /∈ Z.

Two variables x, y ∈ V are independent, conditioned on
a set Z ⊆ V \ {x, y}, if fixing the values of the variables
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in Z does not provide additional information about x or y
(resp.). Independence in DAGs is captured by d-separation.

Definition 2.2. Let G = (V, E) be a DAG. Two nodes
x, y ∈ V are d-connected given Z ⊆ V iff G contains a
Z-active x-y-path p. The nodes x, y ∈ V are d-separated
given Z iff x, y are not d-connected given Z. Two variables
x, y are independent w.r.t. Z in G iff they are d-separated
given Z, denoted by x⊥⊥G y | Z.

Causal Graphs and Statistics Causal Discovery couples
statistical and graphical methods to extract causal graphs
from data. The nodes V = {X1, . . . , Xd} in a causal graph
G = (V, E) correspond to random variables (in our running
Example 1.1, ‘rain’ can be a random variable when associ-
ated with observed data) and the edges represent causal re-
lationships between them. A joint probability distribution P
factorizes according to a DAG G if P (V) =

∏d
i=1 P (Xi |

pa(G,Xi)), where pa(G,Xi) denotes the set of parents of
Xi in G. A distribution P is Markovian w.r.t. G if it re-
spects the conditional independence relations entailed by G
via d-separation. In turn, P is faithful toG if DAG G reflects
all conditional independences in P . Different DAGs can im-
ply the same set of conditional independences, in which case
they form a Markov Equivalence Class (MEC) (Richardson
and Spirtes, 1999). DAGs in a MEC present the same ad-
jacencies and v-structures and are uniquely represented by
a Completed Partially DAG (CPDAG) (Chickering, 2002)
which is a partially directed graph that has a directed edge
if every DAG in the MEC has it, and an undirected edge if
both directions appear in the MEC.

A Conditional Independence Test (CIT), e.g. Fisher’s Z
(Fisher, 1970), HSIC (Gretton et al., 2007), or KCI (Zhang
et al., 2011), is a procedure to measure independence with a
known asymptotic distribution under the null hypothesisH0

of independence. Calculating the test statistic for a dataset
allows to estimate the test’s observed significance level (p-
value), under H0. This is a measure of evidence against H0

(Hung et al., 1997). Under H0, p is uniformly distributed
in the interval [0, 1], which allows to set a significance level
α that represents the pre-experiment Type I error rate (re-
jecting H0 when it is true), whose expected value is at most
α. A CIT, denoted by I(Xi, Xj | Z), outputs a p-value. If
I(Xi, Xj | Z) = p ≥ α then Xi ⊥⊥Xj | Z. Instead, if
I(Xi, Xj |Z) = p < α then we can reject H0 and declare
the variables dependent: Xi 6⊥⊥Xj |Z.

2.2 Assumption-based Argumentation
We recall basics of assumption-based argumentation (ABA);
for a comprehensive introduction we refer to (Čyras et al.,
2018). We assume a deductive system (L,R), where L is
a formal language, i.e., a set of sentences, and R is a set of
rules over L. A rule r ∈ R has the form a0 ← a1, . . . , an
with ai ∈ L, head(r) = a0 and body(r) = {a1, . . . , an}.

Definition 2.3. An ABA framework (ABAF) is a tuple
(L,R,A, ), where (L,R) is a deductive system, A ⊆ L
a set of assumptions, and : A → L is a function mapping
assumptions a ∈ A to sentences L (contrary function).

A sentence q ∈ L is tree-derivable from S ⊆ A and rules
R ⊆ R, denoted by S `R q, if there is a finite rooted labeled
tree T which, intuitively, corresponds to the structure of the
derivation: the root of T is labeled with q; the set of labels
for the leaves of T is equal to S or S ∪ {>}; and for every
inner node v of T there is a rule r ∈ R such that v is labelled
with head(r), the number of successors of v is |body(r)| and
every successor of v is labelled with a distinct a ∈ body(r)
or > if body(r) = ∅. We often drop R and write S `R q
simply as S ` q if it does not cause confusion.
Definition 2.4. Let D = (L,R,A, ) be an ABAF. A set
S ⊆ A attacks T ⊆ A if there is S′ ⊆ S, a ∈ T , s.t. S′ ` a.
A set S is conflict-free in an ABAF D (S ∈ cf (D)) if it does
not attack itself; S defends T iff it attacks each attacker of
T ; S is closed iff S ` a implies a ∈ S; S is admissible
(S ∈ ad(D)) if it is conflict-free and defends itself.

With a little notational abuse we say a set S of assump-
tions attacks an assumption a if S attacks the singleton {a};
we let S = {a | a ∈ S}.

An ABAF D is called flat iff each set S of assumptions
is closed. We call an ABAF non-flat if it does not belong to
the class of flat ABAFs.

We next recall grounded, complete, preferred, and stable
ABA semantics (abbr. gr , co, pr , stb).
Definition 2.5. Let D be an ABAF and let S ∈ ad(D).
• S ∈ co(D) iff S contains every assumption set it defends;
• S ∈ gr(D) iff S is ⊆-minimal in co(D);
• S ∈ pr(D) iff S is ⊆-maximal in co(D);
• S ∈ stb(D) iff S attacks each {x} ⊆ A \ S.

Given a semantics σ, we call σ(D) the set of σ-extensions
of the ABAF D. We drop ‘σ’ if it is clear from context.

Graphical ABA Representation Argumentation frame-
works with collective attacks (SETAFs) (Nielsen and Par-
sons, 2006) are ideally suited to depict the attack structure
between the assumptions in ABAFs as outlined by König,
Rapberger, and Ulbricht (2022). In brief, a SETAF is a
pair (A,R) consisting of a set of arguments A and an at-
tack relation R ⊆ 2A × A. We can instantiate an ABAF
D = (L,A,R, ) as SETAF by setting A = A and R is the
induced attack relation: S ⊆ A attacks a ∈ A if S ` a.
Example 2.6. Consider an ABAF with assumptions a, b, c,
their contraries a = s, b = p, c = q, and rules (p ← a, c)
and (s← c). We can represent the ABAF as SETAF:

a b

c

• {a, c} collectively attacks b as {a, c}`p;
• c attacks a since {c} ` s.

The graph depicts the attack structure between the assump-
tions; the collective attack is depicted as a joint arrow.

3 Capturing Causal Graphs with ABA
We formalise causal graphs in ABA. We assume a fixed but
arbitrary set of variables V with |V| = d. We refrain from
explicitly mentioning the language L. Each assumption a
below has a distinct contrary ac; for convenience, we write
a instead of ac if it does not cause confusion.
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3.1 Causal ABA
The class of causal relations we aim to capture are charac-
terised by two factors: acyclicity and d-separation.

Acyclicity We formalise graph-theoretic properties since
our expected outcome, i.e., the resulting extensions, are
graphs. Thus, the assumptions in our ABAF are arrows:

Aarr = {arrxy | x, y ∈ V, x 6= y}.
Then, we define acyclicity as follows.
Definition 3.1. Let Ddag = (Adag ,Rdag , ) where

Adag = Aarr ∪ {noexy | x, y ∈ V, x 6= y}
andRdag contains the following rules:
• a← b, a 6= b, a, b ∈ {arrxy, arryx,noexy}, x, y ∈ V;
• arrxixi+1

← arrx1x2
, . . . , arrxk−1xk

for each sequence
x1 . . . xk with x1 = xk, for each 1 ≤ i < k.
Intuitively, noexy stands for “no edge between x and y.”

Note that we define only one atom noexy for each pair of
variables x, y. The first set of rules enables the choice be-
tween noexy , arrxy and arryx. The second ensures that no
extension contains a cycle.
Example 3.2. Consider V = {x, y, z}. The correspond-
ing ABAF Ddag contains 9 assumptions: for each pair of
variables u, v ∈ V, we have arruv , arrvu and noeuv .
We observe that we have precisely two cyclic sequences of
length > 2, namely (from x) c1 = xyzx and c2 = xzyx.
Both cycles attack each arrow it contains; the attack struc-
ture of the ABAF is depicted below.

arrxy

arryxnoexy

arrzy

arryz noeyz

arrxz

arrzx noexz

The joint arcs represent collective attacks; e.g., the thick,
purple arrows pointing to arrxz represent the attack from
set {arryx, arrxz, arrzy} on the assumption arrxz based
on the derivation {arryx, arrxz, arrzy} ` arrxz .

We show that Ddag correctly captures the set of all DAGs
of fixed size d. The correspondence is true for all (except
gr ) argumentation semantics under consideration. Below,
we use the assumption arrxy to stand for the arrow (x, y).
All proofs of this section are provided in (Russo, Rapberger,
and Toni, 2024, Appendix §A).
Proposition 3.3. {(V, S ∩ Aarr ) | S ∈ σ(Ddag)} = {G |
G is a DAG} for σ ∈ {co, pr , stb}.

Note that the grounded extension corresponds to the fully
disconnected graph G = (V, ∅) since the empty set is com-
plete. Note also that the correspondence between DAGs and
the extensions of the ABAF is one-to-many for complete,
admissible and conflict-free assumption sets since a single
acyclic graph corresponds to several complete extensions.
Accepting the absence of an edge between two variables x, y
can be realised by accepting noexy or simply by accepting
none of noexy , arrxy , arryx in the extension.

Example 3.4. In the ABAF from Example 3.2, the fully dis-
connected graph (V, ∅) corresponds to 23 complete exten-
sions; i.e, to each subset of {noexy,noeyz,noezx}.

For preferred and stable semantics, the correspondence is
one-to-one; the semantics coincide inDdag , as stated below.
Lemma 3.5. σ(Ddag) = τ(Ddag) for σ, τ ∈{pr , stb}.
Corollary 3.6. Let σ∈{pr , stb}. Each DAGG corresponds
to a unique set S∈σ(Ddag) and vice versa.

D-separation The first step to represent d-separation is to
extend our ABAF with independence statements. We do so
by assuming independence between variables. We let

Aind = {(x⊥⊥y |Z) | Z ⊆ V, x, y ∈ V \ Z, x 6= y}.
The conditional independence x⊥⊥ y | Z is violated if the
variables x, y are d-connected, given the conditioning set Z.
Intuitively, we want to formalise

x⊥⊥y |Z if there exists a Z-active path between x, y.

To capture this, it is convenient to formalise directed paths
and we do so by lettingRgraph contain the following rules:

dpathxy ← arrxy dpathxz ← dpathxy, arryz

exy ← arrxy exy ← arryx noexy ← exy

where, intuitively, exy stands for “edge between x and y.”
To formalise d-connectedness in the context of ABA, we

introduce collider-trees, which generalise the notion of path
by adding branches from collider nodes.
Definition 3.7. Let G = (V, E) be a DAG, x, y ∈ V. A
x-y-collider-tree t is a sub-graph of G satisfying:

(a) t contains an x-y-path pt;
(b) for all u ∈ t, if u /∈ pt then there is v ∈ t such that v is

a collider in pt and u is a descendant of v.
A c-t-path from collider node c (of pt) to a leaf node t, t /∈
{x, y}, is called a branch of t. For a set of variables Z ⊆ V,
we call t Z-active iff pt is active w.r.t. t ∪ (V, ∅).

In the remainder of the paper, we drop ‘x-y’ and simply
say collider-tree whenever it does not cause confusion.
Example 3.8. Consider a causal graph G with five vari-
ables x, y, z, u, v as depicted below (left), and some
collider-trees, denoted p1, p2, p3, from top to bottom, resp.:

x

y
z u v

x uzy
x y

x yz
u v

The collider-trees p1 and p2 are active w.r.t. ∅; both paths
have no collider so they are active w.r.t. every set not inter-
secting them; p3 is active for sets containing z, u or v.

We are now ready to define our causal ABA framework.
Definition 3.9. A causal ABAF Dds = (Ads ,Rds , ) is
characterised by

Ads = Adag ∪ Aind , andRds = Rdag ∪Rgraph ∪Ract ,

whereRact contains rules (x⊥⊥y |Z← t) for each Z-active
x-y-collider-tree t with x 6= y, and Z ⊆ V \ {x, y}.
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Example 3.10. Let us consider again Example 3.2 with
V = {x, y, z}. We extend our ABAF with six independence
assumptions and add the corresponding contraries. Below,
we depict all arguments and attacks for the pair x, y; i.e., all
attacks on the new assumptions (x⊥⊥y) and (x⊥⊥y |{z}).

x⊥⊥y x⊥⊥y |{z}

arrxy

arryxnoexy

arrzy

arryz noeyz

arrxz

arrzx noexz

The assumption (x⊥⊥ y) is attacked by arrxy , arryx and
by all x-y-paths with inner node z except for the collider;
(x⊥⊥y | {z}) is attacked by arrxy , arryx and the collider
{arrxz, arryz}. Attacks for the other pairs are analogous.

The formalization correctly captures independence, as
stated in the following proposition.
Proposition 3.11. Let σ ∈ {pr , stb}, S ∈ σ(Dds), x, y ∈
V, Z ⊆ V \ {x, y}. Then (x⊥⊥y |Z) ∈ S iff (x⊥⊥G y | Z).

Note that we cannot guarantee the correspondence for
complete semantics, as illustrated next.
Example 3.12. In the ABAF from Example 3.10, S = ∅ is
complete; indeed, Dds does not contain assumptions that
are unattacked. The corresponding graph is G = (V, ∅) (cf.
Example 3.4). In G, each pair of variables is independent;
however, S does not contain any independence statement.

The example above shows that the correspondence be-
tween independence assumptions and independencies en-
tailed by a DAG via d-separation is not preserved when
dropping ⊆-maximality of the extensions. Interestingly, the
other direction of Proposition 3.11 still holds for complete
semantics; i.e., no incorrect independence statements are in-
cluded in a complete extension.
Proposition 3.13. Let S ∈ co(Dds), x, y ∈ V, Z ⊆ V \
{x, y}. Then (x⊥⊥y |Z) ∈ S implies (x⊥⊥G y |Z).

3.2 Integrating Causal Knowledge
So far, we have introduced an ABAF that faithfully captures
conditional independence in causal models. We have shown
that an independence statement (x⊥⊥y |Z) is contained in an
extension S if and only if it is consistent with graph corre-
sponding to S. This, in turn translates to the dependencies of
the graph: x and y are dependent given Z iff (x⊥⊥y |Z) /∈ S.

Our proposed ABAF can be integrated in any causal dis-
covery pipeline to add formal guarantees that the graph dis-
covered corresponds to the independences in the data. We
integrate information from external sources, might they be
statistical methods or experts, as facts.1

1Assuming sufficient accuracy of the data as a first step; later
on, we will assign weights to the reported independence statements
in our final system to account for statistical errors.

In the remainder of this section, we write D ∪ {r} =
(A,R∪ {r}, ) for an ABAF D = (A,R, ) and rule r.

Let us consider again our three-variables example from
before (cf. Example 3.10). First, suppose we have learned
that x and y are marginally independent. We incorporate this
information simply by adding the rule (x⊥⊥y ←). This rule
ensures that each extension contains (x⊥⊥y). Since each ex-
tension must be closed, no active path between x and y can
be accepted. We can proceed similarly when incorporating
specific causal relations (directed edges).
Proposition 3.14. Let x, y, a, b ∈ V, Z ⊆ V \ {x, y}, X ⊆
V \ {a, b}, σ ∈ {pr ,na, ss , stg , stb}, r ∈ {(x⊥⊥y |Z ←),
(arrxy ←)}. For each S ∈ σ(Dds ∪ {r}), it holds that

(a⊥⊥b |X) ∈ S iff (a⊥⊥G b |X).

Crucially, we observe that adding external facts comes at
a cost: the ABAF is not flat anymore; indeed, the indepen-
dence and arrow literals might appear in the head of rules.

Now, what happens if we incorporate test results or causal
relation from an external source? Suppose we discovered
x and y are marginally dependent. When we add the rule
(x⊥⊥y ←) we successfully render (x⊥⊥y) false; however, we
lose the correspondence between the (in)dependence state-
ments and the graph of a given extension: when adding the
contrary of (x⊥⊥y) nothing (in the framework presented so
far) prevents us from accepting one of the arrows arrxy or
arryx. We need to generalise the framework to ensure that
our ABAF is sound when adding dependencies as facts to
the framework, as discussed next.

Blocked paths The ABAF Dds successfully captures that
an active path implies dependence. To guarantee soundness,
it remains to formalise the other direction: independence be-
tween two nodes x, y implies that each path linking them is
blocked. For this, we introduce new assumptions

Abp = {bpp|Z | p is a x-y-path,Z ⊆ V \ {x, y}}

with contraries bpp|Z = app|Z.
Furthermore, we require two new sets of rules: the first

set of rules formalises that the independence between two
variables x and y given Z requires that each path between
x, y is blocked; the second set specifies when a path is Z-
active.
Definition 3.15. For x, y ∈ V, x 6= y, Z ⊆ V \ {x, y}, we
defineRext = Rds ∪RxyZ withRxyZ containing the rules
• x⊥⊥y |Z← bpp1|Z, . . . , bppk|Z where p1, . . . ,pk denote

all paths between x and y;
• app|Z ← pt for each Z-active x-y-collider-tree t with

underlying x-y-path pt.
Let us consider the effect of these rules with an example.

Example 3.16. Consider again Example 3.10; suppose
we observed x 6⊥⊥ y | {z}. We add the independence
(x⊥⊥y |{z} ←) which prevents us from accepting all bpp|{z}
assumptions at the same time (since each extension S is
closed, we also accept (x⊥⊥y | {z}), therefore, this leads
to a conflict). Consequently, one of the bpp|{z} assumptions
is attacked, i.e., some path between x, y is active.
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It can be checked that the paths p1, p2, p3 depicted below
are {z}-active:

x y x y x yz

As visualised in Example 3.10, each of these paths attack
(x⊥⊥y |{z}). Due to the new rules from Definition 3.15 each
path pi also derives appi|Z which attacks bppi|Z. Therefore,
each extension S must contain one of these paths.

We note that it suffices to add rules only for the depen-
dence fact that we want to add. That is, when introducing
fact (x⊥⊥y |Z ←) it suffices to add the rules from Defini-
tion 3.15 for x, y, Z. We define the extended ABAF.

Definition 3.17. For x, y ∈ V, Z ⊆ V\{x, y}, the extended
causal ABAF DxyZ

csl = (Acsl ,Rcsl , ) is characterised by
Acsl = Ads ∪ Abp andRcsl = Rext ∪ {x⊥⊥y |Z←}.

The ABAF is sound and complete, as stated below.

Proposition 3.18. Let x, y, a, b ∈ V, let Z ⊆ V \ {x, y}
and X ⊆ V\{a, b}, let σ∈{pr , stb} and let S ∈ σ(DxyZ

csl ).
It holds that (a⊥⊥b |X) ∈ S iff (a⊥⊥G b |X).

Together, Propositions 3.14 and 3.18 guarantee that causal
knowledge can be integrated in a faithful way. We ob-
tain that this fine-tuned specification allows us to add
(in)dependence facts and arrows whilst guaranteeing con-
sistency of the causal ABAF. Independence facts and ar-
rows can be added without further changes to the frame-
work; when adding dependence facts, we require additional
rules as specified in Definition 3.15. Below, we denote by
DT

csl , where T is a set of (in)dependence and arrow facts,
the ABAF obtained by the iterative update of the ABAFDds

with DxyZ
csl for all dependence facts (x⊥⊥y |Z←) ∈ T .

Corollary 3.19. Let T be a set of (in)dependence and arrow
facts, σ ∈ {pr , stb}, x, y ∈ V, Z ⊆ V \ {x, y} and S ∈
σ(DT

csl). Then (x⊥⊥y |Z) ∈ S iff (x⊥⊥G y | Z).

4 Implementation
In this section, we present an instance of our Causal ABA
algorithm which combines our causal ABAF with heuristic
approaches to select the independence facts that it can take
in input. The workflow of Algorithm 1 is as follows:

1. The main function of the algorithm is what we name
causalaba (line 9 and 12 of Algorithm 1). The causal
ABAF instance is determined by the number of nodes in
the graph d and a set of facts T. We generate the causal
ABAF DT

csl presented in §3, using an ASP implementa-
tion in clingo (Gebser et al., 2019). We then compute the
stable extensions of the causal ABAF. Our ASP encoding
is detailed in §4.1.

2. The main input of Algorithm 1 is a set of independence
facts (I), alongside the significance threshold α and the
number of nodes d. We discuss sourcing facts in §4.2.

3. As shown in §3, each stable extension corresponds to a
DAG compatible with the fixed set of independence tests.
However, statistical methods can return erroneous results,
in which case our causal ABAF might output no stable

Algorithm 1: Causal ABA (with independence facts)
Input: I, α, |V| = d

1: T← [ ]
2: for p = I(x, y | Z) ∈ I do
3: s← |Z|
4: if p > α then
5: T← T + [(indep(x, y,Z),S(p, α, s, d))]
6: else
7: T← T + [(dep(x, y,Z),S(p, α, s, d))]

8: T← sort(T,S) . Sort elements of T by strength S
9: M = causalaba(d,T)

10: while M = ∅ do
11: T← T[2 . . . |T|] . Drop fact with lowest S
12: M = causalaba(d,T)

13: for G ∈M do
14: SG = 0
15: for p = I(x, y | Z) ∈ I do
16: s← |Z|
17: if p > α & x⊥⊥G y | Z then
18: SG ← SG + S(p, α, s, d)
19: else
20: SG ← SG − S(p, α, s, d)

21: G← argmax(G ∈M,SG) . Select G with max SG
return G

extension at all. To overcome this problem, we select
facts by assigning them appropriate weights (lines 2-12)
and use these weights both to optimise (using weak con-
straints within causalaba) and rank (possibly several)
output extensions (lines 10-20). We discuss this in §4.3.

Our proposed Algorithm 1 is a sound procedure to extract
DAGs given a consistent set of independencies.

Proposition 4.1. Given a set V of variables and a set of
(in)dependencies I, compatible with a (set of) MEC(s), Al-
gorithm 1 outputs a DAG consistent with I.

In this work, we instantiate our Algorithm 1 using the
Majority-PC algorithm (MPC) (Colombo and Maathuis,
2014) to source facts, resulting in the ABA-PC algorithm.
In the following subsections, we detail our implementation.

Remark 4.2. The causal ABAF DT
csl from Definition 3.17

is potentially non-flat since assumptions can be derived: in-
dependence assumptions as well as arr and ap assumptions
may appear in the head of rules. Thus, it lies in a broader
ABA class, affecting semantical properties known for flat
ABAFs; for instance, complete extensions may not always
exist (Čyras et al., 2018; Ulbricht et al., 2024). As a con-
sequence, standard ABA solvers are not applicable to our
case since they typically focus on the class of flat ABAFs. In
this work, we therefore propose an Answer Set Programming
(ASP) encoding of our causal ABAF under stable semantics.
This also allows us to exploit ASP’s grounding abilities to
obtain causal ABAFs from concise schemata representations
(see (Proietti and Toni, 2022) for the presentation of ABA in
terms of schemata).
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Listing 1: Module Πcol

1 collider(Y,X,Z) ← arrow(X,Y),arrow(Z,Y),X!=Y,var(X),

var(Y),var(Z).

2 coll_desc(N,Y,X,Z) ← collider(Y,X,Z),dpath(Y,N).

3 nb(N,X,Y,S) ← in(N,S), collider(N,X,Y).

4 nb(N,X,Y,S) ← not in(N,S),not collider(N,X,Y),var(N),

var(X),var(Y),set(S),N!=X,N!=Y,X!=Y.

5 nb(N,X,Y,S) ← not in(N,S),coll_desc(Z,N,X,Y),in(Z,S),

var(N),var(X),var(Y).

Listing 2: Module Πap(p, (vi)i≤k)

1 ap(v1,vk,p,S) ← (arrow(vi,vi+1))i<k, not in(v1,S), not

in(vk,S), set(S), (nb(vi,vi−1,vi+1,S))1<i<k.

2 dep(v1,vk,S) ← ap(v1,vk,p,S).

4.1 Encoding Causal ABA in ASP
Stable ABA semantics and stable semantics for Logic Pro-
grams (LP) are closely related (Caminada et al., 2015;
Schulz and Toni, 2015); crucially, their correspondence has
recently been extended to non-flat instances (Rapberger, Ul-
bricht, and Toni, 2024). In standard ABA-LP translations,
assumptions are associated with their default negated con-
traries: an assumption a ∈ A with contrary ac ∈ L corre-
sponds to the default negated literal not ac. These transla-
tions, however, consider only the case where the underlying
logical language is atomic. To exploit the full power of ASP,
we slightly deviate from standard translations, when appro-
priate, whilst guaranteeing consistency with our model. We
also make use of more descriptive contrary names to enable
a more intuitive reading.

For a set of variables V, we express the causal ABAF by

1. encoding DAGs: each answer set corresponds to a DAG;

2. encoding d-separation: nodes x and y are independent
given Z iff x and y are not linked via an active path.

Following the standard translation, each ABA atom arrxy
is translated to not arrxy . Here, we identify “not arryx”
simply with arrow(x,y) and “not noexy” with edge(x,y). In
our encoding, each answer set corresponds to precisely one
DAG of size |V| = d for a given set V of variables. The
encoding of acyclicity and further DAG-specific elements is
given in (Russo, Rapberger, and Toni, 2024, Appendix §B).

To link causality and DAGs we encode the d-separation
criterion. To handle sets in ASP, we encode the (k-th) set
S ⊆ V with predicates in(k,x). Module Πcol in Listing 1
encodes collider and collider descendant (with natural speci-
fications of the arrow and dpath (directed path) predicates).
Next, we introduce non-blocking nodes: node v /∈ {x, y} in
an x-y-path is non-blocking, given Z, iff

• v is a collider (with respect to its neighbours in the path)
and either v ∈ Z or a descendant of v is in Z; or

• v is not a collider and v /∈ Z.

Lines 3-5 in Module Πcol in Listing 1 encode these rules.
Now, for each pair x, y ∈ V, for each set S \ {x, y}, for
each x-y-path p = v1 . . . vn with x = v1 and y = vn, we
add rules Πap(p, (vi)i≤k) as specified in Listing 2. This

Listing 3: Module Πbp(x, y, (pi)i≤k)

1 indep(x,y,S) ← (not ap(x,y,pi,S))i≤k, not in(x,S),

not in(y,S), set(S).

guarantees the ‘if ’-direction: if x and y are connected via
a Z-active path then they are dependent. For the ‘only if ’-
direction, we require Module Πbp(x, y, (pi)i≤k): for each
pair of variables x and y, we add the rule detailed in the list-
ing to ensure that the absence of an active path between x
and y implies independence between them; (pi)i≤k denotes
the list of all paths between x and y. The Module Πbp in
Listing 3 encodes the blocked path rules defined in Defini-
tion 3.15. The indep- and dep-predicates take two variables
x, y, and a set S of variables as arguments. We note that,
in general, the number of paths between two variables can
be exponential (up to b(d − 2)!ec). To lower the number
of paths, we make use of the observation that fixing inde-
pendence facts amounts to removing edges between nodes.2
When fixing independence facts (a⊥⊥b |X←), we thus con-
sider only the paths in the skeleton that do not contain (a, b).

As outlined in Proposition 3.18, fixing dependence facts
requires only the addition of the blocked path rules corre-
sponding to the fact. That is, adding the fact (a 6⊥⊥ b |
X) only requires including the rules Πap(p, (vi)i≤k) and
Πbp(x, y, (pi)i≤k) to guarantee correctness.

As discussed in §3, our proposed ABAF returns all the
DAGs compatible with some fixed facts, representing re-
lations amongst nodes, may these be conditional/marginal
independencies and/or (un)directed causal relations (arrows
and edges). In the proposed instantiation of Causal ABA,
ABA-PC, we input a set of facts in the form of independence
relations and weight them according to their p-value.

4.2 Sourcing Facts
A DAG with d nodes is fully characterised by 1

2d(d−1)2d−2

independence relations, growing exponentially in the num-
ber of nodes. Therefore, it is not computationally efficient
to carry out all possible tests, as in (Hyttinen, Eberhardt, and
Järvisalo, 2014). Several solutions to this problem have been
proposed in the Causal Discovery literature, e.g., (Spirtes,
Glymour, and Scheines, 2000; Tsamardinos, Brown, and Al-
iferis, 2006; Colombo and Maathuis, 2014). Spirtes, Gly-
mour, and Scheines (2000); Tsamardinos, Brown, and Al-
iferis (2006); Colombo and Maathuis (2014) all use con-
ditional independence tests such as (Fisher, 1970; Zhang
et al., 2011; Gretton et al., 2007). Other strategies to re-
cover causal graphs from data, referred to as score-based
methods, e.g., (Chickering, 2002; Ramsey et al., 2017) in-
volve the use of statistical metrics that measure the added-
value of adding/removing an arrow in terms of fit to the
data. Hence they would return arrow weights. In this work,
we use the MPC algorithm (Colombo and Maathuis, 2014),
which provably3 recovers the underlying CPDAG from data,

2This observation is key for constraint-based causal discovery
algorithms such as PC (Spirtes, Glymour, and Scheines, 2000).

3under the assumptions of sufficiency (no unmeasured con-
founders), faithfulness (data represents a DAG) and perfect inde-
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to source facts. Let us illustrate the input facts we consider
through our running example.
Example 4.3. We run the MPC algorithm in Example 1.1
which performs 23 out of 24 tests, including the following.

r⊥⊥wp |{ws} wp⊥⊥ws |{r} r⊥⊥wp
r⊥⊥wp |{wr} wp 6⊥⊥ws |{r, wr} r⊥⊥wp |{wr,ws}

However, only r⊥⊥wp is correct; the only other indepen-
dence wp⊥⊥G ws | {r, wr} in G is wrongly classified. All
other tests result in dependencies.

Based on this erroneous results, MPC yields the graph
shown in Example 1.1 (right), deviating from the ground
truth. Crucially, the graph does not capture the indepen-
dence relations listed above. In fact, there is no graph that
satisfies the test results because it is not possible that r and
wp are independent conditioned on any set, but r and ws,
as well as wp and ws, are dependent. The dependencies in-
dicate a path between r and wp, leading to a contradiction.

Note that Algorithm 1 is flexible to the choice of facts’
source, e.g. we could have used the tests performed by
(Tsamardinos, Brown, and Aliferis, 2006) or, with a slight
modification, the arrow weights from (Ramsey et al., 2017).

4.3 Weighting Facts
Here we outline our strategy to weight independence tests
results, based on their p-value and the size of the condition-
ing set. We use these weights as weak constraints and to rank
facts and extensions. As a result of using stable semantics,
wrong tests can render empty extensions if they contradict
another (set of) test(s). Our aim is thus to exclude the wrong
tests that create inconsistencies and cause our ABAF to out-
put no extension. To this end, we define a simple heuristic
to rank p-values from independence tests, given significance
level α, but insensitive to whether they fall below or above
it. Firstly, we define the following normalising function:

γ(p, α)=

{
2pα− 1 iff p < α
2α−p−1
2(α−1) otherwise

Below is a plot of the function γ across the p-value interval,
for three commonly chosen levels of α.

pendence information, see (Colombo and Maathuis, 2014) for de-
tail and formal definitions. Note that the original PC strategy is
based on the assumption that there will be no inconsistencies and
therefore the algorithm does not test a pair of variables anymore
once an independence is found. However, inconsistencies might
arise when erroneous results are obtained.

The output of γ, for a given α and p, follows the intuition
that the most uncertainty is around the significance threshold
p = α (Sellke, Bayarri, and Berger, 2001; Berger, 2003),
which we make correspond to the lowest value of γ = 0.5.

The final strength of the (in)dependence facts is obtained
by weighting the output of the normalising function γ by a
factor penalising bigger sizes of the conditioning set Z:

S(p, α, s, d) =
(1− s)
(d− 2)

γ(p, α) (1)

where s = |Z| the cardinality of the conditioning set and
d = |V|, the cardinality of the set of nodes in the graph. The
reason for weighting γ by s and d follows the intuition that
the accuracy of independence test lowers as the conditioning
set size increases (Sellke, Bayarri, and Berger, 2001).

We use our final weights S to rank the test carried out by
MPC. Then, our strategy is simple: exclude an incremental
number of the lowest ranked tests until the returned exten-
sion is not empty. Let us illustrate our strategy.
Example 4.4. Consider again Example 1.1. The results of
the independence tests from MPC (using Fisher’s Z (1970)
and α = 0.05) have the following p-values (we show the
same subset of the 23 tests carried out, as in Example 4.3):

r⊥⊥wp p = 0.45 S = 0.71

r⊥⊥wp | {ws} p = 0.52 S = 0.37

r⊥⊥wp | {wr} p = 0.33 S = 0.32

wp⊥⊥ws | {r} p = 0.05 S = 0.25

r⊥⊥wp | {wr,ws} p = 0.39 S = 0.00

wp 6⊥⊥ws | {r, wr} p = 0.03 S = 0.00

We apply Eq. 1 to calculate S . Ranking tests by S , as
shown above, the right test is the highest scoring one. Fixing
all the tests returns no solution. We thus start excluding the
test with the lowest strength and progressively more until we
find a model. In this example, the right DAG is obtained by
excluding 9 of the performed tests, including the bottom five
of the above list, and keeping the 14 strongest ones.

Here, we obtain exactly one DAG when excluding 40% of
the tests carried out by MPC. If we obtain multiple models,
we score each of them as in Algorithm 1, lines 14-19. In
addition, we encode the (in)dependence facts as weak con-
straints, treated as optimisation statements (Gebser, Kamin-
ski, and Schaub, 2011), to sort out sub-optimal extensions.

Our weighting function is similar to the one proposed by
Bromberg and Margaritis (2009), with two differences: we
re-base around 0.5 instead of 1 − α, to allow for more dis-
crimination; and use the conditioning set size irrespective
of the test’s result, instead of including it only in the case
of dependence (trusting that p-values accurately reflect the
probability of wrongly rejecting the null hypothesis).

We emphasize that classical independence tests are asym-
metric in nature, and inference of dependence is only pos-
sible if there is enough evidence against the null hypothesis
(p < α) with an expected Type I error (rejecting indepen-
dence when it is true) corresponding to α. Conversely, no
inference is possible when p≥α, i.e., when the null hypoth-
esis H0 cannot be rejected, since p-values are distributed
uniformily in [0, 1] underH0.
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Figure 2: Normalised Structural Interventional Distance for four datasets from the bnlearn repository. Lower is better. Low (resp. High)
is the SID for the best (resp. worst) DAG in the estimated CPDAG.

As pointed out in (Bromberg and Margaritis, 2009; Hyt-
tinen, Eberhardt, and Järvisalo, 2014), using p-values di-
rectly as strength is common but neither sound nor consis-
tent. Transforming p-values to probability estimates, e.g.
as in (Jabbari et al., 2017; Claassen and Heskes, 2012; Tri-
antafillou, Tsamardinos, and Roumpelaki, 2014), would ad-
dress this point, but out of scope for this work. A possible
alternative to weighting and excluding facts might also be
the use of less strict ABA semantics, left out of our experi-
ments since not available in the ASP implementation used.

5 Empirical Evaluation
We evaluate our ABA-PC algorithm on four datasets from
the bnlearn repository (Scutari, 2014), which hosts com-
monly used benchmarks in Causal Discovery, some of which
based on real published experiments or expert opinions. We
use the Asia, Cancer, Earthquake and Survey datasets, which
represent problems of decision making in the medical, law
and policy domains. We provide further details in Appendix
§C.1; implementation and computing infrastructure details
are in §C.2 in (Russo, Rapberger, and Toni, 2024).

Evaluation Metrics and Baselines For evaluation, we use
a prominent metric in causal discovery: Structural Interven-
tional Distance (SID) (Peters and Bühlmann, 2015) mea-
sures the deviation in the causal effects estimation deriv-
ing from a mistake in the estimated graph. SID works as
a “downstream task” error rate for the causal inference task,
which has causal graphs as a pre-requisite. We calculate SID
between the estimated and the true CPDAG and repeat the
experiments 50 times per dataset to record confidence inter-
vals. Given that a CPDAG is a mixed graph, SID is calcu-
lated for the worst and best scenarios. In order to compare
across graphs with different number of edges, we normalise

SID (NSID) dividing it by the number of edges in the true
DAG. NSID can go above 100% since extra edges could be
introduced. We provide details on the metrics in §C.3 and re-
sults based on additional metrics (SHD, F1 score, precision
and recall) in §C.5 in (Russo, Rapberger, and Toni, 2024).

We compare ABA-PC to four baselines: a Random
sample of graphs of the right dimensions (V,E); Fast
Greedy Search (FGS) (Ramsey et al., 2017) and NOTEARS-
MLP (Zheng et al., 2020) which use, resp., the Bayesian In-
formation Criterion and Multilayer Perceptrons with a con-
tinuous formulation of acyclicity to optimise the graph’s fit
to the data; and MPC (Colombo and Maathuis, 2014),4 see
(Russo, Rapberger, and Toni, 2024, §C.4) for more details.

Results The results of our experiments are in Fig. 2. Best
and worst SID are in the (Low, resp. High) sections for each
dataset; the number of edges and nodes in each dataset is
given below the x-axis labels. ABA-PC ranks 1st in the
worst case SID (High) for all datasets. It performs signifi-
cantly (w.r.t. t-tests of difference in means, see (Russo, Rap-
berger, and Toni, 2024, §C.6)) better than all baselines on
three out of four datasets (Cancer, Earhquake and Asia) and
is on par with NOTEARS-MLP for the Survey data. Further-
more, ABA-PC performs significantly better than MPC for
all datasets. This demonstrates how, with the same underly-
ing information from the data, our method returns more ac-
curate CPDAGs in the worst case scenario. For the best case
SID (Low), ABA-PC is significantly better than all baselines
for two datasets (Earthquake and Asia). Overall, we observe
that ABA-PC performs well on benchmark data compared
to a varied selection of baselines from the literature.

4We would have liked to compare to the method closest to our
work, i.e. (Bromberg and Margaritis, 2009) but unfortunately there
is no implementation available.
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Figure 3: Mean and Standard Deviation of the elapsed time in log
scale by number of nodes averaged over 50 runs.

Scalability In Fig. 3 we show the elapsed time (on a log
scale) by the number of nodes. This are the recorded times
for the experiments in Fig. 2 with 50 repetitions per dataset.
As we can see, ABA-PC is the least efficient method. The
main reasons for this are the complexity of both the ground-
ing of logical rules and the calculation of the extensions,
which clingo carries out exactly and efficiently, but still con-
stitute a bottleneck. We already identified avenues of future
work, discussed next, to address scaling limitations of our
implementation, given the promising results shown in Fig. 2.

6 Conclusion
We proposed a novel argumentation-based approach to
Causal Discovery, targeting the resolution of inconsistencies
in data, and showed that it outperforms existing statistics-
based methods on four (standard) datasets. Our approach
uses independence tests and their p-values to narrow down
DAGs most fitting to the data, drawn from stable extensions
of ABA frameworks. Other methods to identify and resolve
inconsistencies in data for causal discovery have been pro-
posed, e.g. by Ramsey, Spirtes, and Zhang (2006); Colombo
and Maathuis (2014), but they focus on marking orientations
as ambiguous in the presence of inconsistencies, rather than
actually resolving the inconsistencies as we do.

Our proposed framework allows for the introduction of
weighted arrows and edges, on top of independencies, which
would allow to integrate, as future work, other data-centric
methods like score-based causal discovery algorithms (e.g.
(Chickering, 2002; Ramsey et al., 2017; Claassen and Hes-
kes, 2012). As for the scalability, we cannot process more
than 10 variables at the current state. We are currently
working on making the processing of extensions more ef-
ficient and on incremental solving to avoid re-grounding
when deleting independence facts. Additionally, we would
like to extend our approach to deal with latent confounders,
in line with (Colombo et al., 2012; Hyttinen, Eberhardt,
and Järvisalo, 2014) and cycles (Rantanen, Hyttinen, and
Järvisalo, 2020; Richardson and Spirtes, 1999; Hyttinen,
Eberhardt, and Järvisalo, 2014) and experiment with other
argumentation semantics in the literature, making use of a
recently developed solver for non-flat ABA (Lehtonen et al.,
2024). Finally, we plan to explore the explainability capa-
bilities intrinsic in an ABA framework (Čyras et al., 2018),
which we believe may bring great value to causal discovery
in a collaborative human-AI discovery process (Russo and
Toni, 2023; Russo, 2023).
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