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Abstract
The curse of dimensionality presents a significant challenge
in data mining, pattern recognition, computer vision, and ma-
chine learning applications. Feature selection is a primary
approach to address this challenge. It aims to eliminate ir-
relevant and redundant features while preserving the relevant
ones to reduce computation time, improve prediction perfor-
mance, and enhance the understanding of data. In this paper,
we introduce a new feature selection (FS) technique based
on the Logical Analysis of Data (LAD), a pattern learning
framework that combines optimization, Boolean functions,
and combinatorial theory. One of its main objectives is to
generate minimal support sets of features (subsets of features)
that discriminate between different groups of data. To gener-
ate such subsets, we first reduce the complexity of the LAD
optimization task by transforming it into the problem of enu-
merating minimal hitting sets in a hypergraph, for which ef-
ficient implementations exist. Those feature subsets are then
ranked based on a scoring method before selecting the highest
quality one. Moreover, we explore the relationship between
optimal Decision Trees (DTs) and LAD-based FS, introduc-
ing new optimality criteria, namely DTs involving a mini-
mum number of features. Finally, we conduct comparative
evaluations of LAD-based approach against several state-of-
the-art (SOTA) FS methods on benchmark datasets, includ-
ing two-class binary datasets and numerical datasets with two
and multiple classes. Experiments reveal that our approach is
competitive with SOTA methods, selecting high-quality fea-
ture subsets that maintain or enhance the performance of DTs
and other classifiers like SVM, KNN, and Naive Bayes.

1 Introduction
The advancement of high-throughput technologies in this
era has led to a rapid increase in the volume of harvested data
with respect to both dimensionality and sample size. Man-
aging these data efficiently and effectively poses an increas-
ing challenge, making traditional manual management im-
practical. Consequently, data mining and machine learning
techniques have been developed to automatically discover
knowledge within this data. However, this collected data is
frequently associated with a high level of noise due to im-
perfections in the technologies that collect such data and the
sources of the data themselves. Unsurprisingly, extracting
useful knowledge and patterns from such vast and noisy data
is a challenging task, which can lead to the curse of dimen-
sionality. Dimensionality reduction, one of the most popular

techniques to remove irrelevant and redundant features, has
received significant attention since the performance of ma-
chine learning algorithms can be noticeably affected by the
number of features and dimensions of data. Dimensional-
ity reduction techniques can be categorized primarily into
feature extraction and feature selection (Khalid, Khalil, and
Nasreen 2014). Feature extraction techniques involve pro-
jecting features into a new feature space of reduced dimen-
sionality, typically creating new features that are combina-
tions of the original features. On the contrary, feature selec-
tion approaches aim to find a small subset of most discrimi-
native information that carries the main information of high-
dimensional data. This aim can be achieved by removing ir-
relevant and redundant features while maintaining the most
relevant features to the target such as the class labels in the
classification problems. Both reduction techniques can im-
prove learning algorithm performance, decrease computa-
tional complexity, enhance model generalization, and reduce
storage requirements. Nevertheless, feature selection excels
in readability and interpretability by selecting a feature sub-
set from the original set of features without any transforma-
tion, thus preserving the meaning of the original features. In
contrast, feature extraction maps the original feature space to
a new feature space with lower dimensions. Yet, linking the
features from original feature space to new features is dif-
ficult, making analysis of new features problematic due to
the lack of real meaning in the transformed features. There-
fore, feature selection has been widely used across various
domains, including medical for disease diagnosis (Maki-
moto et al. 2023), oncology (Sayed et al. 2019), agriculture
(Buyrukoğlu 2021), and more. Previous or classical FS ap-
proaches have focused on statistics (Hall 2000), similarity
(Robnik-Sikonja and Kononenko 2003), correlation (Guyon
and Elisseeff 2003), information theory such as mutual
information (Kraskov, Stögbauer, and Grassberger 2004;
Ross 2014), and other techniques to rank features according
to their relevance to the target. However, feature selection
technique based on logic has received almost no attention.

In this paper, we introduce a new feature selection (FS)
approach based on LAD. The primary aspects of LAD in-
volve identifying minimum support sets of features (subsets
of features) necessary for explaining observations and un-
covering hidden data patterns that differentiate observations
among various groups of data. Our contributions focus on
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three important aspects: (1). To generate subsets of features,
we first mitigate the complexity of such LAD optimization
problem by proposing a reduction to the problem of enu-
merating minimal hitting sets in a hypergraph for which ef-
ficient implementations exist. Then, those feature subsets
are ranked based on a scoring method to select the highest
quality one. (2). We highlight the relationship between De-
cision Trees (DTs) and LAD-based FS enabling us to define
a new optimality criteria, focusing on the minimum number
of features sufficient for constructing DTs, and (3). We con-
duct comparative evaluations between LAD-based and sev-
eral state-of-the-art (SOTA) FS approaches on benchmark
datasets, including two-class binary datasets and numerical
datasets with two and multiple classes. Experiments reveal
that our proposed approach is competitive with SOTA meth-
ods by selecting high-quality feature subsets that maintain
or enhance the performance of DTs and other classifiers like
SVM, KNN, and Naive Bayes.

2 Related Work
2.1 Feature Selection Techniques
Feature Selection (FS) is one of the main approaches for
dimensionality reduction, with the aim of selecting a small
subset of relevant features from the original dataset, thereby
eliminating noisy (irrelevant) and redundant features. Such
process typically results in enhanced learning performance,
characterized by increased accuracy, reduced computational
costs, and improved model interpretability. Depending on
whether the training set is labelled or not, FS methods can be
broadly categorized into supervised, unsupervised and semi-
supervised techniques. In this paper, we focus mainly on
supervised FS methods for classification problems. Indeed,
due to the availability of class information, the relevance of
features is gauged as the capability of distinguishing differ-
ent classes. For instance, a feature fi is said to be relevant to
a class cj if fi and cj are highly correlated with each other.

Supervised FS methods can be broadly categorized into
three main approaches: filter, wrapper, and embedded meth-
ods. The filter method separates feature selection from clas-
sifier learning, ensuring that the bias of a learning algorithm
does not collaborate with the bias of a FS algorithm. There-
fore, it relies solely on some measures such as correlation,
dependency, consistency, information, and distance. ReliefF
(Robnik-Sikonja and Kononenko 2003), Correlation-based
(Hall 2000), and Information Gain based methods (Kraskov,
Stögbauer, and Grassberger 2004) are among the most clas-
sical algorithms of the filter method. The wrapper methods
exploit the predictive accuracy of a predefined learning al-
gorithm to evaluate the quality of selected features. They
are known for their significant computational costs when
processing data with a high number of features. Sequen-
tial forward, sequential backward, floating search (Pudil,
Novovičová, and Kittler 1994) and recursive support vec-
tor machine (R-SVM) (Zhang et al. 2006) are some exam-
ples of the wrapper method. Incorporation of feature selec-
tion as part of the training process is the main difference of
the embedded method from filter and wrapper methods. In
other words, it achieves model fitting and feature selection

simultaneously. Methods such as C4.5 (Quinlan 1993), re-
cursive feature elimination using support vector machines
(RFE-SVM) (Guyon et al. 2002), and Lasso Regularization
(Tibshirani 1996) are among the known embedded methods.

In contrast to the previous approaches, our logic-based
method, namely the Logical Analysis of Data (LAD), aims
to differentiate between various groups of data. It is a super-
vised FS method utilizing the interaction between features
and classes. During training, it generates feature subsets that
discriminate between different groups of data in the given
training set. Those feature subsets are then ranked using a
scoring method, and the highest quality subset is selected.
Finally, the highest quality one is utilized for training with a
learning algorithm, enabling prediction on the testing set.

Our FS approach can be categorized into the filter method,
as it relies on logic and a scoring method to select a feature
subset without any interaction with the learning algorithms.

2.2 Learning Optimal Decision Trees
Decision trees (DTs) are widely used in machine learning,
primarily due to their interpretability, which can be crucial
in certain scenarios, even at the cost of lower accuracy. The
predominant methods for computing DTs, such as CART
(Breiman et al. 1984), ID3 (Quinlan 1986) and C4.5 (Quin-
lan 1993) are greedy heuristics that usually construct trees
from top to bottom by selecting the feature with the high-
est information gain. Recently, there have been introduc-
tions of exact methods aimed at finding optimal DTs, con-
sidering criteria like size (nodes), depth, and empirical ac-
curacy for certain combinations. For instance, (Bessiere,
Hebrard, and O’Sullivan 2009; Narodytska et al. 2018;
Avellaneda 2020) minimize either number of nodes or max-
imum depth, subject to the constraint that the tree is per-
fectly accurate on the training set. Similarly, (Hu et al. 2020)
show how the SAT model can be adaptable to a MaxSAT
approach as its formulation allows to use any linear com-
bination of size, depth and accuracy. Other techniques
(Nijssen and Fromont 2007; Bertsimas and Dunn 2017;
Verwer and Zhang 2019; Hu, Rudin, and Seltzer 2019;
Aglin, Nijssen, and Schaus 2020) choose to optimize the
training accuracy to improve generalization performance,
subject to constraints on the maximum depth. Exact algo-
rithms have not supplanted greedy heuristics as the prevail-
ing method because the scalability remains a concern.

Despite advancements in this field, learning optimal DTs
remains NP-hard for various optimality criteria (Hyafil and
Rivest 1976). Most studies focus solely on binary datasets
of reasonable size (Narodytska et al. 2018), and rarely on
numerical datasets (Schidler and Szeider 2021). In addition
to these limitations, this paper addresses a notable gap in
optimality criteria, particularly the minimum number of fea-
tures sufficient for learning DTs. LAD-based FS is proposed
to identify such highly discriminant feature subsets.

3 Preliminaries
3.1 Machine Learning Classification
We consider a Machine Learning (ML) classification prob-
lem, defined by a set of features F = {X1, . . . , Xs}, and a
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set of classes C = {c1, c2, . . . , cK}, where C is associated
with a class attribute denoted as C. Each feature Xi ∈ F
takes values from a domain Di (Domains may correspond
to Discrete or Continuous data). Thus, feature space is de-
fined as F =

∏s
i=1 Di. To refer to an observation vector in

F, we use the notation u = (u1, . . . , us), with ui ∈ Di,
i = 1, . . . , s. An instance denotes a pair (uq, cq), where
uq ∈ F and cq ∈ C. We define a numerical dataset E as
a set of instances; |E| denotes its size. An ML classifier
is characterized by a classification function τ that maps F
into C, i.e. τ : F → C. To learn a classifier, a set of in-
stances {(u1, c1), . . . , (uK , cK)} is used by a learning al-
gorithm that returns a function that best fits the training data
and tries to generalize well on unseen test data.

For binary classification with data containing binary fea-
tures, let FB = {x1, . . . , xt} be a set of t binary features,
and E = E+ ∪ E− be a binary dataset partitioned into a set
of positive instances E+ and a set of negative instances E−.
A binary instance denotes a pair ϵq = (vq, cq) ∈ E , where
vq ∈ {0, 1}t denotes an observation vector of t binary fea-
tures, and cq ∈ {0, 1} is the class label. We have cq = 1 if
ϵq ∈ E+ and cq = 0 if ϵq ∈ E−.

3.2 Logical Analysis of Data
Logical Analysis of Data (LAD) is a logic-based data anal-
ysis methodology combining ideas and concepts from dis-
crete optimization, combinatorics and the theory of Boolean
functions. It was first introduced over 30 years ago by Peter
L. Hammer (Hammer 1986; Crama, Hammer, and Ibaraki
1988). The central concepts behind LAD are the computa-
tion of minimum support sets of features for explaining all
observations, and the discovery of hidden patterns capable
of distinguishing positive and negative sets of observations.
A collection of such patterns is used for building a classifi-
cation procedure, clustering, feature selection and other re-
lated problems. LAD has undergone continuous develop-
ment, leading to numerous applications in various domains
including medicine, business, seismology, oil exploration,
etc. For more details, we refer to (Boros et al. 2000a).

Despite its widespread popularity in the discrete math-
ematics community, and its connections with several ap-
proaches developed in machine learning and data mining,
LAD has not attracted the curiosity of the AI community.

Our goal in this paper is to bridge this gap, by using the
main first step of LAD, which involves discovering relevant
subsets of features that distinguish observations among dif-
ferent groups of data, while using them for training and test-
ing ML classifiers. In the sequel, we use similar notations
and definitions to those of (Hammer and Bonates 2006).

From Section 3.1, we have a set of t binary features FB =
{x1, . . . , xt}, and a binary dataset E = E+∪E−. Given a set
of binary features S ⊆ FB, we denote by E+

S (resp. E−
S ) as

the projection of E+ (resp. E−) on S . S is called a support
set if E+

S ∩ E−
S = ∅. Moreover, S is called irredundant or

minimal if no proper subset of it is a support set.

Example 1. Consider the dataset in Fig. 1. The projection
of E+ and E− on S = {x1, x2} is E+

S = {(0, 0), (1, 1)} and
E−
S = {(1, 0)}, respectively. Moreover, {x1, x2}, {x2, x3},

x1 x2 x3 x4 x5 class
0 0 0 1 1 1 (c1)
0 0 0 0 1 1 (c1)
1 1 1 1 0 1 (c1)
1 0 1 0 0 0 (c2)
1 0 1 1 1 0 (c2)

Figure 1: Binary dataset

{x3, x4, x5}, and {x1, x4, x5} are minimal (w.r.t. inclusion)
support sets. Concretely, {x1, x2} and {x2, x3} are the min-
imum size support sets (w.r.t. cardinality).

To compute minimum support sets in E , we asso-
ciate with every feature xk ∈ FB a new binary variable
yk, where k = 1, . . . , t, yk = 1 if xk is part of the sup-
port set, and yk = 0 otherwise. Let v = (v1, . . . , vt)
and v′ = (v′1, . . . , v

′
t) be the binary observation vectors

of t features associated with E+ and E−, respectively.
We further associate the vectors v and v′ with a vector
w(v,v′) = (w1(v,v

′), . . . , wt(v,v
′)), where wk(v,v

′) =
vk ⊕ v′k(mod 2), i.e. wk(v,v

′) = 1 if vk ̸= v′k, and
wk(v,v

′) = 0 otherwise. We can obtain the minimum sup-
port sets by solving the following set covering problem:

min
∑

k=1,...,t

yk

s.t.∑
k=1,...,t

wk(v,v
′)yk ≥ 1, ∀(v, c) ∈ E+, ∀(v′, c′) ∈ E−

yk ∈ {0, 1}

(1)

Example 2. For the dataset in Fig. 1, the formulation of
LAD-based Minimum Support Sets (LAD-MSS) is given by:

min y1 + y2 + y3 + y4 + y5

s.t.

y1 + y3 + y4 + y5 ≥ 1

y1 + y3 ≥ 1

y1 + y3 + y5 ≥ 1

y1 + y3 + y4 ≥ 1

y2 + y4 ≥ 1

y2 + y5 ≥ 1

(2)

It is well-known that the above problem is NP-hard and
involves a quadratic number of linear inequalities. For large
datasets, solving this optimization problem is impractical.
In Section 4.1, we circumvent this problem by proposing a
more efficient alternative, formulating it as the problem of
enumerating minimal hitting sets in a hypergraph.

3.3 Minimal Hitting Set Enumeration Problem
Given a collection H = {H1, . . . ,Hm} of subsets of the
vertex set V . H is also called a hypergraph where each el-
ement Hi of H is a hyperedge. A hitting set (traversal) T
of H is a subset of V that intersects (hits) every set Hi ∈ H
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Figure 2: The overall proposed framework for LAD-based FS

i.e. T ∩Hi ̸= ∅. T is called Minimal Hitting Set (MHS) of
H if no proper subset of T is a hitting set of H . The dual of
a hypergraph is the hypergraph whose hyperedge set is the
set of all minimal hitting sets, and it is denoted by dual(H).
Hypergraph dualization refers to the problem of construct-
ing the dual of a given hypergraph. Dualization is equiva-
lent to many important problems, including minimal hitting
set, minimal hypergraph transversal and minimal set cover-
ing enumeration problems. These related problems are fun-
damental in a wide variety of domains, including combina-
torics, Boolean algebra, databases, computational biology,
and artificial intelligence (AI). It finds important applica-
tions in AI such as diagnosis, machine learning, data mining,
and explainable AI. Furthermore, several algorithms and ef-
ficient implementations for generating Minimal Hitting Sets
(MHSes) have been proposed. For a complete review, we
refer to (Gainer-Dewar and Vera-Licona 2016).

4 LAD-based Feature Selection
4.1 Feature Subsets Generation
As mentioned previously, LAD-based feature subsets gener-
ation is formulated as the problem of enumerating minimum
support sets (w.r.t. cardinality). For complexity reasons, we
consider the problem of enumerating minimal support sets
(w.r.t. inclusion), reduced to the MHSes enumeration prob-
lem, for which efficient and scalable algorithms exist.

From Section 3.2, we have FB = {x1, . . . , xt} a set
of t binary features, E = E+ ∪ E− a binary dataset, v
and v′ the binary observation vectors associated with
E+ and E−, respectively. We then derive a set of bi-
nary vectors from E denoted as E+ ⊕ E− = E⊕ =
{w(v,v′), ∀(v, c) ∈ E+ ∧ ∀(v′, c′) ∈ E−}. We de-
fine the hypergraph associated with E⊕ as H(E⊕) =

{E(v,v′)
⊕ , ∀(v, c) ∈ E+ ∧ ∀(v′, c′) ∈ E−}, where

E(v,v′)
⊕ = {xk ∈ FB | k ∈ {1, . . . , t} and wk(v,v

′) = 1}
is the hyperedge associated with (v,v′). Then we derive
the following property:
Proposition 1. The minimal support sets of E correspond to
dual(H(E⊕)).

Proof. Let h ∈ dual(H(E⊕)). As h is a minimal hitting
set of the hypergraph H(E⊕), it intersects each hyper-
edge E(v,v′)

⊕ ∈ H(E⊕). Let (v, c) ∈ E+ and (v′, c′) ∈ E−

s.t. v = (v1, . . . , vt) and v′ = (v′1, . . . , v
′
t). Then

∃xl ∈ h ∩ E(v,v′)
⊕ . Since E(v,v′)

⊕ = {xk | k ∈
{1, . . . , t} and wk(v,v

′) = 1}. This means that the pro-
jection of v and v′ on xk are different i.e. vl ̸= v′l. Con-
sequently, h is a minimal support sets of E . The converse is
also true. Indeed, if we take S a minimal support sets of E ,
then by definition E+

S ∩ E−
S = ∅. Then S ∈ dual(H(E⊕S)).

Consequently, S ∈ dual(H(E⊕)).

Example 3. From the formulation of LAD-MSS as a
0/1 linear program (Example 2), we can derive the fol-
lowing hypergraph, where each hyperedge corresponds
to the set of features associated with the set of vari-
ables involved in each 0/1 linear inequality: H(E⊕) =
{{x1, x3, x4, x5}, {x1, x3}, {x1, x3, x5}, {x1, x3, x4},
{x2, x4}, {x2, x5}}. Then dual(H(E⊕)) = {{x1, x2},
{x2, x3}, {x3, x4, x5}, {x1, x4, x5}} corresponds to mini-
mal supports sets. (see Example 1).

Note that the number of MHSes is exponential in the
worst case. Fredman et al. (Fredman and Khachiyan 1996)
developed a quasi-polynomial time algorithm which runs in
O(N logN ) time, where N is the input size plus output size.

4.2 Feature Subsets Evaluation
After enumerating MHSes as the feature subsets, we need to
evaluate and rank them based on their relevance to the target
class before selecting the subset with the highest score. To
achieve this, we use a heuristic scoring method proposed in
the test theory of Edwin Ghiselli (Ghiselli 1964). This the-
ory considers the usefulness of individual features for pre-
dicting the class label along with the level of intercorrelation
among them. It was also utilized by (Hall 2000) to calculate
the merit of a feature subset, based on the claim that “good
feature subsets contain features highly correlated with the
class, yet uncorrelated with each other”. The most signif-
icant strength of this method is that it evaluates and ranks
feature subsets rather than individual features like ReliefF.
For instance, to assess the quality of a student (class: poor,
medium, high), it involves a variety of subjects’ scores (fea-
tures), such as math, physics, chemistry, etc., rather than any
individual subject’s score, which measures a restricted scope
of features. The equation below characterizes this heuristic:

MeritS =
|S| rcf√

|S|+ |S| (|S| − 1) rff
(3)

where MeritS is the general measure of the “merit” of a
feature subset S , its size is denoted by |S|, rcf the average
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feature-class correlation, and rff the average feature-feature
correlation. The numerator indicates how predictive a group
of features is whereas the denominator indicates how much
redundancy exists among them. The heuristic deals with ir-
relevant features, as they tend to be poor predictors of the
class. Redundant features are penalized, as they tend to be
highly correlated with one or more of the other features.

To evaluate the “merit” of a feature subset S , we instan-
tiate the rcf and rff in Equation (3) with different scoring
functions depending on the type of dataset:
• Numerical Dataset: For a numerical dataset E where fea-

tures contain continuous or discrete values, along with the
target class considered as a categorical variable, we distin-
guish between two types of correlation as follows:

1. feature-feature correlation (rff ): Let X,X ′ ∈ S ⊆ F
be two numerical features. EX = (X1, . . . , X|E|) and
EX′ = (X ′

1, . . . , X
′
|E|) as the projections of E on X

and X ′, respectively. To compute the correlation be-
tween EX and EX′ , we use two measures: Pearson
Correlation Coefficient and Symmetrical Uncertainty.

– Pearson Correlation Coefficient (PCC): Named after
Karl Pearson (1857–1936), it measures the linear cor-
relation between EX and EX′ . The PCC between EX

and EX′ is defined as follows:

PCC =

∑|E|
i=1(Xi − X̄)(X ′

i − X̄ ′)√∑|E|
i=1(Xi − X̄)2

∑|E|
i=1(X

′
i − X̄ ′)2

where X̄ =
∑|E|

i=1 Xi

|E| is the sample mean; and likewise
for X̄ ′. rff is obtained by calculating the pairwise
average of PCC between all pairs of features in S .

– Symmetrical Uncertainty (SU): A modified version of
information gain to estimate the degree of association
between discrete features (Press et al. 1988). This
measure was also implemented in Correlation-based
(Hall 2000) to measure the feature-feature correlation.
The SU between EX and EX′ is defined as follows:

SU = 2.0×
[
∆(EX) + ∆(EX′)−∆(EX , EX′)

∆(EX) + ∆(EX′)

]
where ∆ is the entropy (Hall 1999). Similarly, rff
can be obtained by calculating the pairwise average
of SU between all possible pairs of features in S .

2. feature-class correlation (rcf ): To calculate the cor-
relation between a feature (numerical variable) and a
target class (categorical variable), we use Correlation
Ratio. It measures the curvilinear relationship between
the dispersion in individual categories and the disper-
sion across the whole observation. Mathematically,
it is defined as the weighted variance of the category
means divided by the variance of all observations; it
measures how well a continuous number can be clas-
sified into categories (score in [0, 1]). Let X ∈ S be
a numerical feature and EX = (X1, . . . , X|E|) the
projection of E on X . Let EC = (c′1, . . . , c

′
|E|) be

the projection of E on C (class attribute). We define

Vi = (Xj ∈ EX | 1 ≤ j ≤ |E| and c′j = ci) as a vector
to store EX for all instances of class ci for 1 ≤ i ≤ K.
The Correlation Ratio between EX and EC , denoted as
ηXC , is defined as follows:

ηXC =

√
σ2
X̄

σ2
X
, where σ2

X =

∑K
i=1

∑
Xj∈Vi

(Xj−X̄)2∑K
i=1 |Vi|

,

σ2
X̄

=
∑K

i=1 |Vi|(X̄i−X̄)2∑K
i=1 |Vi|

, X̄ =
∑K

i=1 |Vi|X̄i∑K
i=1 |Vi|

,

X̄i =

∑
Xj∈Vi

Xj

|Vi|

where |Vi| is the number of observations in class ci, X̄i

is the sample mean of class ci, X̄ is the sample mean
of all classes in C. rcf can be obtained by computing
the average of ηXC for all features in S .

• Binary Dataset: For binary dataset, we use Matthews
Correlation Coefficient (MCC) (Matthews 1975) to com-
pute both rff and rcf . MCC is used as a measure of as-
sociation between two binary variables. Explicitly, it is
a contingency matrix method of calculating the Pearson
product-moment correlation coefficient, and it shares the
same interpretations as PCC (Powers 2020). Using true
positive (TP ), true negative (TN ), false positive (FP ),
and false negative (FN ) parameters, the MCC between
two binary variables is defined as follows:

MCC = (TP∗TN)−(FP∗FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

rff (resp. rcf ) can be obtained by calculating the av-
erage of MCC between all possible pairs of features in
S (resp. between each feature in S and a class vari-
able). For example, consider {x1, x2} in Fig. 1, we
have Ex1

= (0, 0, 1, 1, 1), Ex2
= (0, 0, 1, 0, 0), and

Eclass = (c1, c1, c1, c2, c2). Table 1 is the contingency
matrix between Ex2 and Eclass. TN , FN , FP and TP
corresponds respectively to the number of times (0, 0),
(1, 0), (0, 1) and (1, 1), appears in ((x21 , c1), (x22 , c1),
(x23 , c1), (x24 , c2), (x25 , c2)).

class

0 1

x2
0 2 (True Negative [TN ]) 2 (False Positive [FP ])
1 0 (False Negative [FN ]) 1 (True Positive [TP ])

Table 1: Contingency matrix between x2 and class

5 Optimal Decision Trees vs LAD-based FS
We first recall some necessary definitions and notations. We
have E a binary dataset, and FB a set of t binary features. A
Boolean decision tree is a binary tree T (E), each of whose
internal nodes is labeled with one of the t input binary fea-
tures, and whose leaves are labeled 0 or 1. Every variable
is assumed to appear at most once on any root-to-leaf path.
The size of T , denoted |T |, is given by the number of its
nodes. The depth of the decision tree is the length of the
longest path in the tree. If T is a decision tree, and E ′ is a
set of training examples, we say that T is consistent with E ′,
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if each example e ∈ E ′ is correctly classified by T . Build-
ing optimal DTs represents a crucial stride in crafting pre-
cise and understandable ML models. The evaluation of op-
timality typically hinges on simplicity criteria, such as tree’s
depth and size. From the complexity side, learning an opti-
mal decision tree is NP-complete, even for these two basic
criteria (Avellaneda 2020). As previously stated, our objec-
tive is to build an optimal tree, where optimality refers to
the minimum number of features (feature subsets) involved
in the construction of a decision tree. Such feature subsets
are computed by enumerating MHSes (see Section 4.1).

The following properties state the equivalence between
the decision tree with the minimum depth and the decision
tree build on the minimum number of features. Let us recall
the well-known relationship between the depth and the tree
size. Balanced or full binary trees admit 2d+1 − 1 nodes, d
is the depth of the tree. Consequently, minimising the depth
is the most considered optimization criteria, since low depth
DTs require fewer tests and are usually more accurate.

Proposition 2. Let E = E+∪E− a binary dataset, S ⊆ FB.
If S is a minimum support set of E then the minimum depth
of T (E) is (upper) bounded by |S|.

Proof. Let S be a minimum support set of E i.e. E+
S ∩E−

S =
∅. So every Boolean tuple s ∈ ES can be correctly classi-
fied. T ((E+

S , E−
S )) is then consistent with ES . As the path

from the root to the leaf in T ((E+
S , E−

S )) is labeled with the
Boolean features in S , its depth is bounded by |S|. The re-
sult holds for T (E).

Proposition 3. Let E = E+ ∪ E− a binary dataset and S ⊆
FB. S is a minimum support set of E iff T ((E+

S , E−
S )) is a

minimum Boolean decision tree w.r.t. the number of features.

Proof. • ⇒) - Let S be a minimum support set of E . Then
E+
S ∩ E−

S = ∅. T ((E+
S , E−

S )) is then consistent with ES .
Suppose that T (ES) is not optimal w.r.t. minimum num-
ber of features. Then, there exists S ′ ⊂ S such that
T ((E+

S′ , E−
S′)) is a consistent Boolean decision tree on

ES′ . So E+
S′ ∩ E−

S′ = ∅. Therefore, S is not a minimum
support set of E .

• ⇐) - Let T ((E+
S , E−

S ))a minimum Boolean decision tree
w.r.t. the number of features. Suppose that S is not a min-
imum support set. Then there exists a support set S ′ ⊂ S .
Consequently, there exists a consistent Boolean decision
tree T ((E+

S′ , E−
S′)). Then T ((E+

S , E−
S )) is not optimal.

Proposition 2 and 3 provide a means to connect optimal
DTs (with minimum depth) and optimal DTs (with mini-
mum number of features) to LAD-based FS (with minimum
support sets).

Let {x1, x2} and {x2, x3} be two minimum support sets
of Example 1. The optimal DTs (w.r.t. minimum number
of features) are depicted in Fig. 3. The above propositions
are important for two reasons. First, it allows to link recent
works on optimal DTs to those of LAD-based FS. Second,
it allows us to use minimum support sets of LAD-based FS
to construct optimal DTs.
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Figure 3: Optimal DTs with minimum number of features for
{x1, x2} (left side) and {x2, x3} (right side)

6 Proposed Framework for LAD-based FS
This section provides a description of our approach for se-
lecting the best feature subset in both binary and numerical
datasets. For a numerical dataset, it consists of the following
processing steps, as depicted in Fig. 2 :

1. Binarization (E → E) : To address a numerical dataset,
the methodology of LAD is extended to a process called
binarization, which involves transforming numerical (real
value) data into binary (0,1) representations (Boros et
al. 2000a; Boros et al. 2000b). Therefore, we utilize
the binarization technique as described in (Boros et al.
2000a). This transformation maps each observation vec-
tor, denoted as uq = (u1, . . . , us) of a given numerical
dataset E to a binary vector of a binary dataset E , de-
noted as vq = (v1, . . . , vt) ∈ {0, 1}t, by associating
each numerical feature Xi with a set of binary features
{xi1, . . . , xibi}, where bi is the number of binary features
associated with Xi. This is done in such a way that if
uq and ur represent a positive and a negative observation
vector, respectively, then vq ̸= vr.

2. XOR Operations (E → E+ ⊕ E−): We execute the XOR
operations between every observation in E+ and every ob-
servation in E− of E denoted as E⊕ = E+ ⊕ E−, a set
of binary vectors. For multiple classes, we execute the
XOR operations between each pair of classes resulting in
K×(K−1)

2 pairs, where K is the number of classes.

3. Hypergraph Formulation (E+⊕E− → H(E⊕)): From the
binary set of vectors E⊕, we derive a hypergraph H(E⊕),
where each binary vector is mapped to a hyperedge, made
of a set of features with value 1.

4. Project hypergraph to numerical features (H(E⊕) →
H(E⊕)): A major drawback of binarization is that, it can
yield millions of binary features. To alleviate this prob-
lem, we propose to project the hypergraph of binary fea-
tures H(E⊕) on the numerical features by linking back
all those binary features to their corresponding numerical
features, denoted as H(E⊕). To achieve this, a numer-
ical feature exists as a vertex in a hyperedge if at least
one binary feature is associated with it; otherwise, it does
not exist. Moreover, each hyperedge only consists of dis-
tinct vertices although after the projection, there are many
binary features corresponding to a single numerical fea-
ture. For illustration, assume that we have three numerical
features {X1, X2, X3} associated with their respective bi-
nary features {x11, x12}, {x21, x22}, and {x31, x32, x33}.
If Hb = {x11, x31, x32} is a hyperedge of binary features,
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then its projection on numerical features lead to the hy-
peredge Hn = {X1, X3}. Note that in this step, we only
exploit all the binary features associated with all the nu-
merical features to execute the XOR operations and then
we project them back to their corresponding numerical
features before generating subsets of features.

5. Feature subsets generation using MHSes Enumeration
(H(E⊕) → dual(H(E⊕))): To mitigate the complex-
ity of LAD optimization problem (minimum size sup-
port sets of features), we formulate it as the problem of
enumerating Minimal Hitting Sets (MHSes) for generat-
ing feature subsets; the dual of a hypergraph denoted as
dual(H(E⊕)) (see Section 4.1). To dualize H(E⊕), we
use state-of-the-art algorithm called “pMMCS” (Gainer-
Dewar and Vera-Licona 2016), a parallel implementa-
tion version of MMCS (Minimal-to-Maximal Conver-
sion Search) algorithm, for solving the dualization prob-
lem (Murakami and Uno 2014), whose complexity is in
O(∥H∥) time per MHS and O(∥H∥) memory, where
∥H∥ denotes the sum of the sizes of hyperedges in H .
We then obtain the MHSes (subsets of features) denoted
as dual(H(E⊕)). The benefit of this algorithm lies in its
capacity to handle very large-scale problems with up to
millions of hyper-edges, generating numerous solutions
in a short amount of time, which motivates our choice.
Furthermore, it also supports multithreading implemen-
tations on computer with multiple CPUs. However, as
mentioned in (Hall 2000; Guyon and Elisseeff 2003;
Tang, Alelyani, and Liu 2014), the size of search space
for s features is O(2s). Due to this reason, in all the prac-
tical experiments, we limit our search space to enumerate
10,000 subsets of features for each dataset.

6. Feature subsets evaluation: We need to evaluate the gen-
erated subsets based on their merit scores to select the
highest quality one, as discussed in Section 4.2. The merit
scores can be calculated depending on the type of dataset.
After this step, we finally obtain the best feature subset
that can be used for training and testing ML classifiers.

To handle a binary dataset, the process is similar to a numer-
ical dataset, except steps (1) and (4), which do not apply.

7 Experiments
We conduct two types of comparative experiments on bench-
mark datasets, including two-class binary datasets and nu-
merical datasets with two and multiple classes. In the first
experiment, we compare our approach with state-of-the-art
(SOTA) feature selection (FS) techniques, including ReliefF
(Robnik-Sikonja and Kononenko 2003), Correlation-Based
(CFS) (Hall 2000), Mutual Information (MI) (Kraskov,
Stögbauer, and Grassberger 2004; Ross 2014) for filter
methods, Sequential Forward Selection using Support Vec-
tor Machines (SFS-SVM) and Sequential Backward Selec-
tion using Support Vector Machines (SBS-SVM) (Pudil,
Novovičová, and Kittler 1994; Ferri et al. 1994) for wrap-
per methods, as well as Recursive Feature Elimination using
Support Vector Machines (RFE-SVM) (Guyon et al. 2002)
and Lasso (Tibshirani 1996) for embedded methods. We
conduct the experiments with decision trees using CART

(Breiman et al. 1984) on two-class binary datasets mostly
from CP4IM12. In the second experiment, we compare our
approach with the same SOTA FS techniques, but using
additional classifiers including SVM (Cortes and Vapnik
1995), KNN (Mucherino, Papajorgji, and Pardalos 2009)
and Naive Bayes (Zhang 2004), alongside CART. We utilize
12 numerical datasets from OpenML (Bischl et al. 2021) and
datamicroarray (Ramey 2016). The datasets from datami-
croarray are high-dimensional two-class datasets with more
features than instances. The FS techniques and ML clas-
sifiers can be found in the scikit-learn python library (Pe-
dregosa et al. 2011). All the SOTA techniques are kept at
their default settings. Following (Hall and Holmes 2003;
Chandrashekar and Sahin 2014), we use accuracy as the
evaluation metric. For all experiments, we use Repeated
Stratified 10-fold cross-validation with 3 repetitions to main-
tain the class distribution, and they are conducted on an Intel
XEON Gold 6248 @ 2.5 GHz with 768 Gib of memory.

7.1 Experiments on binary datasets
In this section, we compare our approach with other SOTA
approaches using CART. Their parameters are kept at their
default values, except for the maximum depth. Following
the experiments in (Hu et al. 2020), we set three distinct
depths, d ∈ {2, 3, 4} in the second column. The results are
reported in Table 2. The first column shows the name of
the dataset, the size of dataset (#s), and the number of bi-
nary features (#fb). The term “W/O FS” in the third column
represents the accuracy without applying any FS techniques.
The fourth column displays the result of our approach, while
the remaining columns represent the results of the SOTA ap-
proaches. Each result contains the testing accuracy “Acc”,
and the average number of selected features (#nbf ).

Throughout, we consider a difference of 1% in accuracy
for comparison. In Table 2, our approach maintains or im-
proves the accuracy approximately around 70% of the over-
all settings. For “hepatitis”, it significantly improves the ac-
curacy in all depth settings around 3% and is competitive
with other SOTA approaches especially when d = 2. Simi-
larly, for “heart-cleveland”, it enhances the accuracy in two
depth settings particularly outperforming all the SOTA ap-
proaches when d = 2. For “mushroom” when d = 2, our ap-
proach outperforms the others and is competitive with RFE-
SVM. However, it falls short in all depth settings by around
2%, particularly for “dorothea” and “german-credit”. The
accuracy of ReliefF is degraded on 8 out of 17 datasets and
drastically degrades in all depth settings of “breast-cancer”,
but is improved for “anneal”, “heart-cleveland” and “hep-
atitis”, while other approaches could not enhance the accu-
racy for “anneal”. The performances of CFS and MI are
similar but CFS is better than MI in several cases. For the
wrapper methods, SFS-SVM and SBS-SVM are very simi-
lar in terms of the improvement or degradation of accuracy
and the average number of selected features. For the em-
bedded methods, RFE-SVM and Lasso are also comparable,

1https://dtai.cs.kuleuven.be/CP4IM/datasets/
2Note: For certain datasets, instances appearing in both E+ and

E− are removed to maintain consistency.
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Instance W/O FS LAD-based Filter Methods Wrapper Methods Embedded Methods
#s,#fb d ReliefF CFS MI SFS-SVM SBS-SVM RFE-SVM Lasso

Acc Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf

anneal
2 0.8539 0.8534 0.8670◦ 0.8548 0.8530 0.8539 0.8548 0.8539 0.8539
3 0.8567 0.8562 23 0.8787◦ 10 0.8656 6.36 0.8572 10 0.8567 46 0.8581 47 0.8572 64 0.8567 48.8

712, 93 4 0.8609 0.8567 0.8791◦ 0.8885◦ 0.8623 0.8651 0.8586 0.8595 0.8581

audiology
2 0.9492 0.9075• 0.8660• 0.9492 0.9233• 0.9492 0.9492 0.9492 0.9492
3 0.9615 0.9369• 15.37 0.8660• 10 0.9583 6 0.9366• 10 0.9552 74 0.9522 74 0.9614 11.47 0.9600 12.23

216, 148 4 0.9554 0.9508 0.8600• 0.9585 0.9322• 0.9538 0.9445• 0.9600 0.9523

breast-cancer
2 0.9395 0.9165• 0.6935• 0.9424 0.9415 0.9414 0.9375 0.9405 0.9385
3 0.9385 0.9370 24.76 0.7043• 10 0.9444 6 0.9395 10 0.9400 44 0.9463 45 0.9429 35.63 0.9395 35.63

683, 89 4 0.9409 0.9390 0.7135• 0.9497 0.9400 0.9409 0.9463 0.9448 0.9463

car
2 0.8553 0.8553 0.8553 0.8553 0.8553 0.8240• 0.7885• 0.8553 0.8553
3 0.8719 0.8719 14 0.8719 10 0.8719 6 0.8690 10 0.8495• 10 0.8333• 11 0.8719 17.6 0.8719 17.63

1728, 21 4 0.8719 0.8759 0.8701 0.8665 0.8749 0.8919◦ 0.8736 0.8728 0.8719

dorothea
2 0.9307 0.9072• 0.9318 0.9275 0.9327 – – – 0.9324
3 0.9289 0.9081• 149 0.9339 10 0.9260 6 0.9292 10 – – – – – – 0.9260 320.3

1150, 100000 4 0.9266 0.9072• 0.9356 0.9304 0.9304 – – – 0.9249

german-credit
2 0.7120 0.6919• 0.6956• 0.6846• 0.6963• 0.7006• 0.7029 0.6933• 0.7046
3 0.7236 0.7020• 29.43 0.7099• 10 0.7036• 6 0.7143 10 0.7083• 56 0.7156 56 0.6996• 57.66 0.7106• 77.8

1000, 112 4 0.7249 0.6913• 0.7119• 0.7143• 0.7090• 0.7119• 0.7080• 0.7086• 0.7093•

heart-cleveland
2 0.7147 0.7747◦ 0.7170 0.7147 0.7170 0.7158 0.7147 0.7419◦ 0.7431◦
3 0.8004 0.7713• 17.13 0.8388◦ 10 0.8253◦ 6.96 0.8083 10 0.7902• 47 0.8059 48 0.7915 20.16 0.7982 49.66

296, 95 4 0.7568 0.7747◦ 0.8231◦ 0.8186◦ 0.7880◦ 0.7622 0.7702◦ 0.7813◦ 0.7713◦

hepatitis
2 0.7813 0.8173◦ 0.7963◦ 0.7941◦ 0.7794 0.7989◦ 0.7990◦ 0.7789 0.7862
3 0.7672 0.7956◦ 13 0.8272◦ 10 0.8038◦ 6 0.7838◦ 10 0.7970◦ 34 0.7844◦ 34 0.7789◦ 23.33 0.7820◦ 32

137, 68 4 0.7545 0.8025◦ 0.8034◦ 0.8082◦ 0.7967◦ 0.7771◦ 0.7846◦ 0.7666◦ 0.7842◦

hypothyroid
2 0.9837 0.9837 0.9685• 0.9837 0.9687• 0.9837 0.9837 0.9837 0.9837
3 0.9840 0.9840 24.46 0.9685• 10 0.9828 6 0.9687• 10 0.9846 44 0.9833 44 0.9849 4 0.9840 20.23

3199, 88 4 0.9865 0.9862 0.9685• 0.9825 0.9687• 0.9871 0.9841 0.9878 0.9867

kr-vs-kp
2 0.7708 0.7708 0.7546• 0.7708 0.7708 0.7708 0.7708 0.7708 0.7708
3 0.9042 0.9042 29 0.7593• 10 0.9042 7 0.9042 10 0.9042 36 0.9042 37 0.9042 42.7 0.9042 55.53

3196, 73 4 0.9408 0.9408 0.7612• 0.9408 0.9250• 0.9408 0.9408 0.9408 0.9408

lymph
2 0.8192 0.8038• 0.7433• 0.7498• 0.7946• 0.8193 0.8053• 0.8125 0.8192
3 0.7815 0.7903 13.5 0.7653• 10 0.7522• 6 0.7678• 10 0.7793 34 0.7884 34 0.7971◦ 33.73 0.7926◦ 26.37

148, 68 4 0.8441 0.7992• 0.7544• 0.7704• 0.7876• 0.8188• 0.8323• 0.8304• 0.8438

mushroom
2 0.9271 0.9472◦ 0.9271 0.9182 0.9046• 0.9271 – 0.9488◦ 0.9283
3 0.9645 0.9544• 12.3 0.9588 10 0.9182• 6.36 0.9471• 10 0.9644 59 – – 0.9608 10.27 0.9674 20.7

8124, 119 4 0.9989 0.9611• 0.9583• 0.9256• 0.9780• 0.9968 – 0.9639• 0.9874•

primary-tumor
2 0.8408 0.8408 0.7911• 0.7842• 0.8173• 0.8408 0.8408 0.8408 0.8408
3 0.8186 0.8221 13.73 0.7561• 10 0.8385◦ 6 0.8266 10 0.8185 15 0.8174 16 0.8186 18.53 0.8210 25.9

283, 31 4 0.8256 0.8397◦ 0.7656• 0.8314 0.8314 0.8397◦ 0.8456◦ 0.8315 0.8268

soybean
2 0.8842 0.8842 0.8576• 0.8661• 0.8762 0.8864 0.8938 0.8805 0.8842
3 0.9232 0.9227 16.76 0.8613• 10 0.8778• 8.27 0.8809• 10 0.9205 25 0.9146 25 0.8949• 17.8 0.9237 25.87

625, 50 4 0.9413 0.9402 0.8645• 0.8735• 0.8869• 0.9376 0.9259• 0.9082• 0.9429

tic-tac-toe
2 0.6736 0.6809 0.6753 0.6931◦ 0.6896◦ 0.6763 0.6739 0.6736 0.6736
3 0.7222 0.7191 14 0.7254 10 0.7163 6 0.7097• 10 0.7369◦ 13 0.7268 14 0.7222 18 0.7222 18

958, 27 4 0.8183 0.7991• 0.7525• 0.7505• 0.7515• 0.7957• 0.7995• 0.8201 0.8201

vote
2 0.9564 0.9556 0.9548 0.9564 0.9564 0.9564 0.9517 0.9564 0.9564
3 0.9441 0.9518 11.6 0.9480 10 0.9502 6 0.9471 10 0.9464 24 0.9471 24 0.9433 16.56 0.9448 15.5

435, 48 4 0.9456 0.9502 0.9464 0.9425 0.9479 0.9464 0.9426 0.9456 0.9540

zoo
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1 1.0 10 1.0 6 1.0 10 1.0 18 1.0 18 1.0 1 1.0 2

101, 36 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
◦, •: 1% improvement or degradation of accuracy compared to column “W/O FS”, respectively.

Table 2: Experimental results on two-class binary datasets using CART

but Lasso maintains accuracy in more cases than RFE-SVM,
and it performs better in preserving accuracy compared to
the others. However, the wrapper methods and RFE-SVM
seem to struggle with high-dimensional datasets in terms of
both dimensionality and sample size. The bar chart in Fig. 4
shows the comparison times of different FS methods across
five largest datasets (in terms of dimensionality and sam-
ple size), presented from left to right: “german-credit”, “hy-
pothyroid”, “kr-vs-kp”, “mushroom”, and “dorothea”. For
each dataset, the methods are listed in the following order
on the x-axis from left to right: LAD-based, ReliefF, CFS,
MI, SF-SVM, SB-SVM, RFE-SVM, and Lasso. The y-axis
represents the time in seconds on a logarithmic scale. As we
can see, SF-SVM and SB-SVM require a significant amount
of time to generate a feature subset compared to the oth-
ers, especially for “mushroom” and “dorothea” (the bars are
missing as we could not report the time due to a significant

amount of time needed to generate a feature subset in each
iteration). LAD-based requires a similar duration to CFS but
is slightly longer in most cases. Lasso requires the short-
est amount of time compared to other methods. Surpris-
ingly, for “dorothea”, LAD-based requires a shorter amount
of time compared to CFS and Lasso, despite its slight loss in
accuracy of around 2%. In terms of the significant improve-
ment, despite not having any interaction with the learning
algorithms, our method outperforms filter methods (ReliefF
and MI) and is competitive with CFS, wrapper and embed-
ded methods. In terms of the average number of selected fea-
tures, our approach selects fewer features compared to the
wrapper and embedded methods across many datasets. This
suggests that our approach can eliminate irrelevant and re-
dundant features while preserving or enhancing the accuracy
of DTs, making them optimal with respect to the minimum
number of features sufficient for constructing such trees.
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Instance W/O FS LAD-based Filter Methods Wrapper Methods Embedded Methods
#s,#fn,#c Classifier ReliefF CFS MI SFS-SVM SBS-SVM RFE-SVM Lasso

Acc Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf Acc #nbf

alon

CART(d = 3) 0.7436 0.7634◦ (SU)

1

0.6396•
10

0.6182•
6

0.7595◦
10

–

–

–

–

0.6984•
81

0.7276•
1311.27SVM 0.8277 0.8357 (SU) 0.6778• 0.6428• 0.7492• – – 0.8309 0.8428◦

KNN 0.8158 0.8357◦ (SU) 0.6523• 0.6612• 0.7665• – – 0.8150 0.8261◦
62, 2000, 2 Naive Bayes 0.5849 0.8365◦ (SU) 0.4928• 0.4793• 0.6889◦ – – 0.7087◦ 0.5857

borovecki

CART(d = 10) 0.8919 0.7917• (SU)

1

0.5138•
10

0.6138•
6

0.9250◦
10

–

–

–

–

0.9694◦
23.9

0.9472◦
327.96SVM 0.6556 0.8251◦ (SU) 0.5917• 0.6083• 0.9557◦ – – 0.7388◦ 0.6944◦

KNN 0.5917 0.8251◦ (SU) 0.6112◦ 0.5917 0.9474◦ – – 0.6888◦ 0.5944
31, 22283, 2 Naive Bayes 0.8361 0.8361 (SU) 0.6138• 0.7638• 0.9779◦ – – 0.8889◦ 0.9668◦

breast-cancer-wisconsin

CART(d = 5) 0.9291 0.9256 (PCC)

3.83

0.9262

10

0.9309

6

0.9279

10

0.9314

15

0.9344

15

0.9291

18.37

0.9373

17.2SVM 0.9174 0.9402◦ (PCC) 0.8969• 0.9004• 0.9180 0.9280◦ 0.9321◦ 0.9186 0.9174
KNN 0.9309 0.9426◦ (PCC) 0.9296 0.9244 0.9262 0.9356 0.9279 0.9308 0.9297

569, 30, 2 Naive Bayes 0.9397 0.9238• (PCC) 0.9344 0.9297• 0.9209• 0.9274• 0.9373 0.9309 0.9373

chowdary

CART(d = 3) 0.9075 0.8769• (PCC)

2

0.6666•
10

0.9239◦
6

0.9490◦
10

–

–

–

–

0.9181◦
44.64

0.9269◦
2342.76SVM 0.8109 0.8915◦ (PCC) 0.7209• 0.8884◦ 0.9078◦ – – 0.9263◦ 0.8681◦

KNN 0.9163 0.9232 (PCC) 0.7142• 0.9298◦ 0.9681◦ – – 0.9487◦ 0.9196
104, 22283, 2 Naive Bayes 0.9142 0.8987• (PCC) 0.6789• 0.9518◦ 0.9460◦ – – 0.9239 0.9718◦

climate-simulation-crashes

CART(d = 3) 0.9030 0.9098 (PCC)

2

0.8981

10

0.8987

6

0.9049

10

0.8946

10

0.9179◦
10

0.9080

1

0.9061

19SVM 0.9148 0.9148 (PCC) 0.9148 0.9148 0.9148 0.9148 0.9148 0.9148 0.9148
KNN 0.8938 0.9135◦ (PCC) 0.8938 0.8969 0.8993 0.8938 0.9098◦ 0.9061◦ 0.8938

540, 20, 2 Naive Bayes 0.8870 0.9148◦ (PCC) 0.8185• 0.8061• 0.8709• 0.8098• 0.9148◦ 0.9148◦ 0.9030◦

heart-statlog

CART(d = 3) 0.7938 0.8123◦ (SU) 3.97 0.8061◦
10

0.8407◦
6.77

0.7950

10

0.8012

6

0.8111◦
7

0.7997

9.63

0.7938∅
12.73SVM 0.6493 0.6098• (PCC) 6.47 0.6728◦ 0.7691◦ 0.6543 0.7975◦ 0.7901◦ 0.7691◦ 0.6493∅

KNN 0.6654 0.7679◦ (PCC) 6.47 0.7740◦ 0.8123◦ 0.6580 0.7886◦ 0.7987◦ 0.7629◦ 0.6654∅
270, 13, 2 Naive Bayes 0.8407 0.8209• (PCC) 6.47 0.8407 0.8283• 0.8456 0.8111• 0.8271• 0.8493 0.8407∅

letter

CART(d = 20) 0.8788 0.8143• (PCC)

5.8

0.8892◦
10

0.8557•
7

0.8826

10

0.8804

8

0.8819

8

0.8783∅
16

0.8786∅
16SVM 0.9295 0.7375• (PCC) 0.9021• 0.8030• 0.8881• 0.8628• 0.8762• 0.9295∅ 0.9295∅

KNN 0.9560 0.8364• (PCC) 0.9584 0.9000• 0.9529 0.9370• 0.9450• 0.9560∅ 0.9560∅
20000, 16, 26 Naive Bayes 0.6426 0.5603• (PCC) 0.6544◦ 0.5916• 0.6547◦ 0.6240• 0.6142• 0.6426∅ 0.6426∅

spectf

CART(d = 3) 0.7715 0.7891◦ (PCC) 3.2 0.7642

10

0.7791

6

0.7454•
10

0.7492•
22

0.7766

22

0.7926◦
10

0.7701

42.9SVM 0.7966 0.7929 (SU) 3 0.7941 0.8041 0.7890 0.7865• 0.7916 0.7877 0.7966
KNN 0.7356 0.7741◦ (SU) 3 0.7632◦ 0.7990◦ 0.7577◦ 0.7492◦ 0.7880◦ 0.7864◦ 0.7394

267, 44, 2 Naive Bayes 0.6857 0.7513◦ (PCC) 3.2 0.5857• 0.7230◦ 0.6892 0.6396• 0.6809 0.7081◦ 0.6882

tian

CART(d = 3) 0.7340 0.7629◦ (PCC) 2.93 0.7416

10

0.7266

6

0.7366

10

–

–

–

–

0.7575◦
23.26

0.6940•
160.94SVM 0.7921 0.7903 (PCC) 2.93 0.7921 0.7863 0.7921 – – 0.7923 0.7922

KNN 0.8041 0.7708• (PCC) 2.93 0.7705• 0.7440• 0.7338• – – 0.7715• 0.7867•
173, 12625, 2 Naive Bayes 0.7810 0.7614• (SU) 1 0.5738• 0.7114• 0.7053• – – 0.7443• 0.7392•

vehicle

CART(d = 15) 0.6981 0.6099• (SU) 2.93 0.7084◦
10

0.6670•
6

0.6607•
10

0.6867•
9

0.6896

9

0.7131◦
17

0.7044∅
18SVM 0.4983 0.6213◦ (SU) 2.93 0.4964 0.4625• 0.4810• 0.6016◦ 0.6528◦ 0.5437◦ 0.4983∅

KNN 0.6481 0.6013• (SU) 2.93 0.6283• 0.6411 0.6158• 0.6737◦ 0.6832◦ 0.6584◦ 0.6481∅
846, 18, 4 Naive Bayes 0.4593 0.4841◦ (PCC) 3.9 0.4825◦ 0.4243• 0.4156• 0.4691 0.4956◦ 0.4684 0.4593∅

wine recognition

CART(d = 5) 0.8952 0.9010 (PCC)

3.65

0.9192◦
10

0.9084◦
6

0.9082◦
10

0.9174◦
6

0.8821•
7

0.8952

10.56

0.8952∅
12.76SVM 0.6873 0.8496◦ (PCC) 0.6031• 0.6857 0.6836 0.9004◦ 0.8598◦ 0.7956◦ 0.6873∅

KNN 0.6989 0.8727◦ (PCC) 0.8273◦ 0.7080 0.7133◦ 0.9361◦ 0.8706◦ 0.8488◦ 0.6989∅
178, 13, 3 Naive Bayes 0.9776 0.9398• (PCC) 0.9419• 0.9472• 0.9587• 0.9476• 0.9212• 0.9473• 0.9739∅

wpbc

CART(d = 3) 0.7107 0.7601◦ (PCC) 2.87 0.6923•
10

0.7237◦
6

0.7390◦
10

0.6904•
16

0.7047

17

0.7057

29.5

0.7061

13.53SVM 0.7597 0.7682 (SU) 2 0.7631 0.7631 0.7631 0.7614 0.7597 0.7631 0.7597
KNN 0.7164 0.7391◦ (SU) 2 0.7561◦ 0.6978• 0.7264◦ 0.7439◦ 0.7007• 0.7442◦ 0.7164

134, 93, 2 Naive Bayes 0.6958 0.7581◦ (PCC) 2.87 0.7182◦ 0.7385◦ 0.7000 0.7093◦ 0.6991 0.6851• 0.6994

◦, •: 1% improvement or degradation of accuracy compared to column “W/O FS”, respectively. ∅: no feature elimination

Table 3: Experimental results on numerical datasets using CART, SVM, KNN and Naive Bayes

7.2 Experiments on numerical datasets
We compare our approach with other SOTA FS approaches
using CART, SVM, KNN and Naive Bayes. Their parame-
ters are kept at their default values, except for the maximum
depth of CART, we conducted preliminary experiments to
determine a best depth d ∈ {3, 5, 10, 15, 20} that obtains
the highest accuracy for each dataset (e.g. if the best depth
found for a dataset is 5, we take CART(d = 5) for the com-
parison). The results are reported in Table 3. The first col-
umn shows the dataset’s name, the size of dataset (#s),
the number of numerical features (#fn), and the number
of classes (#c). The second column represents ML classi-
fiers. The fourth column displays the results of LAD-based,
reporting accuracy with either PCC or SU. We conduct the
experiments with both of them, and report the better one.
We consider a difference of 1% in accuracy for comparison.
As shown in Table 3, our approach either maintains or en-
hances the accuracy roughly around 70% of the overall cases
across different datasets and ML classifiers. PCC achieves
higher accuracy in more cases than SU, implying that PCC is
better suited for calculating the coefficient of feature-feature
correlation for the datasets used in the experiments, thereby
retaining the highest quality feature subset at the top. Ac-
cording to the experiments, LAD-based outperforms filter
methods in terms of improvement and with less degrada-

tion. Despite not having any interaction with the learning
algorithms, it still enhances the accuracy in many cases com-
pared to wrapper and embedding methods, albeit with more
degradation in several cases. However, the wrapper meth-
ods seem to struggle with larger dimensional datasets, par-
ticularly those from datamicroarray. The bar chart in Fig. 4
shows the comparison times of different FS methods across
four largest datasets in terms of dimensionality, presented
from left to right: “alon”, “borovecki”, “chowdary”, and
“tian”. For each dataset, the methods are listed on the x-
axis from left to right: LAD-based, ReliefF, CFS, MI, RFE-
SVM, and Lasso. The y-axis represents the time in seconds
on a logarithmic scale. Note that for these four datasets,
we could not report the accuracy and the time for SF-SVM
and SB-SVM due to the significant amount of time required
to generate a feature subset in each iteration. In Fig. 4,
RFE-SVM requires a significant amount of time to gener-
ate a feature subset compared to other methods. LAD-based
requires a similar duration to CFS but is slightly longer in
most cases. Lasso requires the shortest amount of time com-
pared to other methods. For the embedded methods, espe-
cially Lasso, we observed that they could not eliminate irrel-
evant or redundant features in “heart-statlog”, “letter”, “ve-
hicle”, and “wine recognition” datasets. Thus, evaluations
with the original features yield the same accuracy as the col-
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Figure 4: Time comparison between different FS techniques for
binary datasets and numerical datasets

umn (W/O FS). In terms of the average number of selected
features (#nbf ), LAD-based selects the fewest yet highest-
quality features compared to the rest of the FS approaches.
This suggests that LAD generates high-quality feature sub-
sets, followed by an effective scoring method to select the
highest quality one. Overall, this implies that while the ma-
jority of features are useful for predicting the target class,
only a small subset is essential in practice for building an
accurate and interpretable model.

8 Conclusion and Future Works

In this paper, we have presented a new feature selection
(FS) approach based on the Logical Analysis of Data (LAD).
To generate feature subsets, we first alleviate the complex-
ity of the LAD optimization problem by converting it into
the problem of enumerating minimal hitting sets in a hy-
pergraph, for which efficient implementations exist. Those
feature subsets are then ranked based on a scoring method to
select the highest quality one. We then shed light on the rela-
tionship between optimal DTs and LAD-based FS, allowing
us to construct the optimal DTs with respect to the minimum
number of features. Experiments on benchmark datasets re-
veal that our approach is competitive with SOTA methods by
selecting high-quality feature subsets that enhance or main-
tain the performance of DTs, SVM, KNN, and Naive Bayes.

In the future, it would be interesting to reduce the binary
dataset resulting from numerical ones by considering alter-
native binarization techniques. Another research direction
consists of exploring new scoring functions to better evalu-
ate feature subsets for both binary and numerical datasets.
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Kraskov, A.; Stögbauer, H.; and Grassberger, P. 2004. Esti-
mating Mutual Information. Physical Review E 69(6).
Makimoto, K.; Au, R.; Moslemi, A.; Hogg, J. C.; Bourbeau,
J.; Tan, W. C.; and Kirby, M. 2023. Comparison of Fea-
ture Selection Methods and Machine Learning Classifiers
for Predicting Chronic Obstructive Pulmonary Disease Us-
ing Texture-Based CT Lung Radiomic Features. Academic
Radiology 30(5):900–910.
Matthews, B. 1975. Comparison of the predicted and ob-
served secondary structure of T4 phage lysozyme. BBA -
Protein Structure 405(2):442–451.
Mucherino, A.; Papajorgji, P. J.; and Pardalos, P. M. 2009.
k-Nearest Neighbor Classification. Springer NY. 83–106.
Murakami, K., and Uno, T. 2014. Efficient algorithms for
dualizing large-scale hypergraphs. Discrete Applied Mathe-
matics 170:83–94.
Narodytska, N.; Ignatiev, A.; Pereira, F.; and Marques-Silva,
J. 2018. Learning Optimal Decision Trees with SAT. In

Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, 1362–1368.
Nijssen, S., and Fromont, E. 2007. Mining Optimal De-
cision Trees from Itemset Lattices. In Proceedings of the
13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’07, 530–539.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Powers, D. M. W. 2020. Evaluation: from precision, re-
call and F-measure to ROC, informedness, markedness and
correlation. CoRR abs/2010.16061.
Press, W. H.; Vetterling, W. T.; Teukolsky, S. A.; and Flan-
nery, B. P. 1988. Numerical recipes. Citeseer.
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