
On the Expressivity of Recurrent Neural Cascades with Identity

Nadezda Alexandrovna Knorozova1 and Alessandro Ronca2

1RelationalAI
2University of Oxford

nadezda.knorozova@relational.ai, alessandro.ronca@cs.ox.ac.uk

Abstract

Recurrent Neural Cascades (RNC) are the class of recurrent
neural networks with no cyclic dependencies among recur-
rent neurons. Their subclass RNC+ with positive recurrent
weights has been shown to be closely connected to the star-
free regular languages, which are the expressivity of many
well-established temporal logics. The existing expressivity
results show that the regular languages captured by RNC+
are the star-free ones, and they leave open the possibility that
RNC+ may capture languages beyond regular. We exclude
this possibility for languages that include an identity element,
i.e., an input that can occur an arbitrary number of times with-
out affecting the output. Namely, in the presence of an iden-
tity element, we show that the languages captured by RNC+
are exactly the star-free regular languages. Identity elements
are ubiquitous in temporal patterns, and hence our results ap-
ply to a large number of applications. The implications of our
results go beyond expressivity. At their core, we establish a
close structural correspondence between RNC+ and semiau-
tomata cascades, showing that every neuron can be equiva-
lently captured by a three-state semiautomaton. A notable
consequence of this result is that RNC+ are no more succinct
than cascades of three-state semiautomata.

1 Introduction
Recurrent Neural Cascades (RNCs) are a well-established
formalism for learning temporal patterns. They are the sub-
class of recurrent neural networks where recurrent neurons
are cascaded. Namely, they can be layed out into a sequence
so that every neuron has access to the state of the preceding
neurons as well as to the external input; and, at the same
time, it has no dependency on the subsequent neurons.

RNCs admit several learning techniques. First, they admit
general learning techniques for recurrent networks such as
backpropagation through time (Werbos 1990), which learn
the weights for a fixed architecture. Furthermore, the acyclic
structure allows for constructive learning techniques such
as recurrent cascade correlation (Fahlman 1990; Reed and
Marks II 1999), which construct the cascade incrementally
during training in addition to learning the weights.

RNCs have been successfully applied in many areas, in-
cluding information diffusion in social networks (Wang et al.
2017), geological hazard prediction (Zhu et al. 2020), auto-
mated image annotation (Shin et al. 2016), intention recog-
nition (Zhang et al. 2018), and optics (Xu et al. 2020).

Identity RegularStar-freeAll

Figure 1: Relevant classes of languages. The label ‘All’ denotes all
formal languages, ‘Identity’ denotes the languages with an identity
element, ‘Regular’ denotes the regular languages, and ‘Star-free’
denotes the star-free regular languages.

Expressivity. We study the expressivity of RNCs in terms
of formal languages, which provide a unifying framework
where to describe the expressivity of all formalisms captur-
ing temporal patterns. Early studies show there exist reg-
ular languages that are not captured by RNCs with mono-
tone activation such as sigmoid and tanh (Giles et al. 1995;
Kremer 1996). More recently the expressivity of RNCs has
been studied in (Knorozova and Ronca 2024a). They show
that the subclass RNC+ with positive recurrent weights cap-
tures all star-free regular languages, and it does not capture
any other regular language. In terms of Figure 1, they show
that the expressivity of RNC+ includes the green area, and
it does not include the red area; leaving open any possibility
for languages beyond regular. The correspondence with star-
free regular languages makes RNC+ a strong candidate for
learning temporal patterns. In fact, the star-free regular lan-
guages are a central class, corresponding to the expressivity
of many well-known formalisms such as star-free regular
expressions from where they take their name, linear tem-
poral logic on finite traces (De Giacomo and Vardi 2013),
past temporal logic (Manna and Pnueli 1991), monadic first-
order logic on finite linear orders (McNaughton and Pa-
pert 1971), group-free finite automata (Ginzburg 1968), and
aperiodic finite automata (Schützenberger 1965). However,
there is still a possibility that RNC+ may capture patterns
well-beyond the expressivity of such formalisms.

Our contribution. We extend the picture of the expressivity
landscape of RNC+ by studying their capability to capture
languages with an identity element. An identity element is
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an input that can occur an arbitrary number of times with-
out affecting the output. We show that a language with an
identity element is recognised by RNC+ only if it is regu-
lar. In other words, for any language beyond regular that
has an identity element, we exclude the possibility that it is
recognised by RNC+. In terms of Figure 1, we show that the
blue area is not included in the expressivity of RNC+. Com-
bined with the existing results, ours yields an exact char-
acterisation of the expressivity of RNC+ in the presence of
an identity element. Identity elements are ubiquitous, and
hence the characterisation applies to a large number of rel-
evant settings. Although we emphasise the results for lan-
guages, due to their importance, more generally our results
apply to functions over strings.

Next we provide two examples of settings with identity.
The first one is an example of a language defined by a tem-
poral logic formula, and the second one is an example of an
arithmetic function. More examples are given in Section 3.3.

Example 1 (Temporal Logics). Linear temporal logic al-
lows for describing patterns over finite traces (De Giacomo
and Vardi 2013). The formula φ = p holds whenever
proposition p occurs at some point in the finite input trace.
This defines a language Lφ over the alphabet Σ = {∅, {p}}.
The empty set is an identity element of Lφ.

The language of Example 1 is star-free and thus it can
be recognised by RNC+ by the results in (Knorozova and
Ronca 2024a). Yet they have no implication for the follow-
ing example. We show it cannot be implemented by RNC+.

Example 2 (Arithmetic). The function F : Z+ → Z returns
the sum of the input integers as F (z1 . . . zℓ) = z1+ · · ·+zℓ.
The number 0 is an identity element of F .

Technically, at the core of our results we show a close
structural correspondence between RNC+ and cascades of
finite semiautomata. One can start from a given RNC+ and
obtain an equivalent cascade of semiautomata by replacing
each recurrent neuron with a three-state semiautomaton. A
cascade of three-state semiautomata is itself a finite-state
semiautomaton. This implies our expressivity results men-
tioned above, as well as succinctness results. For instance,
any language that requires a cascade of n three-state semi-
automata cannot be captured by RNC+ with fewer than n
recurrent neurons. In this sense, RNC+ is no more succinct
than semiautomata cascades. In turn, the former implies that
RNC+ with n recurrent neurons cannot recognise a language
that requires an automaton with more than 3n states.

Proofs of all our results are included, with some deferred
to the extended version (Knorozova and Ronca 2024b).

2 Preliminaries
We denote the natural numbers by N, the real numbers by R,
and the non-negative real numbers by R+. For n ∈ N, we
write [n] for the set {1, 2, . . . , n} ⊆ N. We write an infinite
sequence (ak, ak+1, . . . ) as (at)t≥k. Given a factored set
Z ⊆ Z1 × · · · × Zn and an index i ∈ [n], we define the
projection of Z on its first i components as

Z[i] = {⟨z1, . . . , zi⟩ | ∃zi+1, . . . , zn. ⟨z1, . . . , zn⟩ ∈ Z}.

When we apply a function f : X → Y to a subset Z ⊆ X
of its inputs, the result is the set f(Z) = {f(x) | x ∈ Z}.

Equivalence relations. An equivalence relation ∼ over a
set X is a binary relation that is reflexive, symmetric, and
transitive. The equivalence class of x ∈ X , written as JxK,
is the set of all elements inX that are equivalent to x. The set
of all equivalence classes is a partition ofX , and it is written
asX/∼. Sometimes we name an equivalence relation as ∼a,
and write the corresponding equivalence classes as JxKa.

Metric spaces and continuous functions. A metric space
is a setX equipped with a function dX : X×X → R called
a metric which satisfies the properties: (i) dX(x, x) = 0,
(ii) dX(x, y) ̸= 0 when x ̸= y, (iii) dX(x, y) = dX(y, x),
(iv) dX(x, z) ≤ dX(x, y) + dX(y, z). It is discrete if the
metric satisfies dX(x, y) = 1 for x ̸= y and dX(x, y) = 0
for x = y. Every set can be made a discrete space. For X
and Y metric spaces, a function f : X → Y is continuous at
a point c ∈ X if, for every positive real number ϵ > 0, there
exists a positive real number δ > 0 such that every x ∈ X
satisfying dX(x, c) < δ also satisfies dY (f(x), f(c)) < ϵ.
Equivalently, function f is continuous at a point c ∈ X if,
for every sequence (xt)t≥0 of elements of X with limit c,
it holds that the limit of the sequence (f(xt))t≥0 is f(c).
Function f is continuous if it is so at every point c ∈ X .

2.1 Dynamical Systems
Dynamical systems provide us with a formalism where to
cast both recurrent neural cascades and automata. A dynam-
ical system S is a tuple

S = ⟨U,X, f, xinit, Y, h⟩,

where U is a set of elements called inputs, X is a set of
elements called states, f : X × U → X is called dynam-
ics function, xinit ∈ X is called initial state, Y is a set of
elements called outputs, and h : X → Y is called output
function. Sets U,X, Y are equipped with a metric. System
S is continuous if functions f and h are continuous.

At every time point t = 1, 2, . . . , the system receives an
input ut ∈ U . The state xt and output yt of the system at
time t are defined as follows. At time t = 0, before receiving
any input, the system is in state x0 = xinit and the output is
y0 = h(xinit). Then, the state xt is determined by the pre-
vious state xt−1 and the current input ut, and consequently
the output yt is determined by xt, as

xt = f(xt−1, ut), yt = h(xt).

The dynamics of S are the tuple D = ⟨U,X, f⟩. Dynamics
D are continuous if f is continuous. Subdynamics of D are
any tuple ⟨U,X ′, f⟩ such that X ′ ⊆ X and f(X ′, U) ⊆ X ′.
The function implemented by system S is the function that
maps every input sequence u1, . . . , uℓ to the output yℓ. We
write S(u1, . . . , uℓ) = yℓ. Such function is also defined on
the empty input sequence, in which case it returns y0. Two
systems are equivalent if they implement the same function.

Homomorphic representation. The notion of homomor-
phic representation allows for comparing systems by re-
lating their dynamics. We follow (Knorozova and Ronca
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2024a). Consider two system dynamics D1 = ⟨U,X1, f1⟩
and D2 = ⟨U,X2, f2⟩. A homomorphism from D1 to D2 is
a continuous surjective function ψ : X1 → X2 satisfying

ψ
(
f1(x, u)

)
= f2

(
ψ(x), u

)
for every state x ∈ X1 and every input u ∈ U . Dynamics
D1 homomorphically represents D2 if D1 has subdynamics
D′

1 such that there is a homomorphism from D′
1 to D2.

First, homomorphic representation has the following im-
plication on the existence of an equivalent system.
Proposition 1. If dynamics D1 homomorphically represent
the dynamics of a system S2, then there is a system S1 with
dynamics D1 that is equivalent to S2.

Second, equivalence of two systems implies homomor-
phic representation, but only under certain conditions which
include canonicity—a notion that we introduced next. A
state x of a system S is reachable if there is an input se-
quence u1, . . . , ut such that the system is in state x at time t.
A system is connected if every state is reachable. Given a
system S and one of its states x, the system Sx is the sys-
tem obtained by setting x to be the initial state. Two states
x and x′ of S are equivalent if the systems Sx and Sx′

are
equivalent. A system is in reduced form if it has no distinct
states which are equivalent. A system is canonical if it is
connected and in reduced form.
Proposition 2. If a continuous system S1 is equivalent to a
canonical system S2 with a discrete output, then the dynam-
ics of S1 homomorphically represent the dynamics of S2.

2.2 Cascade Architecture
A cascadeC is a form of dynamics ⟨U,X, f⟩ with a factored
set of states X = X1 × · · · ×Xn and dynamics function of
the form

f(⟨x1, . . . , xn⟩, u) = ⟨f1(x1, u1), . . . , fn(xn, un)⟩,
where ui = ⟨u, x1, . . . , xi−1⟩.

Function fi determines the i-th element of the next state
based on the input u and the first i − 1 elements of the cur-
rent state. It is convenient to also introduce the function that
returns the first i elements

f̄i(⟨x1, . . . , xi⟩, u) = ⟨f1(x1, u1), . . . , fi(xi, ui)⟩.

Adopting a modular view, we can see cascade C as consist-
ing of n dynamics D1, . . . , Dn where

Di = ⟨U ×X[i−1], Xi, fi⟩.

We call every Di a component of the cascade, and we write
C = D1 ⋉ · · · ⋉ Dn. Every component has access to the
state of the preceding components but not to the state of the
subsequent components, avoiding cycling dependencies.

2.3 Recurrent Neural Cascades
A core recurrent tanh neuron is a triple N = ⟨V,X, f⟩
where V ⊆ R is the input domain, X ⊆ R are the states,
and f is the function

f(x, v) = tanh(w · x+ v),

with w ∈ R called recurrent weight. A recurrent tanh neu-
ron is the composition of a core recurrent tanh neuron N
with an input function β : U ⊆ Ra → V that can be im-
plemented by a feedforward neural network. Namely, it is a
triple ⟨U,X, fβ⟩ where fβ(x, u) = f(x, β(u)). A recurrent
tanh neuron is a form of dynamics, so the notions for dynam-
ical systems apply. We will mostly omit the term ‘recurrent
tanh’ as it is the only kind of neuron we consider explicitly.

A Recurrent Neural Cascade (RNC) is a dynamical sys-
tem whose dynamics are a cascade of recurrent tanh neu-
rons and whose output function can be implemented by a
feedforward neural network. An RNC+ is an RNC where all
recurrent weights are positive.

2.4 Automata
Automata are dynamical systems, but the terminology em-
ployed is different. The input and output domains are called
alphabets, and their elements are called letters. Input and
output sequences are seen as strings, where a string σ1 . . . σℓ
is simply a concatenation of letters. The set of all strings
over an alphabet Σ is written as Σ∗. An automaton is a
tuple A = ⟨Σ, Q, δ, qinit,Γ, θ⟩ where Σ is called input al-
phabet (rather than input domain), Q is the set of states,
δ : Q × Σ → Q is called transition function (rather than
dynamics function), qinit ∈ Q is the initial state, Γ is called
output alphabet (rather than output domain), and θ : Q→ Γ
is the output function. The tuple D = ⟨Σ, Q, δ⟩ is called
a semiautomaton, rather than dynamics. For every σ ∈ Σ,
the function δσ(q) = δ(q, σ) is called a transformation of
the semiautomaton D; it is an identity transformation if
δσ(q) = q for every q ∈ Q. States and alphabets of an
automaton are allowed to be infinite. If an automaton has a
finite number of states we say it is a finite-state automaton.
Given a semiautomaton ⟨Π, Q, δ⟩ and a function ϕ : Σ → Π,
their composition is the semiautomaton ⟨Σ, Q, δϕ⟩ whose
transition function is δϕ(q, σ) = δ(q, ϕ(σ)).

2.5 Classes of Languages and Functions
The set of all strings over an alphabet Σ is denoted by Σ∗.
A language L over a finite Σ is a subset of Σ∗. Language L
can also be seen as the indicator function fL : Σ∗ → {0, 1}
where fL(x) = 1 iff x ∈ L. An automaton acceptor is
an automaton whose output alphabet is {0, 1}. An automa-
ton acceptor recognises L if it implements fL. The regu-
lar languages are the ones that can be expressed by regular
expressions, and they coincide with the languages that can
be recognised by finite-state automaton acceptors (Kleene
1956). The star-free regular languages are the ones that can
be expressed by star-free regular expressions, and they co-
incide with the aperiodic regular languages also known as
noncounting regular languages, cf. (Ginzburg 1968). A lan-
guage L is aperiodic if there exists a non-negative integer n
such that, for all strings x, y, z ∈ Σ∗, we have xynz ∈ L iff
xyn+1z ∈ L. The characterisations for languages generalise
to functions f : Σ∗ → Γ in the following way. A function
is regular if it can be implemented by a finite-state automa-
ton. A function F is aperiodic if there exists a non-negative
integer n such that, for all strings x, y, z ∈ Σ∗, the equality
F (xynz) = F (xyn+1z) holds.
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3 Expressivity of RNC+
In this section we present our results. We begin by intro-
ducing the setting in Section 3.1, and then briefly reporting
the existing expressivity results in Section 3.2. The core of
our contribution is in Sections 3.3, 3.4, and 3.5. In particu-
lar, Section 3.3 introduces the notion of identity element for
languages and functions, discussing several examples; Sec-
tion 3.4 presents our core technical results; and Section 3.5
presents our expressivity results.

3.1 Setting
Our goal is to establish expressivity results for RNC+. We
consider throughout the section an input alphabet Σ and an
output alphabet Γ. Then the goal is to establish which func-
tions from Σ∗ to Γ can be implemented by RNC+, which
however operate on real-valued input domain U ⊆ Ra and
output domain Y ⊆ Rb. To close the gap while staying
general, we avoid identifying U with Σ and Y with Γ. In-
stead, we introduce mappings between such sets, that can be
regarded as symbol groundings.

Definition 1. Given a domain Z ⊆ Rn and an alphabet Λ,
a symbol grounding from Z to Λ is a continuous surjective
function λ : Z → Λ.

Symbol groundings can be seen as connecting the subym-
bolic level Z ⊆ Rn to the symbolic level Λ. For an element
z at the subsymbolic level, the letter λ(z) is its meaning at
the symbolic level. Assuming that a symbol grounding λ is
surjective means that every letter corresponds to at least one
element z ∈ Z. The assumption is w.l.o.g. because we can
remove the letters that do not represent any element of the
subsymbolic level.

We fix an input symbol grounding λΣ : U → Σ and an
output symbol grounding λΓ : Y → Γ. Then we say that an
RNC+ N implements a function F : Σ∗ → Γ if, for every
input string u1 . . . ut ∈ U∗, the following equality holds.

λΓ
(
N(u1 . . . ut)

)
= F

(
λΣ(u1) . . . λΣ(ut)

)
Specifically for languages, we have Σ finite and Γ = {0, 1},
and we say that an RNC+ recognises L if it implements
its indicator function fL. Note that symbol groundings are
w.l.o.g. since one can choose them to be identity. In this
case, implementing a function under symbol groundings co-
incides with the default notion of implementing a function.

3.2 Existing Expressivity Results
We report the existing expressivity results for RNC+.

Theorem 1 (Knorozova and Ronca, 2024). The regular lan-
guages recognised by RNC+ are the star-free regular lan-
guages. The regular functions over finite alphabets imple-
mented by RNC+ are the aperiodic regular functions.

Note, in particular, that the results have no implication for
languages and functions that are not regular.

3.3 Languages and Functions with Identity
We introduce the notion of identity element for languages
and functions, and we discuss several examples.

Definition 2. A letter e ∈ Σ is an identity element for a
language L over Σ if, for every pair of strings x, y ∈ Σ∗, it
holds that xy ∈ L if and only if xey ∈ L.

The above definition generalises to functions as follows.

Definition 3. A letter e ∈ Σ is an identity element for a
function F : Σ∗ → Γ if, for every pair of strings x, y ∈ Σ∗,
it holds that F (xy) = F (xey).

Note that e is an identity element for a language L iff it
is an identity element for its indicator function fL. Next we
present examples of languages and functions from different
application domains.

Example 3 (Reinforcement Learning). In reinforcement
learning, agents are rewarded according to the history of
past events. Consider an agent that performs navigational
tasks in a grid. At each step, the agent moves into one direc-
tion by one cell or stays in the same cell, which is communi-
cated to us using the propositions Σ = {stayed , left , right ,
up, down}. We know the initial position (x0, y0), and we
reward the agent when it visits a goal position (xg, yg). This
amounts to a language over Σ, for which the proposition
stayed is an identity element.

When the grid of the above example is finite, the resulting
language can be recognised by RNC+ as a consequence of
Theorem 1 since the language is star-free regular.

Example 4 (Temporal Logic). The temporal logic Past LTL
allows for describing patterns over traces using past op-
erators (Manna and Pnueli 1991). The Past LTL formula
φ = pS q holds whenever proposition p has always oc-
curred since the latest occurrence of q. This defines a lan-
guage Lφ over the alphabet Σ = {∅, {p}, {q}, {p, q}}. The
letter σp = {p} is an identity element for Lφ.

The language of the above example can be recognised by
RNC+ according to Theorem 1 since it is star-free regular.

Example 5 (Arithmetic Functions). The following ones are
examples of arithmetic functions with an identity element.

• F1 takes a list of natural numbers and returns their prod-
uct, as F1(n1 . . . nℓ) = n1 × · · · × nℓ.

• F2 takes a list of reals and returns the sign of their sum,
as F2(r1 . . . rℓ) = sign(r1 + · · ·+ rℓ).

• F3 takes a list of bits {0, 1} and indicates whether they
sum to 16, as F3(n1 . . . nℓ) = [n1 + · · ·+ nℓ = 16].

• F4 takes a list of integers from [0, 6] and returns their sum
modulo 7, as F4(n1 . . . nℓ) = n1 + · · ·+ nℓ mod 7.

• F5 takes a list of increments {−1, 0,+1} and returns the
sign of their sum, as F5(z1 . . . zℓ) = sign(z1 + · · ·+ zℓ).

The identity element of F1 is 1, the identity element of F2,
F3, F4, and F5 is 0.

Theorem 1 implies that function F3 of the above example
can be implemented by RNC+ since it is aperiodic regular,
and also that function F4 cannot be implemented by RNC+
since it is regular but not aperiodic.
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3.4 Our Core Results
This section presents our core technical results. First, we
show that identity elements imply identity transformations.

Proposition 3. A canonical automaton implements a func-
tion with an identity element only if it has an identity trans-
formation.

Proof. Let F be a function from Σ∗ to Γ having an identity
element e ∈ Σ. LetA = ⟨Σ, Q, δ⟩ be a canonical automaton
that implemements F . Let us consider the transformation
δe(q) = δ(q, e) of A. We show that δe is an identity trans-
formation. Let q ∈ Q, and let q′ = δe(q). It suffices to show
q = q′. Since A is canonical and hence connected, there ex-
ists a string s that leads to q from the initial state. Then, the
string se leads from the initial state to q′. For every string s′,
we have Aq(s′) = A(ss′) = F (ss′) and similarly we have
Aq′(s′) = A(ses′) = F (ses′). We have F (ss′) = F (ses′)
since e is an identity element for F , and hence the equalities
above imply Aq(s′) = Aq′(s′). Then the required equality
follows immediately by canonicity of A.

Technically, the following lemma is our core result.

Lemma 1. Let D be the dynamics of an RNC+ with n com-
ponents, and let AT be a semiautomaton with an identity
transformation. Let AΣ be the composition of AT with the
input symbol grounding λΣ. If D homomorphically repre-
sents AΣ, then AT is homomorphically represented by a
cascade of n three-state semiautomata.

Proof. See Section 4.

Equipped with the lemma above, we can now characterise
the functions that an RNC+ can implement.

Theorem 2. Let F be a function from Σ∗ to Γ that has an
identity element, with Γ discrete. If F is implemented by an
RNC+ with n neurons, then there exists an automaton that
implements F and whose semiautomaton is a cascade of n
three-state semiautomata.

Proof. Let N be an RNC+ with n neurons that implements
F . Furthermore, let A be a canonical automaton that imple-
ments F , which always exists. By Proposition 3, we have
that A has an identity transformation. Since N is equiva-
lent to A, by Proposition 2, we have that the dynamics of N
homomorphically represent the semiautomaton of A. Then,
by Lemma 1, it follows that the semiautomaton of A is ho-
momorphically represented by a cascade C of n three-state
semiautomata. By Proposition 1, there is an automaton AC

with semiautomaton C that is equivalent to A, and hence it
implements F .

The above theorem can be interpreted as providing a
lower bound on the succinctness of RNC+. Namely, if a
function requires at least n components to be implemented
by a cascade of three-state semiautomata, then it necessarily
requires an RNC+ with at least n neurons.

In particular, the theorem immediately implies a finite
bound on the number of states required to implement any
function that can be implemented by an RNC+.

Corollary 1. Let F be a function from Σ∗ to Γ that has an
identity element, with Γ discrete. If F is implemented by an
RNC+ with n neurons, then there exists an automaton with
at most 3n states that implements F .

The corollary can be interpreted as providing a lower
bound on the succinctness of RNC+. Namely, an RNC+
with n components cannot implement a function that re-
quires more than 3n states.

Remark 1. Theorem 2 and Corollary 1 apply to languages
seamlessly, as they apply to their indicator function.

3.5 Our Expressivity Results
In this section we state our expressivity results for functions,
and hence languages, with an identity element.

Theorem 3. The functions with an identity element and a
discrete codomain implemented by RNC+ are regular.

Proof. Let us consider a function F with an identity ele-
ment and a discrete codomain, and let N be an RNC+ that
implements F . By Theorem 2, there exists an automaton A
that implements F and whose semiautomaton is a cascade
of three-state semiautomata. In particular, A is finite-state
and hence F is regular.

We combine our results for functions with the existing
ones to obtain an exact characterisation of the functions over
finite alphabets recognised by RNC+ in the presence of an
identity element.

Theorem 4. The functions over finite alphabets having an
identity element that can be implemented by RNC+ are ape-
riodic regular.

Proof. Consider a function F over finite alphabets with an
identity element implemented by RNC+. We have that F
is regular by Theorem 3, noting that every finite alphabet is
discrete. Then, F is aperiodic regular by Theorem 1.

Having established the results for functions, we now de-
rive the result for languages, considering that their indicator
function is a function over finite alphabets.

Theorem 5. The languages having an identity element that
can be recognised by RNC+ are star-free regular.

Proof. Let L be a language with an identity element, and
let fL be its indicator function. An RNC+ recognises L if it
implements fL. By Theorem 3, it follows that fL is regular.
We conclude that L is regular, and hence star-free regular by
Theorem 1.

Theorems 3–5 allow us to draw the missing conclusions
for the languages and functions of the examples from the
previous sections. First, Theorem 3 implies that function F
of Example 2 and functions F1 and F2 of Example 5 cannot
be implemented by RNC+ since they are not regular. Sec-
ond, Theorem 4 implies that function F5 of Example 5 can-
not be implemented by RNC+ since it is not regular. Third,
Theorem 5 implies that the language of Example 3 cannot
be recognised by RNC+ when the grid is infinite, since the
language is not regular in this case.
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4 Proof of Lemma 1
In this section we prove Lemma 1. We first introduce the
context in Section 4.1 below. Ultimately we will construct
the required cascade in Section 4.5. To do that, we establish
several intermediate results in Sections 4.2, 4.3, and 4.4.

4.1 Context
We introduce the context of the proof. Let D = ⟨X,U, f⟩
be the dynamics of an RNC+. We have D = N1 ⋉ · · ·⋉Nn

where Ni = ⟨Xi, Ui, fi⟩ is a recurrent tanh neuron, with
dynamics function

fi(xi, ui) = tanh(wi · xi + βi(ui)),

with input ui = ⟨u, x1, . . . , xi−1⟩ and weight wi ∈ R+.
Let AT = ⟨QT ,Σ, δT ⟩ be a semiautomaton with an identity
transformation induced by a letter e ∈ Σ. Let AΣ be the
semiautomaton resulting from the composition of AT with
the input symbol grounding λΣ. Namely,AΣ = ⟨U,QT , δΣ⟩
with δΣ(q, u) = δT (q, λΣ(u)). Let ue ∈ U be an input such
that e = λΣ(ue), which exists since λΣ is surjective.

The assumption is that AΣ is homomorphically repre-
sented by D. Thus, there exists a homomorphism ψ from
some subdynamics D′ = ⟨X ′, U, f⟩ of D to AΣ.

4.2 Convergence results
We show that the sequence of states of any RNC+ upon re-
ceiving a repeated input is convergent. In particular, it con-
verges to a fixpoint of the dynamics function of the RNC+.
We introduce notation to refer to such a sequence of states.

Definition 4. Let u ∈ U , let ⟨x1, . . . , xn⟩ ∈ X . For every
i ∈ [n], we define the sequence (xi,t)t≥0 as

xi,0 = xi,

xi,t = fi(xi,t−1, ⟨x1,t−1, . . . , xi−1,t−1, u⟩) for t ≥ 1,

and we refer to it by Si(u, x1, . . . , xi). For every i ∈ [n] and
every index t ≥ 0, we define

St
i (u, x1, . . . , xi) = xi,t,

S̄t
i (u, x1, . . . , xi) = ⟨x1,t, . . . , xi,t⟩.

We show the sequence of states to be convergent, adapting
an argument from (Knorozova and Ronca 2024a).

Proposition 4. Let i ∈ [n], let u ∈ U , and let x ∈ X[i]. The
sequence Si(u,x) is convergent.

In light of the above proposition, we introduce notation to
refer to the limit of the converging sequence of states.

Definition 5. Let i ∈ [n], let u ∈ U , and let x ∈ X[i].
We define S∗

i (u,x) as the limit of the sequence Si(u,x).
Furthermore, we define S̄∗

i (u,x) = ⟨x1,∗, . . . , xi,∗⟩ where
xj,∗ = S∗

j (u, x1, . . . , xj) for every j ∈ [i].

Next we show that the sequence converges to a fixpoint.

Proposition 5. Let i ∈ [n], let u ∈ U , and let x ∈ X[i].
The sequence Si(u,x) converges to a fixpoint of the function
hi,v(x) = tanh(wi · x + v) for v = β1(u) when i = 1 and
v = βi

(
u, S̄∗

i−1(u,x)
)

when i ≥ 2.

Proof. Let (xi,t)t≥0 be the sequence Si(u,x), and let
S̄∗
i (u,x) = ⟨x1,∗, . . . , xi,∗⟩. For every j ∈ [i], we have

lim
t→∞

xj,t = xj,∗.

By continuity of fi, we have
lim
t→∞

fi(xi,t, ⟨u, x1,t, . . . , xi−1,t⟩)

= fi(xi,∗, ⟨u, x1,∗, . . . , xi−1,∗⟩)
= hi,v(xi,∗).

By the definition of xi,t+1, we have
lim
t→∞

fi(xi,t, ⟨u, x1,t, . . . , xi−1,t⟩) = lim
t→∞

xi,t+1 = xi,∗.

Thus hi,v(xi,∗) = xi,∗, hence xi,∗ is a fixpoint of hi,v .

4.3 Equivalence classes
Based on the convergence results, we introduce equivalence
relations which describe the necessary behaviour of the con-
sidered homomorphism ψ. Here the focus is on the relevant
subdynamicsD′ of the RNC+. Let us recall thatX ′ is the set
of states of D′, it is a factored set, and X ′

[i] denotes its pro-
jection on the first i components. Elements of X ′

[i] are states
of the prefixN1⋉· · ·⋉Ni of the RNC+ dynamics. We intro-
duce an equivalence relation on X ′

[i] based on where states
converge when the identity input ue is repeatedly applied.
Definition 6. For every i ∈ [n], we define the equivalence
relation ∼e onX ′

[i] as the smallest equivalence relation such
that, for every x,y ∈ X[i], the equivalence x ∼e y holds
whenever S̄∗

i (ue,x) = S̄∗
i (ue,y).

Next we coarsen the above equivalence relation by mak-
ing equivalent the successor states of equivalent states.
Definition 7. For every i ∈ [n], we define the equivalence
relation ∼ on X ′

[i] as the smallest equivalence relation such
that, for every x,y ∈ X ′

[i], the following implications hold:

• x ∼e y implies x ∼ y;
• x ∼ y implies f̄i(x, u) ∼ f̄i(y, v) for every u, v ∈ U

with λΣ(u) = λΣ(v).
In the next proposition we show that, when input ue is

iterated, the homomorphism maps all states of the resulting
sequence to the same state of the target semiautomaton.
Proposition 6. For every x ∈ X ′ and every index t ≥ 0, it
holds that ψ(S̄t

n(ue,x)) = ψ(S̄∗
n(ue,x)) = ψ(x).

Proof. Let x ∈ X ′. For every t ≥ 1, by definition we have
S̄t
n(ue,x) = f(S̄t−1

n (ue,x), ue). Then, by the definition of
homomorphism, and since λ(ue) = e induces an identity
transformation in AT , the following holds for every t ≥ 1,
ψ(S̄t

n(ue,x)) = ψ(f(S̄t−1
n (ue,x), ue))

= δT (ψ(S̄t−1(ue,x), e)) = ψ(S̄t−1(ue,x)).

and hence ψ(S̄t
n(ue,x)) = ψ(S̄0

n(ue,x)) = ψ(x). Then, by
continuity of ψ,
ψ(S̄∗

n(ue,x)) = ψ
(
lim
t→∞

S̄t
n(ue,x)

)
= lim

t→∞
ψ(S̄t

n(ue,x)) = lim
t→∞

ψ(x) = ψ(x).

This concludes the proof of the proposition.
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p− p+

gv+
gv−
gv

Figure 2: Function gv for different values of v.

Finally we develop an inductive argument to show that,
starting from two states that are treated equally by the ho-
momorphism, their successors will also be treated equally.
And thus the homomorphism is overall invariant under the
coarser of our equivalence relations.

Proposition 7. For every x,y ∈ X ′, it holds that x ∼ y
implies ψ(x) = ψ(y).

Proof. Since x ∼ y, there exist states x0,y0 ∈ X ′ with
x0 ∼e y0, and two possibly-empty sequences of inputs
u1, . . . , ut and v1, . . . , vt such that (i) λΣ(uk) = λΣ(vk)
for every k ∈ [t], and (ii) letting xk = f(xk−1, uk) and
yk = f(yk−1, vk) for every k ∈ [t], we have xt = x and
yt = y. We prove the proposition by induction on t.

In the base case t = 0, hence x0 = x and y0 = y, and
hence x ∼e y. Thus S̄∗

n(ue,x) = S̄∗
n(ue,y), and hence by

Proposition 6 we have ψ(x) = ψ(y) as required.
In the inductive case, we have t ≥ 1 and we assume

ψ(xt−1) = ψ(yt−1). By the definition of homomorphism,

ψ(xt) = ψ(f(xt−1, ut)) = δT
(
ψ(xt−1), λΣ(ut)

)
,

ψ(yt) = ψ(f(yt−1, vt)) = δT
(
ψ(yt−1), λΣ(vt)

)
.

Since ψ(xt−1) = ψ(yt−1) and λΣ(ut) = λΣ(vt), we con-
clude that ψ(xt) = ψ(yt), as required.

4.4 Analysis of tanh dynamics
We carry out an analysis of the dynamics function of a re-
current tanh neuron, with the goal of identifying its fixpoints
and in particular the way they are positioned. Let w ∈ R+,
let v ∈ R, and let us consider the functions

hv(x) = tanh(w · x+ v), gv(x) = x− hv(x).

Function hv is the dynamics function of a recurrent neuron
for a fixed input, and its fixpoints coincide with the zeroes
of gv . In fact, hv(x) = x iff gv(x) = 0. Hence, we analyse
the zeroes of gv in place of the fixpoints of hv .

Proposition 8. If w ∈ [0, 1], function gv has only one zero.

In the rest we consider the case of w > 1. The graph of
gv for different values of v is shown in Figure 2. As it can

be seen from the graph, going from left to right, the function
is increasing, then decreasing, and then increasing again. In
particular, it has two stationary points.
Proposition 9. The following properties hold:
• gv(x) goes to −∞ when x→ −∞,
• gv(x) goes to +∞ when x→ +∞,
• gv has exactly two stationary points pv− < pv+,
• gv is strictly increasing in (−∞, pv−) ∪ (pv+,+∞),
• gv is strictly decreasing in the interval (pv−, p

v
+).

In particular, pv− is a local maximum of gv , and pv+ is a
local minimum of gv . Furthermore, the derivative of gv is
bounded as g′v(x) ∈ [0, 1] for every x ∈ [−1, pv−]∪[pv+,+1].

Different values of v determine different diagonal transla-
tions of the same curve, as it can be observed from Figure 2.
They also determine different horizontal translations of the
derivative g′v , which allows us to determine how stationary
points are translated for different values of v.
Proposition 10. Let u, v ∈ R, and let d = (u − v)/w. It
holds that gu(x) = gv(x + d) − d and g′u(x) = g′v(x + d).
Furthermore, pu+ = pv+ − d and pu− = pv− − d.

Thus, depending on v, the function gv crosses the x axis
in one, two, or three points. Of particular interest to us are
the cases when gv has exactly two zeroes, i.e., when it is tan-
gent to the x axis in one of its stationary points. This holds
exactly for two functions gv− , gv+

highlighted in Figure 2.
Proposition 11. There exist unique values v+ < v− such
that the function gv− takes value zero at its local maximum,
and the function gv+ takes value zero at its local minimum.

The local maximum of gv− and the local minimum of gv+

provide us with two pivots, that we call p− and p+ respec-
tively. The result of this section is that the zeroes of gv , and
hence the fixpoints of hv , always have the same position rel-
ative to the pivots p− and p+, for any value of v.
Proposition 12. Let v ∈ R. The function hv has one, two,
or three fixpoints. They are in [−1,+1]. Furthermore,

1. if hv has one fixpoint x1, then x1 ≤ p− or p+ ≤ x1;
2. if hv has two fixpoints x1 < x3, then x1 ≤ p− < p+ ≤ x3

or x1 ≤ p− < p+ ≤ x3;
3. if hv has three fixpoints x1 < x2 < x3, then x1 ≤ p− <
x2 < p+ ≤ x3.

Proof sketch. The fixpoints of hv correspond to the zeroes
of gv . Considering the intervals I1 = [−1, pv−], I2 =
(pv−, p

v
+), and I3 = [pv+,+1], we have that Proposition 9

implies the following cases: (i) gv has one zero x1, and ei-
ther x1 ∈ I1 or x1 ∈ I3; (ii) gv has two zeroes x1, x3, and
either x1 ∈ I1 and x3 ∈ I2, or x1 ∈ I2 and x3 ∈ I3; and
(iii) gv has three zeroes x1 ∈ I1, x2 ∈ I2, x3 ∈ I3.

In this proof sketch we discuss the case when gv has a
zero x1 ∈ I1. In this case, to show the proposition, it suf-
fices to show x1 ≤ p−. The idea is to relate the stationary
points pv− and p−. We have that gv is an upward-right trans-
lation of gv− , since gv has a zero x1 ∈ I1. Referring to
Figure 2, examples of gv are the curves above the blue curve
of gv− . This in particular implies p− < pv−. The amount
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of horizontal and vertical shift is d− = (v − v−)/w < 0
according to Proposition 10. The same proposition implies
that d− is the horizontal shift of the derivative, and hence
pv− = p− − d− by that fact that stationary points are zeroes
of the derivative. Considering that gv−(p−) = 0, the shift
implies that gv(pv−) = −d− > 0. Then, according to Propo-
sition 9, the slope g′v(x) of the curve gv(x) in the interval I1
is bounded as [0, 1], i.e., the function gv grows sublinearly,
and hence the value of gv changes by less than −d− in the
interval [p−, pv−] whose length is −d−. Therefore the value
of gv has not reached zero yet at p−, and hence its zero x1
is further to the left, satisfying x1 ≤ p− as required. This
concludes the proof of the considered case. The other cases
can be proved using similar observations.

4.5 Construction of the semiautomata cascade
In this section we construct a cascade C = A1⋉ · · ·⋉An of
three-state semiautomata that homomorphically represents
the target semiautomaton AT , proving Lemma 2 and hence
our central Lemma 1. The construction makes use of the
preliminary results proved in the previous sections.

The construction is based on the idea that the relevant
states of the prefix Pi = N1⋉ · · ·⋉Ni of the RNC+ dynam-
ics can be grouped into 3i classes with the homomorphism
ψ treating equally all states in the same class. Recalling the
equivalence relation introduced in Definition 7, our first step
is to devise a function ρ̄i that maps the relevant states of Pi

into 3i classes while preserving the equivalence relation, in
the sense of Proposition 13. Then the homomorphism will
treat the states in each class equally since it is invariant under
the equivalence relation according to Proposition 7.

First we introduce an auxiliary function that categorises
any real value into one of three digits, based on its position
relative to the pivots p− and p+ introduced in Section 4.4.
Definition 8. We define the set D = {1, 2, 3}, and we define
the function κ : R → D as

κ(x) =


1 if x ≤ p−,

2 if p− < x < p+,

3 if p+ ≤ x.

Next we introduce a function that categorises states.
Definition 9. Let i ∈ [n]. The function ηi : X ′

[i] → D is

ηi(x1, . . . , xi) = κ(S∗
i (ue, x1, . . . , xi)).

Then, the function η̄i : X ′
[i] → Di is

η̄i(x1, . . . , xi) = ⟨η1(x1), . . . , ηi(x1, . . . , xi)⟩.
The function ηi takes a state ⟨x1, . . . , xi⟩ and considers

the fixpoint S∗
i (ue, x1, . . . , xi) to which it converges on in-

put ue. Then, the fixpoint is categorised by κ. We are now
ready to introduce the function ρ̄i mentioned above.
Definition 10. Let i ∈ [n]. The function ρ̄i : X ′

[i] → D is

ρ̄i(x) = min{η̄i(JxK)}.
Then, the function ρi : X ′

[i] → D′
i is

ρi(x) = di for ρ̄i(x) = ⟨d1, . . . , di⟩.

The function ρ̄i(x) returns a tuple of digits representing
the equivalence class JxK. Note that ρ̄i(x) = η̄i(x) when
JxK = JxKe. We show it preserves equivalence.
Proposition 13. For every i ∈ [n], and every x,y ∈ X ′

[i], if
ρ̄i(x) = ρ̄i(y) then x ∼ y.

Proof. Assuming ρ̄i(x) = ρ̄i(y), we have
min{η̄i(JxK)} = min{η̄i(JyK)} = ⟨d1, . . . , di⟩.

Then, there exists a pair of states ⟨x1,0, . . . , xi,0⟩ ∈ JxK and
⟨y1,0, . . . , yi,0⟩ ∈ JyK such that
η̄i(x1,0, . . . , xi,0) = η̄i(y1,0, . . . , yi,0) = ⟨d1, . . . , di⟩.

We show ⟨x1,0, . . . , xi,0⟩ ∼e ⟨y1,0, . . . , yi,0⟩, and then the
proposition will follow immediately by transitivity of the
equivalence relation. Let x1,∗, . . . , xi,∗ and y1,∗, . . . , yi,∗ be

S̄∗
i (x1,0, . . . , xi,0) = ⟨x1,∗, . . . , xi,∗⟩,
S̄∗
i (y1,0, . . . , yi,0) = ⟨y1,∗, . . . , yi,∗⟩.

It suffices to show ⟨x1,∗, . . . , xi,∗⟩ = ⟨y1,∗, . . . , yi,∗⟩, which
we show next by induction on i.

In the base case i = 1. By Proposition 5, we have that x1,∗
and y1,∗ are fixpoints of the function h1,v for v = β1(ue).
If w1 ∈ [0, 1], then h1,v has a unique fixpoint by Proposi-
tion 8, and hence x1,∗ = y1,∗ as required. Next we consider
the case when w1 > 1. We have η1(x1,0) = η1(y1,0) and
hence, by the definition of η1, one of the three following con-
ditions holds: (i) x1,∗, y1,∗ ≤ p−, (ii) p− < x1,∗, y1,∗ < p+,
(iii) p+ ≤ x1,∗, y1,∗. Then, by Proposition 12, it follows that
x1,∗ = y1,∗ as required.

In the inductive case i ≥ 2, and the inductive hypothe-
sis is ⟨x1,∗, . . . , xi−1,∗⟩ = ⟨y1,∗, . . . , yi−1,∗⟩. By Proposi-
tion 5, we have that xi,∗ is a fixpoint of the function hi,v for
vx = βi(ue, x1,∗, . . . , xi−1,∗), and we have that yi,∗ is a fix-
point of the function hi,v for vy = βi(ue, y1,∗, . . . , yi−1,∗).
By the inductive hypothesis, we have vx = vy , and hence
let us rename them v. Thus, xi,∗ and yi,∗ are fixpoints
of the same function hi,v . If wi ∈ [0, 1], then hi,v has a
unique fixpoint by Proposition 8, and hence xi,∗ = yi,∗ as
required. Next we consider the case when wi > 1. We have
ηi(x1,0, . . . , xi,0) = ηi(y1,0, . . . , yi,0), and hence, by the
definition of ηi, we have that one of the three following con-
ditions holds: (i) xi,∗, yi,∗ ≤ p−, (ii) p− < xi,∗, yi,∗ < p+,
(iii) p+ ≤ xi,∗, yi,∗. Since xi,∗ and yi,∗ are fixpoints of
hi,v as argued above, by Proposition 12, it follows that
xi,∗ = yi,∗ as required. This concludes the proof.

Construction. We are now ready to define the cascade C.
For i ∈ [n], the semiautomaton Ai of C is Ai = ⟨Σi, Qi, δi⟩
where the alphabet and states are

Σi = Σ×Q1 × · · · ×Qi−1, Qi = ρi
(
X ′

[i]

)
,

and the transition function is defined as
δi(di, ⟨σ, d1, . . . , di−1⟩) = ρi

(
f̄i(x, uσ)

)
, (1)

for any uσ such that λ(uσ) = σ and any x ∈ X ′
[i] such that

ρ(x) = ⟨d1, . . . , di⟩ if there is such an x, and otherwise
δi(di, ⟨σ, d1, . . . , di−1⟩) = di. (2)

The transition function is indeed a function, in light of the
following proposition.
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Proposition 14. For every u, v ∈ U , and every x,y ∈ X ′
[i],

if λ(u) = λ(v) and ρ̄i(x) = ρ̄i(y) then

ρi
(
f̄i(x, u)

)
= ρi

(
f̄i(y, v)

)
.

Proof. By Proposition 13, we have x ∼ y. Then by the def-
inition of ∼, we have f̄i(x, u) ∼ f̄i(y, v). Then the propo-
sition follows immediately by the definition of ρi.

The states of Ai are the digits returned by ρi on the rele-
vant states of Pi. The transition function is defined by two
cases. Equation (1) defines it in terms of the dynamics func-
tion f̄i of Pi, by applying it to an RNC+ state and input that
are mapped to the current state and input of Ai. To have
a totally-defined transition function, Equation (2) completes
the definition with a dummy choice of the successor state,
which is argued below to be irrelevant. The specific choice
of uσ and x in Equation (1) among the possible ones does
not affect the outcome of the transition function, by the in-
variance property described in Proposition 14.

The resulting cascade is C = ⟨Σ, QC , δC⟩ with states
QC = Q1 × · · · ×Qn and transition function

δC(⟨d1, . . . , dn⟩, σ) = ⟨δ1(d1, σ1), . . . , δn(dn, σn)⟩,
with σi = ⟨σ, d1, . . . , di−1⟩.

Finally we are ready to show that the constructed cas-
cade C captures the target semiautomaton AT , so proving
the main lemma.
Lemma 2. It holds that C homomorphically representsAT .

Proof. Let Q′
C = ρ̄n(X

′). We have that δC(Q′
C ,Σ) ⊆ Q′

C ,
since f(X ′, U) ⊆ X ′ because X ′ are states of the subdy-
namics D′. Thus C ′ = ⟨Σ, Q′

C , δC⟩ is a subsemiautomaton
of C. Note that, on states Q′

C , the transition function δC is
defined by Eq. (1).

It suffices to show a homomorphism ψ′ from C ′ to AT .
We define ψ′(d) = ψ(x) for any choice of x ∈ X ′ such
that ρ̄n(x) = d. Note that ψ′ is indeed a function, since,
by Proposition 13, ψ is invariant under the equivalence ∼,
and every x ∈ X ′ satisfying ρ̄n(x) = d is from the same
equivalence class JxK. We show that ψ′ : Q′

C → QT is a
homomorphism from C ′ to AT . First, ψ′ is continuous as
required, since ψ is continuous. Second, we argue that ψ′ is
surjective as required. Let q ∈ QT . It suffices to show some
d ∈ Q′

C such that ψ′(d) = q. We have that ψ is surjective,
and hence there exists x ∈ X ′ such that ψ(x) = q. We
have ρ̄n(x) = d ∈ Q′

C , and hence ψ′(d) = ψ(x) = q
by the definition of ψ′. Third, we argue that ψ′ satisfies
the homomorphism condition. Let d ∈ Q′

C , let x be the
such that ρ(x) = d, let σ ∈ Σ, and let uσ be such that
λΣ(uσ) = σ. Then,

ψ′(δ′C(d, σ)) = ψ′(ρ̄n(f(x, uσ)))

= ψ(f(x, uσ))

= δΣ(ψ(x), uσ)

= δT (ψ(x), σ)

= δT (ψ
′(d), σ).

Therefore C homomorphically represents AT .

5 Related Work
The ability of non-differentiable RNNs to capture formal
languages is discussed in (Kleene 1956; Nerode and Sauer
1957; Minsky 1967). These are networks such as the ones
from (McCulloch and Pitts 1943), and their expressivity co-
incides with the regular languages. In this paper and the rest
of this section we focus on differentiable neural networks.

The Turing-completeness capabilities of RNNs as an of-
fline model of computation are studied in (Siegelmann and
Sontag 1995; Kilian and Siegelmann 1996; Hobbs and
Siegelmann 2015; Chung and Siegelmann 2021). In this
setting, an RNN is allowed to first read the entire input se-
quence, and then return the output after an arbitrary number
of iterations, triggered by blank inputs. This differs from
our setting, which focuses on the capabilities of RNNs as an
online model of computation, where the input sequence is
processed one element at a time, outputting a value at every
step. This is the way they are used in many practical appli-
cations such as Reinforcement Learning, cf. (Bakker 2001;
Hausknecht and Stone 2015; Ha and Schmidhuber 2018;
Kapturowski et al. 2019).

A form of asymptotic expressivity for RNNs is studied
in (Merrill et al. 2020). They consider the expressivity of
RNNs when their weights tend to infinity, which effectively
makes them finite-state for squashing activation functions
such as tanh, yielding an expressivity within the regular lan-
guages. In our work we consider the expressivity of net-
works with their actual finite weights.

Transformers are another class of neural networks for se-
quential data (Vaswani et al. 2017). They are a non-uniform
model of computation, in the sense that inputs of differ-
ent lengths are processed by different networks. This dif-
fers from RNNs which are a uniform model of computa-
tion. The expressivity of transformers has been studied
by relating them to families of Boolean circuits and logics
on sequences (Hahn 2020; Hao, Angluin, and Frank 2022;
Merrill, Sabharwal, and Smith 2022; Liu et al. 2023; Chiang,
Cholak, and Pillay 2023; Merrill and Sabharwal 2023).

6 Conclusions and Future Work
We have extended the understanding of the expressivity
landscape for RNC. Specifically, we have shown that the
class of formal languages with an identity element that can
be recognised by RNC+ is the star-free regular languages.
This reinforces the fact that RNC+ is a strong candidate for
learning temporal patterns captured by many well-known
temporal formalisms.

There are several interesting directions for future work.
The main open question regards the expressivity of RNC+
beyond regular and beyond identity, the white area in Fig-
ure 1. No results are known for these languages. A second
open question regards the expressivity of RNC when recur-
rent weights can be negative. According to existing results,
negative weights extend the expressivity of RNCs beyond
star-free. However, no precise characterisation is known.
Third, it is interesting future work to study the expressiv-
ity of RNC with other activation functions such as logistic
curve, ReLU, and GeLU.
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