Hanoi, Vietnam. November 2-8, 2024.
ISSN: 2334-1033
ISBN: 978-1-956792-05-8
Copyright © 2024 International Joint Conferences on Artificial Intelligence Organization
In this paper, we present ASPEN, an answer set programming (ASP) implementation of a recently proposed declarative framework for collective entity resolution (ER). While an ASP encoding had been previously suggested, several practical issues had been neglected, most notably, the question of how to efficiently compute the (externally defined) similarity facts that are used in rule bodies. This leads us to propose new variants of the encodings (including Datalog approximations) and show how to employ different functionalities of ASP solvers to compute (maximal) solutions, and (approximations of) the sets of possible and certain merges. A comprehensive experimental evaluation of ASPEN on real-world datasets shows that the approach is promising, achieving high accuracy in real-life ER scenarios. Our experiments also yield useful insights into the relative merits of different types of (approximate) ER solutions, the impact of recursion, and factors influencing performance.