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Abstract

Model counting is a fundamental problem in automated rea-
soning with applications in probabilistic inference, network
reliability, neural network verification, and more. Although
model counting is computationally intractable from a theoreti-
cal perspective due to its #P-completeness, the past decade has
seen significant progress in developing state-of-the-art model
counters to address scalability challenges.
In this work, we conduct a rigorous assessment of the scal-
ability of model counters in the wild. To this end, we sur-
veyed 11 application domains and collected an aggregate of
2262 benchmarks from these domains. We then evaluated six
state-of-the-art model counters on these instances to assess
scalability and runtime performance.
Our empirical evaluation demonstrates that the performance of
model counters varies significantly across different application
domains, underscoring the need for careful selection by the
end user. Additionally, we investigated the behavior of differ-
ent counters with respect to two parameters suggested by the
model counting community, finding only a weak correlation.
Our analysis highlights the challenges and opportunities for
portfolio-based approaches in model counting.

1 Introduction
Given a Boolean formula F (often presented in conjunctive
normal form), the problem of model counting is to compute
the number of solutions of the formula. Model counting is a
fundamental problem in computer science and has been stud-
ied by theoreticians and practitioners alike for the past four
decades. From the perspective of theoreticians, model count-
ing is a central problem in computational complexity: the
seminal work of Valiant (1979) established that the problem
of model counting is #P-complete, where #P is the class of
counting problems whose decision versions lie in NP. Toda’s
celebrated result (Toda 1989) showed that a single call to
a #P-oracle suffices to solve a problem in the entire poly-
nomial hierarchy; formally, PH ⊆ P#P. On the other hand,
from practitioners’ perspectives, model counting emerges as
a central problem in a wide variety of domains such as quan-
titative software verification (Teuber and Weigl 2021; Girol,
Farinier, and Bardin 2021), probabilistic inference (Darwiche

∗Full version of the paper is available at https://arxiv.org/
abs/2408.07059. The benchmarks and logfiles are available at
https://doi.org/10.5281/zenodo.13284882.

2004), network reliability (Kabir and Meel 2023), cryptog-
raphy (Beck, Zinkus, and Green 2020), synthesis (Golia,
Roy, and Meel 2020), product lines (Sundermann et al. 2023;
Kuiter et al. 2022), neural network verification (Baluta et
al. 2019), and information flow (Bang et al. 2016). Conse-
quently, despite theoretical hardness (in the worst case), there
has been a demand for the development of algorithms and
tools for model counting.

The earliest algorithmic approaches to model counting
were pioneered in the early 2000s, combining advances
in conflict-driven clause learning with knowledge compi-
lation (Darwiche 2004; Sang et al. 2004). Subsequently,
approaches in the early 2010s based on universal hashing
and SAT solving were developed to obtain probably ap-
proximate counters (Gomes, Sabharwal, and Selman 2006;
Chakraborty, Meel, and Vardi 2013). Since then, there has
been a significant surge of interest in the development of
model counters. This development has led to substantial
improvements in the runtime performance of state-of-the-
art counters (Thurley 2006; Lagniez and Marquis 2017;
Sharma et al. 2019; Korhonen and Järvisalo 2021; Lai, Meel,
and Yap 2021), best evidenced by the launch of the model
counting competition in 2020 (Fichte, Hecher, and Hamiti
2020).

The model counting competition also allowed for the stan-
dardization of input and output formats, thereby making it
easy to use different counters uniformly. The yearly competi-
tion also provides a snapshot of the performance of different
counters. Given the annual snapshot of performance, one
might be tempted to rely on the model counting competition
to provide guidance on what counter to use in practice: for
example, pick the winner of the latest model counting compe-
tition. Such a strategy is generally expected to fare well but
may not be optimal since the objective of competitions is of-
ten to focus on benchmarks that are difficult. While selection
focused on difficult benchmarks brings forth the weaknesses
of state-of-the-art techniques, it may not guide the behavior
of counters in the real world.

The primary objective of our investigation is the study of
the scalability of model counters in the wild. To this end,
we focused on the six state-of-the-art model counters, which
have consistently performed well in model counting competi-
tions over the past three years and rely on differing underlying
techniques. As a next step, we constructed a benchmark suite
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comprising instances from 11 different application categories,
including quantitative software verification, probabilistic in-
ference, network reliability, cryptography, synthesis, product
lines, neural network verification, and information flow. In
total, our benchmark suite consists of 2262 instances. We
then performed an extensive analysis of the performance of
different counters in these instances. Furthermore, we sought
to understand how the performance of counters varies with
respect to features of input formulas.

Our experiments with different model counters on this set
of benchmarks revealed the following:

1. Among the individual solvers for non-projected instances,
SharpSAT-TD performed the best, solving 811 out of
1080 instances. For projected instances, ApproxMC
achieved the highest performance, solving 1041 out of
1182 instances.

2. Compilation-based, and hashing-based model counters ex-
celled on different sets of benchmarks, often complement-
ing each other. This complementary nature significantly
improved the performance of the virtual best solver, which
solved 2106 out of 2262 instances.

3. The performance of compilation-based counters is corre-
lated with treewidth, while the performance of hashing-
based counters shows a weak correlation with independent
support size.

Organization. The structure of the paper is as follows. First,
we introduce notation and preliminaries in Section 2. Next,
we discuss various algorithms for model counting in Section 3
and describe the applications of model counting in Section 4.
Our experimental results are presented in Section 5. Finally,
we conclude in Section 6.

2 Notations and Preliminaries
Let X be the set of Boolean variables, and let F be a Boolean
formula in Conjunctive Normal Form (CNF) defined over
variables in X . An assignment σ : X 7→ {0, 1} is called a
satisfying assignment or a solution if σ makes F evaluate to
True. Given a set of projection variables P ⊆ X , a projection
of assignment σ to the set P is the subset of assignments only
to the variables of P .

Model Counting. Let Sol(F ) denote the number of so-
lutions of a given formula F . The model counting prob-
lem is determining |Sol(F )|. An exact model counter
takes in formula F , and returns |Sol(F )|. An approxi-
mate model counter takes in a formula F , tolerance pa-
rameter ε, confidence parameter δ and returns c such that
Pr

[
|Sol(F )|
1+ε ≤ c ≤ (1 + ε)|Sol(F )|

]
≥ 1− δ.

Projected Model Counting. Let Sol(F )↓S denote the set
of projected assignments satisfying the given formula F and
a projection set S. The problem of projected model count-
ing is to compute |Sol(F )↓S |. An exact projected model
counter takes in formula F , and returns |Sol(F )↓S |. An ap-
proximate projected model counter takes in a formula F ,

projection set S, parameters ε, and δ, and returns c such that
Pr

[
|Sol(F )↓S |

1+ε ≤ c ≤ (1 + ε)|Sol(F )↓S |
]
≥ 1− δ.

To differentiate between model counting and projected
model counting, we use the term non-projected model count-
ing to refer to model counting without projection.

Independent Support. For a given assignment σ over X
and a subset of variables S ⊆ X , let σ↓S represent the
assignment of variables restricted to S. Given a Boolean
formula F over the set of variables X and a projection
set S ⊆ X , a subset of variables I such that I ⊆ S
is called independent support (or simply support) of S
if ∀σ1, σ2 ∈ Sol(F ), σ1↓I = σ2↓I =⇒ σ1↓S =
σ2↓S . Several preprocessing techniques for model count-
ing have been proposed, which compute a small indepen-
dent support for the input formula and simplify the formula
based on that support (Lagniez, Lonca, and Marquis 2016;
Soos and Meel 2019).

Treewidth. Treewidth is a measure of how tree-like a graph
is. A tree decomposition of a graph G = (V,E) is a pair
(T, {Bi}i∈I) where T is a tree with nodes indexed by I , and
{Bi}i∈I are subsets of V (bags) such that:

1. Every vertex v ∈ V is in at least one bag Bi.

2. For every edge (u, v), there is a bag Bi with u, v ∈ Bi.

3. For each vertex v, the bags containing v form a connected
subtree of T .

The width of a tree decomposition (T, {Bi}i∈I) is
maxi∈I(|Bi| − 1). The treewidth of G, denoted tw(G), is
the minimum width among all tree decompositions of G:
tw(G) = min(T,{Bi}) maxi∈I(|Bi| − 1).

3 The Landscape of Model Counting
Significant progress has been made in developing efficient
algorithms for model counting. In this section, we provide a
brief overview of the different approaches.

1. Compilation-based Exact Model Counters. The remark-
able success of SAT solvers has motivated researchers to
develop model counters that leverage the search techniques
employed by these solvers. Darwiche (2004) introduced
the use of deterministic decomposable negation normal
form (d-DNNF) to efficiently obtain the model count in
a model counter named c2d. During the search proce-
dure of DPLL, the solver may encounter sub-formulas
that have already been seen in a prior branch of the tree.
To avoid redundant computations, it is essential to rec-
ognize such sub-formulas and reuse their model counts
efficiently. To address this challenge, researchers have
introduced the concept of component caching, which has
led to the development of highly efficient model coun-
ters like Cachet (Sang et al. 2004) and SharpSAT (Thur-
ley 2006). Lagniez and Marquis (2017) further improved
this approach by utilizing dynamic decomposition tech-
niques to enhance the efficiency of d-DNNF-based tech-
niques and designed the D4 model counter. Subsequently,
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heuristics were integrated into component caching in the
probabilistic model counter Ganak (Sharma et al. 2019).
Korhonen and Järvisalo (2021) combined the concept
of tree decomposition was combined with component
caching in SharpSAT-TD. GPMC uses a similar strat-
egy as SharpSAT, but optimizes it for projected model
counting. Lai, Meel, and Yap (2021) introduced a gener-
alization of d-DNNF known as Constrained Conjunction
and Decision Diagram (CCDD), which was implemented
in the model counter ExactMC. While all the aforemen-
tioned techniques employ a search-based top-down compi-
lation approach, Dudek, Phan, and Vardi (2020) utilized
algebraic decision diagram (ADD) based bottom-up com-
pilation methods to design the model counter ADDMC,
which also performs effectively due to its early-projection
techniques.

2. Hashing-based Approximate counter. Over the past
decade, there has been the development of scalable ap-
proximate model counters that rely on XOR-based pair-
wise independent functions to divide the solution space
into smaller parts and then invoke state-of-the-art SAT
solvers to enumerate models in a randomly chosen cell to
accurately estimate the model count (Chakraborty, Meel,
and Vardi 2013; Chakraborty, Meel, and Vardi 2016;
Soos and Meel 2019; Soos, Gocht, and Meel 2020). The
state-of-the-art hashing-based counter, ApproxMC, has
shown to work well in practice. It also supports prepro-
cessing techniques based on independent set detection and
scales better when Arjun (Soos and Meel 2022) provides a
small independent set.

In the context of this survey, we focus on the six state-of-
the-art model counters that have performed well in model
counting competitions over the past year. The first five are
top-down compilation techniques, with different technical
improvements on top of the algorithm.

1. SharpSAT-TD: Developed on top of SharpSAT, com-
bined with a tree-decomposition-based heuristics.

2. Ganak: Developed on top of SharpSAT, enhanced with
probabilistic component caching.

3. D4: A Decision-DNNF compilation based on dynamic
decomposition.

4. GPMC: Another top-down compilation-based counter,
which uses optimizations for projected counting.

5. ExactMC: Another top-down compilation-based model
counter using CCDD for compilation.

6. ApproxMC: A hashing-based approximate model counter.

Among these counters, ExactMC and SharpSAT-TD solve
the problem of only non-projected model counting. The re-
maining solvers can solve the problems of both projected and
non-projected model counting. We compare the performance
of all the solvers in the categories in which they can solve the
problem.

4 Benchmarks
We selected a large set of benchmarks from various practical
domains to evaluate the model counters. Below is a list of
these domains:

1. Software Verification. In software verification, some
quantitative problems are solved by reducing the problems
to model counting. Here are two such problems:

(a) Reliability Estimation. When the functional correctness
of a program cannot be established, a potential approach
to assess the software’s reliability is to quantify it as
the ratio of failing program runs to all terminating runs.
Teuber and Weigl (2021) reduced this approach to model
counting, where the model count corresponds to the
number of inputs that trigger or bypass assertions or
assumptions.

(b) Robust Reachability. Determining the extent to which
a bug can be replicated is frequently relevant. Girol,
Farinier, and Bardin (2021) addressed this issue by em-
ploying the formalism of robust reachability. They also
introduced the concept of quantitative robust reacha-
bility, which seeks to identify a controlled input that
maximizes the number of uncontrolled inputs capable
of reaching the intended target. Model counting can be
used to lower bound the runtime cost by the cost of de-
termining the number of uncontrolled inputs satisfying
a path constraint for a given controlled input.

2. Probabilistic Inference. Model counting is used to solve
the problem of probabilistic inference. Sang, Beame, and
Kautz (2005) encoded the inference problem on Boolean
Bayesian networks as a model counting problem.

3. Network Reliability. For critical infrastructure like power
transmission grids, it is important to know the reliability
of the infrastructure. Kabir and Meel (2023) encoded the
problem of network reliability as a weighted model count-
ing problem. They then used chain formulas (Chakraborty
et al. 2015) to encode the problem as unweighted model
counting problems. These benchmarks encode power trans-
mission grids from different cities and states. The number
of solutions to these formulas relates to the network relia-
bility.

4. Cryptography. Certain problems in cryptography can
also be tackled with model counting. Beck, Zinkus, and
Green (2020) used model counting to automate the devel-
opment of chosen-ciphertext attacks.

5. Synthesis. Given the specification of a function or pro-
gram, the task of synthesis is to generate the function or
program.

(a) Program and Function Synthesis. Some algorithms for
synthesis (Golia, Roy, and Meel 2020) use model counts
in certain parts. These benchmarks consist of instances
where the specifications of the functions like arithmetic,
disjunctive instances etc.

(b) Synthesis for Control Improvisation. The control impro-
visation (CI) framework helps synthesize randomized
systems with strict and flexible constraints. Gittis, Vin,
and Fremont (2022) includes quantitative constraints on
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benchmark Treewidth Support Size

Robust Reachability 9.13 1565.38
Bayes Net 15.52 2410.69
Industrial Config 18.29 749.45
Linux Config 21.50 799.32
Network Reliability 34.33 941.58
Control Improvisation 35.00 58.27
Cryptographic 41.49 292.97
Software Reliability 55.49 1111.65
Information Flow 66.84 10268.38
Functional Synthesis 83.57 681.82
Neural Net Verification N.A. 71.26

Table 1: Average Treewidth and Independent Support Size.

expected costs and randomness constraints for diversity
based on labels and encodes the problem as a model
counting problem.

6. Feature Counting. Product lines efficiently manage
groups of products sharing a core set of features. De-
termining the number of valid configurations is often a
crucial task.

(a) Industrial Product Lines. Product lines are commonly
employed to handle families of products sharing a core
set of features, with feature models serving as a standard
to define valid feature combinations. However, not all
feature configurations are permissible. These models fa-
cilitate standardized analyses of the system’s variability,
and many of these analyses require calculating the num-
ber of valid configurations. Sundermann et al. (2023)
surveyed these problems as a model counting problem.

(b) Configuration Spaces of Software Systems. Kuiter et
al. (2022) studied the problem of feature modeling,
which helps systematically model features and depen-
dencies in software systems. The authors encode feature
models into propositional formulas, where the number
of solutions of the formula corresponds to the number
of possible features in a software system.

7. Quantitative Verification of Neural Networks. An in-
triguing aspect of neural network verification is assessing
the frequency with which a specific property is valid. The
NPAQ (Neural Property Approximate Quantifier) frame-
work, introduced by Baluta et al. (2019), facilitates the
evaluation of various properties in binarized neural net-
works. The benchmarks test the following properties on
the MNIST and UCI datasets: fairness, which encodes bias
towards marital status, race, or sex; robustness, which mea-
sures the impact of 2-3-bit adversarial input perturbations;
and Trojan attacks, which account for the number of inputs
with a trojan pattern. These benchmarks were initially en-
coded as pseudo-Boolean constraints and later converted
to CNFs, thereby encoding many arithmetic circuits.

8. Quantitative Information Flow. Information leaks in
modern software systems are an important problem. Bang
et al. (2016) introduced an analysis method that estimates

both minimum and maximum leak amounts, even when
some paths aren’t fully explored. This method was added
to KLEE to analyze information leaks in C programs.

Among these benchmark sets, functional synthesis, relia-
bility estimation, control improvisation, and neural network
verification benchmarks consist of projected counting in-
stances, while the remaining are non-projected model count-
ing problems.

5 Experimental Evaluation
To evaluate the performance and effectiveness of the various
tools discussed in Section 3, we conducted the following
experiments.

Experimental Setup. The experiments were carried out on
a supercomputing cluster equipped with AMD EPYC 7713
CPUs. Each experiment involved running a tool on a specific
benchmark using a single core with a memory limit of 16
GB. For approximate counters, we set ε = 0.8 and δ = 0.2.
We adhered to the competition standard timeout of 3600
seconds. Initial experiments with a higher timeout showed a
minimal increase in the number of instances solved. For the
experiments, we used the versions of the counters submitted
to the Model Counting Competition 2023.

Virtual Best Solver. We included the results of a Virtual Best
Solver (VBS) in our comparisons. A VBS is a hypothetical
solver that performs well and is the best method for each
benchmark. If solvers s1, . . . sn solve a problem in time
t1, . . . tn seconds, then VBS solves it in min(t1, . . . , tn) sec.

Correctness. The correctness of the model counters is well-
established; in all model counting competitions, the counters
consistently produce correct counts. Additionally, approx-
imate model counters provide counts with deficient error.
Therefore, we assume the counters are correct and do not
focus on this aspect.
Since not all model counters can handle projected model
counting, we analyzed projected and non-projected instances
separately.
In this work, we sought to answer the following research
questions:

RQ1. How do the overall performances of different model
counters compare, and how do they vary across differ-
ent sets of benchmarks?

RQ2. How do benchmark parameters relate to the perfor-
mance of various solvers?

Summary of Results. The highest number of non-
projected instances solved by a single solver was achieved by
SharpSAT-TD, which successfully solved 811 out of 1080
instances. For projected instances, ApproxMC demonstrated
the best performance, solving 1041 out of 1182 instances.
Compilation-based and hashing-based model counters ex-
celled in solving different sets of benchmarks, and their per-
formances were often complementary. This complementary
performance resulted in a much better performance of the
VBS, which solved 2106 out of 2262 instances. Treewidth
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Figure 1: Heatmap of the percentage of instances solved by model counters for

correlates with the performance of compilation-based coun-
ters, while independent support size correlates weakly with
the hashing-based counter.

5.1 RQ1: Evaluation on Different Benchmark Sets
We evaluate the performance of the solvers on different bench-
mark sets by analyzing the total number of instances solved,
examining each benchmark set individually, and considering
the performance of the virtual best solver.

TOTAL BENCHMARKS SOLVED First, we analyze the
total number of instances solved for both non-projected and
projected instances.

Non-projected Instances. Table 3 presents the number
of problems solved by various model counters across dif-
ferent benchmark sets. When aggregating all benchmarks,
SharpSAT-TD exhibits the best performance, solving 75%
of the benchmarks (811 out of 1080). D4 and ExactMC also
perform well, solving 762 and 745 instances, respectively. In

contrast, ApproxMC solves 715 instances, performing rela-
tively less effectively.

Projected Instances. Table 2 presents the number of in-
stances solved by various model counters on projected model
counting problems. Among the 1182 instances, ApproxMC
performs the best, solving 1041 instances. The other pro-
jected model counters do not perform as well, with GPMC
and D4 solving 434 and 361 instances, respectively, placing
them second and third.

RUNTIME VARIATION Table 2 and Table 3 present the
number of problems solved by different model counters
across various benchmark sets, highlighting significant per-
formance variations among them. The key observations are
as follows:

1. Hashing-based counters perform exceptionally well on spe-
cific benchmark sets, particularly in cryptographic bench-
marks, functional synthesis benchmarks, and neural net-
work verification benchmarks.
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Total VBS Ganak D4 GPMC ApproxMC

Control Improvisation 33 33 31 31 32 32
Software Reliability 123 119 0 71 79 115

Control Improvisation 33 33 31 31 32 32
Functional Synthesis 609 577 50 94 74 577
Neural Network Verification 417 329 0 165 249 317

Total 1182 1058 81 361 434 1041

Table 2: Number of instances solved by different model counters on projected instances.

Total VBS Ganak D4 ExactMC SharpsatTD GPMC ApproxMC

Linux Config 135 130 126 130 129 130 130 7
Industrial Config 128 126 126 126 126 126 126 4
Network Reliability 256 177 129 173 174 165 131 145
Information Flow 117 106 88 90 83 89 76 50
Robust Reachability 93 91 90 91 91 91 90 91

Bayes Net 29 29 0 29 29 29 28 29
Cryptographic 411 389 34 123 113 181 110 389

Total 1169 1048 593 762 745 811 691 715

Table 3: Number of instances solved by different model counters on non-projected instances.

2. Compilation-based counters excel in certain benchmark
sets, such as Linux configuration, industrial configuration
feature counting benchmarks, and quantitative information
flow benchmarks. The performance differences among the
search-based counters are minimal.

3. For the remaining benchmark sets, nearly all counters
perform very well.
In Table 2 and Table 3, the dashed lines separate the bench-

mark sets based on which type of counter performs best.
Figure 1 provide a heatmap representation of the percent-

age of problems each model counter has successfully solved.
Each cell in the heatmap indicates the percentage of bench-
marks solved by a solver in a specific class of benchmarks.
The color scale is shown to the right, with darker colors
corresponding to a higher percentage of instances solved.

The cactus plots in Figure 2 and Figure 3 provide addi-
tional insight into performance variations. In these plots, the
x-axis represents the number of instances, while the y-axis
indicates the time taken. A point (i, j) on the plot signifies
that a solver completed j benchmarks out of the total set in
less than or equal to i seconds. The key insights from the
figures are as follows:

1. In Figure 2 (a), cryptographic instances are either solved
within seconds or not at all. The VBS closely follows
ApproxMC, indicating that ApproxMC typically has mini-
mal runtime in most cases.

2. A different pattern emerges for neural network verifica-
tion in Figure 2 (b). Here, the counters take a consid-

erable amount of time to solve the instances. The VBS
closely follows the curve of GPMC for approximately 700
seconds, suggesting that GPMC can solve around 200 in-
stances more quickly within this timeout. Between 1000
and 3600 seconds, ApproxMC gradually solves around
150 additional instances, a trend not observed in any other
benchmark set.

3. In Figure 2 (d), the information flow benchmarks exhibit
another interesting behavior, with counters taking vary-
ing times between 0 and 2000 seconds to solve instances,
managing to solve a maximum of 90 out of 106 instances.
However, the VBS solves all the instances within 200 sec-
onds.
The other cactus plots also show similar patterns. We have

not included the cactus plots for robust reachability, control
improvisation, and Bayes net benchmark sets because, in
these sets, all the counters solve the instances within seconds.
Similarly, we skipped the industrial and Linux configura-
tion benchmarks since, in these cases, the compilation-based
counters solve all the instances within seconds. In contrast,
the hashing-based counter solves a negligible number of in-
stances.

VIRTUAL BEST SOLVER The VBS can solve significantly
more instances than any individual solver. For the non-
projected instances, out of 1080 instances, the VBS can
solve 1048 instances. This number is much higher than
any individual counter; the best counter for non-projected
benchmarks is SharpSAT-TD, which solves 811 instances,
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Figure 2: Cactus plot of the numbers of benchmarks solved by model counters on different benchmark sets.

Counter Contribution

ApproxMC 1114
ExactMC 372
GPMC 368
Ganak 186
D4 67
SharpSAT-TD 0

Total 2106

Table 4: Contribution of the solvers to the VBS.

representing 77% of the instances solved by the VBS. In the
case of projected instances, the trend continues, with the VBS
demonstrating superior performance.

Contribution of Counters to the VBS. In Table 4, we
show the number of instances contributed to the VBS by
each model counter. ApproxMC makes the most substantial
contribution to the VBS, accounting for 1114 out of 2106
instances. The following most significant contributors are
ExactMC and GPMC, contributing 372 and 368 instances, re-
spectively. Interestingly, ExactMC only solves non-projected

instances. SharpSAT-TD does not contribute any instances
to the VBS, likely because it requires a constant 600 seconds
to run the tree-decomposition component before starting the
actual counting, resulting in longer execution times compared
to other counters.

5.2 RQ2. Correlation with Benchmark
Parameters

While the primary observation with model counters on dif-
ferent types of benchmarks was that the performance varies
significantly across benchmarks, we sought to identify the
underlying parameters from a formula that influences the
difficulty of model counting. We consider treewidth and size
of independent support set of a formula as parameters to
predict which count would be efficient to count the formula.
Computing the values of each parameter is a computationally
hard problem; therefore, we heuristically determine these val-
ues. We use FlowCutter (Strasser 2017) for computing the
treewidth and Arjun for calculating the independent support
size. In Table 1, we list the average treewidth and inde-
pendent support size for each benchmark set. For neural
net verification instances, FlowCutter timed out, which we
denote by N.A. in the table.
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(b) Functional Synthesis Benchmarks

Figure 3: Cactus plot of the numbers of benchmarks solved by model counters on different benchmark sets.
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(b) ExactMC

Figure 4: Correlation of runtime, independent support size and treewidth (best seen in color).

Treewidth Support Size

Ganak 0.38 -0.22
D4 0.41 -0.20
ExactMC 0.42 -0.18
SharpSAT-TD 0.48 -0.12
GPMC 0.47 -0.09
ApproxMC -0.03 0.27

Table 5: Correlation between solver runtime and formula features.
(Value ranges from -1 to 1, 0 is no linear correlation.)

In Table 5, we present the Pearson correlation between the
different benchmark parameters and the solvers’ runtimes.
The value ranges between -1 and 1, where a greater absolute
value indicates a higher correlation. The key observations are
as follows:

1. The performance of knowledge-compilation-based model
counters has a positive correlation with treewidth, while
hashing-based counters do not exhibit such a correlation.
Among all counters, SharpSAT-TD shows the highest cor-
relation of 0.48 between treewidth and runtime.

2. The runtime of the hashing-based counter ApproxMC
shows a weak positive correlation of 0.27 with indepen-
dent support size, whereas the compilation-based counters
show no correlation.
In Figure 4 and 5, we represent the relationship among

treewidth, independent support size, and the runtime of a spe-
cific solver in a heatmap. The x-axis represents the treewidth,
and the y-axis represents the independent support size. Thus,
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(c) GPMC
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(d) Ganak

Figure 5: Correlation of runtime, independent support size and treewidth (best seen in color).

a point with coordinates (i, j) represents an instance with
treewidth i and independent support size j. The color of
the point indicates the runtime for the solver depicted in the
graph. The color scale is shown to the right, with darker
colors generally indicating shorter runtimes. These heatmaps
shed more light on the lack of correlation between the perfor-
mance of the counters and the benchmark parameters. The
heatmaps reveal the following insights:

1. In Figure 4 (a), ApproxMC takes approximately 103 sec-
onds to solve instances of treewidth 10, while most of the
instances with treewidth between 50 and 60 are solved in
less than 100 seconds. The relationship between indepen-
dent support size and solving time is also not very clear.
There are many instances with independent support sizes
above 1000 that are solved in less than 10 seconds.

2. The performance of ExactMC in Figure 4 (b) is very dif-
ferent. For instances with treewidth higher than 20, it
gradually takes an increasing amount of time. Instances
with higher treewidth and higher independent support sizes

seem to be particularly challenging for ExactMC. If the
treewidth is greater than 50 and the independent support
size is greater than 100, the time taken to solve is generally
more than 200 seconds.

3. The results for D4 in Figure 5 (a) and GPMCin Figure 5 (c)
are not very different from those of ExactMC.

4. The behavior of SharpSAT-TD, however, appears a little
different in Figure 5 (b). It solves instances with higher
treewidth relatively faster, while instances with treewidth
greater than 30 and independent support size greater than
100 take more time to solve.

6 Conclusion
We conducted a comprehensive study on a diverse set of

benchmarks, revealing that different solvers excel on different
subsets. Our findings indicate that the virtual best solver can
solve nearly all instances, a feat unattainable by any individ-
ual solver alone. This performance of VBS demonstrates that
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the complementary strategies employed by various solvers
enable them to address distinct sets of instances effectively.
Consequently, our study underscores the significance of in-
tegrating these approaches or developing a portfolio-based
solver model.
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