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Abstract

Definite descriptions, such as ‘the General Chair of KR 2024,’
are a semantically transparent device for object identification
in knowledge representation. In first-order modal logic, defi-
nite descriptions have been widely investigated for their non-
rigidity, which allows them to designate different objects (or
none at all) at different states. We propose expressive modal
description logics with non-rigid definite descriptions and
names, and investigate decidability and complexity of the sat-
isfiability problem. We first systematically link satisfiability
for the one-variable fragment of first-order modal logic with
counting to our modal description logics. Then, we prove a
promising NEXPTIME-completeness result for concept satis-
fiability for the fundamental epistemic multi-agent logic S5n

and its neighbours, and show that some expressive logics that
are undecidable with constant domain become decidable (but
Ackermann-hard) with expanding domains. Finally, we con-
duct a fine-grained analysis of decidability of temporal logics.

1 Introduction
Definite descriptions, like ‘the General Chair of KR 2024,’
are expressions of the form ‘the unique x such that φ.’ To-
gether with individual names such as ‘Pierre,’ they are used
as referring expressions to identify objects in a given do-
main (Reiter and Dale 2000; Borgida, Toman, and Weddell
2016; Borgida, Toman, and Weddell 2017).

Definite descriptions and individual names can also fail
to designate any object at all, as in the case of the definite
description ‘the KR Conference held after KR 2018 and be-
fore KR 2020,’ or the individual name ‘KR 2019.’ In order to
admit these as genuine terms of the language, while allow-
ing for their possible lack of referents, formalisms based on
free logic semantics have been developed (Bencivenga 2002;
Lehmann 2002; Indrzejczak 2021; Indrzejczak and Zaw-
idzki 2021). In contrast, classical logic approaches assume
that individual names always designate, and that definite
descriptions can be paraphrased in terms of existence and
uniqueness conditions, an approach dating back to Rus-
sell (1905). Recently, definite descriptions have been intro-
duced to enrich standard description logics (DLs) with nom-
inals, ALCO and ELO (Neuhaus, Kutz, and Righetti 2020;
Artale et al. 2020; Artale et al. 2021).

In particular, DLs ALCOι
u and ELOι

u (Artale et al. 2020;
Artale et al. 2021) include the universal role, u, as well

as nominals and definite descriptions of the form {ιC}
(‘the unique object in C’) as basic concept constructs,
while also employing a free logic semantics that allows
non-designating terms. Hence, for instance, using nomi-
nal {kr24} to designate KR 2024, we can refer to the Gen-
eral Chair of KR 2024 by means of the definite description
{ι∃isGenChair.{kr24}}. Then, in ALCOι

u, we can say that
Pierre is the General Chair of KR 2024 with the following
concept:

∃u.({pierre} ⊓ {ι∃isGenChair.{kr24}}).
Indeed, if this concept is satisfiable (in other words, has a
non-empty extension), then there are objects p and k des-
ignated by pierre and kr24, respectively, and the pair (p, k)
belongs to the interpretation of role isGenChair, which con-
tains no other (o, k), thus making p the only object con-
nected to k by isGenChair. The free DLs ALCOι

u and ELOι
u

have, respectively, EXPTIME-complete ontology satisfiabil-
ity and PTIME-complete entailment problems, thus match-
ing the complexity of the classical DL counterparts.

Names and descriptions display interesting behaviours
also in modal (epistemic, temporal) settings. These are in-
deed referentially opaque contexts, where the intension (i.e.,
the meaning) of a term might not coincide with its exten-
sion (that is, its referent) (Fitting 2004). Here, referring
expressions can behave as non-rigid designators, meaning
that they can designate different individuals across different
states (epistemic alternatives, instants of time, etc.).

For example, in an epistemic scenario, even if everybody
is aware that Pierre is the General Chair of KR 2024, not ev-
eryone thereby knows that he is also the General Chair of the
(only, so far, and excluding virtual location) KR Conference
held in Southeast Asia, despite the fact that ‘the KR Con-
ference held in Southeast Asia’ and ‘KR 2024’ refer (to this
day) to the same object. Indeed, ‘the KR Conference held in
Southeast Asia’ can be conceived to designate another event
by someone unaware of its actual reference to KR 2024.
Similarly, in a temporal setting, ‘the General Chair of KR’
refers to Pierre in 2024, but will designate someone else over
the years. So, for instance, if we assume that Pierre works
and will continue working in Europe, we can conclude that
the General Chair of KR currently works in Europe, but we
should not infer that it will always remain the case.

Due to this fundamental and challenging interplay be-
tween designation and modalities, non-rigid descriptions
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and names have been widely investigated in first-order
modal and temporal logics as individual concepts or flexible
terms capable of taking different values across states (Coc-
chiarella 1984; Garson 2001; Braüner and Ghilardi 2007;
Kröger and Merz 2008; Fitting and Mendelsohn 2012; Corsi
and Orlandelli 2013; Indrzejczak 2020; Orlandelli 2021;
Indrzejczak and Zawidzki 2023).

The aim of this contribution is to introduce modal DLs
that have sufficient expressive power to represent the phe-
nomena discussed above, explore their relationship to stan-
dard modal DLs without definite descriptions and non-
designating names, and investigate decidability and com-
plexity of reasoning in these formalisms.

In detail, we propose the language MLn
ALCOι

u
, which is

a modalised extension of the free DL ALCOι
u. For instance,

under an epistemic reading of the modal operator ✷, we
can express with an MLn

ALCOι
u

concept that of Pierre it is
known that he is the General Chair of KR 2024:

∃u.({pierre} ⊓✷{ι∃isGenChair.{kr24}}),

while of Pierre it is not known that he is the General Chair
of the KR Conference held in Southeast Asia:

∃u.({pierre} ⊓ ¬✷{ι∃isGenChair.
{ι(KRConf ⊓ ∃hasLoc.SEAsiaLoc)}}).

In a temporal setting, where ✷ is read as ‘always’ and its
dual ✸ as ‘at some point in the future,’ KR 2024 can be made
a rigid designator, which refers to the same object at all time
instants. This can be achieved, for example, by means of an
ontology that holds globally, at all time instants, and consists
of the following concept inclusion (CI):

{kr24} ⊑ ✷{kr24}.

In contrast, we can use the nominal {kr} to refer to the cur-
rent edition of the KR Conference, for instance stating that
KR 2024 is the current KR Conference with the concept
∃u.({kr24}⊓ {kr}). Moreover, by reading ⃝ as ‘next year’,
we can exploit its lack of rigidity to express, e.g., that there
will be other KR Conferences in the future, with the CIs:

⊤ ⊑ ✸∃u.{kr}, {kr} ⊑ ¬⃝{kr}.

Compared to first-order modal logics with non-rigid
designators (Stalnaker and Thomason 1968; Fitting and
Mendelsohn 2012), both the definition of the language and
the scope distinctions for modal operators are simplified in
modalised DLs, as first-order variables are replaced by a
class-based DL syntax leaving quantification and predicate
abstraction implicit. We, however, show that our modal DLs
can be translated to a natural fragment of first-order modal
logic with definite descriptions and predicate abstraction.

In this work, we consider interpretations with both con-
stant domains (in which the first-order domain is fixed across
all worlds) and expanding domains (in which it can grow
when moving to accessible worlds). We first establish, for
any class of Kripke frames and both constant and expanding
domains, polytime satisfiability-preserving reductions (with
and without ontology) to the language MLn

ALCOu
without

definite descriptions. We will show that, in addition, we can

assume that each nominal designates in every world, but im-
portantly is still non-rigid.

We then study the satisfiability problem for various funda-
mental modal logics with epistemic and temporal interpreta-
tions. While for first-order modal logics with rigid designa-
tors and no counting the restriction to monodic formulas (in
which modal operators are applied only to formulas with at
most one free variable) very often ensures decidability, this
is no longer the case if non-rigid designators and/or some
counting are admitted (Gabbay et al. 2003). For our modal
DLs, this implies that the standard recipe for designing de-
cidable languages — apply modal operators only to concepts
— does not always work anymore. Here, we explore in de-
tail when this recipe still works, and when it does not.

First, we closely link the two main sources of bad compu-
tational behaviour, non-rigid designators and counting, en-
abling us to use the results and machinery introduced for
first-order modal logics with counting (Hampson and Ku-
rucz 2012; Hampson and Kurucz 2015; Hampson 2016).

Next, we prove that, rather surprisingly, for some funda-
mental modal epistemic logic, non-rigid designators come
for free: concept satisfiability for the modal logics of all
Kripke frames with n accessibility relation, Kn, and of
all Kripke frames with n equivalence relations, S5n, is in
NEXPTIME and thus no harder than without names at all.
This holds under both constant and expanding domains, and
the proof is by showing the exponential finite model prop-
erty. This answers an open problem discussed in (Hampson
2016). With ontologies, however, concept satisfiability be-
comes undecidable under constant domains. While for S5n

(because of symmetric accessibility relations) constant do-
mains coincide with expanding domains, for Kn decidabil-
ity under expanding domains remains open with ontologies.
As a fundamental example of an expressive modal logic, we
investigate the extension K∗n of Kn with a modal opera-
tor interpreted by the transitive closure of the union of the
n accessibility relations, which can be interpreted as com-
mon knowledge (Fagin et al. 1995) but also as a fragment
of propositional dynamic logic, PDL (Harel, Kozen, and
Tiuryn 2001). In this case concept satisfiability is undecid-
able under expanding and constant domains, but becomes
decidable, though Ackermann-hard, for the corresponding
logic, Kf∗n, on finite acyclic models with expanding do-
mains. This answers an open problem posed in (Wolter
and Zakharyaschev 2001). Note that Ackermann-hardness
means that the time required to establish (un)satisfiability
is not bounded by any primitive recursive (or computable)
function. We refer the reader to Table 1 for an overview
of our results. Recall that with rigid designators all these
problems are known to be in 2NEXPTIME (Wolter and Za-
kharyaschev 2001; Gabbay et al. 2003).

Finally, in the temporal setting, we show that undecidabil-
ity is a widespread phenomenon: concept satisfiability under
global ontology with constant domain is undecidable for all
our ALCO-based fragments; the same applies to concept
satisfiability in the languages with the universal modality
and the temporal ✸ operator. Reasoning becomes decidable
only when considering concept satisfiability (under global
ontology) with expanding domains over finite flows of time
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modal domain concept sat. concept sat.
logic L under global ont.

Kn, n ≥ 1
const. NEXP-c. [T 11] undecidable [T 14]

exp. NEXP-c. [T 11] ?
S5 — NEXP-complete [T 11]

S5n, n ≥ 2 — NEXP-c. [T 11] undecidable [T 14]

K∗n, n ≥ 1
const. Σ1

1-complete [L 13 + T 15]

exp. undecidable [L 13 + T 16.1]

Kf∗n, n ≥ 1
const. undecidable [L 13 + T 15]

exp. decidable [T 12],
Ackermann-hard [L 13 + T 16.2]

Table 1: Concept satisfiability (under global ontology) for LALCOι
u

(though the problem is Ackermann-hard), or in fragments
with the ⃝ operator only, for which we prove EXPTIME-
membership of concept satisfiability (without ontologies).

It is to be emphasised that the non-rigidity of symbol
interpretation by itself is not the cause for the satisfiabil-
ity problem to become harder. For instance, rigid roles are
known to often cause an increase in the hardness of the satis-
fiability problem compared with the case of non-rigid roles
only (Gabbay et al. 2003). What makes non-rigid designa-
tors computationally much harder than rigid designators is
their ability to count in an unbounded way across worlds.

The full version of the paper with proofs and additional
material is available on ArXiv (Artale et al. 2024).

Related Work Other than in non-modal DLs (Neuhaus,
Kutz, and Righetti 2020; Artale et al. 2020; Artale et al.
2021), and in the already mentioned first-order modal and
temporal settings, definite descriptions have been recently
investigated in the context of propositional hybrid logics
with nominals and the @ operator (Walega and Zawidzki
2023). Here, the additional ι operator allows one to refer
to the (one and only) state of a model that satisfies a certain
condition.

Non-rigid designators have received, to the best of our
knowledge, little attention in modal DLs, despite the ex-
tensive body of research both on temporal (Wolter and Za-
kharyaschev 1998; Artale and Franconi 2005; Lutz, Wolter,
and Zakharyaschev 2008; Artale et al. 2014) and epis-
temic (Donini et al. 1998; Artale, Lutz, and Toman 2007;
Calvanese et al. 2008; Console and Lenzerini 2020) exten-
sions. As a notable exception, Mehdi and Rudolph (2011)
investigate non-rigid individual names in an epistemic DL
context, where abstract individual names are interpreted on
an infinite common domain, but without definite descrip-
tions.

2 Preliminaries
The MLn

ALCOι
u

language is a modalised extension of the
free description logic (DL) ALCOι

u (Artale et al. 2020;
Artale et al. 2021). Let NC, NR and NI be countably infi-
nite and pairwise disjoint sets of concept names, role names
and individual names, respectively, and let I = {1, . . . , n}

be a finite set of modalities. MLn
ALCOι

u
terms and concepts

are defined by the following grammar:

τ ::= a | ιC,
C ::= A | {τ} | ¬C | (C ⊓ C) | ∃r.C | ∃u.C | ✸iC,

where a ∈ NI, A ∈ NC, r ∈ NR, u /∈ NR is the univer-
sal role, and ✸i, with i ∈ I , is a diamond operator. A
term of the form ιC is called a definite description and C
its body; a concept {τ} is called a (term) nominal. All the
usual syntactic abbreviations are assumed: ⊥ = A ⊓ ¬A,
⊤ = ¬⊥, C ⊔ D = ¬(¬C ⊓ ¬D), C ⇒ D = ¬C ⊔ D,
C ⇔ D = (C ⇒ D) ⊓ (D ⇒ C), ∀s.C = ¬∃s.¬C, for
s ∈ NR ∪{u}, and box operator ✷iC = ¬✸i¬C. A concept
inclusion (CI) is of the form C ⊑ D, for concepts C,D. We
use C ≡ D to abbreviate C ⊑ D and D ⊑ C. An ontology
O is a finite set of CIs.

Fragments MLn
ALCOu

, MLn
ALCOι , and MLn

ALCO of the
full language are defined by restricting the available DL con-
structors: they do not contain, respectively, definite descrip-
tions, the universal role, and both definite descriptions and
the universal role.

Given a concept C, the set of subconcepts of C, denoted
by sub(C), is defined as usual (see Appendix A in the full
version): we only note that sub({ιC}) contains C along
with its own subconcepts. The signature of C, denoted
by ΣC , is the set of concept, role and individual names in C.
The signature of a CI or an ontology is defined similarly.
The set of connectives of an ontology O is the construc-
tors from the following list that occur in O: ι, {·}, ¬, ⊓,
∃ with roles in NR, ∃u, and ✸i with i ∈ I . The modal depth
of terms and concepts is the maximum number of nested
modal operators: md(A) = 0, md(ιC) = md(C) and
md(✸iC) = md(C) + 1, for example. The modal depth
of a CI or an ontology is the maximum modal depth of their
concepts.

A frame is a pair F = (W, {Ri}i∈I), where W is a non-
empty set of worlds (or states) and each Ri ⊆ W ×W , for
i ∈ I , is a binary accessibility relation on W . A partial
interpretation with expanding domains based on a frame
F = (W, {Ri}i∈I) is a triple M = (F,∆, I), where ∆ is
a function associating with every w ∈ W a non-empty set,
∆w, called the domain of w in M, such that ∆w ⊆ ∆v ,
whenever wRiv, for some i ∈ I; and I is a function as-
sociating with every w ∈ W a partial DL interpretation
Iw = (∆w, ·Iw) that maps every A ∈ NC to a subset AIw

of ∆w, every r ∈ NR to a subset rIw of ∆w ×∆w, the uni-
versal role u to the set ∆w×∆w, and every a in some subset
of NI to an element aIw in ∆w. Hence, every ·Iw is a total
function on NC ∪ NR but a partial function on NI. If Iw is
defined on a ∈ NI, then we say that a designates at w. If
every a ∈ NI designates at w ∈ W , then Iw is called total.
We say that M = (F,∆, I) is a total interpretation if every
Iw, w ∈ W , is a total interpretation. In the sequel, we re-
fer to partial interpretations as interpretations, and add the
adjective ‘total’ explicitly whenever this is the case.

An interpretation with constant domains is defined as a
special case, where the function ∆ is such that ∆w = ∆v ,
for every w, v ∈ W . With an abuse of notation, we denote
the common domain by ∆ and call it the domain of M.
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Given M = (F,∆, I), with F = (W, {Ri}i∈I), we define
the value τIw of a term τ in world w ∈ W as aIw , for τ = a,
and as follows, for τ = ιC:

(ιC)Iw =

{
d, if CIw = {d}, for some d ∈ ∆w;

undefined, otherwise.

A term τ is said to designate at w if τIw is defined. The ex-
tension CIw of a concept C in w ∈ W is defined as follows,
where s ∈ NR ∪ {u}:

(¬C)Iw = ∆w \ CIw ,

(C ⊓D)Iw = CIw ∩DIw ,

(∃s.C)Iw = {d ∈ ∆w | ∃e ∈ CIw : (d, e) ∈ sIw},
(✸iC)Iw =

{
d ∈ ∆w | ∃v ∈ W : wRiv and d ∈ CIv

}
,

{τ}Iw =

{
{τIw}, if τ designates at w,
∅, otherwise.

A concept C is satisfied at w ∈ W in M if CIw ̸= ∅; C
is satisfied in M if it is satisfied at some w ∈ W in M.
A CI C ⊑ D is satisfied in M, written M |= C ⊑ D, if
CIw ⊆ DIw , for every w ∈ W . An ontology O is satisfied
in M, written M |= O, if every CI in O is satisfied in M; we
also say a concept C is satisfied in M under an ontology O
if M |= O and CIw ̸= ∅, for some w ∈ W .

An ontology O′ is called a model conservative extension
of an ontology O if every interpretation that satisfies O′ also
satisfies O, and every interpretation that satisfies O can be
turned to satisfy O′ by modifying the interpretation of sym-
bols in ΣO′ \ ΣO, while keeping fixed the interpretation of
symbols in ΣO. Similarly, a concept C ′ is said to be a model
conservative extension of a concept C if every interpretation
that satisfies C ′ also satisfies C, and every interpretation sat-
isfying C can be turned into an interpretation that satisfies
C ′, by modifying the interpretation of symbols in ΣC′ \ΣC ,
while keeping fixed the interpretation of symbols in ΣC .

Remark 1 (Encoding of assertions). Assertions can be in-
troduced as syntactic sugar using the universal role, with
C(τ) and r(τ1, τ2) abbreviations for, respectively, concepts

∃u.({τ} ⊓ C) and ∃u.({τ1} ⊓ ∃r.{τ2}).

The first example in Sec. 1 is thus isGenChair(pierre, kr24).
To avoid ambiguities, we need to use square brackets

when applying negation and modal operators to assertions,
as in ¬[C(τ)] and ✸i[C(τ)]. Observe that, in an assertion
of the form ✸iC(τ), the diamond acts as a de re operator,
since the concept ✸iC applies to the object, if any, desig-
nated by the term τ at the current world w, and the assertion
is false at a world whenever τ fails to designate at w. On the
other hand, in an expression of the form ✸i[C(τ)], the dia-
mond plays the role of a de dicto modality, as it refers to the
world of evaluation for the whole assertion C(τ). Using the
lambda abstraction notation for first-order modal logic (Fit-
ting and Mendelsohn 2012), assertion ✸iA(a) corresponds
to ∃x.(⟨λy.x = y⟩(a) ∧✸iA(x)), whereas ✸i[A(a)] stands
for ✸i∃x.(⟨λy.x = y⟩(a) ∧ A(x)); see Appendix A of the
full version for details on the standard translation.

3 Reasoning Problems and Reductions
Let C be a class of frames (e.g., frames with n equivalence
relations) and MLn

DL a language. We consider the follow-
ing two main reasoning problems.
Concept C-Satisfiability: Given an MLn

DL-concept C, is
there an interpretation M based on a frame in C such that
C is satisfied in M?

Concept C-Satisfiability under Global Ontology: Given
an MLn

DL-concept C and an MLn
DL-ontology O, is

there an interpretation M based on a frame in C such that
C is satisfied in M under O?

In the sequel, for the case of concept C-satisfiability under
global ontology, we will assume without loss of generality
that C is a concept name. Indeed, we can extend O with CI
A ≡ C, for a fresh concept name A, and consider satisfia-
bility of A under the extended ontology, which is a model
conservative extension of O.

We begin with a few observations on polytime reduc-
tions between the concept satisfiability problems (under
global ontology) for two main languages, MLn

ALCOu
and

MLn
ALCOι

u
, and various semantic conditions, including

(non-)rigid designators, total and partial interpretations, and
expanding and constant domains. We also show how to
eliminate the universal role using the global ontology and
how to replace definite descriptions with nominals, and the
other way round, which in particular means that satisfiabil-
ity in the full MLn

ALCOι
u

and its fragment without ι has the
same computational properties. These observations will be
useful in our constructions below, where we also apply them
to smaller fragments, if the results carry over. Proofs are
available in Appendix B of the full version.

No-RDA Subsumes RDA An interpretation M satisfies
the rigid designator assumption (RDA) if every individual
name a ∈ NI is a rigid designator in M, in the sense that,
for every w, v ∈ W such that wRiv, if a designates at w,
then it designates at v and aIw = aIv . For instance, concept

∃u.({a} ⊓✷C) ⊓✸∃u.({a} ⊓ ¬C),

is unsatisfiable in interpretations with the RDA, but is satis-
fiable otherwise, as a can designate differently at different
worlds. Note that an individual that fails to designate at all
worlds is vacuously rigid. The following proposition shows
the RDA can be enforced in interpretations by an ontology.
Proposition 1. In MLn

ALCOu
and MLn

ALCOι
u

, concept C-
satisfiability under global ontology with the RDA is poly-
time-reducible to concept C-satisfiability under global on-
tology, with both constant and expanding domains.

The proof is based on the observation that CIs of the form
{a} ⊑ ✷i{a}, for i ∈ I , ensure that a can be made a rigid
designator in any interpretation. This provides a reduction
for the case of global ontology, where a given O is extended
with such CIs for every a. A similar reduction is provided in
Appendix B for concept satisfiability in total interpretations.

In the sequel, we assume implicitly that interpretations
do not satisfy the RDA, and explicitly write ‘with the RDA’
where necessary.
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From Total to Partial Satisfiability and Back Partial in-
terpretations are a generalisation of the classical, total, in-
terpretations, where all nominals designate at all possible
worlds. It turns out that satisfiability in partial and total in-
terpretations are polytime-reducible to each other.
Proposition 2. In MLn

ALCOu
and MLn

ALCOι
u

, total con-
cept C-satisfiability (under global ontology) is polytime-re-
ducible to concept C-satisfiability (under global ontology,
respectively), with both constant and expanding domains.

We sketch the proof for the case of global ontology. Let O
be an ontology. Consider the extension O′ of O with CIs
⊤ ⊑ ∃u.{a}, for all individual names a in O. Clearly, these
CIs ensure that each a designates in every accessible world.
The case of concept satisfiability is shown in Appendix B.

Next, we provide the converse reduction.
Proposition 3. In MLn

ALCOu
and MLn

ALCOι
u

, concept C-
satisfiability (under global ontology) is polytime-reducible
to total concept C-satisfiability (under global ontology, re-
spectively), with both constant and expanding domains.

We again sketch the proof for the case of global ontology.
Let O be an ontology. Consider O′ obtained from O by
replacing every nominal {a} in O with a fresh concept name
Na and by extending the result with all CIs Na ⊑ {a}. It
follows that every a in O′ can designate in all worlds, but
the corresponding concept Na may still be interpreted by
the empty set in some worlds, thus reflecting the fact that
a in O could have failed to designate in those worlds. The
case of concept satisfiability is dealt with in Appendix B.

Normal Form for Ontologies and Concepts Next, we
define normal form that will help us prove further polytime
reductions, e.g., Lemma 6 and Proposition 8, and then com-
plexity upper bounds. Let O be an ontology and C a sub-
concept in O. Denote by O[C/A] the result of replacing
every occurrence of C in O with a fresh concept name A,
called the surrogate of C. Clearly, O[C/A] ∪ {C ≡ A}
is a model conservative extension of O. We can systemat-
ically apply this procedure to obtain an ontology in normal
form where connectives are applied only to concept names:
e.g., definite descriptions occur only in the form of ιB, for a
concept name B. If surrogates are introduced for innermost
connectives first, then the transformation runs in polytime.
Lemma 4. For any MLn

ALCOι
u

ontology O, we can con-
struct in polytime an MLn

ALCOι
u

ontology O′ in normal
form that is a model conservative extension of O. Moreover,
O′ uses the same set of connectives as O.

If the language contains the universal role, then a similar
construction transforms concepts D into normal form. For a
single modality (n = 1), we can use ✷k

1∀u.(C ⇔ A), for all
k ≤ md(D). If n > 1, then we need to carefully select se-
quences of boxes to avoid an exponential blowup. So, for an
MLn

ALCOι
u

concept D and its subconcept C, we define the
set of C-relevant paths in D, denoted by rp(D,C), as the se-
quences (i1, . . . , in) of the ✸ij operators under which C oc-
curs in D. For example, for D = ✸1¬A⊓✸2✸3A, we have
rp(D,A) = {(1), (2, 3)} and rp(D,¬A) = {(1)}. Note
that the maximum length of a path in rp(D,C) is md(D).

We also define the ‘✷-modality’ for each path: for a concept
E, we recursively define

✷ϵE = E and ✷i·πE = ✷i✷
πE, for any path π.

As before, the surrogate of C is a fresh concept name A, and
D[C/A] denotes the result of replacing C with A in D.
Lemma 5. Let D be an MLn

ALCOι
u

concept and C its sub-
concept. Denote by D′ the conjunction of D[C/A] and

✷π∀u.(C ⇔ A), for all π ∈ rp(D,C). (1)

Then D′ is a model conservative extension of D. Moreover,
rp(D′, A) = rp(D,C) and rp(D′, E) = rp(D,E), for any
subconcept E of C.

For any concept D, by repeatedly replacing non-atomic
subconcepts with their surrogates, one can obtain a concept
D∗ in normal form, which is a conjunction of a concept
name and concepts of the form (1). By Lemma 5, D∗ is a
model conservative extension of D. Moreover, if surrogates
are introduced for innermost non-atomic concepts first, the
procedure runs in polytime in the size of D.

Spy Points: Eliminating the Universal Role Our next
observation allows us to eliminate occurrences of the uni-
versal role from ontologies.
Lemma 6. Let O be an MLn

ALCOι
u

ontology in normal
form. Denote by O′ the MLn

ALCOι ontology obtained from
O′ by replacing
• each CI of the form B ⊑ ∃u.B′ with B ⊑ ∃r.B′, and
• each CI of the form ∃u.B ⊑ B′ with the following:

⊤ ⊑ ∃r.{e}, A ⊑ {e}, ¬B′ ⊑ ∃r.A, ∃r.A ⊑ ¬B,

where r, e and A are fresh role, nominal and concept names,
respectively. Then O′ is a model conservative extension
of O, and the size of O′ is linear in the size of O.

Intuitively, positive occurrences of ∃u.B′ ensure that B′

is non-empty, which can also be achieved with a fresh role r.
For negative occurrences of ∃u.B′, we use a spy-point e,
which is accessible, via a fresh r, from every domain ele-
ment and belongs to A whenever ¬B′ is non-empty (that
is, whenever B′ does not coincide with the domain). If this
is the case, then no domain element can be in B, which, by
contraposition, implies ∃u.B ⊑ B′. Note that e can be rigid.

From Nominals to Definite Descriptions and Back We
first observe that nominals can be easily encoded with defi-
nite descriptions. Indeed, given an ontology O, take a fresh
concept name Na for each individual name a in O, and
let O′ be the result of replacing every occurrence of {a}
in O with {ιNa}. Clearly, O′ is a model conservative exten-
sion of O, and vice versa. Note that O′ is in the fragment
MLn

ALCι
u

without nominals, which has no distinction be-
tween partial and total interpretations, and between the RDA
and no-RDA cases. Thus, we have the following result.
Proposition 7. In MLn

ALCOu
and MLn

ALCOι
u

, concept C-
satisfiability (under global ontology) is polytime-reducible
to MLn

ALCι
u

concept C-satisfiability (under global ontology,
respectively), with both constant and expanding domains.
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Conversely, we now show how to replace definite descrip-
tions ιC with nominals using the universal role.

Proposition 8. MLn
ALCOι

u
concept C-satisfiability (under

global ontology) is polytime-reducible to MLn
ALCOu

con-
cept C-satisfiability (under global ontology, respectively),
with both constant and expanding domains.

The proof reduces the total C-satisfiability problems in
MLn

ALCOι
u

to total C-satisfiability in MLn
ALCOu

, which, by
Propositions 3 and 2 gives us the required result. We sketch
the case of the global ontology. By Lemma 4, we can as-
sume that the given O is in normal form. Let O∗ be the
result of replacing each A{ιB} ≡ {ιB} in O with CIs

A{ιB} ⊑ B ⊓ {aB} and B ⊓ ∀u.(B ⇒ {aB}) ⊑ A{ιB},

where aB is a fresh individual name. Intuitively, the first CI
ensures that the surrogate for {ιB} belongs to B and is never
interpreted by more than one domain element. The second
CI ensures that if B is a singleton, then that element belongs
to the surrogate for {ιB}. Formally, we show that O∗ is
a model conservative extension of O. The case of concept
satisfiability relies on normal form of concepts (Lemma 5)
and is treated in Appendix B.

Expanding to Constant Domains It is known that, for
the satisfiability problems, the interpretations with expand-
ing domains can be simulated by constant domain interpre-
tations, where a fresh concept name representing the domain
is used to relativise concepts and CIs; see e.g., (Gabbay et
al. 2003, Proposition 3.32 (ii), (iv)). We restate this standard
result in our setting for completeness:

Proposition 9. In MLn
ALCOu

and MLn
ALCOι

u
, concept C-

satisfiability (under global ontology) with expanding do-
mains is polytime-reducible to concept C-satisfiability (un-
der global ontology, respectively) with constant domain.

In the sequel, we implicitly adopt the constant domain
assumption (Gabbay et al. 2003), and explicitly write when
we consider interpretations with expanding domains instead.

4 Non-Rigid Designators and Counting
We prove a strong link between non-rigid designators and
the first-order one-variable modal logic enriched with the
‘elsewhere’ quantifier, MLn

Diff, introduced and investigated
in (Hampson and Kurucz 2012; Hampson and Kurucz 2015;
Hampson 2016). We define MLn

Diff using DL-style syntax:
concepts in MLn

Diff are of the form

C ::= A | ¬C | (C ⊓ C) | ∃u.C | ∃ ̸=u.C | ✸iC,

where i ∈ I . Observe that the language has no terms and
no roles apart from the universal role u. All constructs are
interpreted as before, with the addition of

(∃ ̸=u.C)Iw =
{
d ∈ ∆w | CIw \ {d} ̸= ∅

}
.

Note that our language contains existential quantification,
which in (Hampson and Kurucz 2015) is introduced as an
abbreviation for C⊔∃ ̸=u.C. In fact, MLn

Diff can be regarded

as a basic first-order modal logic with counting because the
counting quantifier ∃=1u.C (‘there is exactly one C’) with

(∃=1u.C)Iw =
{
d ∈ ∆w | |CIw | = 1

}
is clearly logically equivalent to the MLn

Diff-concept
∃u.(C ⊓ ¬∃ ̸=u.C). Conversely, ∃ ̸=u.C is logically equiv-
alent to ∃u.C ⊓ (C ⇒ ¬∃=1u.C). So, one could replace
∃ ̸= by ∃=1 in the definition MLn

Diff and obtain a logic with
exactly the same expressive power.
Theorem 10. (1) C-satisfiability of MLn

ALCOu
-concepts

(under global ontology) can be reduced in double exponen-
tial time to C-satisfiability of MLn

Diff-concepts (under global
ontology, respectively), with both constant and expanding
domains.

(2) Conversely, C-satisfiability of MLn
Diff-concepts (un-

der global ontology) is polytime-reducible to C-satisfiability
of MLn

ALCOu
-concepts (under global ontology, respec-

tively), with both constant and expanding domains.
We first give the main ingredients for the proof of Item (1)

with global ontology O. If O contains no roles apart from u,
then we introduce a surrogate concept name {a}♯ for each
individual name a in O and denote by O♯ the result of re-
placing each {a} with {a}♯ and then extending the ontology
with CIs of the form ⊤ ⊑ ∃=1u.{a}♯. The resulting MLn

Diff
ontology O♯ is clearly a model conservative extension of O,
which completes the reduction. If, however, O contains role
names, then we apply the quasimodel technique (Gabbay
et al. 2003) to deal with binary relations (roles), whose in-
terpretations in different worlds are independent from each
other. This technique is also used in Sections 5 and 6. In
quasimodels, each DL interpretation is represented as a qua-
sistate, which is a non-empty set of types, maximal consis-
tent sets of subconcepts of O and their negations: each type t
represents all domain elements satisfying the concepts in t.
In this proof, we can characterise possible quasistates for O
using concepts: the description ΞT of a quasistate T is

∀u.
⊔
t∈T

t ⊓
l

t∈T

∃u.t,

where t is the conjunction (⊓) of all concepts C ∈ t. The
set SO of quasistates that can possibly occur in interpreta-
tions satisfying O can be obtained by checking whether the
modal abstraction Ξ∗

T of its description ΞT is satisfiable,
where ·∗ is the result of replacing subconcepts starting with
a modal operator by fresh concept names. Since satisfiabil-
ity of ALCOu-concepts under ALCOu ontologies is in EX-
PTIME, the set SO can be computed in double exponential
time. In order to ensure that quasistates fit together to form a
representation of an interpretation satisfying O, we use the
DL-abstraction ·♯ described above, except that now we re-
place not only nominals but also existential restrictions with
fresh concept names. We construct MLn

Diff-ontology O♯ by
replacing CIs C ⊑ D in O with C♯ ⊑ D♯ and extending the
result with CIs ⊤ ⊑

⊔
T∈SO

Ξ♯
T and ⊤ ⊑ ∃=1u.{a}♯, for

all individual names a. Then we show that A is C-satisfiable
under O iff t♯ is C-satisfiable under O♯, for some type t con-
taining A. See Appendix C for full details and the case of
concept satisfiability (without ontology).
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Item (2) is proved by lifting to the modal description logic
setting the observation of Gargov and Goranko (1993) that
the difference modality and nominals are mutually inter-
pretable by each other; see the equivalences that show the
same expressive power of ∃ ̸= and ∃=1.

Using Theorem 10, one can transfer a large number of
(un)decidability results and lower complexity bounds from
first-order modal logics with ‘elsewhere’ to modal DLs with
non-rigid designators; see, e.g., Theorem 14 in Section 5.
Conversely, the results proved below entail new results for
first-order modal logics with ‘elsewhere’ and/or counting.

5 Reasoning in Modal Free Description
Logics

The aim of this section is to show the results presented in
Table 1 and also discuss a few related logics. For some
basic frame classes, it will be convenient to use standard
modal logic notation when discussing the satisfiability prob-
lem. So, given a propositional modal logic L with n op-
erators and a DL fragment DL, the problem of LDL con-
cept satisfiability (under global ontology) is the problem of
deciding CL-satisfiability of MLn

DL-concepts (under global
ontology, respectively), where CL is the class of all frames
validating L. We focus on the modal logics L characterised
by the following classes CL of frames, with n ≥ 1:
Kn: CL is the class of all frames (W,R1, . . . , Rn);
S5n: CL is the class of all frames (W,R1, . . . , Rn) such

that the Ri are equivalence relations;
K∗n: CL is the class of all frames (W,R1, . . . , Rn, R) such

that R is the transitive closure of R1 ∪ · · · ∪Rn;
Kf∗n: CL is as for K∗n and, in addition, W is finite

and R is irreflexive (in other words, there are no chains
w0Ri1w1 · · ·Rinwn with w0 = wn).

To illustrate the language S52
ALCOι

u
, we express that

Agent 2 knows that Agent 1 does not know of the General
Chair of KR 2024 that they are the General Chair of the KR
Conference held in Southeast Asia:

✷2∃u.({ι∃isGenChair.{kr24}} ⊓ ¬✷1{ι∃isGenChair.
{ι(KRConf ⊓ ∃hasLoc.SEAsiaLoc)}}).

The two main new results in Table 1 are the NEXPTIME
upper bound for Kn and S5n and decidability of Kf∗n. The
remaining results are by (sometimes non-trivial) reductions
to known results.
Theorem 11. For L ∈ {Kn,S5n} with n ≥ 1, LALCOι

u

concept satisfiability is in NEXPTIME with both constant
and expanding domains.

We provide a sketch of the main ideas of the proof for
S5n. First, observe (using an unfolding argument) that any
satisfiable concept C is satisfied in world w0 in a model
based on a frame F = (W,R1, . . . , Rn) such that the do-
main W of F is a prefix-closed set of words of the form

w = w0i0w1 · · · im−1wm,

where 1 ≤ ij ≤ n, ij ̸= ij+1, and each Ri is the small-
est equivalence relation containing all pairs of the form

(w,wiw) ∈ W × W . One can assume that m is smaller
than the modal depth of C. Next, one can substitute the
first-order domain by quasistates (as introduced in Section 4)
and work with quasimodels Q = (F, q,R), in which q as-
sociates a quasistate with any world, and a set of runs R
represents first-order domain elements as functions mapping
every world w to a type in q(w); note that runs were im-
plicit in the proof of Theorem 10 and could be defined as
the domain elements in the interpretations for MLn

Diff. If
t ∈ q(w) contains a nominal, there is only one r ∈ R with
r(w) = t; this condition was expressed by the CIs of the
form ⊤ ⊑ ∃=1u.{a}♯. Now, one can apply selective filtra-
tion and some surgery to such a quasimodel in order to ob-
tain a quasimodel with at most exponential outdegree (and
so of at most exponential size), from which one can then
extract a model of exponential size.

Theorem 12. Kf∗n
ALCOι

u
concept satisfiability under global

ontology is decidable with expanding domains, for n ≥ 1.

The proof is again based on appropriate quasimodels,
which are now based on expanding domain models using fi-
nite frames F = (W,R1, . . . , Rn, R) such that the transitive
closure R of R1 ∪ · · · ∪ Rn contains no cycles. Unfold-
ing shows that we may assume that (W,R) is a forest. We
show decidability by proving a recursive bound on the size
of these models. Let N∞ = N ∪ {∞}, where we assume
m ≤ ∞ and m + ∞ = ∞, for all m ∈ N∞. We fix an
ordering t1, . . . , tk of the types and represent a quasistate as
a vector (x1, . . . , xk) ∈ Nk

∞, where xi is the number of do-
main elements that satisfy type ti in a world (equivalently,
the number of runs through ti). Let |x| = x1 + · · ·+ xk for
x = (x1, . . . , xk) ∈ Nk

∞. Observe that expanding domains
correspond to the condition that wRiv implies |x| ≤ |y|,
where q(w), q(v) are represented by x,y ∈ Nk

∞, respec-
tively. To obtain a recursive bound on the size of a finite
model satisfying a concept we then apply Dickson’s Lemma
to the quasistates. Define the product ordering ≤ on Nk

∞
by setting x ≤ y if xi ≤ yi for all 1 ≤ i ≤ k, where
x = (x1, . . . , xk) and y = (y1, . . . , yk). A pair x,y with
x ≤ y is called an increasing pair. Dickson’s Lemma
states every infinite sequence x1,x2, . . . ∈ Nk

∞ contains
an increasing pair xi1 ,xi2 with i1 < i2. In fact, assuming
|xi| ≤ |xi+1| for all i ≥ 0 and given recursive bounds on
|x1| and |xi+1| − |xi|, one can compute a recursive bound
on the length of the longest sequence without any increas-
ing pair (Figueira et al. 2011). Now, the proof of a recursive
bound on the size of a satisfying model consists in manip-
ulating the quasimodel so that the outdegree of the forest is
recursively bounded and Dickson’s Lemma becomes appli-
cable. The expanding domain assumption is crucial for this.

We comment on the remaining results in Table 1. The
NEXPTIME-hardness results already hold without nomi-
nals (Gabbay et al. 2003, Theorem 14.14) (the proof goes
through also with expanding domain). The lower bounds for
Kf∗n and K∗n follow from the following lemma and the
corresponding lower bounds proved in the next section for
temporal DLs (Table 2).

Lemma 13. Concept satisfiability for LTLfALCOu
and

LTLALCOu are polytime-reducible to concept satisfiability
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for Kf∗n
ALCOu

and K∗n
ALCOu

, respectively, with and without
ontology and with both constant and expanding domains.

The proof of this reduction from logics of linear frames
with transitive closure to logics of branching frames with
transitive closure is not trivial but can be done by adapting
the reduction given in the proof of Theorem 6.24 in (Gabbay
et al. 2003) for product modal logics.

Finally, undecidability of concept satisfiability under
global ontology for Kn with n ≥ 1 follows from undecid-
ability of MLn

Diff (Hampson and Kurucz 2012) using the re-
duction of Theorem 10. The result for S5n with n ≥ 2 can
be obtained in a similar way, see, e.g., (Gabbay et al. 2003).

Theorem 14. Concept satisfiability under global ontology
is undecidable with constant domains for S5n

ALCOu
, with

n ≥ 2, and for Kn
ALCOu

with n ≥ 1.

For many important modal logics the decidability sta-
tus of modal DLs with non-rigid designators remains open.
Most prominently, for the modal logics of (reflexive) transi-
tive frames K4 (and S4, respectively), decidability of con-
cept satisfiability with or without ontologies and with ex-
panding or constant domains is open. As a “finitary” ap-
proximation and a first step to understand K4 and S4, we
prove, as a specialisation of the proof of Theorem 12, de-
cidability of concept satisfiability for the Gödel-Löb logic
GLALCOι

u
(GL is the logic of all transitive and Noetherian1

frames (Boolos 1995)) and Grzegorczyk’s logic GrzALCOι
u

(Grz is the logic of all reflexive and transitive Noetherian
frames (Grzegorczyk 1967)) in expanding domain models
with and without ontologies. Alternatively, the decidability
of concept satisfiability for GLALCOι

u
and GrzALCOι

u
can

be proved by a double-exponential-time reduction (similar
to Theorem 10) to satisfiability in expanding domain prod-
ucts of transitive Noetherian frames, which is known to be
decidable (Gabelaia et al. 2006).

6 Reasoning in Temporal Free Description
Logics

In this section, we consider the temporal setting. For the
temporal DL language, we build T LALCOι

u
terms, con-

cepts, concept inclusions and ontologies similarly to the
MLn

ALCOι
u

case, with n = 2: the language has two modal-
ities — temporal operators ‘sometime in the future’, ✸, and
‘at the next moment’, ⃝. In particular, the T LALCOι

u
con-

cepts are defined by the grammar

C ::= A | {τ} | ¬C | (C ⊓ C) | ∃r.C | ∃u.C | ✸C | ⃝C,

where τ is a T LALCOι
u

term, defined as in Section 2.
A flow of time F is a pair (T,<), where T is either the

set N of non-negative integers or a subset of N of the form
[0, n], for n ∈ N, and < is the strict linear order on T . Ele-
ments of T are called instants (rather than worlds). A flow
of time (T,<) naturally gives rise to a frame (T,<, succ)
for T LALCOι

u
, where succ is the successor relation: succ =

{(t, t + 1) | t, t + 1 ∈ T}. So, we will often say that an

1(W,R) is Noetherian if there is no infinite chain w0Rw1R · · ·
with wi ̸= wi+1.

interpretation M is based on a flow F if its frame is in-
duced by F. We denote it (with an abuse of notation) by
M = (∆, (It)t∈T ). If M is based on (N, <), then we call
it an LTLALCOι

u
interpretation; if it is based on ([0, n], <),

for some n ∈ N, it is called an LTLfALCOι
u

interpretation.
Given M = (∆, (It)t∈T ), the value of a T LALCOι

u

term τ at t ∈ T and the extension of a T LALCOι
u

concept C
at t ∈ T , are defined as in the modal case for n = 2: in
particular, we have

(⃝D)It =

{
DIt+1 , if t+ 1 ∈ T,

∅, otherwise,
and (✸D)It =

⋃
t′∈T with t<t′

DIt′ .

Note that ✸ is interpreted by < and so does not include the
current instant.

We will consider restrictions of the base language
T LALCOι

u
along both the DL and temporal dimensions.

First, T LALCOι , T LALCOu and T LALCO stand for the
fragments of T LALCOι

u
without the universal role, definite

descriptions and both constructs, respectively. In addition to
the basic free description logic ALCOι

u, we define temporal
extensions of the light-weight free DL ELOι

u, which does
not contain negation (and so disjunction). More precisely,
the language T LELOι

u
is obtained from T LALCOι

u
by al-

lowing only ⊤ (considered as a primitive logical symbol),
concept names, term nominals, conjunctions and existential
restrictions in the construction of concepts. Then, by remov-
ing the universal role or/and definite descriptions, we define
T LELOι , T LELOu and T LELO in the obvious way.

In the temporal dimension, given a DL DL, the✸✷-
fragment, T L✸

DL, and the ⃝-fragment, T L◦DL, are obtained
from T LDL by disallowing the ⃝ and the ✸/✷ operators,
respectively. Both fragments correspond to the unimodal
language ML1

DL, but with different accessibility relations.
In the following we will combine the syntactic restric-

tions (fragments) with the semantic restrictions on interpre-
tations and refer, for example, to the satisfiability problem
for T L✸

ALCOu
concepts in LTLfALCOι

u
interpretations sim-

ply as LTLf✸
ALCOu

concept satisfiability.
As an example, in LTLfALCOι

u
, we express that whoever

is a Program Chair of KR will not be Program Chair of KR
again, but is always appointed as either the General Chair or
a PC member of next year’s KR, by means of the CI:

∃isProgChair.{kr} ⊑ ¬✸∃isProgChair.{kr} ⊓
({ι∃isGenChair.⃝{kr}} ⊔ ∃isPCMember.⃝{kr}).

We begin the study of the satisfiability problems for tem-
poral DLs based on ALCO by showing that concept sat-
isfiability in constant domains is undecidable or even Σ1

1-
complete (highly undecidable in the analytical hierarchy)
over the infinite flow of time (N, <). This is very differ-
ent from the classical case with RDA, which was shown to
be decidable in the absence of definite descriptions (Gabbay
et al. 2003, Theorem 14.12).
Theorem 15. With constant domains, concept satisfiabil-
ity is Σ1

1-complete for LTL✸
ALCOu

and LTLALCOu
, and

undecidable for LTLf✸
ALCOu

; also, concept satisfiability
under global ontology is Σ1

1-complete for LTL✸
ALCO and

LTLALCO, and undecidable for LTLf✸
ALCO.
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temporal logic concept satisfiability concept sat. under global ontology
const. domain exp. domains const. domain exp. domains

LTL✸
ALCOu

, LTLALCOu Σ1
1-complete [T 15] undecidable [T 16.1] Σ1

1-complete [T 15] undecidable [T 16.1]

LTLf✸
ALCOu

, LTLfALCOu
undecidable [T 15]

decidable,
Ackermann-hard [T 16.2] undecidable [T 15]

decidable,
Ackermann-hard [T 16.2]

LTL✸
ALCO, LTLALCO ? ? Σ1

1-complete [T 15] undecidable [T 16.1]

LTLf✸
ALCO, LTLfALCO ? ? undecidable [T 15]

decidable,
Ackermann-hard [T 16.2]

LTL◦ALCOu
/ LTL◦ALCO EXP-c. / in EXP [T 18] EXP-c. / in EXP [T 18] undecidable [T 19] ?

LTLf◦ALCOu
/ LTLf◦ALCO EXP-c. / in EXP [T 18] EXP-c. / in EXP [T 18] undecidable [T 19] decidable

Table 2: Concept satisfiability (under global ontology) for temporal DLs

The lower bounds follow, using Theorem 10 (2), from
the respective undecidability results for the first-order one-
variable temporal logic with counting (Hampson and Kurucz
2015). Observe that, for LTL✸

ALCO, we apply the spy-point
universal role elimination of Lemma 6. Moreover, Proposi-
tion 3 also applies to LTL✸

ALCO under global ontology, and
so the results hold in both total and partial interpretations.

They could also be proven more directly by encoding
the Σ1

1-complete recurrence and undecidable reachability
problems for the Minsky counter machines (Minsky 1961;
Alur and Henzinger 1994). Intuitively, the value of a counter
of the Minsky machine can be represented as the cardinality
of a certain concept. Then non-rigid nominals (or indeed the
counting quantifier) can be used to ensure that the value of
the counter is incremented/decremented (depending on the
command) by the transition: for instance, a CI of the form

Qi ⊑ ⃝Rk ⇔ (Rk ⊔ {ak})
could be used to say that from state Qi, the value of counter
k is increased by one. Note, however, that this CI uses the
⃝ operator. Without it, the proof is considerably more elab-
orate and represents a counter as a pair of concepts: Rk is
used to increment the counter, while Sk to decrement it, so
that the counter value is the cardinality of Rk ⊓ ¬Sk. Both
concepts are made ‘monotone’: Rk ⊑ ✷Rk and Sk ⊑ ✷Sk,
and for each transition of the Minsky machine, the non-rigid
nominals pick an element that, for example, has never been
in Rk before but will remain in Rk from the next instant
on: ¬Rk ⊓✷Rk. A sequence of these elements allows us to
linearly order the domain and construct a ‘diagonal’ in the
two-dimensional interpretation necessary for the encoding
of the computation using only the ✸ operator.

Reasoning in expanding domains turns out to be less com-
plex, and we obtain the following:
Theorem 16. (1) With expanding domains, concept satisfi-
ability is undecidable for LTL✸

ALCOu
, and concept satisfia-

bility under global ontology is undecidable for LTL✸
ALCO.

(2) With expanding domains, concept satisfiability (un-
der global ontology) is decidable for LTLfALCOι

u
. How-

ever, both problems are Ackermann-hard for LTLf✸
ALCOu

;
moreover, concept satisfiability under global ontology is
Ackermann-hard for LTLf✸

ALCO.
Undecidability and Ackermann-hardness are proven sim-

ilarly to Theorem 15. In this case, however, the master

problems are, respectively, the ω-reachability and reacha-
bility problems for lossy Minsky machines (Konev, Wolter,
and Zakharyaschev 2005; Schnoebelen 2010), which in ad-
dition to normal transitions can also arbitrarily decrease the
counter values. Such computations can be naturally encoded
backwards in interpretations with expanding domains: the
arbitrary decreases of counter values correspond to the ex-
tension of the interpretation domain with fresh elements.

The positive decidability results over the finite flows of
time follows from Theorem 12 by Lemma 13 (together with
the reduction in Proposition 8).

Temporal Free DLs Based on ELO. Next, we transfer
the above results to the ELO family. As T LELO concepts
do not contain negation and the empty concept (⊥), they are
trivially satisfiable. Thus, our main reasoning problem is
based on the notion of entailment (rather than satisfiability).
CI Entailment (over Finite Flows): Given a T LDL-CI

C1 ⊑ C2 and a T LDL-ontology O, is it the case that
CIt

1 ⊆ CIt
2 , for every t ∈ T in every interpretation M

satisfying O and based on (N, <) (every finite flow, re-
spectively)?
It turns out that disjunction can be modelled in the tempo-

ral extension of ELO with the help of the ✸ modality (Artale
et al. 2007): intuitively, any CI of the form ⊤ ⊑ B1 ⊔B2 is
replaced with ⊤ ⊑ ∃q.(✸X1 ⊓ ✸X2), which says that X1

and X2 occur in some order in the future (possibly on an-
other domain element). It then remains to check the order of
X1 and X2 and, if, say, X1 precedes X2, then B1 is chosen,
otherwise B2 is chosen. So, this reduction shows that the
entailment problem for the fragments of T L✸

ELO essentially
has the same complexity as the complement of the satisfia-
bility problem for the corresponding T L✸

ALCO fragment:
Theorem 17. (1) CI entailment with constant domains is
Π1

1-complete for LTL✸
ELO and undecidable for LTLf✸

ELO.
(2) CI entailment with expanding domains is undecidable

for LTL✸
ELO.

(3) CI entailment with expanding domains is decidable
but Ackermann-hard for LTLf✸

ELO.

Next-Only Temporal Free DLs. As we have seen above,
the ✸-only fragments normally exhibit the same bad com-
putational behaviour as the full logics with both ✸ and ⃝.
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We now provide some results for the fragments that contain
only ⃝. We begin with some positive results for the satisfia-
bility problem (without global ontology):
Theorem 18. With constant and with expanding domains,
concept satisfiability is EXPTIME-complete for LTL◦ALCOu

and LTLf◦ALCOu
and in EXPTIME for LTL◦ALCO and

LTLf◦ALCO.
The EXPTIME upper complexity bound can be shown by

a type elimination procedure, similarly to the case of the
product Alt×Kn of modal logics Alt, whose accessibility
relation is a partial function, and multi-modal Kn, which is
a notational variant of ALC; see (Gabbay et al. 2003, Theo-
rem 6.6). One has to, in addition, take care of nominals and
the universal role, but that can be done in exponential time.
The matching lower bound is inherited from ALCOu, but for
the fragment without the universal role the exact complexity
remains an open problem.

Our final result indicates that with the global ontology, the
⃝-fragments behaves nearly as badly as the full language:
Theorem 19. With constant domains, concept satisfiabil-
ity under global ontology is undecidable for LTL◦ALCO and
LTLf◦ALCO.

The proof is by a direct reduction of the reachability prob-
lem for Minsky machines, similarly to the simplified sketch
for Theorem 15; note the proof makes use of the spy-point
universal role elimination in Lemma 6.

7 Discussion and Future Work
We have introduced and investigated novel fragments of
first-order modal logic with non-rigid (and possibly non-
referring) individual names and definite descriptions. Poten-
tial applications that remain to be explored include business
process management, where formalisms for representing the
dynamic behaviour of data and information are crucial (Del-
grande et al. 2023; Deutsch et al. 2018), and context, knowl-
edge or standpoint-dependent reasoning for which possi-
ble worlds semantics is needed (Ghidini and Serafini 2017;
Gómez Álvarez, Rudolph, and Strass 2023).

Besides the open decidability problems discussed above,
future research directions include the extension of our re-
sults to more expressive monodic fragments (Gabbay et al.
2003; Hodkinson, Wolter, and Zakharyaschev 2002), au-
tomated support for the construction of definite descrip-
tions and referring expressions (Artale et al. 2021; Ku-
rucz, Wolter, and Zakharyaschev 2023), the design of
‘practical’ reasoning algorithms for the languages con-
sidered here, and the extension of our results to modal
DLs with hybrid (Braüner 2014; Indrzejczak and Zaw-
idzki 2023), branching-time (Hodkinson, Wolter, and Za-
kharyaschev 2002; Gutiérrez-Basulto, Jung, and Lutz 2012),
dynamic (Harel 1979), or non-normal operators (Dalmonte
et al. 2023).
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