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Abstract

This paper studies the problem of action model learning with
full observability. Following the learning by search paradigm
by Mitchell, we develop a theory for action model learning
based on version spaces that interprets the task as search for
hypotheses that are consistent with the learning samples. Our
theoretical findings are instantiated in an online algorithm
that maintains a compact representation of all solutions of the
problem. Among this range of solutions, we bring attention
to action models approximating the actual transition system
from below (sound models) and from above (complete mod-
els). We show how to manipulate the output of our learning
algorithm to build deterministic and non-deterministic for-
mulations of the sound and complete models and prove that,
given enough examples, both formulations converge into the
very same true model. Our experiments reveal their useful-
ness over a range of planning domains.

1 Introduction
The engineering of action models is complex and error-
prone, presenting one of the main bottlenecks in the appli-
cation of model-based reasoning (Kambhampati 2007). Au-
tomating this process holds the promise of enabling AI plan-
ning (Ghallab, Nau, and Traverso 2004) even for those prob-
lems in which the model is unknown. Action model learn-
ing tackles this problem by computing an approximation of
a domain’s dynamics from demonstrations.

Over the last two decades, much of the research on ac-
tion model learning has concentrated on learning under par-
tial observability, investigating the application of different
techniques with the aim of either improving the expressive-
ness of the learnt models or handling more incomplete and
noisy demonstrations. Against this trend, Safe Action Model
(SAM) Learning (Stern and Juba 2017; Juba, Le, and Stern
2021; Juba and Stern 2022; Mordoch, Juba, and Stern 2023)
is a family of algorithms that takes a step back to study the
fully observable setting from a theoretical standpoint that
emphasizes the properties of the learnt model. Specifically,
SAM is concerned with learning safe models – those allow-
ing an agent to safely execute actions all the way to the goal.

This paper deepens this theoretical investigation through
the lens of version spaces (Mitchell 1982). We focus on clas-
sical planning models, and develop a framework for learn-
ing action preconditions and effects by maintaining a version

space comprising all hypotheses consistent with the demon-
strations. The computed version space provides an efficient
representation of all solutions to the action model learning
problem. Among these solutions, those at the boundaries
have special properties. At one end lies pessimism, while
at the other, optimism. The pessimistic form leads to the
construction of sound models – ones that always generate
plans guaranteed to work with the true model, in line with
the safe property studied by SAM. However, this approach
will often discard valid plans. Conversely, the optimistic
form yields complete models, which may not always gener-
ate valid plans but ensure the existence of a plan if one exists
for the true model. This paper represents the first explo-
ration into the concept of complete models within the con-
text of action model learning. By introducing and investigat-
ing complete models alongside sound models, we provide an
agent with more comprehensive reasoning capabilities. In-
deed, not only can the agent demonstrate the existence of a
valid plan when there is one induced by the sound model,
but also prove the absence of any valid solution when there
is none for the complete one.

The main contribution of our work is theoretical. Our
investigation precisely establishes rules that heavily exploit
the structure of the hypothesis space in order to learn all the
solutions to an action model learning problem. These rules
are operationalized into an online algorithm, which produces
a compact representation of the solution set. Subsequently,
we show how to manipulate this representation to derive
both sound and complete action model formulations that,
given enough demonstrations, converge to the very same
true model. Importantly, the sound and the complete models
ensure these properties after any number of demonstrations
and whilst learning is undergoing. These models constitute
incumbent solutions with complementary properties that can
be leveraged while convergence to the true model has not
been achieved or is infeasible. The resulting learning frame-
work, namely VSLAM, subsumes approaches offering ei-
ther only sound models (e.g., SAM (Stern and Juba 2017))
or just consistent models (e.g., FAMA (Aineto, Celorrio, and
Onaindia 2019)), providing a unified account that can com-
pute complete models, too. In order to understand the practi-
cal benefit of VSLAM, we conducted an experimental eval-
uation across various domains. Our findings demonstrate
that VLSAM provides the agent with better reasoning ca-
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pabilities than previous learning methods. This is because
complete models offer plans sooner (sound models can at
times be too pessimistic), and exploit negative demonstra-
tions, too.

The paper is organized as follows: We start off with
background material on action model learning and version
spaces. Then we delve into building a precise mapping be-
tween these two worlds (Section 3) outlining several theo-
retical results that we leverage in Section 4 to build sound
and complete action models. Section 5 clarifies how to ex-
trapolate our theory to learn lifted representations. Then,
we practically evaluated our approach in Section 6, and con-
clude with related work and discussion (sections 7 and 8).

2 Preliminaries
This section presents the basic notions around action model
learning and version spaces.

2.1 Action Model Learning
An action model is a description of the capabilities of some
agent, system or environment. In this work, we focus on
learning deterministic action models with conjunctive pre-
conditions (McDermott and others 1998), as defined below.

Definition 1 (Action Model). An action model is a tuple
M = ⟨F,A, pre, eff⟩ where:

• F = {f1, . . . , fn} is a finite set of Boolean state variables
called fluents. A positive (resp. negative) literal is l = f
(resp. l = ¬f) and its completement is l̄ = ¬l. We denote
the set of all literals by L.

• A is a finite set of labels called actions.
• pre : A → 2L defines the precondition pre(a) ⊆ L for all
a ∈ A.

• eff : A → 2L defines the effect eff(a) ⊆ L for all a ∈ A.

An action model succinctly represents a transition sys-
tem where a state s is a full assignment over F , repre-
sented by a subset of L without conflicting values. For
instance, if F = {p1, p2}, then L = {p1,¬p1, p2,¬p2}
and a well-formed state s can be {p1,¬p2}. We denote
by S the state space induced by F . Formally, an action
model M = ⟨F,A, pre, eff⟩ induces the transition system
TM = {⟨s, a, s′⟩ ∈ S × A × S | pre(a) ⊆ s ∧ s′ =

(s \ eff(a)) ∪ eff(a)} where eff(a) = {l | l ∈ eff(a)}. This
definition is equivalent to the successor function defined for
classical planning using add and delete list explicitly (Ghal-
lab, Nau, and Traverso 2004).

Action models are widely used in AI planning to for-
mulate reachability problems over the induced transition
system. A classical planning problem P = ⟨M, s0, G⟩
is a reachability problem defined by combining an action
model M = ⟨F,A, pre, eff⟩ with an initial state s0 ∈
S and goal condition G ⊆ L. A solution for P is
a sequence of actions π = (a1, . . . an) known as plan;
the execution of π in s0 yields an interleaved sequence
⟨s0, a1, s1, a2, s2, . . . , an, sn⟩ that alternates actions and
states iteratively reached by applying the actions one after
the other. A plan is valid if every transition ⟨si, ai+1, si+1⟩

belongs to the transition system TM , and it solves P if
G ⊆ sn. We denote the set of solution plans for P by Π(P ).

Action model learning is about computing the action
model of an agent from demonstrations of its capabilities.
Hereinafter, we denote by M∗ the true action model of the
agent and assume that it complies with Definition 1. Demon-
strations are collected from executions of M∗, e.g., a plan or
random walk, and represented similarly to transitions.
Definition 2 (Demonstration). A demonstration is a triple
d = ⟨s, a, s′⟩ consisting of a pre-state s ∈ S, an action
a ∈ A, and a post-state s′ ∈ S ∪ {⊥}.

In this work, we consider positive demonstrations, those
transitions of TM∗ , and negative demonstrations, those rep-
resenting the failure of executing action a in state s which
we indicate by using a ⊥ post-state.

An action model learning problem takes as input a set of
fluents F , a set of actions A and a set of demonstrations
D. The aim of action model learning is to find an action
model that is consistent with all the demonstrations in D. It
is worth noting that the space of models that can be synthe-
sised given F and A is finite, i.e, M = {⟨F,A, pre, eff⟩ |
∀a ∈ A : pre(a) ∈ 2L ∧ eff(s) ∈ 2L}.
Definition 3 (Action Model Learning Problem). An action
model learning problem is a tuple ⟨F,A,D⟩ where F is
a set of fluents, A is a set of actions, and D is a set of
demonstrations. A solution to ⟨F,A,D⟩ is an action model
M = ⟨F,A, pre, eff⟩ such that:

1. for all positive demonstrations ⟨s, a, s′⟩ ∈ D, it holds that
pre(a) ⊆ s and s′ = (s \ eff(a)) ∪ eff(a);

2. for all negative demonstrations ⟨s, a,⊥⟩ ∈ D, it holds
that pre(a) ̸⊆ s.

We denote by MD the set of solutions of ⟨F,A,D⟩, i.e., the
subset of the model space M that satisfies (1) and (2) and
is, therefore, consistent with D.

2.2 Version Spaces
We adopt the notation and definitions introduced in later ex-
tensions of the version spaces framework (Lau et al. 2003).
Definition 4 (Hypothesis and Hypothesis Spaces). A hy-
pothesis is a function h : I → O. A hypothesis space H
is a set of functions with the same domain and range.
Definition 5 (Learning Example). A learning example ϵ is
a pair (i, o) ∈ I × O. A hypothesis h is consistent with a
learning example ϵ = (i, o) if and only if h(i) = o.
Definition 6 (Version Space). Given a hypothesis space H
and a set of learning examples E, the version space VH,E

is the subset of H that is consistent with all examples in E.
We will often omit the subscripts if the hypothesis space and
learning set are clear from the context.

When the hypothesis space is partially ordered relative to
some partial order relation ≤, a version space V can be effi-
ciently represented in terms of its least upper bound, called
U boundary, and its greatest lower bound, called L bound-
ary (Lau, Domingos, and Weld 2000). It can be proven that
all hypotheses that belong to the boundaries or lie between
them in the partial order are consistent.
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Figure 1: Example of version space learning for the task of learning a purely-conjunctive formula over two propositional variables. Examples
consistent with the true formula are colored in green, while inconsistent ones are in red. Hypotheses are colored in blue, and those belonging
to the L and U boundaries are denoted with dotted and dashed lines, respectively.

Definition 7 (Compact Representation of a Version Space).
Let LH,E and UH,E be the boundaries of the version space
VH,E . The hypotheses in VH,E are {h ∈ H | ∃(hL, hU ) ∈
LH,E × UH,E : hL ≤ h ≤ hU}.

As an example, consider the task of learning a purely-
conjunctive formula defined over two propositional vari-
ables p and q, i.e., formulas like p∧¬q and ¬p. We represent
these formulas as sets (e.g., {p,¬q} and {¬q}), and define a
partial order such that, given two formulas ϕ and ϕ′, ϕ ≤ ϕ′

iff ϕ ⊇ ϕ′. Hence, {p,¬q} ≤ {p} and {p,¬q} ≤ {¬q},
but {p,¬q} ̸≤ {¬p}. We represent the tautology true
with an empty set {}, and the contradiction false with
{p,¬p, q,¬q}, since p and ¬p cannot be true at the same
time (same for q and ¬q).

Figure 1 visually illustrates the concepts of the version
spaces framework for this example, representing the 4 pos-
sible assignments over p and q as a 2×2 grid. In this graphi-
cal representation, a hypothesis (i.e., a conjunction) is a con-
vex region of cells that we color in blue. For instance, the
bottom-half of the grid represents {q}. The hypothesis space
is represented as hypotheses connected via arrows denoting
the partial order relation. A learning example is a cell of the
grid, i.e., a full assignment over the variables, and it is la-
beled “green”, if it satisfies the target conjunction, or “red”,
otherwise. A hypothesis is consistent with a green learning
example if it contains it (i.e., it is a subset), whereas it is
consistent with a red learning example if it does not contain
it (not a subset). For instance, the hipothesis {p} (left half
of the grid) is consistent with the “green” example {p,¬q}
(top-left cell), but the hypothesis {¬p} (right half) is not.

Version Space Learning (Mitchell 1982) is an online algo-
rithm that maintains a version space by updating its bound-
aries each time a new learning example is observed. In
Figure 1, the initial version space (before seeing any exam-
ple) is shown on the left. It contains the whole hypothesis
space, since nothing is inconsistent yet. Note that every hy-
pothesis is a subset of {p,¬p, q,¬q} and a superset of {}.
Therefore, we can compactly represent the whole hypothe-
sis space by its boundaries, setting L to contain the contra-
diction {p,¬p, q,¬q} and U to contain the tautology {}. In

the figure, the hypotheses constituting the L and U bound-
aries are denoted using dotted and dashed lines, respectively.
When the “green” example {p,¬q} comes, some of the hy-
potheses, those crossed out in the figure, are not consistent
with it. Therefore, we update the L boundary, which now
contains the hypothesis {p,¬q}. This update removes the
inconsistent hypotheses from the version space since they
no longer lie between the boundaries. The next example to
arrive is a “red” one, indicating that {¬p, q} does not satisfy
the target conjunction. The only hypothesis in the current
version space that is inconsistent with it is the hypothesis
that contains everything, the tautology {}. To remove it, we
update the U boundary which now consists of two hypothe-
ses, {p} and {¬q}. At this point, we still have not learnt the
conjunction, but we can assert that it must be either {p,¬q},
{p} or {¬q}. Observe that the L boundary is the most pes-
simistic hypothesis, a minimal frontier that encloses only the
observed green examples. On the other hand, U is the most
optimistic hypothesis, a maximal frontier only keeping out-
side the red examples.

3 Version Space Learning for Action Models
This section proposes a novel framework for action model
learning based on version spaces. Roughly, our approach
learns the precondition and effect of an action by computing
a version space of its preconditions and a version space of
its effects. We start by defining the hypothesis spaces and
the update functions. Then, we present our algorithm.

3.1 The Hypothesis Space
For simplicity, with abuse of notation, in our context a hy-
pothesis h is a subset of L that represents a function. When
h is a precondition hypothesis, h represents the applicability
function Apph : S → {0, 1} defined as Apph(s) = h ⊆ s.
On the other hand, if h is an effect hypothesis, h repre-
sents the successor function Such : S → S defined as
Such(s) = (s \ h) ∪ h.

Let a ∈ A, with Ha
p = 2L we define the hypothesis space

of a’s precondition, while with Ha
e = 2L the hypothesis

space of its effects. We order our hypothesis spaces using
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a set inclusion relation. Specifically, given two precondition
hypotheses h1 and h2 in Ha

p , h1 ≤ h2 iff h1 ⊇ h2, and given
two effect hypotheses h1 and h2 in Ha

e , h1 ≤ h2 iff h1 ⊆ h2.
Note the opposite direction of the inclusion relation.

Considering these hypothesis spaces, the learning exam-
ples will be pairs (s, b) ∈ S × {0, 1} for the preconditions,
and pairs (s, s′) ∈ S × S for the effects. Learning exam-
ples are implicitly given by the demonstrations. A positive
demonstration ⟨s, a, s′⟩ entails the learning example (s, 1)
for the precondition and the learning example (s, s′) for the
effect. On the other hand, a negative demonstration ⟨s, a,⊥⟩
entails only the learning example (s, 0) for the precondition.
Hereinafter, Dp and De denote the learning examples en-
tailed by a set of demonstrations D for Ha

p and Ha
e , respec-

tively. A hypothesis h ∈ Ha
p is consistent with a learning

example (s, b) iff Apph(s) = b. Analogously, a hypothe-
sis h ∈ Ha

e is consistent with a learning example (s, s′) iff
Such(s) = s′.

The following theorem shows that, when the learning ex-
amples come from the same set of demonstrations D, any
model M built using preconditions and effects from the
learnt version spaces is a solution to the action model learn-
ing problem ⟨F,A,D⟩, i.e., M ∈ MD.

Theorem 1. Let VHa
p,Dp

and VHa
e ,De

be the version spaces
of preconditions and effects of a ∈ A. The action model
M = ⟨F,A, pre, eff⟩ belongs to MD if and only if ∀a ∈ A :
pre(a) ∈ VHa

p,Dp
and eff(a) ∈ VHa

e ,De
.

Proof. Let d = ⟨s, a, s′⟩ be a positive demonstration in D
that entails the learning examples (s, 1) ∈ Dp and (s, s′) ∈
De. From the definition of version space, (pre(a), eff(a))
belongs to VHa

p,Dp
× VHa

e ,De
iff Apppre(a)(s) = 1 and

Suceff(a)(s) = s′ or, equivalently, iff pre(a) ⊆ s and
s′ = (s \ eff(a)) ∪ eff(a). Now, let d = ⟨s, a,⊥⟩ be a
negative demonstration in D and (s, 0) ∈ Dp the entailed
learning example. Again, pre(a) ∈ VHa

p,Dp
if and only

if Apppre(a)(s) = 0, i.e., iff pre(a) ̸⊆ s. Therefore, if
∀a ∈ A : pre(a) ∈ VHa

p,Dp
∧ eff(a) ∈ VHa

e ,De
, M satis-

fies conditions (1) and (2) of Definition 3, i.e., M ∈ MD;
otherwise, M ̸∈ MD.

3.2 Initializing and Updating the Version Space
The initialization of the version space learning algorithm
sets the version space to contain the whole hypothesis space,
i.e., VHa

p,∅ = Ha
p and VHa

e ,∅ = Ha
e . This is done by setting

the L and U boundaries to contain the minimal and maximal
elements of the hypothesis space, respectively. In our prob-
lem, for all actions a ∈ A, LHa

p,∅ = {L}, UHa
p,∅ = {∅},

LHa
e ,∅ = {∅}, and UHa

e ,∅ = {L}. Indeed, by using Defi-
nition 7, it is easy to see that both bounds on the respective
version spaces will yield VHa

p,∅ = VHa
e ,∅ = 2L, i.e., every

hypothesis is consistent provided we are given no demon-
strations. Note that, by Theorem 1 and the definition of ver-
sion spaces, these boundaries allow to compactly represent
the full space of action models M.

As illustrated in Figure 1, updating a version space in-
volves extending the L boundary or shrinking the U bound-

ary. This is done by modifying the hypothesis that constitute
the boundaries or removing them. In our context, where hy-
potheses are sets, the update consists in finding the smallest
superset or the largest subset that is consistent with the new
demonstration. The next theorem shows how the bound-
aries for the version space of a’s preconditions VHa

p
are up-

dated. Intuitively, we make the L boundary weaker when
we see a positive demonstration by removing any literal not
in its pre-state, whilst we tighten the U boundary by adding
some literal not in the pre-state of a negative demonstration.
Also, observe that the hypothesis in L is only refined or re-
moved so this boundary will at most be a singleton. This
matches the well-known result by Mitchell (1982) regarding
the learning of purely-conjunctive formulas.
Theorem 2 (Update rules for VHa

p
). Let LHa

p,Dp and
UHa

p,Dp
be the boundaries of a version space VHa

p,Dp
and

d a demonstration. The updated version space VHa
p,D

′
p
, with

D′ = D ∪ {d}, is given by the following rules.
If d = ⟨s, a, s′⟩ is a positive demonstration:
• RUP. Remove inconsistent hypotheses from UHa

p,Dp
:

UHa
p,D

′
p
:= {hU | hU ∈ UHa

p,Dp ∧ hU ⊆ s}

• ULP. Update hypotheses in LHa
p,Dp :

LHa
p,D

′
p
:= {hL ∩ s | hL ∈ LHa

p,Dp
}

If d = ⟨s, a,⊥⟩ is a negative demonstration:
• RLP. Remove inconsistent hypotheses from LHa

p,Dp
:

LHa
p,D

′
p
:= {hL | hL ∈ LHa

p,Dp
∧ hL ̸⊆ s}

• UUP. Update hypotheses in UHa
p,Dp :

Let hL ∈ LHa
p,Dp

,

UHa
p,D

′
p
:= {hU | hU ∈ UHa

p,Dp ∧ hU ̸⊆ s}∪
∪ {hU ∪ {l} | hU ∈ UHa

p,Dp ∧ hU ⊆ s ∧ l ∈ hL \ s}

Proof. When d = (s, a, s′) is a positive demonstration, a
hypothesis h is inconsistent iff h ̸⊆ s. Rule RUP removes
an upper bound hU ∈ UHa

p,Dp if hU ̸⊆ s and, in doing so,
removes any hypothesis h such that hU ⊂ h from the version
space. Observe that, since hU ̸⊆ s, any superset of hU will
also be inconsistent. Rule ULP raises the lower bound from
hL to hL∩s. Indeed, hL∩s ⊆ s and all subsets of hL∩s are
also consistent. Note that, if hL already satisfied hL ⊆ s,
this rule causes no change, i.e., hL = hL ∩ s; otherwise,
hL ∩ s is the largest subset that is consistent since ∀l ∈
hL \ (hL ∩ s) it holds that l ̸∈ s so all other subsets h such
that hL ∩ s ⊂ h ⊆ hL are inconsistent.

In the case that d = ⟨s, a,⊥⟩, a hypothesis h is in-
consistent if h ⊆ s. Rule RLP removes the lower bound
hL ∈ LHa

p,D if hL ⊆ s which also removes all its sub-
sets from the version space. Indeed, for any subset h of
hL it holds that h ⊆ hL ⊆ s and, therefore, h is incon-
sistent. Rule UUP shrinks an upper bound hU ∈ UHa

p,D

to the set {hU ∪ {l} | l ∈ hL \ s} if hU ⊆ s. Note that
∀l ∈ hL \ s : hU ∪ {l} ̸⊆ s so all the new upper bounds are
the smallest supersets of hU that are consistent.
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As an example of our rules, consider an environment de-
scribed through facts p1 and p2, i.e., F = {p1, p2}, and
with a single action a. Assume to have at some point
LHa

p,Dp
= {{p1,¬p2}} and UHa

p,Dp
= {∅}. Now, say one

gets the two demonstrations d1 = ⟨{p1, p2}, a, {¬p1, p2}⟩
and d2 = ⟨{¬p1, p2}, a,⊥⟩, in this very order. d1 leaves
UHa

p,Dp
unaltered (by RUP) while it weakens the lower

bound, i.e., LHa
p,Dp = {{p1}} (by ULP); indeed it is easy

to see that the safe application of a only requires p to be
true. Instead, d2 leaves LHa

p,Dp intact (by RLP) while it
enforces that UHa

p,Dp
= {{p1}} (by UUP). Next, we see

what happens if we see d1 and d2 in reverse order. After d2,
we will have UHa

p,Dp made up of two elements, i.e., {p1}
and {¬p2}. This is the effect of the second part of the UUP
rule. In this case we are basically inferring that, at this mo-
ment, only for the pre-state of d2 we are sure that the action
is not applicable. RLP will produce no change in LHa

p,Dp
.

After d1, both UHa
p,Dp

and LHa
p,Dp

will remain with only
{p1} as an element. With both sequencing of demonstra-
tions, we observe that the version space converged and no
further demonstrations are needed.

Next, we move on to the learning of effects. Before pre-
senting the update rules, we introduce the following lemma
that gives us a better handle on the version space of effects
as it enables reasoning about consistency and inconsistency
of a given hypothesis provided some positive demonstration
in terms of set inclusion.

Lemma 1. Let d = ⟨s, a, s′⟩ be a positive demonstration,
and h ∈ Ha

e . h is consistent with d, i.e., s′ = (s \ h) ∪ h iff
s′ \ s ⊆ h ⊆ s′.

Proof Sketch. Starting with s′ \ s ⊆ h ⊆ s′ =⇒ s′ = (s \
h) ∪ h. By contradiction, we assume the antecedent is true
while the consequent is false. If s′ ̸= (s \ h) ∪ h then either
(1) s′ ̸⊆ (s\h)∪h or (2) s′ ̸⊇ (s\h)∪h. For (1), we can use
algebra of sets to simplify s′ \ ((s \ h) ∪ h) ̸= ∅ into ∅ ̸= ∅,
a contradiction. For (2), we rewrite ((s \ h) ∪ h) \ s′ ̸= ∅
into (s \ s′) \h ̸= ∅. Since s′ \ s = s \ s′ and s′ \ s ⊆ h, we
have that s \ s′ ⊆ h and we arrive at a contradiction ∅ ̸= ∅.

Similarly, for the proof of s′ = (s \ h) ∪ h =⇒ s′ \ s ⊆
h ⊆ s′, we show that both (3) s′ \ s ̸⊆ h and (4) h ̸⊆ s′

lead to contradictions. For (3), consider that s′ = (s\h)∪h
implies s′ ⊆ (s\h)∪h, which can be rewritten as (s′ \s) ⊆
h. Hence, (3) cannot be true. Finally, (4) is very obviously
false given that s′ is the union of (s \ h) and h.

The update rules for the version space of effects, pre-
sented in the next theorem, leverage Lemma 1. The intu-
ition for these rules is that, whenever we get a new positive
demonstration ⟨s, a, s′⟩ we update the upper bound to be a
subset of s′ and the lower bound to be a superset of s′\s. By
Lemma 1, any hypothesis between the updated bounds will
also be consistent. Note that our rules do not increase the
cardinality of the boundaries, so both L and U will at most
contain one hypothesis.

Algorithm 1 VSLAM
Input Action Model Learning problem ⟨F,A,D⟩
Output LHa

p
, UHa

p
, LHa

e
and UHa

e
for all a ∈ A

1: for a ∈ A do ▷ Inizialisation
2: LHa

p
:= {L}

3: UHa
p
:= {∅}

4: LHa
e
:= {∅}

5: UHa
e
:= {L}

6: for ⟨s, a, s′⟩ ∈ D do ▷ Online loop
7: if s′ is not ⊥ then ▷ positive demonstration
8: UHa

p
:= RUP(UHa

p
, (s, 1))

9: LHa
p
:= ULP(LHa

p
, (s, 1))

10: LHa
e
:= ULE (LHa

e
, (s, s′))

11: UHa
e
:= UUE (UHa

e
, (s, s′))

12: else ▷ negative demonstration
13: LHa

p
:= RLP(LHa

p
, (s, 0))

14: UHa
p
:= UUP(UHa

p
, (s, 0))

return (LHa
p
,UHa

p
,LHa

e
,UHa

e
)

Theorem 3 (Update rules for VHa
e
). Let LHa

e ,De
and

UHa
e ,De

be the boundaries of a version space VHa
e ,De

and
d = ⟨s, a, s′⟩ a positive demonstration. The updated ver-
sion space VHa

e ,D
′
e
, with D′ = D ∪ {d}, is given by the

following rules:
• ULE. Update hypotheses in LHa

e ,De
:

LHa
e ,D

′
e
:= {hL ∪ (s′ \ s) | hL ∈ LHa

e ,De ∧ hL ⊆ s′}
• UUE. Update hypotheses in UHa

e ,De
:

UHa
e ,D

′
e
:= {hU ∩ s′ | hU ∈ UHa

e ,De ∧ s′ \ s ⊆ hU}
Proof. Both rules will only keep consistent hypotheses by
Lemma 1. Indeed each hypothesis h is such that s′ \ s ⊆
h ⊆ s′. Moreover, ULE computes the smallest superset of
hL that is consistent. Indeed, ∀l ∈ (hL ∪ (s′ \ s)) \ hL :
l ∈ s′ \ s so removing any newly added literal from the
hypothesis would make it inconsistent. Instead, for UUE we
have that, if hU was already a subset of s′, UUE produces
no change; otherwise, hU ∩ s′ ⊆ s′ is the largest subset of
hU that is consistent.

To illustrate these rules, we resume our example environ-
ment with F = {p1, p2} but this time considering the learn-
ing of effects. Assume that our starting point is LHa

e ,De =
{{¬p1}} and UHa

e ,De = {{¬p1,¬p2}}, and we receive
demonstration d1 = ⟨{p1, p2}, a, {¬p1, p2}⟩. Rule ULE
leaves LHa

e ,De unaltered, the lower bound is already a super-
set of {¬p1, p2} \ {p1, p2} = {¬p1}. In contrast, by apply-
ing rule UUE, we refine the current hypothesis in UHa

e ,De
,

{¬p1,¬p2}, into {¬p1,¬p2} ∩ {¬p1, p2} = {¬p1}. At this
point, both boundaries have converged and we can safely
assert that {¬p1} is the true effect of action a.

3.3 The VSLAM Algorithm
In this section we present VSLAM, our algorithm for action
model learning, outlined in Algorithm 1. VSLAM takes as
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input an action model learning problem ⟨F,A,D⟩ and re-
turns the boundaries of the version space of preconditions
and of effects for each action in A.

The pseudocode for VSLAM is a straightforward instan-
tiation of the initialization and update rules presented in the
previous section. First, from lines 1 to 5, VSLAM initializes
the version spaces associated to each action. Then, from
lines 6 to 16, VSLAM processes all demonstrations in D in
an online fashion and uses the induced learning examples to
update the boundaries of the version spaces by applying the
updates rules presented in theorems 2 and 3.

VSLAM inherits some important properties from its ver-
sion spaces foundation. First, by Theorem 1, the boundaries
computed by VSLAM capture exactly all models in MD,
i.e., all the solutions to ⟨F,A,D⟩. Second, and in stark
difference w.r.t. existing action model learning approaches
(e.g., FAMA (Aineto, Celorrio, and Onaindia 2019) and
SAM (Stern and Juba 2017)), VSLAM can detect when
learning has concluded (i.e., it has learnt the true model) by
checking convergence of the version space. A version space
converges when only one consistent hypothesis remains, i.e.,
when both boundaries are singletons and contain the same
hypothesis. Under our working assumption that the true
model M∗ follows the syntax of Definition 1, theorems 2
and 3 ensure that no consistent hypothesis is discarded and,
therefore, it follows that if only one hypothesis remains it
must match the true model M∗.
Corollary 1 (Convergence). Let M∗ = ⟨F,A, pre, eff⟩ be
the true model. If LHa

p,Dp = UHa
p,Dp = {hp}, then hp =

pre(a), and if LHa
e ,De = UHa

e ,De = {he}, then he = eff(a).
Lastly, VSLAM can also detect if our working assump-

tions are violated by checking for collapse of the version
space. A version space collapses when it becomes empty,
i.e., when no consistent hypothesis remains. This indicates
that the learning examples are noisy or that the hypothesis
space does not contain the true model.

4 Sound and Complete Action Models
In the previous section we have shown how to compute all
solutions of an action model learning problem. Now, we put
the focus on learnt models that guarantee some formal prop-
erty of interest. In particular, we consider soundness1 and
completeness, and we show how to manipulate the computed
version spaces to build models that guarantee such proper-
ties with respect to the true model.

4.1 Sound and Complete Action Models
A model M is sound w.r.t. another model M ′ if every tran-
sition of M is also a transition of M ′. In contrast, a model
M is complete w.r.t. another model M ′ if every transition of
M ′ is also a transition of M .
Definition 8 (Soundness). Let M and M ′ be two action
models, we say that M is sound w.r.t. M ′ iff TM ⊆ TM ′ .
Definition 9 (Completeness). Let M and M ′ be two action
models, we say that M is complete w.r.t. M ′ iff TM ⊇ TM ′ .

1Soundness has previously been referred to as “safeness” (Stern
and Juba 2017)

The main objective of this work is to compute action mod-
els that are sound or complete with respect to the true model
M∗. The motivation for this is that the soundness and com-
pleteness properties carry over to solution plans computed
with such models, allowing us operate with guarantees even
when the true model remains unknown.

Theorem 4. Let M∗ be the true model, and M and M ′ a
sound and a complete model w.r.t. M∗. It follows that:

• any solution plan for P = ⟨M, s0, G⟩ is valid for P ∗ =
⟨M∗, s0, G⟩, too, i.e., Π(P ) ⊆ Π(P ∗).

• any solution plan for P ∗ = ⟨M∗, s0, G⟩ is valid for P ′ =
⟨M ′, s0, G⟩, too, i.e., Π(P ′) ⊇ Π(P ∗).

Proof. A plan π = (a1, a2, . . . , an) in Π(P ) is one that in-
duces an execution (s0, a1, s1, a2, s2, . . . , an, sn) such that
every transition ⟨si, ai, si+1⟩ belongs to TM . Since TM ⊆
TM∗ , all such transitions will also belong to TM∗ and, there-
fore, π belongs to Π(P ∗), too. By the same reasoning, any
plan in Π(P ∗) will belong to Π(P ′).

An immediate corollary of the theorem is that TM ⊆
TM∗ ⊆ TM ′ and, consequently, Π(P ) ⊆ Π(P ∗) ⊆ Π(P ′).
In other words, a sound action model underapproximates the
transition system of the true model and its solution plans,
whereas a complete model overapproximates them. It is then
natural to look for models that provide tighter approxima-
tions. The following subsections describe how to compute
sound and complete models that approximate as tightly as
possible the true model.

4.2 Building Sound Models from a Version Space
Let us start by summarizing our current progress and goals.
We are presented with the fluents and actions of the true
model M∗ alongside a set of demonstrations, i.e., an action
model learning problem ⟨F,A,D⟩, and our objective is to
build a model that is sound w.r.t. M∗. From ⟨F,A,D⟩ we
are able to derive all consistent models MD, e.g., by ap-
plying VSLAM, and we know that M∗ is in MD. With our
next theorem, we establish that the only way to build a model
guaranteed to be sound w.r.t. M∗ is by ensuring soundness
w.r.t. all models in MD. Additionally, we demonstrate that
we can use the version spaces computed by VSLAM, and
more precisely their lower boundaries LHa

p,Dp and LHa
e ,De ,

to build a sound model w.r.t. M∗. Further, such a sound
model is optimal, in the sense that no better underapproxi-
mation of M∗ can be built while ensuring its soundness.

Theorem 5. Let ⟨F,A,D⟩ be an action model learning
problem and M∗ be the true model. The action model
M = ⟨F,A, pre, eff⟩ such that pre(a) ∈ LHa

p,Dp and
eff(a) ∈ LHa

e ,De
for all a ∈ A is sound w.r.t. M∗ and there

exists no other model M ′ ensuring soundness w.r.t. M∗ such
that TM ′ ⊃ TM .

Proof. Let T ∩
MD

=
⋂

M ′∈MD
TM ′ denote the intersection

of all transition systems induced by consistent models MD.
First, we show that the best sound model one can build is one
that induces the transition system T ∩

MD
, and then we prove

that TM = T ∩
MD

.
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T ∩
MD

is trivially sound, i.e., T ∩
MD

⊆ TM∗ since the in-
tersection of sets is always a subset of each set in the in-
tersection. Next, observe that any superset T ′ of T ∩

MD
will

contain at least one transition that does not belong to at least
one model in MD; if such model happens to be the true
model M∗, then T ′ ̸⊆ TM∗ so any superset of T ∩

MD
would

not be sound. Therefore, the best sound model that can be
built is one that captures exactly all transitions in T ∩

MD
.

(Soundness) Next, we prove that TM ⊆ T ∩
MD

. By contra-
diction, assume that there exists a transition t = ⟨s, a, s′⟩
such that t ∈ TM but t ̸∈ T ∩

MD
. For t ̸∈ T ∩

MD
to be

true, there must exist a model M ′ = ⟨F,A, pre′, eff ′⟩ in
MD such that either (1) a is not applicable in s, or (2) its
execution results in a state s′′ ̸= s′. By construction, it
holds that pre(a)′ ⊆ pre(a). Consequently, if pre(a) ⊆ s
then pre(a)′ ⊆ s and case (1) does not hold. For case (2),
we know that eff ′(a) \ eff(a) ⊆ pre(a) so it follows that
eff ′(a) \ eff(a) ⊆ s. Meaning that, any difference between
eff(a) and eff ′(a) is already part of state s and the execution
of a cannot result in different states.

(Optimality) We prove TM ⊇ T ∩
MD

. For this, simply ob-
serve that, by Theorem 1, M ∈ MD. Therefore, T ∩

MD
is

a subset of any of its intersecting sets including TM . Fi-
nally, since TM ⊆ T ∩

MD
and TM ⊇ T ∩

MD
, it follows that

TM = T ∩
MD

.

4.3 Building Complete Models from a Version
Space

This time we move the focus to building models that are
complete w.r.t. the true model M∗. Analogously to the
sound case, we will see that to guarantee completeness w.r.t.
M∗, we have to be complete w.r.t. all models in MD. How-
ever, note that such a model must be able to produce any
of the transitions generated by any of the consistent models
in MD. Intuitively, the actions of a complete model should
be applicable in any state where it is applicable according
to a consistent model, and its execution should generate all
possible post-states generated under any consistent model.
It is easy to see that working under the limits of Definition 1
leads to two problems. First, a model that produces multiple
possible post-states is, by definition, non-deterministic. And
second, using conjunctive preconditions may easily lead to
a weak precondition that accepts more pre-states than nec-
essary. Therefore, in order to build a complete model, we
target a more expressive planning model that accommodates
disjunctive preconditions and non-deterministic effects.
Definition 10 (Non-deterministic Action Model). A non-
deterministic action model is a tuple M = ⟨F,A,Pre,Eff⟩
where:
• F and A are finite sets of fluents and actions as given in

Definition 1.
• Pre : A → 22

L

defines the set of preconditions Pre(a) ⊆
2L of each action a ∈ A.

• Eff : A → 22
L

defines the set of effects Eff(a) ⊆ 2L of
each action a ∈ A.
The main difference with respect to Definition 1 is that

here each action is associated to a set of preconditions and

a set of effects. A non-deterministic action model M =
⟨F,A,Pre,Eff⟩ induces the transition system TM ⊆ S ×
A×S consisting of all transitions ⟨s, a, s′⟩ that satisfy ∃p ∈
Pre(a) : p ⊆ s and ∃e ∈ Eff(a) such that s′ = (s \ e) ∪ e.

Using this new formulation, we leverage once again the
version spaces computed by VSLAM to build a complete
model w.r.t. the true model M∗ that constitutes the tightest
overapproximation of M∗ that can be built without compro-
mising completeness.

Theorem 6. Let ⟨F,A,D⟩ be an action model learning
problem and M∗ be the true model. The non-deterministic
action model M = ⟨F,A,Pre,Eff⟩ such that Pre(a) =
UHa

p,Dp
and Eff(a) = VHa

e ,De
for all a ∈ A is complete

w.r.t. M∗ and there exists no other model M ′ ensuring com-
pleteness w.r.t. M∗ such that TM ′ ⊂ TM .

Proof. Let T ∪
MD

=
⋃

M ′∈MD
TM ′ denote the union of all

transition systems induced by consistent models MD. First,
we show that the best complete model one can build is one
that induces the transition system T ∪

MD
, and then we prove

that TM = T ∪
MD

.
T ∪
MD

is trivially complete, i.e., T ∪
MD

⊇ TM∗ since the
union of sets is always a superset of each set in the union.
Next, observe that any subset T ′ of T ∪

MD
will be missing

at least one transition that belongs to at least one model in
MD; if such model happens to be the true model M∗, then
T ′ ̸⊇ TM∗ so any subset of T ∪

MD
would not be complete.

Therefore, the best complete model that can be built is one
that induces exactly T ∪

MD
.

(Completeness) We start by proving that TM ⊇ T ∪
MD

.
By contradiction, assume that there exists a transition t =
⟨s, a, s′⟩ such that t ∈ T ∪

MD
but t ̸∈ TM . Then, MD

must include a model M ′ = ⟨F,A, pre′, eff ′⟩ such that
pre′(a) ⊆ s and s′ = (s \ eff ′(a)) ∪ eff ′(a), and either (1)
∀p ∈ Pre(a) : p ̸⊆ s, or (2) ∀e ∈ Eff(a) : s′ ̸= (s \ e) ∪ e.
Since Pre(a) = UHa

p,Dp
and pre′(a) ∈ VHa

p,Dp
, there must

exists a p ∈ Pre(a) such that p ⊆ pre′(a), and if pre′(a) ⊆ s
is true then so must be p ⊆ s. This falsifies case (1). For case
(2), observe that eff ′(a) ∈ VHa

e ,De
and Eff(a) = VHa

e ,De
.

Therefore, eff ′(a) ∈ Eff(a) and case (2) cannot be true.
(Optimality) We prove TM ⊆ T ∪

MD
. By contradiction,

assume that t ∈ TM but t ̸∈ T ∪
MD

. Then, it must be true that
∃p ∈ Pre(a) : p ⊆ s and ∃e ∈ Eff(a) : s′ = (s \ e) ∪ e and
MD cannot contain a model M ′ = ⟨F,A, pre′, eff ′⟩ such
that pre′(a) ⊆ s and s′ = (s \ eff ′(a)) ∪ eff ′(a). However,
this cannot be true since Pre(a) ⊆ VHa

p,D and Eff(a) =

VHa
e ,D, so MD contains a model M ′ with pre′(a) = p and

eff ′(a) = e. Finally, since TM ⊇ T ∪
MD

and TM ⊆ T ∪
MD

are
true, we have that TM = T ∪

MD
.

5 Learning Lifted Representations
Action models are typically represented with a lifted rep-
resentation using declarative languages such as PDDL (Fox
and Long 2003). We briefly explain how our approach copes
with such a representation.
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For starters, the learning problem is presented in a lifted
manner, i.e., ⟨F ↑, A↑, D⟩, and a solution is a lifted ac-
tion model M↑ = ⟨F ↑, A↑, pre↑, eff↑⟩. F ↑ and A↑ are,
respectively, the lifted fluents and lifted actions, both of
the form name(?v1 . . .?vn) where name is an identifier
and (?v1 . . .?vn) is a list of parameters. As an example,
in the BLOCKS domain (Slaney and Thiébaux 2001), the
lifted fluents are F ↑ = {hand-empty(), holding(?b1),
on-table(?b1), clear(?b1), on(?b1 ?b2)}, and the
lifted actions are A↑ = {pick-up(?b), put-down(?b),
stack(?top ?bot), unstack(?top ?bot)}. The pre-
condition pre↑(a↑) and effect eff↑(a↑) of a lifted ac-
tion a↑ ∈ A↑ are defined as a set of literals whose
parameters are bound to the parameters of a↑. For
instance, the precondition of stack is pre↑(stack)
= {holding(?top), clear(?bot)} and its effect
is eff↑(stack) = {¬holding(?top), ¬clear(?bot),
hand-empty(), clear(?top), on(?top ?bot)}.

Since preconditions and effects are parameter-bound
literals, the hypothesis space is no longer 2L for all actions
and, therefore, potentially smaller. Indeed, each lifted
action will have a different hypothesis space depending on
its parameters. In BLOCKS, the parameter-bound literals for
pick-up(?b) and put-down(?b) are {hand-empty(),
holding(?b), clear(?b), on-table(?b)}, while for
stack(?top ?bot) and unstack(?top ?bot), they
are {hand-empty(), holding(?top), holding(?bot),
on-table(?top), on-table(?bot), clear(?top),
clear(?bot), on(?top ?bot), on(?bot ?top)}
Similarly, learning examples must also be given as sets
of parameter-bound literals. To achieve this, we “lift” the
demonstrations by substituting each object in a literal by
the action parameter it is bound to. Doing so, we obtain
demonstrations like d = ⟨{on-table(?b), clear(?b),
hand-empty(), ¬holding(?b)}, pick-up(?b),
{¬on-table(?b), ¬clear(?b), ¬hand-empty(),
holding(?b)}⟩ where both pre-state and post-state are
sets of parameter-bound literals. Once the hypothesis
space and learning examples are fixed, we can apply our
update rules off-the-shelf to learn a version space in this
lifted representation and construct lifted models following
the previous defined procedures. This procedure is very
similar to SAM’s approach, described by Juba, Le, and
Stern (2021).

6 Experimental Evaluation

We compare VSLAM against SAM (Juba, Le, and Stern
2021) and FAMA (Aineto, Celorrio, and Onaindia 2019),
evaluating the usability of the models computed by each sys-
tem over an ongoing learning process. That is, we evaluate
the performances of the sound model by SAM, the consis-
tent model by FAMA, and the sound and the complete mod-
els by VSLAM. Note that both SAM and VSLAM return the
same sound model. Our objective is to understand when and
to what extent the complete models that we highlight in this
work are beneficial. The code and benchmarks can be found
at https://github.com/daineto/VSLAM/tree/KR2024.
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Figure 2: Distinct positive demonstrations collected with the orig-
inal (top) and modified domains (bottom).

DOMAIN A F POS NEG

BLOCKS 4 (3) 5 (2) 66 882
DRIVERLOG 6 (8) 6 (2) 169 903
MICONIC 4 (4) 8 (2) 138 381
SATELLITE 5 (8) 8 (2) 64 166

Table 1: Domains, features and collected demonstrations.

6.1 Benchmarks

We focus on 4 domains from the International Plan-
ning Competition (McDermott 2000): BLOCKS, SATEL-
LITE, MICONIC and DRIVERLOG. We collect 20 ran-
dom problems for each domain using available genera-
tors (Seipp, Torralba, and Hoffmann 2022), and solve them
with LAMA (Richter and Westphal 2010). We collect pos-
itive demonstrations from transitions of the solution plans.
Negative ones are generated by randomly picking non ap-
plicable actions throughout the states traversed by solution
plans.

We slightly extend the planning domains by adding ex-
tra parameters to the actions. This gives us a larger hy-
pothesis space, and therefore a slower learning process that
can be used to better appreciate the behavior of the differ-
ent techniques. As Figure 2 shows, this simple modification
increases by 10 to 30 times the number of distinct positive
demonstrations and reduces the overlap between plans. Note
that, with the original domains, the number of demonstra-
tions saturates after the second problem, making all tech-
niques behave the same. Table 1 details the features of our
benchmarks: columns 2 and 3 displays the number of lifted
actions and fluents with their maximal number of parame-
ters; columns 4 and 5 report on the number of positive (POS)
and negative (NEG) demonstrations collected.
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Figure 3: F1-score (y-axis) of the sound, complete, and consistent action models as the training demonstrations increase (x-axis).

6.2 Evaluation criteria
Following previous works on action model learn-
ing (Lamanna et al. 2021; Aineto, Celorrio, and Onaindia
2019), we use the f1-score, the harmonic mean of precision
and recall. We interpret these metrics over a test set of
demonstrations by having the learnt action model label
them as positive or negative with respect to its transition
system. Precision degrades with false positives, i.e., when
the model accepts a negative demonstration as part of its
transition system. Conversely, recall degrades with false
negatives, i.e., when the model rejects a positive demon-
stration. Indeed, a sound action model will always have
perfect precision but lower recall, meaning that it accepts
few transitions but all of them are correct. In contrast, a
complete model will have perfect recall yet low precision,
since it will often accept transitions that do not belong to the
true model. The f1-score provides us with a very good proxy
for understanding the usability of our models. We split the
collected demonstrations, using half for learning and half
for testing, and measure the f1-score of the learnt models
as more demonstrations are processed. The complete
model is evaluated simulating scenarios where negative
demonstrations are seen at different rates. We do this by
using a ratio r of negative to positive demonstrations. For
instance, a ratio r = 2 indicates that the demonstrations
set D contains 2 negative demonstrations for every positive
one. With this setting, we aim at understanding the impact
of the distribution of our dataset.

6.3 Results
Figure 3 presents our results; the x-axis reports on the num-
ber of growing positive demonstrations. For each posi-
tive demonstration, the learning systems also see r nega-
tive ones. We represent such an information with different
curves. We observe that the sound action model performs
better in more imbalanced domains (in terms of positive
and negative demonstrations) such as BLOCKS. Instead, the
complete model seems to be effective over more balanced
domains like MICONIC and SATELLITE. This comes with
no surprise since more imbalanced distributions correlate to
stricter preconditions and such models are closer (in the hy-
pothesis space) to the sound model. The opposite holds true
for the complete model. Generally, the complete model has
the advantage in the earlier stages of the learning process,

but in our experiment is later outperformed by the sound
model after more demonstrations have been processed. VS-
LAM approach would take the best of sound and complete
learning approaches. Therefore, if the learning is at the
early stage, it is with the complete model that it achieves the
highest effectiveness. Regarding consistent models, we see
FAMA dominating in BLOCKS. This is because FAMA fol-
lows a restricted definition of action model, e.g., no negated
literals in the precondition, so, after a few demonstrations,
the only consistent solution becomes the true model. The
results in MICONIC are more interesting and show one of
the weaknesses of using an approach like FAMA. That is,
there is no guarantee that using more demonstrations will
lead to a better model. Indeed, we see the performance of
the consistent model sway, while the sound and complete
models always improve with more demonstrations. FAMA
runs out of memory in the other two domains, so it did not
produce any consistent model. Overall, the sound and com-
plete models exhibit complementary performance depend-
ing on the domain characteristics, how far into the learning
we are, and how accessible positive and negative demon-
strations are. This is a compelling argument to learn both
together, rather than only the sound one (SAM).

7 Related Work
Research on action model learning has produced a wide vari-
ety of sophisticated learning approaches – different surveys
can be found were written by Jiménez et al. (2012), Arora
et al. (2018), and Aineto, Jiménez, and Onaindia (2022).
Starting with the pioneering works of ARMS (Yang, Wu,
and Jiang 2007) and SLAF (Amir and Chang 2008), re-
search in this field has been quite prolific. Approaches like
LAMP (Zhuo et al. 2010) investigated the learning of more
expressive action models, while others like FAMA (Aineto,
Celorrio, and Onaindia 2019) and AMAN (Zhuo and Kamb-
hampati 2013) focused on learning from incomplete or noisy
demonstrations. We can even find approaches that ac-
tively seek the demonstrations that will help them learn
faster (Lamanna et al. 2021; Verma, Marpally, and Srivas-
tava 2021).

Broadly, most learning approaches can be classified, ac-
cording to their notion of solution, into those that compute a
model consistent with the demonstrations (Cresswell, Mc-
Cluskey, and West 2013; Aineto, Celorrio, and Onaindia
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2019; Bonet and Geffner 2020), or those that target the ac-
tion model that maximizes some objective or fitness func-
tion (Yang, Wu, and Jiang 2007; Kučera and Barták 2018;
Zhuo et al. 2010; Zhuo and Kambhampati 2013; Mourao et
al. 2012). While we follow the former interpretation, our ap-
proach is one of the few, alongside SLAF (Amir and Chang
2008), which is able to compute all solutions to the prob-
lem. SLAF computes a CNF formula representing all pos-
sible transitions that can be regarded as a form of version
space. However, this formula does not offer the compact-
ness of our boundaries nor can be easily manipulated and,
indeed, the only way to extract from it a concrete solution
model is using a SAT solver. Unlike us, SLAF handles par-
tial observability, a feature that we expect to support in the
future following similar extensions for version spaces.

The approach that we regard as the closest to our own is
SAM (Stern and Juba 2017) for its focus on safe (sound)
models, learning setting and, interestingly, a foundational
connection. The authors of SAM link their approach to
Valiant’s elimination algorithm (Valiant 1984), an algorithm
that Mitchell himself describes as the subproblem of com-
puting the L boundary in version space learning (Mitchell
1982). We revive this connection in the action model learn-
ing setting. Indeed, SAM focuses on one extreme of the
spectrum of solution models, those guaranteeing soundness,
which are tied to the L boundary. On the other extreme we
find the complete models that we highlight in this work.

8 Conclusions and Future Work

This paper proposes an approach to learning action models
from first principles. We do so by exploiting version spaces
to a great extent. One of the main benefits of our approach
is the ability to learn in an integrated and comprehensive
way sound models as by Stern and Juba (2017) together with
complete models, providing therefore a great deal of flexi-
bility. Indeed, our framework enables an agent not only to
learn from positive demonstrations but also from failures.
Empirically, we observed that with this facility in place, an
agent can start learning something useful for reasoning al-
ready with a few number of examples.

We have a number of future works on our way. First,
we want to tackle the learning of more expressive action
models. SAM has been extended along several dimensions,
for instance planning with numeric information (Mordoch,
Juba, and Stern 2023) and planning under partial observabil-
ity (Le, Juba, and Stern 2024). Theoretically speaking, pro-
vided a formal characterisation of the given language, and
therefore of the given induced hypothesis spaces, we argue
that the challenge for VSLAM is about finding the right set
of update rules. In this direction, we think that looking into
version space algebra (Lau et al. 2003) which supports more
expressive hypothesis spaces would equip us with the neces-
sary tools. Second, we want to study VSLAM in the context
of optimal planning. Note, indeed, that the optimal solution
cost from a complete model lowers bound the true solution
cost. We can use this to assess the quality of sound solutions.
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Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(4):433–467.
Juba, B., and Stern, R. 2022. Learning probably ap-
proximately complete and safe action models for stochastic
worlds. In AAAI, 9795–9804.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe learning of
lifted action models. In KR, 379–389.
Kambhampati, S. 2007. Model-lite planning for the web
age masses: The challenges of planning with incomplete and
evolving domain models. In AAAI, 1601–1605.
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