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Abstract

Graph neural networks (GNNs) are frequently used to pre-
dict missing facts in knowledge graphs (KGs). Motivated by
the lack of explainability for the outputs of these models, re-
cent work has aimed to explain their predictions using Dat-
alog, a widely used logic-based formalism. However, such
work has been restricted to certain subclasses of GNNs. In
this paper, we consider one of the most popular GNN archi-
tectures for KGs, R-GCN, and we provide two methods to
extract rules that explain its predictions and are sound, in the
sense that each fact derived by the rules is also predicted by
the GNN, for any input dataset. Furthermore, we provide a
method that can verify that certain classes of Datalog rules
are not sound for the R-GCN. In our experiments, we train
R-GCNs on KG completion benchmarks, and we are able to
verify that no Datalog rule is sound for these models, even
though the models often obtain high to near-perfect accuracy.
This raises some concerns about the ability of R-GCN models
to generalise and about the explainability of their predictions.
We further provide two variations to the training paradigm
of R-GCN that encourage it to learn sound rules and find a
trade-off between model accuracy and the number of learned
sound rules.

1 Introduction
Knowledge graphs (KGs) are graph-structured knowledge
bases where nodes and edges represent entities and their
relationships, respectively (Hogan et al. 2022). KGs can
be typically stored as sets of unary and binary facts, and
are being exploited in an increasing range of applica-
tions (Vrandečić and Krötzsch 2014; Suchanek, Kasneci,
and Weikum 2007; Bouchard, Singh, and Trouillon 2015;
Hamilton, Ying, and Leskovec 2017).

Knowledge graphs are, however, often incomplete, which
has led to the rapid development of the field of KG
completion—the task of extending an incomplete KG with
all missing facts holding in its (unknown) complete ver-
sion. KG completion is typically conceptualised as a classi-
fication problem, where the aim is to learn a function that,
given the incomplete KG and a candidate fact as input, de-
cides whether the latter holds in the completion of the for-
mer. A wide range of KG approaches have been proposed
in the literature, including embedding-based approaches
with distance-based scoring functions (Bordes et al. 2013;
Sun et al. 2018), tensor products (Nickel et al. 2011;

Yang et al. 2015), box embeddings (Abboud et al. 2020),
recurrent neural networks (Sadeghian et al. 2019), differen-
tiable reasoning (Rocktäschel and Riedel 2017; Evans and
Grefenstette 2018), and LLMs (Yao, Mao, and Luo 2019;
Xie et al. 2022). Amongst all neural approaches to KG
completion, however, those based on graph neural networks
(GNNs) have received special attention (Ioannidis, Marques,
and Giannakis 2019; Liu et al. 2021; Pflueger, Tena Cucala,
and Kostylev 2022). These include R-GCN (Schlichtkrull et
al. 2018) and its extensions (Tian et al. 2020; Cai et al. 2019;
Vashishth et al. 2019; Yu et al. 2021; Shang et al. 2019;
Liu et al. 2021), where the basic R-GCN model remains a
common baseline for evaluating against or as part of a larger
system (Gutteridge et al. 2023; Liu et al. 2023; Li et al. 2023;
Tang et al. 2024; Zhang et al. 2023; Lin et al. 2023).

Although these embedding and neural-based approaches
to KG completion have proved effective in practice, their
predictions are difficult to explain and interpret (Garnelo
and Shanahan 2019). This is in contrast to logic-based and
neuro-symbolic approaches to KG completion, such as rule
learning methods, where the extracted rules can be used
to generate rigourous proofs explaining the prediction of
any given fact. RuleN (Meilicke et al. 2018) and Any-
BURL (Meilicke et al. 2018) heuristically identify Data-
log rules from the given data and apply them directly for
completing the input graph. RNNLogic (Qu et al. 2020)
uses a probabilistic model to select the most promising
rules. Other works attempt to extract Datalog rules from
trained neural models, including Neural-LP (Yang, Yang,
and Cohen 2017), DRUM (Sadeghian et al. 2019), and Neu-
ral Theorem Provers (Rocktäschel and Riedel 2017). As
shown in (Tena Cucala, Cuenca Grau, and Motik 2022;
Wang et al. 2023), however, the extracted Datalog rules are
not faithful to the model in the sense that the rules may de-
rive, for some dataset, facts that are not predicted by the
model (unsoundness) as well as failing to derive predicted
facts (incompleteness).

As a result, there is increasing interest in the development
of neural KG completion methods whose predictions can be
faithfully characterised by means of rule-based reasoning.
As shown in (Tena Cucala, Cuenca Grau, and Motik 2022;
Wang et al. 2023), the Neural-LP and DRUM approaches
can be adapted to ensure soundness and completeness of
the generated rules with respect to the model. The class
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of monotonic GNNs (Tena Cucala et al. 2021), which use
max aggregation, restrict all weights in the model to be non-
negative, and impose certain requirements on activation and
classification functions, can be faithfully captured by means
of tree-like Datalog programs. In turn, monotonic max-
sum GNNs (Tena Cucala et al. 2023), which relax the re-
quirements on the aggregation function to encompass both
max and sum aggregation, can be faithfully characterised by
means of tree-like Datalog programs with inequalities in the
body of rules. Both variants of monotonic GNNs, however,
require model weights to be non-negative, which is crucial to
ensure that their application to datasets is monotonic under
homomorphisms—a key property of (negation-free) Datalog
reasoning. The monotonicity requirement, however, is not
applicable to popular GNN-based models such as R-GCN.

Our Contribution In this paper, we consider sum-GNNs,
which use sum as aggregation function and which do not
impose restrictions on model weights. These GNNs can be
seen both as an extension to the GNNs in (Tena Cucala et
al. 2023) with sum aggregation but without the monotonic-
ity requirement, as well as a variant of the R-GCN model.
The functions learnt by sum-GNNs may be non-monotonic:
predicted facts may be invalidated by adding new facts to
the input KG. As a result, these GNNs cannot, in general,
be faithfully captured by (negation-free) Datalog programs.
Our aim in this paper is to identify a subset of the output
channels (i.e. features) of the GNN which exhibit mono-
tonic behaviour, and for which sound Datalog rules may
be extracted. The ability to extract sound rules is impor-
tant as it allows us to explain model predictions associated
to the identified output channels. Furthermore, we provide
means for identifying unbounded output channels for which
no sound Datalog rule exists, hence suggesting that these
channels inherently exhibit non-monotonic behaviour.

We conducted experiments on the benchmark datasets by
(Teru, Denis, and Hamilton 2020) and also use the rule-
based LogInfer evaluation framework described in (Liu et
al. 2023), which we extended to include a mixture of mono-
tonic and non-monotonic rules. Our experiments show that
even under ideal scenarios, without restrictions on the train-
ing process, all the channels in the trained GNN are un-
bounded (even for monotonic LogInfer benchmarks), which
implies that there are no sound Datalog rules for the model.
We then consider two adjustments to the training process
where weights sufficiently close to zero (as specified by a
given threshold) are clamped to zero iteratively during train-
ing. As the weight clamping threshold increases, we observe
that an increasing number of output channels exhibit mono-
tonic behaviour and we obtain more sound rules, although
the model accuracy diminishes. Hence, there is a trade-off
between model performance and rule extraction.

2 Background
Datalog We fix a signature of countably infinite, disjoint sets
of predicates and constants, where each predicate is associ-
ated with a non-negative integer arity. We also consider a
countably infinite set of variables disjoint with the sets of

predicates and constants. A term is a variable or a constant.
An atom is an expression of the form R(t1, ..., tn), where
each ti is a term and R is a predicate with arity n. A literal
is an atom or any inequality t1 ̸≈ t2. A literal is ground if it
contains no variables. A fact is a ground atom and a dataset
D is a finite set of facts. A (Datalog) rule is an expression of
the form

B1 ∧ ... ∧Bn → H, (1)
where B1, ..., Bn are its body literals and H is its head atom.
We use the standard safety requirements for rules: every
variable that appears in a rule must occur in a body atom.
Furthermore, to avoid vacuous rules, we require that each
inequality in the body of a rule mentions two different terms.
A (Datalog) program is a finite set of rules. A substitution ν
maps finitely many variables to constants. For literal α and a
substitution ν defined on each variable in α, αν is obtained
by replacing each occurrence of a variable x in α with ν(x).
For a dataset D and a ground atom B, we write D |= B if
B ∈ D; furthermore, given constants a1 and a2, we write
D |= a1 ̸≈ a2 if a1 ̸= a2, for uniformity. The immedi-
ate consequence operator Tr for a rule r of form (1) maps a
dataset D to dataset Tr(D) containing Hν for each substi-
tution ν such that D |= Biν for each i ∈ {1, . . . , n}. For a
program P , TP(D) =

⋃
r∈P Tr(D).

Graphs We consider real-valued vectors and matrices. For
v a vector and i > 0, v[i] denotes the i-th element of v. For
A a matrix and i, j > 0, A[i, j] denotes the element in row
i and column j of A. A function σ : R → R is monoton-
ically increasing if x < y implies σ(x) ≤ σ(y). We apply
functions to vectors element-wise.

For a finite set Col of colours and δ ∈ N, a (Col, δ)-graph
G is a tuple ⟨V, {Ec}c∈Col, λ⟩ where V is a finite vertex set,
each Ec ⊆ V ×V is a set of directed edges, and λ assigns to
each v ∈ V a vector of dimension δ. When λ is clear from
the context, we abbreviate the labelling λ(v) as v. Graph
G is undirected if Ec is symmetric for each c ∈ Col and is
Boolean if v[i] ∈ {0, 1} for each v ∈ V and i ∈ {1, ..., δ}.
Graph Neural Networks We consider GNNs with sum ag-
gregation. A (Col,δ)-sum graph neural network (sum-GNN)
N with L ≥ 1 layers is a tuple

⟨ {Aℓ}1≤ℓ≤L, {Bc
ℓ}c∈Col,1≤ℓ≤L, {bℓ}1≤ℓ≤L, σℓ, clst ⟩, (2)

where, for each ℓ ∈ {1, . . . , L} and c ∈ Col, matrices Aℓ

and Bc
ℓ are of dimension δℓ × δℓ−1 with δ0 = δL = δ, bℓ is

a vector of dimension δℓ, σℓ : R → R+∪{0} is a monotoni-
cally increasing activation function with non-negative range,
and clst : R → {0, 1} for threshold t ∈ R is a step clas-
sification function such that clst(x) = 1 if x ≥ t and
clst(x) = 0 otherwise.

Applying N to a (Col, δ)-graph induces a sequence of la-
bels v0,v1, ...,vL for each vertex v in the graph as follows.
First, v0 is the initial labelling of the input graph; then, for
each 1 ≤ ℓ ≤ L, vℓ is defined by the following expression:

vℓ = σℓ(bℓ +Aℓvℓ−1 +
∑
c∈Col

Bc
ℓ

∑
(v,u)∈Ec

uℓ−1) (3)

The output of N is a (Col,δ)-graph with the same vertices
and edges as the input graph, but where each vertex is la-
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belled by clst(vL). For layer ℓ ∈ {0, ..., L} of N , each
i ∈ {1, ..., δℓ} is referred to as a channel.

The R-GCN model (Schlichtkrull et al. 2018) can be seen
as a sum-GNN variant with ReLU activations and zero bi-
ases in all layers. The definition in (Schlichtkrull et al. 2018)
includes a normalisation parameter ci,r (cf. their Equation
(2)), which can depend on a predicate r and/or vertex i un-
der special consideration when applying the GNN. A de-
pendency on the vertex implies that the values of these pa-
rameters are data-dependent—that is, they are computed at
test time based on the concrete graph over which the GNN
is evaluated (e.g., ci,r could be computed as the number of
r-neighbours of vertex i). Sum-GNNs capture the R-GCN
model under the assumption that the normalisation parame-
ters are data-independent and hence can be fixed after train-
ing; we further assume for simplicity that they are set to 1.

Dataset Transformations Through sum-GNNs A sum-
GNN N can be used to realise a transformation TN from
datasets to datasets over a given finite signature (Tena Cu-
cala et al. 2023). To this end, the input dataset must be first
encoded into a graph that can be directly processed by the
sum-GNN, and the graph resulting from the sum-GNN ap-
plication must be subsequently decoded back into an out-
put dataset. Several encoding/decoding schemes have been
proposed in the literature. We adopt the so-called canon-
ical scheme, which is a straightforward way of converting
datasets to coloured graphs. In particular, colours in graphs
correspond to binary predicates in the signature and chan-
nels of feature vectors in the input and output layers of the
sum-GNN to unary predicates. For each p ∈ {1, . . . , δ},
we denote the unary predicate corresponding to channel p
as Up. More precisely, the canonical encoding enc(D) of
a dataset D is the Boolean (Col, δ)-graph with a vertex va
for each constant a in D and a c-coloured edge (va, vb) for
each fact Rc(a, b) ∈ D. Furthermore, given a vertex va cor-
responding to constant a, vector component va[p] is set to 1
if and only if Up(a) ∈ D, for p ∈ {1, . . . , δ}. The decoder
dec is the inverse of the encoder. The canonical dataset
transformation induced by a sum-GNN N is then defined as:
TN (D) = dec(N (enc(D))). We abbreviate N (enc(D))
by N (D).

Soundness and Completeness A Datalog program or rule
α is sound for a sum-GNN N if Tα(D) ⊆ TN (D) for each
dataset D. Conversely, α is complete for N if TN (D) ⊆
Tα(D) for each dataset D. Finally, we say that α is equiv-
alent to N if it is both sound and complete for N . The
following proposition establishes that the containment rela-
tion that defines soundness for a rule or program still holds
when the operators are composed a finite number of times.

Proposition 1. If α is a rule or program sound for sum-GNN
N , then for any dataset D and k ∈ N, the containment holds
when Tα and TN are composed k times: T k

α(D) ⊆ T k
N (D).

Link Prediction The link prediction task assumes a given
incomplete dataset D and an (unknown) completion D∗

of D containing all missing binary facts that are consid-
ered true over the predicates and constants of D. Thus,
given a fact α involving a binary predicate and constants

from D, the task is to predict whether α ∈ D∗. To per-
form link prediction with a sum-GNN N , we use the (non-
canonical) encoding and decoding from (Tena Cucala et al.
2021), which differs from the canonical encoding in that ver-
tices can now also encode pairs of constants, so that both
unary and binary facts can be represented in the channels
of the input and output layers. This allows us to derive
new binary facts (which the canonical transformation can-
not do). As shown in Section 3.2 of (Tena Cucala et al.
2023), this non-canonical encoding can be expressed as the
composition of a Datalog program Penc and the canonical
encoding; similarly, the decoding can be seen as the com-
position of the canonical decoding followed by the applica-
tion of a Datalog program Pdec. Hence, we can use these
programs to lift any rule extraction results obtained for the
canonical transformation TN to the end-to-end transforma-
tion Pdec(TN (Penc(D))).

3 Partitioning the Channels of a GNN
In this section, we first provide two approaches for identi-
fying channels in a sum-GNN that exhibit monotonic be-
haviour, which will later allow us to extract sound Data-
log rules with head predicates corresponding to these chan-
nels. Candidate Datalog rules can be effectively checked for
soundness using the approach developed by (Tena Cucala et
al. 2023) for monotonic GNNs. Furthermore, we provide an
approach for identifying channels for which no sound Dat-
alog rule exists. Our techniques are data-independent and
rely on direct analysis of the dependencies between feature
vector components via the parameters of the model.

3.1 Safe Channels
In this section, we introduce the notion of a safe channel of a
sum-GNN N . Intuitively, a channel is safe if, for any dataset
D, the computation of its value for each vertex v ∈ enc(D)
through the application of N to D is affected only by non-
negative values in the weight matrices of the GNN.

For instance, consider a simple sum-GNN where matrix
Aℓ for layer ℓ is given below

Aℓ =

(
1 0 1 4
1 0 0 2
−8 −1 0 −2

)

and each of the matrices Bc
ℓ for c ∈ Col contain only ze-

roes. Furthermore, assume that layer ℓ − 1 has four chan-
nels, where the third one has been identified as unsafe and
all other channels have been identified as safe. Then, for an
arbitrary vertex v, the product of Aℓ and vℓ−1 in the com-
putation of vℓ reveals that the second channel in ℓ is safe,
because the unsafe component in vℓ−1 is multiplied by zero
(Aℓ[2, 3]), and the safe components are multiplied by non-
negative matrix values. In contrast, the first channel of ℓ is
unsafe since its computation involves the product of an un-
safe component of vℓ−1 with a non-zero matrix component
(Aℓ[1, 3]), and the third channel is unsafe due to the product
of a component of vℓ−1 with a negative matrix value (e.g.
Aℓ[3, 1]). The following definition generalises this intuition.
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Definition 2. Let N be a sum-GNN as in Equation (2). All
channels i ∈ {1, ..., δ0} are safe at layer ℓ = 0. Channel
i ∈ {1, . . . , δℓ} is safe at layer ℓ ∈ {1, . . . , L} if the i-th
row of each matrix Aℓ and {(Bc

ℓ)}c∈Col contains only non-
negative values and, additionally, the j-th element in each
such row is zero for each j ∈ {1, . . . , δℓ−1} such that j is
unsafe in layer ℓ− 1. Otherwise, i is unsafe.

We can now show that safe channels in a GNN exhibit
monotonic behaviour. In particular, the value of a safe chan-
nel may only increase (or stay the same) when new facts are
added to the input dataset.
Lemma 3. Let N be a sum-GNN as in Equation (2), let
D′, D be datasets satisfying D′ ⊆ D, let v ∈ enc(D′), and
let vℓ and v′

ℓ be the vectors associated to v in layer ℓ upon
applying N to D and D′ respectively. If channel i in N is
safe at layer ℓ, then v′

ℓ[i] ≤ vℓ[i].

Proof. We proceed by induction on ℓ. The base case ℓ = 0
holds trivially by the definition of the canonical encoding
and the fact that D′ ⊆ D. For the inductive step, assume
that the claim holds for ℓ − 1 ≥ 0 and that channel i is
safe at layer ℓ. We show that v′

ℓ[i] ≤ vℓ[i]. Consider the
computation of vℓ[i] and v′

ℓ[i] as per Equation (3). The
value (Aℓvℓ−1)[i] is the sum over all j ∈ {1, ..., δℓ−1} of
Aℓ[i, j]vℓ−1[j]. By Definition 2, this sum involves only
non-negative values and can be restricted to values of j cor-
responding to safe channels at layer ℓ − 1. By induction,
each such safe j satisfies v′

ℓ−1[j] ≤ vℓ−1[j] and hence
Aℓ[i, j]v

′
ℓ−1[j] ≤ Aℓ[i, j]vℓ−1[j]; thus, (Aℓv

′
ℓ−1)[i] ≤

(Aℓvℓ−1)[i].
Consider now c ∈ Col and let Ec and (Ec)′ be the c-

coloured edges in enc(D) and enc(D′) respectively. The
sums involved in the products (Bc

ℓ

∑
(v,u)∈Ec uℓ−1)[i] and

(Bc
ℓ

∑
(v,u)∈(Ec)′ u

′
ℓ−1)[i] contain only non-negative values

and can similarly be restricted to safe channels at layer
ℓ − 1. By induction, each such safe j satisfies that ∀u ∈
enc(D′), u′

ℓ−1[j] ≤ uℓ−1[j]. Furthermore, (Ec)′ ⊆ Ec

given that D′ ⊆ D. We conclude that

(
∑
c∈Col

Bc
ℓ

∑
(v,u)∈(Ec)′

u′
ℓ−1)[i] ≤ (

∑
c∈Col

Bc
ℓ

∑
(v,u)∈Ec

uℓ−1)[i].

By combining the previous inequalities and taking into
account that σℓ is monotonically increasing, we conclude
that v′

ℓ[i] ≤ vℓ[i], as required.

We conclude this section by showing that the identifica-
tion of safe channels allows for the extraction of sound rules
from a trained sum-GNN model. In particular, given a can-
didate Datalog rule, it is possible to algorithmically verify its
soundness using the approach of (Tena Cucala et al. 2023).
The soundness check for a rule r of the form (1) involves
considering an arbitrary (but fixed) set containing as many
constants as variables in r, and considering each substitution
ν mapping variables in r to these constants and satisfying the
inequalities in r. For Dν

r , the dataset consisting of each fact
Biν such that Bi is a body atom in r, we check whether the
GNN predicts the fact Hν, corresponding to the grounding

of the head atom. If this holds for each considered ν, then
the rule is sound; otherwise, the substitution ν for which it
does not hold provides a counter-example to soundness.

Proposition 4. Let N be a sum-GNN as in Equation (2),
and let r be a rule of the form (1) where H mentions a unary
predicate Up. Let S be an arbitrary set of as many con-
stants as there are variables in r. Assume channel p in N
is safe at layer L. Then r is sound for TN if and only if
Hν ∈ TN (Dν

r ) for each substitution ν mapping the vari-
ables of r to constants in S and such that Dν

r |= Biν for
each inequality Bi in r.

Proof. To prove the soundness of r, consider an arbitrary
dataset D. We show that Tr(D) ⊆ TN (D). To this end, we
consider an arbitrary fact in Tr(D) and show that it is also
contained in TN (D). By the definition of the immediate
consequence operator Tr, this fact is of the form Hµ, where
µ is a substitution from the variables of r to constants in D
satisfying D |= Biµ for each body literal Bi of r. Let σ
be an arbitrary one-to-one mapping from the co-domain of
µ to some subset of S; such a mapping exists because S has
as least as many constants as variables in r. Let ν be the
composition of µ and σ.

Observe that for each body inequality Bi of r, we have
Dν

r |= Biν because D |= Biµ and σ is injective. There-
fore, by the assumption of the proposition, Hν ∈ TN (Dν

r ).
Now, observe that the result of applying TN to a dataset does
not depend on the identity of the constants, but only on the
structure of the dataset; therefore, TN is invariant under one-
to-one mappings of constants, and since σ is one such map,
Hν ∈ TN (Dν

r ) implies Hµ ∈ TN (Dµ
r ). Now, let a be the

single constant in Hµ. Since Dr
µ ⊆ D by definition of µ,

and channel p is safe at layer L, we can apply Lemma 3 to
conclude that v′

L[p] ≤ vL[p], for v the vertex correspond-
ing to a in enc(Dµ

r ), and v′
L and vL the feature vectors in

layer L computed for v by N on Dµ
r and D, respectively.

But Hµ ∈ TN (Dµ
r ) implies that clst(v

′
L[p]) = 1 and so

v′
L[p] ≥ t. Hence, vL[p] ≥ t, and so clst(vL[p]) = 1,

which implies that Hµ ∈ TN (D), as we wanted to show.
If on the other hand, if Hν ̸∈ TN (Dν

r ) for some sub-
stitution ν defined as in the proposition, then Tr(D

ν
r ) ̸⊆

TN (Dν
r ), as Hν ∈ Tr(D

ν
r ). Thus, r is unsound for TN .

The identification of safe channels provides a sufficient
condition for monotonic behaviour that can be easily com-
puted in practice and enables rule extraction. The fact that
a channel is unsafe, however, does not imply that it be-
haves non-monotonically. In the following section, we pro-
vide a more involved analysis of the dependencies between
channels and model parameters which yields a more fine-
grained channel classification. In particular, we identify two
new classes of channels that behave monotonically, such that
their union contains all safe channels, but may also contain
unsafe channels.

3.2 Stable and Increasing Channels
In this section, we provide a classification of the channels
of the GNN depending on their behaviour under updates in-
volving the addition of new facts to an input dataset. In-
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tuitively, stable channels are those whose value always re-
mains unaffected by such updates; in turn, increasing chan-
nels cannot decrease in value, whereas decreasing channels
cannot increase in value. All remaining channels are cate-
gorised as undetermined. Consider again a sum-GNN where
matrix Aℓ for layer ℓ is given below and each of the matrices
Bc

ℓ for c ∈ Col contain only zeroes.

Aℓ =

 1 0 −1 −2
2 1 −3 0
1 0 1 2
−3 0 2 0


Furthermore, assume again that layer ℓ−1 has four channels,
where the first has been identified as increasing, the second
one as undetermined, the third one as decreasing, and the
fourth one as stable. For an arbitrary vertex v, the product of
Aℓ and vℓ−1 in the computation of vℓ reveals that the first
channel of ℓ is increasing since the undetermined compo-
nent of vℓ−1 is multiplied by 0, the increasing component by
a positive matrix value, and the decreasing component by a
negative matrix value. The second channel is undetermined,
since it involves the product of an undetermined component
with a non-zero matrix value (Aℓ[1, 1]). The third channel
is also undetermined, since it is a mixture of increasing and
decreasing values: positive-times-increasing is increasing,
whereas positive-times-decreasing is decreasing, so it can-
not be known a-priori whether the sum of these values will
increase or decrease. Finally, the fourth channel of ℓ is de-
creasing since the undetermined component of vℓ−1 is mul-
tiplied by 0, and increasing (resp. decreasing) components
are multiplied by negative (resp. positive) matrix values.

The following definition formalises these intuitions and
extends the analysis to the matrices Bc

ℓ involved in neigh-
bourhood aggregation.
Definition 5. Let N be a sum-GNN as in Equation (2).
All channels are increasing at layer 0, A channel i ∈
{1, . . . , δℓ} is stable at layer ℓ ∈ {1, ..., L} if both of the
following conditions hold for each j ∈ {1, . . . , δℓ−1}:
• Bc

ℓ[i, j] = 0 for each c ∈ Col, and
• Aℓ[i, j] ̸= 0 implies that j is stable in layer ℓ− 1.
It is increasing (resp. decreasing) at layer ℓ if it is not stable
and, for each j ∈ {1, . . . , δℓ−1}, these conditions hold:

1. if j is increasing in ℓ − 1, then Aℓ[i, j] ≥ 0 (resp.
Aℓ[i, j] ≤ 0);

2. if j is decreasing in ℓ − 1, then Aℓ[i, j] ≤ 0 (resp.
Aℓ[i, j] ≥ 0) and Bc

ℓ[i, j] = 0 for each c ∈ Col;
3. if j is undetermined in ℓ − 1, then Aℓ[i, j] = 0 and

Bc
ℓ[i, j] = 0 for each c ∈ Col; and

4. Bc
ℓ[i, j] ≥ 0 (resp. Bc

ℓ[i, j] ≤ 0) for each c ∈ Col.
It is undetermined at layer ℓ if it is neither stable, increasing,
nor decreasing.

Note that a channel cannot be both increasing and de-
creasing, because satisfying the conditions for both classes
would imply that it is stable, which is incompatible with be-
ing increasing or decreasing.

The following lemma shows that the behaviour of the
channel types aligns with their intended interpretation.

Lemma 6. Let N be a sum-GNN of L layers, and let
D′, D be datasets satisfying D′ ⊆ D. For each vertex
v ∈ enc(D′), layer ℓ ∈ {0, . . . , L}, and channel i ∈
{1, . . . , δℓ}, the following hold:
• If i is stable at layer ℓ, then v′

ℓ[i] = vℓ[i];
• If i is increasing at layer ℓ, then v′

ℓ[i] ≤ vℓ[i], and
• If i is decreasing at layer ℓ, then v′

ℓ[i] ≥ vℓ[i],
where vℓ and v′

ℓ are the vectors induced for v in layer ℓ by
applying N to D and D′ respectively.

Proof sketch. The full proof is given in ??.
We show the claim of the lemma by induction on ℓ.

The base case holds because v′
0[i] ≤ v0[i] for each i ∈

{1, . . . , δ} by definition of enc, and all channels are in-
creasing in layer 0. For the inductive step, we prove that
it holds at layer ℓ for stable, increasing, and decreasing i.

For stable i, notice that (Aℓvℓ−1)[i] is just a sum over
channels j that are stable at ℓ − 1, since the non-stable
j’s are zeroed out. The induction hypothesis then implies
v′
ℓ−1[j] = vℓ−1[j] for each such j. Furthermore, Bc

ℓ[i, j] =
0 for every j and c. Hence, v′

ℓ[i] = vℓ[i].
For increasing i, consider the four possibilities for j at

ℓ − 1 and conditions (1) - (3) in the definitions. For exam-
ple, if j is increasing, then from (1) we have Aℓ[i, j] ≥ 0 and
by our induction hypothesis, v′

ℓ−1[j] ≤ vℓ−1[j]. In any of
these cases, we find that Aℓ[i, j]v

′
ℓ−1[j] ≤ Aℓ[i, j]vℓ−1[j].

For the product involving Bc
ℓ, if j is decreasing or un-

determined at ℓ − 1 then from (2) and (3) we have that
Bc

ℓ[i, j] = 0. Otherwise, by the inductive hypothesis we ob-
tain u′

ℓ−1[j] ≤ uℓ−1[j] for every node u ∈ enc(D′). Then
since (Ec)′ ⊆ Ec, the inequality is preserved when sum-
ming over neighbours of v. Also, since from (4) we have
that Bc

ℓ[i, j] ≥ 0, we find that for all j,

Bc
ℓ[i, j](

∑
(v,u)∈(Ec)′

u′
ℓ−1)[j] ≤ Bc

ℓ[i, j](
∑

(v,u)∈Ec

uℓ−1)[j].

Therefore, by monotonicity of σ, v′
ℓ[i] ≤ vℓ[i]. For decreas-

ing i, the proof is very similar to that for increasing i.

Both increasing and stable channels are amenable to rule
extraction. In particular, the soundness check in Proposition
4 extends seamlessly to this new setting.
Proposition 7. Let N be a sum-GNN as in Equation (2),
and let r be a rule of the form (1) where H mentions a unary
predicate Up. Let S be an arbitrary set of as many constants
as there are variables in r. Assume channel p in N is in-
creasing or stable at layer L. Then r is sound for TN if and
only if Hν ∈ TN (Dν

r ) for each substitution ν mapping the
variables of r to constants in S and such that Dν

r |= Biν for
each inequality Bi in r.

On the other hand, if a channel is decreasing or unde-
termined, it does not behave monotonically, and so it may
or may not have sound rules. We conclude this section by
relating the classes of channels described here to those of
Section 3.1, with a full proof given in ??.
Theorem 8. Safe channels are increasing or stable. There
exist increasing unsafe channels and stable unsafe channels.
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3.3 Unbounded Channels
In Section 3.2, we noted that extracting sound Datalog rules
for channels that are decreasing or undetermined might be
possible. In this section, we identify a subset of such chan-
nels, which we refer to as unbounded, for which no sound
Datalog rule may exist. Thus, being unbounded provides a
sufficient condition for non-monotonic channel behaviour.

The techniques in this section require that the sum-GNN
uses ReLU as the activation function in all but (possibly) the
last layer L. Furthermore, we require the co-domain of the
activation function in layer L to include a number strictly
less than the threshold t of the classification function clst.
This restriction is non-essential and simply excludes GNNs
that derive all possible facts regardless of the input dataset,
in which case all rules would be sound.

Definition 9. Channel p ∈ {1, . . . , δL} is unbounded at
layer L if there exist a Boolean vector y0 of dimension
δ0, and a sequence c1, . . . , cL of (not necessarily distinct)
colours in Col, such that, with {yℓ}L−1

ℓ=1 the sequence de-
fined inductively as yℓ := ReLU(Bcℓ

ℓ yℓ−1) for each 1 ≤
ℓ ≤ L− 1, it holds that (BcL

L yL−1)[p] < 0.

Intuitively, the value of an unbounded channel at layer
L for a given vertex can always be made smaller than the
classification threshold t by extending the input graph in a
precise way. This helps us prove that each rule r with head
predicate Up corresponding to an unbounded channel p is
not sound for TN . In particular, we first generate the dataset
Dν

r , where ν is a substitution that maps each variable in r to
a different constant, and we let a := ν(x). Then we extend
Dν

r to a dataset D′ in a way that ensures that the value of
channel p at layer L for the vertex va in D′ is smaller than
the threshold t. Thus, Up(a) /∈ TN (D′), even though Up(a)
is clearly in Tr(D

′), so dataset D′ is a counterexample to
the soundness of r.

The following theorem formally states this result. The full
proof of the theorem is given in ??.

Theorem 10. Let N be a sum-GNN as in Equation (2),
where σℓ is ReLU for each 1 ≤ ℓ ≤ L−1, and the co-domain
of σL contains a number strictly less than the threshold t of
the classification function clst. Then, each rule with head
predicate Up corresponding to an unbounded channel p is
unsound for N .

Proof sketch. Consider an unbounded channel p at layer L
and a rule r with head Up(x). Let ν be an arbitrary sub-
stitution mapping each variable in r to a different constant.
Let G = enc(Dν

r ) and let va be the vertex corresponding
to constant a := ν(x). Let y0 and c1, . . . , cL be a Boolean
vector and a sequence of colours, respectively, satisfying the
condition in Definition 9 for p, and let {yℓ}L−1

ℓ=1 be the se-
quence computed for them as in the definition.

For each d ∈ N, let Dd be the extension of Dν
r with

1. facts Rc1(aj , b1) for 1 ≤ j ≤ d, facts Rcℓ(bℓ−1, bℓ)
for 2 ≤ ℓ ≤ L− 1, and fact RcL(bL−1, a);

2. facts Uk(aj) for 1 ≤ j ≤ d and k ≤ δ s.t. y0[k] = 1;

u1

...

ud v1 v2 ... vL−1

va ......

c1
c1

c1 c2 c3 cL−1

cL

??

Figure 1: Canonical encoding Gd of the dataset Dd that extends
Dν

r in the proof of Theorem 10 for a given d ∈ N.

for aj and bℓ distinct constants not in Dν
r for each j and ℓ.

Furthermore, let Gd be the canonical encoding of Dd, where
vℓ is the vertex corresponding to constant bℓ and uj is the
vertex corresponding to constant aj . The resulting graph Gd

is illustrated in Figure 1, where edges labelled with question
marks represent the canonical encoding of Dν

r .
We next show that there exists d∗ ∈ N such that the value

of channel p at layer L for vertex va in the canonical en-
coding of Dd∗ is under the threshold t. To find d∗, we in-
ductively define a number dℓ for each 1 ≤ ℓ ≤ L − 1 that
satisfies the following condition:

(C1) for all d ≥ dℓ, the value of the feature vector com-
puted by N on Gd in layer ℓ for vertex vℓ is gℓ+d·yℓ,
where gℓ is a fixed vector that does not depend on d.

Each dℓ can be defined inductively (assuming d0 = 1) as
follows. Condition (C1) ensures that if d ≥ dℓ−1, the
value of vℓ[j] computed by equation (3) for vertex v = vℓ
in layer ℓ when applying N to graph Gd is of the form
ReLU(Sj,d), for Sj,d a sum that contains a term of the form
zj = d · (Bcℓ

ℓ yℓ−1)[j] and no other terms depending on d.
We define dℓ as the smallest integer large enough to ensure
that each zj dominates the sum of all other terms in Sj,d.
Hence, if d ≥ dℓ, we have that if zj is positive, then so is
Sj,d, and ReLU will act on it as the identity; if zj is negative,
then so is Sj,d, and ReLU will map it to 0, and if zj = 0,
then ReLU(Sj,d) will be independent of d. Thus, in all three
cases, ReLU(Sj,d) is of the form gℓ[j] + d · yℓ[j], for gℓ[j]
a number that does not depend on d, and so Condition (C1)
holds for dℓ as required.

Finally, we consider the instance of equation (3) that com-
putes the value of vertex va in layer L when applying N to
graph Gd, for d ≥ dℓ−1. Condition (C1) ensures that the
value of vL[p] is the result of applying σL to a sum that
contains a term of the form d · (BcL

L yL−1)[p] and no other
terms depending on d. The definition of an unbounded chan-
nel then ensures that (BcL

L yL−1)[p] is negative, and so by
choosing d sufficiently large, the aforementioned sum is ar-
bitrarily small towards −∞. But σL is monotonic and in-
cludes a number less than t in its codomain, which means
that there exists a minimum natural number d such that the
image by σL of the aforementioned sum is under the thresh-
old t; we then let d∗ be this number.

Dataset Dd∗ is therefore a counterexample showing that
r is not sound for N . Indeed, when applying N to Gd∗ ,
the value of channel p for vertex va in layer L is smaller
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than the threshold t, and so we have that Up(a) /∈ TN (Dd∗).
However, Up(a) ∈ Tr(Dd∗), since Dd∗ contains Dν

r and all
inequalities in the body of r are satisfied because ν maps
each variable to a different constant. Therefore, rule r is
unsound for N .

In order to check which channels are unbounded in prac-
tice, we initialise an empty set S of unbounded channels.
We then enumerate all Boolean feature vectors y0 of dimen-
sion δ0 and all sequences c1, . . . , cL of colours; for each
vector and sequence, we compute the vector BcL

L yL−1 as
shown in Definition 9 and add to S each channel p such that
(BcL

L yL−1)[p] is negative. The enumeration can be stopped
early if all channels are found to be unbounded (i.e. when-
ever S becomes {1, . . . , δ}).

In most practical cases, however, the dimension δ and
number of colours |Col| and layers L are large enough that
it is not practically feasible to enumerate all combinations.
In those cases, we randomly sample a fixed number of pairs
(y0, {cℓ}Lℓ=1) of Boolean feature vectors and sequences of
colours. All channels in S after this iteration will be un-
bounded, but channels not in S may also be unbounded.

To conclude this section, we relate unbounded channels
to those defined in Section 3.1 and Section 3.2. A full proof
is given in ??.

Theorem 11. Unbounded channels are neither increasing,
nor stable, nor safe. There exist, however, decreasing un-
bounded channels and undetermined unbounded channels.

4 Experiments
We train sum-GNNs on several link prediction datasets, us-
ing the dataset transformation described in Section 2. For
each dataset, we train a sum-GNN with ReLU activation
functions, biases, and two layers (this architecture corre-
sponds to R-GCN with biases). The hidden layer of the
GNN has twice as many channels as its input. Moreover,
we also train four additional instances of sum-GNNs, us-
ing a modified training paradigm to facilitate the learning of
sound rules (see Section 4.2). For each trained model, we
compute standard classification metrics, such as precision,
recall, accuracy, and F1 score, and area under the precision-
recall curve (AUPRC).

We train all our models using binary cross entropy loss
for training and the Adam optimizer with a standard learn-
ing rate of 0.001. For each model, we choose the classifica-
tion threshold by computing the accuracy on the validation
set across a range of 108 thresholds between 0 and 1 and
selecting the one which maximises accuracy. We run each
experiment across 10 different random seeds and present the
aggregated metrics. Experiments are run using PyTorch Ge-
ometric, with a CPU on a Linux server.

Channel Classification and Rule Extraction For each
trained model, we compute which output channels of the
model were safe, stable, increasing, and unbounded (using
1000 random samples of pairs of Boolean feature vectors
and colour sequences). On all datasets, for each channel
p that is stable or increasing, we iterate over each Datalog

rule in the signature with up to two body atoms and a head
predicate Up, and count the number of sound rules, using
Proposition 7 to check soundness. In benchmarks with a
large number of predicates, we only check rules with one
body atom, since searching the space of rules with two body
atoms is intractable. For datasets created with LogInfer (Liu
et al. 2023), which are obtained by enriching a pre-existing
dataset with the consequences of a known set of Datalog
rules, we also check if these rules were sound for the model.

4.1 Datasets
We use three benchmarks provided by (Teru, Denis, and
Hamilton 2020): WN18RRv1, FB237v1, and NELLv1;
each of these benchmarks provides datasets for training, val-
idation, and testing, as well as negative examples.

We also use LogInfer (Liu et al. 2023), a framework
which augments a dataset by applying Datalog rules of a
certain shape—called a “pattern”’—and adding the conse-
quences of the rules back to the dataset. We apply the LogIn-
fer framework to datasets FB15K-237 (Toutanova and Chen
2015) and WN18RR (Dettmers et al. 2018). We consider the
very simple rule patterns hierarchy and symmetry defined in
(Liu et al. 2023); we also use a new monotonic pattern cup,
which has a tree-like structure, and a non-monotonic rule
pattern non-monotonic hierarchy (nmhier); all patterns are
shown in Table 1. For each pattern P, we refer to the datasets
obtained by enriching FB15K-237 and WN18RR by FB-P
and WN-P, respectively. For each dataset and pattern, we
randomly select 10% of the enriched training dataset to be
used as targets and the rest as inputs to the model. Fur-
thermore, we consider an additional instance of FB15K-237
and WN18RR where we again apply the hierarchy pattern,
but we include a much larger number of consequences in
the enriched training dataset; we refer to these datasets as
FB-superhier and WN-superhier, as a shorthand for super-
hierarchy. The purpose of this is to create a dataset where it
should be as easy as possible for a model to learn the rules
applied in the dataset’s creation. Finally, we use LogInfer
to augment FB15K-237 and WN18RR using multiple rule
patterns at the same time; in particular, we combine mono-
tonic with non-monotonic rule patterns. This allows us to
test the ability of our rule extraction methods to recover
the sound monotonic rules that were used to generate the
enriched dataset, in the presence of facts derived by non-
monotonic rules. For example, WN-hier nmhier refers to a
LogInfer dataset where WN is extended using the hierarchy
and non-monotonic hierarchy rule patterns. When creating
a mixed dataset, we reserve a number of predicates to use in
the heads of the one pattern, and the rest of the predicates to
use in the heads of the other.

Negative examples are generated for LogInfer using pred-
icate corruption: i.e. for each positive example P (a, b) ∈ D,
we sample a predicate Q at random to obtain a negative
example Q(a, b) such that it does not appear in the train-
ing, validation, or test set. We avoid using constant cor-
ruption to produce negative examples because this would
inflate the performance of our models. The reason for
this is that the encoding by (Tena Cucala et al. 2021)
that we use in our transformation can only predict binary
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Pattern

Hierarchy (hier) R(x, y) → S(x, y)
Symmetry (sym) R(x, y) → R(y, x)

Cup R(x, y) ∧ S(y, z) ∧ T (w, x) → P (x, y)
NM-Hierarchy R(x, y) ∧ ¬S(y, z) → T (x, y)

Table 1: LogInfer inference patterns used in this paper.

facts for constant pairs occurring together in input facts,
and hence would trivially (and correctly) classify almost
all negative examples. When generating negative exam-
ples for a hier nmhier dataset, we sample T (a, b) such that
{R(a, b), S(b, c)} ⊆ D, to penalise the model for learn-
ing the rule pattern R(x, y) → T (x, y) instead of the non-
monotonic one. We train for 8000 epochs on WN18RRv1,
FB237v1, NELLv1, and the LogInfer-WN datasets, and for
1500 epochs on the LogInfer-FB datasets.

4.2 Training Paradigm Variations
We use the term “MGCN” to refer to R-GCN, but with the
negative weights clamped to zero during training, after ev-
ery optimizer step. In this way, every channel is trivially
safe and rules can be checked for soundness. This is the
same training method used by (Tena Cucala et al. 2021),
but on a different GNN. We also use early-stopping in our
normal training of R-GCNs and MGCNs variation, ceasing
training if the model loss deteriorates for 50 epochs in a row.
MGCNs are purely monotonic and are thus unable to learn
non-monotonic patterns in the data.

To encourage R-GCNs to exhibit non-monotonic be-
haviour while simultaneously learning sound monotonic
rules, we propose a novel variation to the training routine.
Our method relies on matrix weight clamping: intuitively,
having more zero matrix weights leads to a higher number of
safe, stable, and increasing channels. Smaller weights affect
the actual computation less, so we clamp those before larger
ones. To clamp a sum-GNN N using a clamping threshold
τ ∈ R+, we set to 0 each model weight Aℓ[i, j] such that
|Aℓ[i, j]| ≤ τ (and likewise for each Bc

ℓ[i, j]). Given a pa-
rameter X ∈ [0, 100], let τX be the minimum absolute value
of a matrix weight of N such that the percentage of output
channels of N that are stable or increasing is strictly greater
than X . We train three separate instances of each model cor-
responding to three values of X: 0, 25, and 50; for a given
value of X , after each epoch, we compute τX and clamp the
model’s matrices using τX as a clamping threshold. We refer
to the model trained for X as R-X . We apply these models
to all datasets except those derived from FB (LogInfer-FB
and FB237v1), as it is prohibitively slow to compute which
channels are increasing or stable at every epoch due to the
high number of predicates used in the dataset.

4.3 Results
Monotonic LogInfer Datasets The results on the mono-
tonic LogInfer benchmarks are shown in Table 2. We note
that, across every experiment, R-GCN provably never has

any sound rules, since every channel is found to be un-
bounded. These results are very surprising, since our mono-
tonic rule patterns are very simple. They are especially sur-
prising for super-hierarchy, where most positive examples
are consequences of simple rules. This stands in contrast
with the near-perfect accuracy that R-GCN obtained on the
monotonic LogInfer benchmarks: for example, 99.66% for
WN-superhier. This proves that even in cases where accu-
racy is very high, R-GCN may not have learned any sound
rules, which raises doubts about the usefulness of accuracy
as a metric for KG completion models, since its high value
(in this case) does not correspond to sound rules.

In Table 2, R-GCN consistently achieves a lower loss than
MGCN on the training data due to the lack of restrictions.
However, it is almost always outperformed by MGCN on
the test set. We attribute this to the strong inductive bias that
MGCNs have for these particular problems, which require
learning monotonic rules. Furthermore, the rules used to
augment the datasets are often sound for the MGCN models,
which demonstrates that they have effectively learned the
relevant completion patterns for these datasets.

Benchmark Datasets The findings of our experiments on
the benchmark datasets are shown in Table 3. AUPRC is
consistently higher for R-GCN on the validation set than
for MGCN but accuracy on the test set is always higher for
MGCN. This is because, for most constant pairs used in the
validation set targets, there exists no fact in the input dataset
where these constants appear together. Our dataset transfor-
mation, however, can only predict a fact if the constants in
it appear together in a fact of the input dataset. This means
that there are few data points with which to choose a sen-
sible threshold on the validation set. Nevertheless, the re-
sults illustrate how, as X increases in model R-X , the ratios
of stable/increasing/safe channels and the number of sound
rules increase, whilst the AUPRC generally deteriorates.

Mixed LogInfer Datasets The findings on the mixed
LogInfer-WN datasets, that is, those that use both mono-
tonic and non-monotonic rule patterns, are shown in Ta-
ble 4 and demonstrate a clear tendency: as the number of
channels required to be increasing/stable goes up (from R-
GCN, to R-X , to MGCN), accuracy decreases, whilst the
number of sound rules and percentage of sound injected
LogInfer rules increase. This demonstrates a trade-off be-
tween interpretability and empirical performance. As in the
case of purely monotonic datasets, R-GCN achieves consis-
tently superior accuracy, but provably has no sound rules,
since every channel is unbounded. Notice that on WN-
cup nmhier, MGCN achieves high recall but low precision.
This indicates that the model is learning versions of the non-
monotonic rules without the negation, and thus achieving a
high recall but getting penalised by false positives, since it
is predicting facts that are not derived by the non-monotonic
rules. We observe that the MGCN solution does not scale
to every situation, as it can lead to poor performance. Given
that many real-world datasets may also have non-monotonic
patterns, MGCNs could be too restrictive.
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Dataset Model %Acc %Prec %Rec Loss %UB %Stable %Inc %SO %NG #1B #2B

WN-hier R-GCN 98.87 99.32 98.42 9172 100 0 0 0 0 0 0
MGCN 98.75 97.56 100 40366 0 0 100 100 0 31 3095

WN-sym R-GCN 98.95 99.2 98.69 13113 100 0 0 0 0 0 0
MGCN 100 100 100 35544 0 19.09 80.91 100 0 17 1671

WN-superhier R-GCN 99.66 99.7 99.63 21331 100 0 0 0 0 0 0
MGCN 99.67 99.34 100 108789 0 10 90 98 0 24 2348

FB-hier R-GCN 92.21 94.28 89.88 17209 100 0 0 0 0 0 0
MGCN 97.47 98.28 96.65 164345 0 3.08 96.92 54.05 45.95 523 -

FB-sym R-GCN 94.03 95.72 92.21 26397 100 0 0 0 0 0 0
MGCN 98.11 96.61 99.72 127030 0 27.22 72.78 91.4 8.6 1929 -

FB-superhier R-GCN 98.87 99.25 98.48 56247 100 0 0 0 0 0 0
MGCN 99.67 99.6 99.75 426788 0 2.15 97.85 51.9 48.1 307 -

Table 2: Results for the monotonic LogInfer datasets. Loss is on the training set. %UB, %Stable, and %Inc are the percentages of unbounded,
stable, and increasing channels, respectively. %SO is the percentage of LogInfer rules that are sound for the GNN and %NG is the percentage
of monotonic LogInfer rules that are not sound for the GNN since there is some grounding of the body which does not entail the head. #1B
and #2B are the number of sound rules with one and two body atoms respectively.

Dataset Model %Acc %Prec %Rec AUPRC Loss %UB %Stable %Inc %Safe #1B #2B

FB237v1 R-GCN 68.4 99.86 36.85 0.1407 24 100 0 0 0 0 0
MGCN 74.95 82.89 64.05 0.1456 765 0 69.44 30.56 100 13640 -

NELLv1 R-GCN 60.4 47.96 22.35 0.08 687 100 0 0 0 0 0
R-0 61.24 83.18 24.71 0.0769 1342 92.86 2.14 5 6.43 0 10
R-25 67.35 76.62 36.35 0.0766 2095 71.43 9.29 19.29 27.96 6 799
R-50 71.53 91.99 46.59 0.0761 3148 40.71 18.57 38.57 56.43 9 1055
MGCN 91.94 86.17 100 0.0737 2549 0 14.29 85.71 100 26 3300

WN18RRv1 R-GCN 94 96.9 90.97 0.1197 941 100 0 0 0 0 0
R-0 94.52 98.36 90.55 0.1176 1109 87.78 10 1.11 11.11 0 16
R-25 94.09 96.82 91.45 0.1157 1544 61.11 28.89 4.44 33.33 3 293
R-50 95.15 98.32 91.88 0.1163 1513 38.89 40 15.56 55.56 3 222
MGCN 95.18 97.52 92.73 0.114 2292 0 44.44 55.56 100 7 681

Table 3: Results for the benchmark datasets. AUPRC is on the validation set and Loss on the training set. %UB, %Stable, %Inc, and %Safe
are the percentages of unbounded, stable, increasing, and safe channels, respectively. #1B and #2B are the number of sound rules with one
and two body atoms respectively.

Dataset Model %Acc %Prec %Rec %UB %Stable %Inc %Safe %SO %NG %NB #1B #2B

WN-hier nmhier R-GCN 89.0 87.65 90.88 100 0 0 0 0 0 100 0 0
R-0 79.48 78.18 82.33 90.91 0 9.09 8.18 0 0 100 5 513
R-25 71.13 75.03 66.17 72.73 0 27.27 25.45 8 2 90 10 947
R-50 69.59 74.63 61.94 45.45 4.55 50 51.82 30 10 60 36 3589
MGCN 66.87 74.37 56.38 0 0 100 100 52 48 0 31 3042

WN-cup nmhier R-GCN 83.32 83.36 83.47 100 0 0 0 0 0 100 0 0
R-0 77.22 77.3 78.38 90.91 0.91 8.18 9.09 0 0 100 3 320
R-25 71.16 69.6 76.32 72.73 5.46 21.82 26.36 10 10 80 20 2023
R-50 66.8 67.54 66.88 44.55 7.27 47.27 49.09 34 16 50 23 2249
MGCN 62.74 59.25 85.27 0 4.55 95.45 100 50 50 0 50 4905

Table 4: Results for the mixed LogInfer-WN datasets. %UB, %Stable, %Inc, and %Safe are the percentages of unbounded, stable, increasing,
and safe channels, respectively. %SO is the percentage of monotonic LogInfer rules that are sound for the GNN, %NG is the percentage of
rules that are not sound for the GNN since there is some grounding of the body which does not entail the head, and %NB the percentage that
are not sound since their heads correspond to unbounded channels. #1B and #2B are the number of sound rules with one and two body atoms
respectively.
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Channel Classification As can be seen across all results,
the classification of channels into unbounded, stable, and
increasing almost always adds up to 100%. This demon-
strates empirically that, whilst our theoretical analysis al-
lows for the existence of undetermined or decreasing chan-
nels that are not unbounded, virtually no such channels are
found when using our proposed training paradigms, and so
our proposed channel classification allows us to fully de-
termine whether each channel shows monotonic or non-
monotonic behaviour. Furthermore, across all experiments
on the LogInfer datasets, for every rule used to inject facts,
our rule-checking procedures were always able to classify
the rule as sound or provably not sound. Finally, the re-
sults show that the total number of channels found to be ei-
ther stable or increasing is often larger than the number of
channels shown to be safe. This can be seen by computing
the sum of the %Stable and %Inc columns and comparing
it to %Safe. Although the difference is not big, this vali-
dates the need for the more complex classification of chan-
nels into stable/increasing/decreasing/undetermined, instead
of the simpler classification into safe/unsafe.

5 Conclusion
In this paper, we provided two ways to extract sound rules
from sum-GNNs and a procedure to prove that certain rules
are not sound for a sum-GNN. Our methods rely on classify-
ing the output channels of the sum-GNN. We found that, in
our experiments, R-GCN, a specific instance of sum-GNN,
provably has no sound rules when trained in the standard
way, even when using ideal datasets. We provided two alter-
natives to train R-GCN, the first of which clamps all negative
weights to zero and results in R-GCN being entirely mono-
tonic, yielding good performance and many sensible sound
rules on datasets with monotonic patterns, but poor perfor-
mance on datasets with a mixture of monotonic and non-
monotonic patterns. Our second alternative yields a trade-
off between accuracy and the number of sound rules. We
found that, in practice, almost every channel of the sum-
GNN is classified in a manner that allows us to either extract
sound rules or prove that there are no associated sound rules.

The limitations of this work are as follows. First, our anal-
ysis only considers GNNs with sum aggregation and mono-
tonically increasing activation functions: it is unclear how
sound rules can be extracted from models that use mean ag-
gregation or GELU activation functions. Furthermore, our
methods do not guarantee that every output channel will be
characterised such that we can show that it either has no
sound rules or it can be checked for sound rules.

For future work, we aim to consider other GNN archi-
tectures, extend our rule extraction to non-monotonic log-
ics, provide relaxed definitions of soundness, and consider
R-GCN with a scoring function (such as DistMult) as a de-
coder, instead of using a dataset transformation to perform
link prediction.
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