
Deontic Reasoning Based On Inconsistency Measures

Ofer Arieli1 , Kees van Berkel2 , Badran Raddaoui3 , Christian Straßer4
1School of Computer Science, Tel-Aviv Academic College, Israel

2 Institute for Logic and Computation, TU Wien, Austria
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Abstract

Conflicts are inherent to normative systems. In this paper, we
explore a novel approach to normative reasoning by quanti-
fying the amount of conflicts within normative systems. We
refine the idea from classical logic, according to which a
formula is a consequence of a knowledge base in case its
negation renders the knowledge base inconsistent. In our ap-
proach, whether a formula is a logical consequence depends,
for instance, on its negation’s marginal contribution to the in-
consistency of the given knowledge base. Accordingly, var-
ious inconsistency measures and corresponding (nonmono-
tonic and paraconsistent) normative entailment relations are
analyzed relative to a number of logical properties. To illus-
trate our approach, we adopt Input/Output logic, a renowned
formalism in deontic logic, specifically designed for defea-
sible normative reasoning. As an application, the resulting
entailment relations provide recommendations to agents for
minimizing norm conflicts, and may be incorporated in a
number of implementations (like the Tweety libraries and the
LogiKey framework) by involving inconsistency measure-
ments in normative reasoning.

1 Introduction
Normative systems fulfil an essential role in various aspects
of life (e.g., ethics, law, business protocols, AI) and one of
their central aims is to align agents’ conduct in order to attain
specific goals (Chopra, van der Torre, and Verhagen 2018).
With the increasing demand for compliant autonomous sys-
tems, such alignment goals are also paramount to knowledge
representation (KR) and AI (Gabriel 2020). By their very
nature, however, normative systems are sensitive to conflicts
(Nute 1997). Over the past decades, a range of mechanisms
has been developed to effectively reason with normative sys-
tems in spite of the presence of conflicts, aiming at the re-
establishment of consistency.

The presence of conflicts itself, however, provides unique
insight into the normative code and factual context at hand.
An immediate question, therefore, is what information can
be inferred from the type and amount of conflicts within a
normative code? For instance, one may assess the degree of
conflicts of a normative system or the marginal contribution
that each individual norm makes to render the system incon-
sistent. Surprisingly, this topic has not yet been addressed
in deontic logic, the field of formal normative reasoning.
In this paper, we address this problem by analyzing notions

of inconsistency measures and their induced nonmonotonic
consequence relations. To the best of our knowledge, this is
the first thorough study of reasoning with quantified incon-
sistencies in normative settings.

Managing conflicting information poses significant chal-
lenges for its representation and the respective conclusion
making (Martinez et al. 2013). To our benefit, measur-
ing inconsistencies is, in fact, a well-accepted research
topic in KR, offering methodologies for quantifying the ex-
tent of contradiction, thereby facilitating a deeper under-
standing of the principal sources of conflicts in knowledge
bases (Hunter and Konieczny 2010; Grant and Martinez
2018), and more recently in databases (Livshits et al. 2021;
Parisi and Grant 2023). However, the known inconsistency
measures are not directly applicable to the context of nor-
mative systems for two reasons: (i) norms usually require
different conflict handling mechanisms, and (ii) normative
knowledge bases often employ richer languages (see (Gab-
bay et al. 2013)).

In order to address these challenges, we reformulate var-
ious inconsistency measures from the literature to apply to
a prominent formalism for defeasible normative reasoning,
namely, Input/Output (I/O) logic (Makinson and van der
Torre 2001). Then, we employ these inconsistency measures
to establish novel entailment relations that extend those of a
well-established class of I/O logics. Intuitively, our entail-
ment relations are based on the idea that a formula is a logi-
cal consequence if the addition of its negation to the norma-
tive knowledge base would increase its inconsistency. Both
the inconsistency measures and the entailment relations are
evaluated throughout the paper with respect to a series of
rationality postulates and desired properties. Our study re-
veals that while the measure-based approach allows for a
significant number of combinations of inconsistency mea-
sures and entailment relations, one has to carefully choose
among them, as several combinations lead to non-intuitive
inferences. Luckily, there are some combinations with ap-
pealing characteristics. In this paper, we consider in greater
details one such family of entailment relations: those that
are based on the inconsistency measure IMRN, defined by
minimal correction norm sets.

In a broader perspective, we note that the entailment re-
lations introduced in this paper can be used to recommend
conduct to agents. Recommendations, sometimes referred
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to as weak obligations (Lellmann, Gulisano, and Ciabattoni
2021), not only constitute instructions for achieving specific
outcomes, they aim to minimize negative side-effects com-
pared to the alternative action (Royce Sadler 1984). Side-
effects are, in this context, norm conflicts and violations.

Our study has also strong links to other areas in knowl-
edge representation and reasoning, such as nonmonotonic
logics, belief revision, and causal reasoning. The underly-
ing formalisms may be incorporated in applications involv-
ing inconsistency measurements and normative reasoning,
e.g., the Tweety libraries for logical aspects of AI and KR
(Thimm 2014), and the LogiKey framework (Benzmüller,
Parent, and van der Torre 2020), in the context of which I/O
logic and other deontic logics have been implemented in the
generic automated theorem prover HOL/Isabelle.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce normative systems and consider some
basic notions concerning norm inconsistency. In Section 3,
we employ these notions to extend various existing inconsis-
tency measures to the normative setting and investigate the
logical properties of these measures. In Section 4, we define
several normative entailment relations based on these incon-
sistency measures, and we study their logical properties in
Section 5. Related work and future research are reported
on in Section 6. Due to space restrictions, we only provide
some of the proofs and counterexamples.

2 Normative Systems
We start with some preliminaries concerning the basic
normative systems and their consequence relations (Sec-
tion 2.1), and important notions for evaluating (and rea-
soning with) inconsistencies in normative knowledge bases
(Section 2.2).

2.1 Input/Output Logic
Our formalism is based on Input/Output (I/O) logic (Makin-
son and van der Torre 2000; 2001), a highly versatile general
defeasible reasoning paradigm that, over the past decades,
has seen a wide variety of applications in the field of knowl-
edge representation and reasoning. Applications range from
causal, epistemic, and legal reasoning (Bochman 2014;
Ciabattoni, Parent, and Sartor 2021) to complexity and auto-
mated deduction results (Ciabattoni and Rozplokhas 2023),
additionally showing strong connections to Reiter’s default
logic (Parent 2011). The main merit and focus point of I/O
logic lies in its application to normative reasoning (Parent
and van der Torre 2013).

Definition 1. Let L be a propositional language containing
a countable set of propositional variables, and the propo-
sitional constants ⊤ and ⊥, representing truth and falsity.
A normative system, or normative knowledge base, is a
triple K = ⟨F , C,N⟩ consisting of sets of facts F ⊆ L,
constraints C ⊆ L, and norms N ⊆ {(φ,ψ) | φ,ψ ∈ L}.

A norm n = (φ,ψ) ∈ N is read as “Given φ, it ought
to be that ψ.” We refer to φ (resp. ψ) by body(n) (resp.
head(n)). Various mechanisms have been developed for de-
taching obligations (propositional formulas) from norms and

facts, and for resolving conflicts that arise during the de-
tachment process. Constraints are formulas with which de-
tached obligations must be classically consistent, and con-
stitute a generalization of logical consistency checks on the
output generated by norms.1 For instance, the fact φ triggers
the norm (φ,ψ) from which the obligation ψ is detached,
whereas the constraint ¬ψ blocks the application of (φ,ψ).
Example 1. The following normative system represents a
central challenge for normative reasoning under conflicts,
referred to as a contrary-to-duty scenario (Hilpinen and Mc-
Namara 2013). In this scenario, an agent needs to determine
what to do given the fact that a norm is violated:

KCT D = ⟨{¬p}, {¬p}, {(⊤, p), (p,¬a), (¬p, a)}⟩.
Let p stand for “agent x keeps her promise,” and a for “agent
x apologizes.” There are three norms involved: (⊤, p) is
the default norm that “agent x ought to keep her promise,”
(p,¬a) expresses that “if x keeps the promise, she should
not apologize,” and (¬p, a) is the contrary-to-duty norm for
“if x does not keep her promise, she ought to apologize.”
The facts are that the agent did not keep her promise: she
violated the default norm (⊤, p). The constraint is set to ¬p
since agent x needs to know what she ought to do given
the fact that she did not keep her promise. The desired
detachable conclusion is that “agent x ought to apologize”
(Hilpinen and McNamara 2013).

To illustrate our approach, we briefly recall the four cen-
tral I/O detachment operations and refer to (Parent and
van der Torre 2018) for an extensive survey of I/O systems.
Definition 2. (Makinson and van der Torre 2001) Let K =
⟨F , C,N⟩ be a normative knowledge base and let Cn(∆) =
{φ | ∆ ⊢ φ} denote set closure under classical entailment
⊢. Detachment (det) from a set of norms N ′ ⊆ N w.r.t. F
is characterized by the following set:

det(F ,N ′) = {ψ | φ ∈ F for some (φ,ψ) ∈ N ′}.
A basic output operation out1 is then defined in terms of the
logical closure of norm detachment to the logical closure of
the facts, i.e.,

out1(F ,N ) = Cn(det(Cn(F),N )).

A stronger version that allows for disjunctive reasoning
by cases with facts and norms is given by:

out2(F ,N ) =
⋂

{Cn(det(V,N )) |

F ⊆ V and V is complete},
where a set V ⊆ L is complete iff it is maximally consistent
(over the whole language L) or equal to the set of all the
formulas of L.2

The operation out3 allows for the successive detach-
ment (i.e., chaining) of norms. This operation can be de-
fined iteratively by out3(F ,N ) =

⋃
i≥1 out

i
3(F ,N ), where

1In I/O logic, the role of the constraints C is to block norms that
may otherwise yield inconsistencies with C, hence N and C can be
jointly inconsistent. In the literature, for application contexts, C is
intended to be consistent, but this is not a technical requirement.

2The formal role of constraints is discussed in Section 2.2.
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out13(F ,N ) = out1(F ,N ), outn+1
3 (F ,N ) = Cn(det(F ∪

outn3 (F ,N )),N ). A compact way of writing out3 is:

out3(F ,N ) =
⋂

{Cn(det(A,N )) |

F ⊆ A = Cn(A), det(A,N ) ⊆ Cn(A)}.
Finally, out4 combines out2 with out3:

out4(F ,N ) =
⋂

{Cn(det(V,N )) |

F ⊆ V , det(A,N ) ⊆ V , and V is complete}.
Example 2. ConsiderN = {(⊤, v), (v, u), (p, s), (q, s)},
F = {p ∨ q} and C = ∅. Then, det(F ,N ) = ∅
while out1(F ,N ) = Cn({v}), since ⊤ ∈ Cn(F). Also,
out2(F ,N ) = Cn({v, s}) and out3(F ,N ) = Cn({v, u}).
So, s ∈ out2(F ,N ) \ out3(F ,N ) while u ∈ out3(F ,N ) \
out2(F ,N ). Finally, out4(F ,N ) = Cn({v, u, s}).

Our example illustrates a more general point: For every
set F of facts and set N of norms, it holds that det(F ,N ) ⊆
out1(F ,N ) ⊆ out2(F ,N ) ⊆ out4(F ,N ) and
det(F ,N )⊆ out1(F ,N )⊆ out3(F ,N )⊆ out4(F ,N ).
Example 3. Recall Example 1. Clearly, out1 and out2 yield,
what is known as, a pragmatic oddity (Hilpinen and McNa-
mara 2013): “to keep the promise” (p) and “apologize for
not keeping it” (a). What is more, out3 and out4 yield in-
consistent output due to the detachment of both a and ¬a.
In other words, the latter operations perpetuate implicit in-
consistencies in a given knowledge base. To overcome such
oddities and inconsistencies, Makinson and van der Torre
(2001) use constraints to control the output, identify max-
imal consistent subsets of norms and thereby re-establish
consistency. We demonstrate this in the the next section.

2.2 Maximally Consistent, Minimally Inconsis-
tent, and Minimal Correction Norm Sets

Traditionally, nonmonotonic I/O logics are investigated with
respect to identifying maximally consistent norm sets. We
recall this notion here. Moreover, we extend the I/O formal-
ism with the concepts of minimally inconsistent and minimal
correction norm sets (adopted from (Reiter 1987)).
Definition 3. Let K = ⟨F , C,N⟩ be a normative system
and out ∈ {out1, . . . , out4} a fixed output operation. We
say that N ′ ⊆ N is a:3

• consistent norm set (of K w.r.t. out), if out(F ,N ′) ∪ C
is classically consistent (i.e., out(F ,N ′) ∪ C ⊬ ⊥). Else,
N ′ is an inconsistent norm set.

• maximally consistent norm set (MCN) (of K w.r.t. out),
if for each consistent norm set N ′′ ⊆ N it holds that
N ′ ̸⊂ N ′′.

• minimally inconsistent norm set (MIN) (of K w.r.t out),
if out(F ,N ′) ∪ C ⊢ ⊥ and for every N ′′ ⊂ N ′ it holds
that out(F ,N ′′) ∪ C ⊬ ⊥.

• minimal correction norm set (MRN) (of K w.r.t. out),
if N \ N ′ is a maximally consistent norm set of K w.r.t.
out.
3Some logical relations between the sets defined below can be

expressed in terms of hitting sets, see (Liffiton and Sakallah 2008).

The set of maximally consistent norm sets (resp. the set of
minimally inconsistent norm sets, the set of minimal cor-
rection norm sets) of N over K and outi (1 ≤ i ≤ 4) is
denoted MCNi(K) (resp. MINi(K), MRNi(K)). When the
output operation is fixed or arbitrary we shall omit the sub-
script i.

Henceforth, we say that a knowledge base K is consistent
whenever MIN(K) = ∅, and inconsistent otherwise.

Based on Definition 3, we consider the following notions:

• Problematic norms are those norms that are part of at least
one minimally inconsistent norm set within K. We de-
note by prob(K) the set of problematic norms in K, i.e.,
prob(K) = {n ∈ N | N ∈ MIN(K)}.

• A norm n ∈ N is a self-contradictory norm if {n} is a
minimally inconsistent norm set. We write SelfCont(K)
to denote the set of self-contradictory norms in K.

In Examples 4-8 below, norm sets are identified relative to
an arbitrary out operation, unless explicitly stated otherwise.
Example 4. Reconsider the normative system KCT D of Ex-
ample 1. We have one minimally inconsistent norm set,
namely N ′ = {(⊤, p)}. Note here that the set is incon-
sistent for a generalized notion of consistency w.r.t. C =
{¬p}. N ′ is also the unique minimal correction norm set of
KCT D (since {(¬p, a), (p,¬a)} is the unique MCN). Now,
if C = ∅, then under outi (i ∈ {3, 4}), MIN(KCT D) = {N}
whereas MRN(KCT D) = {{(⊤, p)}, {(p,¬a)}, {(¬p, a)}}
(we discuss MCN in Example 9).
Example 5 (Double conflict). Let K5 = ⟨∅, ∅,N5⟩ with
N5 = {(⊤, p), (⊤, q), (⊤,¬p ∧ ¬q)}. Then, MIN(K5) =
{{(⊤, p), (⊤,¬p∧¬q)}, {(⊤, q), (⊤,¬p∧¬q)}}, and
MCN(K5)=MRN(K5)={{(⊤, p), (⊤, q)}, {(⊤,¬p∧¬q)}}.
Example 6 (Binary conflict). Consider K6 = ⟨F6, C6,N6⟩
with F6 = C6 = ∅ and N6 = {(⊤, p), (⊤,¬p)}. Then,
N6 is the unique minimally inconsistent norm set. So, all
norms in K6 are problematic. Moreover, MCN(K6) =
MRN(K6) = {{(⊤, p)}, {(⊤,¬p)}}. If we consider K′

6 =
⟨F6, C′

6,N6⟩, with C′
6 = {p}, we have MIN(K6) =

MRN(K6) = {{(⊤,¬p)}}. In this case, the norm (⊤,¬p)
is self-contradictory. Moreover, MCN(K6) = {{(⊤, p)}}.
Example 7 (Triple conflict). Let K7 = ⟨F7, C7,N7⟩ where
F7 = C7 = ∅ and N7 = {(⊤, p), (⊤, q), (⊤,¬(p∧ q))}. We
have MIN(K7) = {N7}, while MCN(K7) = {N7 \ {n} |
n ∈ N7} and MRN(K7) = {{n} | n ∈ N7}.
Example 8 (2 vs. 1). Let K8 = ⟨F8, C8,N8⟩ with F8 =
{q1, q2, q3}, C8 = ∅ and N8 = {(q1, p), (q2, p), (q3,¬p)}.
Here, there are two minimally inconsistent norm sets,
{(q1, p), (q3,¬p)} and {(q2, p), (q3,¬p)}, and it holds that
MCN(K8) = MRN(K8) = {{(q1, p), (q2, p)}, {(q3,¬p)}}.

In (Makinson and van der Torre 2001), inference relations
of I/O logic are defined using maximal consistent sets.4

Definition 4. Let K = ⟨F , C,N⟩ be a normative knowledge
base:

4Other inferences based on I/O logic, such as the ones based
on argumentative reasoning (Arieli, van Berkel, and Straßer 2024;
van Berkel and Straßer 2022), are outside the scope of this paper.
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• We say that φ skeptically follows from K (w.r.t. out), if
φ ∈ out(F ,N ′) for all N ′ ∈ MCN(K).

• We say that φ credulously follows from K (w.r.t. out), if
φ ∈ out(F ,N ′) for some N ′ ∈ MCN(K).

Example 9. Reconsider the knowledge base KCT D from
Example 1. In this case, out1(F ,N ) = Cn({p,¬a, a})
is inconsistent. Using the set of constraints C = {¬p},
KCT D yields one maximally consistent norm set N ′ =
{(¬p, a), (p,¬a)}. The norm (⊤, p) yields an inconsis-
tency with the given constraint. The norm (p,¬a) is part
of N ′ but is not triggered in the reasoning process. It fol-
lows that the single output set is out1(F ,N ′) = Cn({a}),
which means (both skeptically and credulously) that the
agent ought to apologize. Notice that for the empty con-
straint set C = ∅, we have three maximally consistent norm
sets N ′ = {(⊤, p), (p,¬a)}, N ′′ = {(⊤, p), (¬p, a)}, and
N ′′′ = {(¬p, a), (p,¬a)}. Using skeptical inference, then,
we conclude p ∨ a, but neither p nor a.

Inference relations (such as those in Example 9) treat all
the elements of MCN uniformly. In the next section, we
show that by utilizing inconsistency measures, we are able
to introduce more nuances.

3 Inconsistency Measures for Normative
Knowledge Bases

We are now in the position to introduce various methods
for quantifying conflicts within normative knowledge bases,
employing the notion of ‘inconsistency measure.’ Such mea-
sures may enhance the understanding of conflicts occurring
in normative systems.
Definition 5. Let K denote the class of all normative sys-
tems K from Definition 1. An inconsistency measure is a
function I that maps a normative knowledge base K to a real
value, that is I : K → R+

0 ∪ {∞}, such that I(K) = 0 if K
is consistent.

Intuitively, the higher an inconsistency measure, the more
conflicting is a normative system.

We consider the following six syntactic inconsistency
measures from the literature5 (see, e.g., (Bona et al. 2019))
and extend them to the context of normative systems.
For a knowledge base K = ⟨F , C,N⟩, we define:
• Drastic measure:

Id(K) =


0 |MIN(K)| = 0 & C ⊬ ⊥
1 |MIN(K)| ̸= 0 & C ⊬ ⊥
∞ C ⊢ ⊥

• MIN#-based measure:

I#(K) =

{
|MIN(K)| C ⊬ ⊥
∞ C ⊢ ⊥

• MIN∪-based measure:

Iprob(K) =

{
|
⋃

MIN(K)| C ⊬ ⊥
∞ C ⊢ ⊥

5Semantic inconsistency measures based on multi-valued logics
(Grant and Hunter 2023) are left for future work.

• MINΣ-based measure:

IMIN(K) =


0 |MIN(K)| = 0 & C ⊬ ⊥∑

M∈MIN(K)
1

|M| |MIN(K)| ̸= 0 & C ⊬ ⊥
∞ C ⊢ ⊥

• MCN-based measure:

IMCN(K) =

{
(|MCN(K)|+ |SelfCont(K)|)− 1 C ⊬ ⊥
∞ C ⊢ ⊥

• MRN-based measure:

IMRN(K) =

{
minM∈MRN(K) |M | C ⊬ ⊥
∞ C ⊢ ⊥

We refer to, e.g., (Bona et al. 2019) for further discussions
on inconsistency measures like the ones above.

The following table illustrates the different inconsistency
measures considered above for the previous examples.

CT D K5 K6 K7 K8

Id 1 1 1 1 1
I# 1 2 1 1 2
Iprob 1 3 2 3 3
IMIN 1 1/2 · 2 1/2 1/3 1/2 · 2
IMCN 1 1 1 2 1
IMRN 1 1 1 1 1

Various criteria have been studied for characterizing in-
consistency measures and evaluating their plausibility (see,
e.g., (Hunter and Konieczny 2010; Besnard 2014; Thimm
2017; Bona et al. 2019)). In what follows, we consider
the properties of monotonicity and dominance (Hunter and
Konieczny 2010), as well as several other new postulates
that offer guidance for a better understanding of the mea-
sures by facilitating a comparison between them. These pos-
tulates are also used to ensure some desirable properties of
the entailment relations induced by the inconsistency mea-
sures, defined in the subsequent sections.

In what follows, we write K ⊕ φx for x ∈ {f, c, n} to
denote the addition of φ to K as a fact (x = f), constraint
(x = c), or norm (x = n). Similarly, we define ⊖ to denote
the removal from K of facts or constraints or norms. Given a
formula φ ∈ L ∪ {(ψ,φ) | ψ,φ ∈ L}, we write K⊕x φ for
K ⊕ φx (x ∈ {f, c, n}). We also use the following notions:
• ∆ is a minimal truth set iff ⊢

∨
∆ while ⊬

∨
∆′ for all

∆′ ⊂ ∆.
• ∆ is a minimal conflict (also known as minimally incon-

sistent set) iff ⊢ ¬
∧
∆ while ⊬ ¬

∧
∆′ for all ∆′ ⊂ ∆.

• Remainder sets in the context of normative systems are
defined as follows: ⟨F ,N , C⟩⊥xφ denotes for x = c the
set of all K′ = ⟨F ,N , C′⟩ for which C′ is a ⊂-maximal
subset of C for which C′ ⊬ φ. The case where x = f is
similar.
In what follows, we suppose that ⊕ ∈ {⊕f ,⊕c} is fixed.6

We introduce the following properties:
1. ⊕-Monotonicity: I(K) ≤ I(K ⊕ φ).

The degree of inconsistency cannot decrease when facts
resp. constraints are added to K.
6We will consider norm additions (⊕n) in future work.
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2. ⊕-Equivalence: I(K ⊕ φ) = I(K ⊕ ψ) if φ and ψ are
logically equivalent (i.e., {φ} ⊢ ψ and {ψ} ⊢ φ).
Substituting a fact resp. constraint by a logically equiva-
lent formula is irrelevant for the inconsistency of K.

3. ⊕-Weakening: I(K ⊕ φ) ≥ I(K ⊕ ψ) if φ ⊢ ψ.7

Replacing a fact/constraint with one of its consequences
does not render the knowledge base more inconsistent.

4. ⊕-Bi-innocent choice: I(K ⊕ φ) ≤ I(K) or I(K ⊕
¬φ) ≤ I(K).
A formula and its negation cannot both render a knowl-
edge base more inconsistent (when added as facts
resp. constraints).

5. ⊕-Innocent choice: where ∆ is a minimal truth set, there
is a φ ∈ ∆ for which I(K ⊕ φ) ≤ I(K).
The addition of at least one member of a minimal truth set
does not render a knowledge base more inconsistent.

6. ⊕-Subtractive bi-⊖-innocent choice: I(K ⊕ φ) ≥
I(K ⊖ ¬φ) or I(K ⊕ ¬φ) ≥ I(K ⊖ φ).

7. ⊕-Subtractive bi-⊥-innocent choice: I(K ⊕ φ) ≥
I(K′) for all K′ ∈ K⊥¬φ, or I(K⊕¬φ) ≥ I(K′) for all
K′ ∈ K⊥φ.
The last two properties mean that, for any formula φ, if
removing it leads to an increase of inconsistency as com-
pared to adding its negation, then it cannot be the case
that removing its negation leads to an increase of incon-
sistency as compared to adding φ.

8. ⊕-Subtractive ⊖-innocent choice: if ∆ is a minimal
conflict, there is a φ ∈ ∆ s.t. I(K ⊕ φ) ≥ I(K ⊖ ¬φ).

9. ⊕-Subtractive ⊥-innocent choice: if ∆ is a minimal
conflict, there is a φ ∈ ∆ s.t. I(K ⊕ φ) ≥ I(K′) for
all K′ ∈ K⊥¬φ.
The last two properties are a conservative extension of
⊕-subtractive bi-(⊖ resp. ⊥)-innocent choice to minimal
conflicts of arbitrary length.

10. ⊕-Contrastive innocent choice: where ∆ is a minimal
truth set, there is a φ ∈ ∆ s.t. I(K ⊕ φ) ≤ I(K ⊕ ¬φ).
For any minimal truth set, the addition of at least one of
its members should not increase the inconsistency of a
knowledge base as compared to adding its negation.

11. ⊕-Bi-guilty choice: I(K⊕ φ) ≥ I(K) or I(K⊕¬φ) ≥
I(K).
It cannot happen that both the addition of a formula and
the addition of its negation lead to a decrease of the in-
consistency of a knowledge base.

12. ⊕-Guilty choice: where ∆ is a minimal conflict, there is
a φ ∈ ∆ for which I(K ⊕ φ) ≥ I(K).
It cannot happen that for every formula contained in a
minimal conflict, the addition of it leads to a decrease of
the inconsistency of a knowledge base.

7In (Hunter and Konieczny 2010), this criterion is known as
‘dominance,’ with the difference that φ is required to be consistent.
Here, we consider that ifφ is inconsistent, it is deemed to be at least
as inconsistent as any other fact/constraint.

13. ⊕-Free independence: I(K⊕φ) ≤ I(K) < I(K⊕¬φ)
if φ ∈ out(F ,

⋂
MCN(K)).

Incorporating a formula not involved in any norma-
tive conflict (a) cannot increase the inconsistency, but
(b) adding its negation does.

14. ⊕-Strong independence: I(K ⊕ φ) ≤ I(K) < I(K ⊕
¬φ) if φ ∈

⋂
N ′∈MCN(K) out(F ,N ′).

Incorporating a formula not involved in a universal con-
clusion of normative conflicts (a) cannot increase the in-
consistency, but (b) adding its negation does.

15. ⊕-Consistency by cases: If I(K⊕φ) > I(K) and I(K⊕
ψ) > I(K), then I(K ⊕ (φ ∨ ψ)) > I(K).
If φ and ψ increase the inconsistency of a knowledge
base, then so will φ ∨ ψ.

16. ⊕-Upper bounding: If I(K ⊕ ¬φ) > I(K) and I(K ⊕
ψ) ≤ I(K) then I(K ⊕ φ⊕ ψ) ≤ I(K ⊕ φ).
If ¬φ increases the inconsistency in K while ψ does not,
then ψ also does not increase the inconsistency of K⊕ φ.

The following proposition shows some relations between
the properties considered bove.
Proposition 1. Let ⊕ ∈ {⊕c,⊕f}. Below are some rela-
tions among the principles:
• (⊕-subtractive (⊖ resp. ⊥)-innocent choice) implies (⊕-

subtractive bi-(⊖ resp. ⊥)-innocent choice).
• (⊕-innocent choice) and (⊕-monotonicity) implies (⊕-

contrastive innocent choice).
• (⊕-innocent choice) implies (⊕-bi-innocent choice)
• (⊕-strong independence) implies (⊕-free independence).
• (⊕-monotonicity) implies (⊕-subtractive (⊖ resp. ⊥)-

innocent choice) and (⊕-guilty choice).
• (⊕-guilty choice) implies (⊕-bi-guilty choice).

Due to limited space, we focus in the remainder of this
section on the inconsistency measure IMRN for the reason
that, compared to the other measures, it performs surpris-
ingly well with respect to the list of specified principles.
Proposition 2. Let out ∈ {out1, . . . , out4} and ⊕ ∈
{⊕c,⊕f}. Then, IMRN satisfies:
• ⊕-monotonicity, ⊕-equivalence, ⊕-weakening, ⊕-guilty

choice and ⊕-bi-guilty choice for out.
• ⊕c-innocent choice, ⊕c-contrastive innocent choice,
⊕c-subtractive (⊖c resp. ⊥)-innocent choice, ⊕c-bi-
innocent choice, ⊕c-subtractive bi-innocent choice, ⊕c-
consistency by cases, ⊕c-strong and free independence,
and ⊕c-upper bounding for out.

• ⊕f -innocent choice, ⊕f -contrastive innocent choice,
⊕f -subtractive (⊖f resp. ⊥)-innocent choice, ⊕f -bi-
innocent choice, ⊕f -subtractive bi-innocent choice, ⊕f -
consistency by cases, and ⊕f -upper bounding for out2
and out4.

Proof. The proofs of most of the properties are based on the
following facts. Let K = ⟨F , C,N⟩ be a normative system
and N ′ ∈ MCN(K ⊕ φ). Then,

1. there is an N ′′ ∈ MCN(K) such that N ′ ⊆ N ′′.
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2. IMRN(K) ≤ |N \ N ′|.
3. IMRN(K) = |N \ N ′| iff |N \ N ′| is minimal among

the members of MCN(K) iff |N ′| is maximal among the
members of MCN(K).

Fact (1) follows from Lindenbaum’s lemma; Facts (2)–(3)
follow from the definition of IMRN. Based on this, for illus-
tration, we demonstrate the proofs of two properties.

⊕-monotonicity: Consider an N ′ ∈ MCN(K⊕φ) such that
|N \ N ′| is minimal. By (3), IMRN(K ⊕ φ) = |N \ N ′|.
By (1), there is a N ′′ ∈ MCN(K) for which N ′ ⊆ N ′′.
Clearly, |N \ N ′′| ≤ |N \ N ′|. By (2), IMRN(K) ≤
|N \ N ′′| ≤ IMRN(K ⊕ φ).

⊕-weakening: Suppose thatφ ⊢ ψ and let N ′ ∈ MCN(K⊕
φ) be such that |N ′| is maximal among the elements in
MCN(K ⊕ φ). By (3), IMRN(K ⊕ φ) = |N \ N ′|.
• Consider first ⊕ = ⊕f . Thus, out(F ∪ {φ},N ′)∪ C ⊬
⊥. Clearly, out(F ∪ {ψ},N ′) ∪ C ⊬ ⊥. So, there is a
N ′′ for which N ′ ⊆ N ′′ and N ′′ ∈ MCN(K ⊕f ψ).
By (2), IMRN(K ⊕f ψ) ≤ |N \ N ′′| ≤ |N \ N ′| =
IMRN(K ⊕f φ).

• Consider now ⊕ = ⊕c. We have, out(F ,N ′) ∪ C ∪
{φ} ⊬ ⊥. Clearly also out(F ,N ′) ∪ C ∪ {ψ} ⊬ ⊥.
So, there is a N ′′ for which N ′ ⊆ N ′′ and N ′′ ∈
MCN(K⊕c ψ). By (2), IMRN(K⊕c ψ) ≤ |N \N ′′| ≤
|N \ N ′| = IMRN(K ⊕c φ).

There are some principles that are not satisfied by IMRN

in some contexts. To illustrate this, we consider one case:
Example 10. Free and Strong independence do not hold
for IMRN with ⊕f and any out ∈ {out1, out2, out3, out4}.
Indeed, consider for instance a knowledge base K with
C = ∅, F = {¬p} and N = {(¬p, p), (⊥,¬p)}. Then,
p ∈

⋂
N ′∈MCN(K) out(F ,N ′) = out(F ,

⋂
N ′∈MCN(K) N ′)

since MCN(K) = {N}. However, since MCN(K ⊕f p) =
{{(¬p, p)}, {(⊥,¬p)}}, we have that IMRN(K⊕f p) = 1 >
0 = IMRN(K) = IMRN(K ⊕f ¬p).

4 Normative Reasoning with Inconsistency
Measures

We are now ready to define normative entailments based on
the inconsistency measures considered in the previous sec-
tion. As demonstrated in Example 3, a weakness of the out-
put operators of I/O logic (Definition 2) is that their set of
conclusions may be inconsistent or odd, thus not informa-
tive. To resolve this, Makinson and van der Torre (2001)
introduced their notion of inference based on MCN. We re-
call skeptical entailment:

K |∼i
MCN φ iff φ ∈

⋂
N ′∈MCN(K) outi(F ,N ′).

As before, φ is understood as an agent’s obligation given K.
In this section, we investigate alternative ways of defin-

ing nonmonotonic entailments, extending those in (Makin-
son and van der Torre 2001). We do so by utilizing the de-
fined inconsistency measures. The basic idea is that bring-
ing about φ is recommended in case ¬φ would render K
more inconsistent. The aim of such recommendations is to

minimize violations and conflicts (Royce Sadler 1984) (cf.
Section 1). Below, we also consider some alternatives for
corresponding entailment relations, incorporating two ways
of how recommendations can be generated. Namely, we say
φ is recommended whenever:

1. adding φ as a fact (i.e., a hypothetical consequence of the
agent’s conduct), or

2. putting φ as a constraint on the agent’s conduct

leads to less conflicts.

Definition 6. Let I be an inconsistency measure for a fixed
out-function, and let x ∈ {f, c}. Let K be a normative
knowledge base and φ a formula in L.

• Negative marginal contribution.

K |∼I,x
mc− φ iff I(K ⊕x ¬φ) > I(K)

In words, φ follows from K if adding ¬φ to the knowl-
edge base strictly increases the inconsistency of K.

• Positive marginal contribution.

K |∼I,x
mc+ φ iff I(K ⊕x φ) < I(K)

In words, φ follows from K if adding φ to the knowledge
base strictly decreases the inconsistency of K.

• Contrastive marginal contribution.

K |∼I,x
cmc φ iff I(K ⊕x ¬φ) > I(K ⊕x φ)

In words, φ follows from K if adding ¬φ to the knowl-
edge base leads to more inconsistency than adding φ.

• Subtractive marginal contribution.

K |∼I,x
smc φ iff I(K ⊕x φ) < I(K ⊖x ¬φ)

In words, φ follows from K if adding φ to K strictly de-
creases the inconsistency compared to removing ¬φ from
K.

• Remainder marginal contribution.

K |∼I,x
rmc φ iff (∀K′ ∈ K⊥φ) I(K ⊕x φ) < I(K′)

In words, φ follows from K if adding φ to K strictly de-
creases the inconsistency, compared to the result of re-
moving φ from K in terms of the remainder sets.

Remark 1. Entailments based on inconsistency measures
have also been defined on the basis of flat knowledge bases
of the type ⟨F⟩. E.g., in (Salhi 2021) an entailment similar to
|∼I,f

mc− is defined by: F |∼φ iff I(F ∪{¬φ}) > I(F). Sim-
ilar for the idea based on contrastive marginal contributions.
See also (Liu, Besnard, and Doutre 2023) for a systematic
study of these kinds of entailment relations.

Before studying their logical properties (Sect. 5), we illus-
trate these entailment relations by means of some examples.

Example 11. Consider a knowledge base K where F =
C = ∅ and N = {(⊤,¬p), (⊤, p ∧ u), (⊤, p ∧ v)}.
Table 1 below indicates some inferences for out ∈
{out1, out2, out3, out4}, φ ∈ {p,¬p,¬¬p} and ⋆ ∈
{mc−,mc+, cmc, rmc}. Among others, this example

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

76



demonstrates the productivity8 of some of our entailments,
as e.g., some of them allow to infer p (the obligation accord-
ing to the majority of the norms in N ), while K |̸∼MCN p.
Traditional approaches based on MCN would neither con-
clude p nor ¬p in such dilemma scenarios. However, the
normative system K recommends p because, even though
there is a symmetric conflict between p and ¬p, the knowl-
edge base contains strictly more normative reasons (i.e.,
norms) in favour of performing p than ¬p. In other words,
by following the recommendation the agent minimizes the
amount of violations: by performing p the agent violates
one norm whereas by performing ¬p she violates two. This
approach, reducing the amount of violations, is also related
to the idea of accrual of reasons (Gordon and Walton 2016;
Hirose 2014).

I# Iprob IMRN IMCN

K 2 3 1 1
K ⊕c p 1 1 1 1

K ⊕c ¬¬p 1 1 1 1
K ⊕c ¬p 2 2 2 2
K ⊕f φ 2 3 1 1

K′ ∈ K⊥c¬p 2 3 1 1

K |∼I,c
mc− p ✓ ✓

K |∼I,c
mc− ¬p

K |∼I,c
mc+ p ✓ ✓

K |∼I,c
mc+ ¬p ✓

K |∼I,c
cmc p ✓ ✓ ✓ ✓

K |∼I,c
cmc ¬p

K |∼I,c
rmc p ✓ ✓

K |∼I,c
rmc ¬p ✓

K |∼I,f
⋆ p

K |∼I,f
⋆ ¬p

Table 1: Inferences for Example 11

The following example shows that the idea of subtractive
marginal contribution is highly sensitive to the syntax of the
removed formula, unlike remainder marginal contribution.

Example 12. Consider K with N = {(⊤, p), (⊤,¬p)},
F = ∅ and C = {¬p}. Let I = Iprob. Then, I(K) =
I(K⊕c¬p) = I(K⊖c¬¬¬p) = I(K⊕c¬¬¬p) = 1, while
I(K⊖c¬p) = 2. Thus, K |∼I,c

smc ¬p, although K |̸∼I,c
smc ¬¬¬p.

Also, K⊥c¬p = K⊥c¬¬¬p = {⟨F , ∅,N⟩} and
I(⟨F , ∅,N⟩) = 2, hence K |∼I#,c

rmc ¬p and K |∼I#,c
rmc ¬¬¬p.

The entailments based on ⊕f have a rather peculiar be-
havior, as can be seen from the following examples.

8An entailment relation is productive if it is more liberal, i.e., it
subsumes existing normative entailments.

Example 13. Let K = ⟨F , C,N⟩ where F = C = ∅ and
N = {(⊤, p)}. Then, for I ∈ {I#, Iprob, IMRN, IMCN}
and ⋆ ∈ {mc−,mc+, cmc, rmc}, I(K ⊕f p) = I(K) =
I(K ⊕f ¬p) = I(K ⊖f p) = I(K ⊖f ¬p) = 0. Thus,
K |̸∼I,f

⋆ p. This seems highly counter-intuitive.

Example 14. Let K = ⟨F , C,N⟩ where F = C = ∅ and
N = {(¬r, p), (¬r,¬p), (⊤, u)}. We consider, for instance
I = Iprob. Then, I(K) = I(K ⊕f r) = 0, while I(K ⊕f

¬r) = 2. So, K |∼I,f
mc− r and K |∼I,f

cmc r. Nevertheless, like in
the previous example, K |̸∼I,f

mc− u and K |̸∼I,f
cmc u.

Remark 2. Example 14 reveals that entailments based on
⊕f recommend bringing about states that do not trigger con-
flicts and that such entailments are not productive.

5 Logical Properties
The variety of entailment relations introduced in Defini-
tion 6, as well as the various possibilities to combine each
one of these entailments with inconsistency measures such
as the ones considered in Section 3, create great degrees of
freedom in choosing the intended normative inference sys-
tem. In this section, we study some of the logical properties
of these inference relations, to gain a clearer understanding
of their strengths and weaknesses. Then, we consider in
some more details particular inference relations that appear
to satisfy several desired properties.

First, we adapt to our setting some known properties for
evaluating entailments for defeasible reasoning, in the spirit
of the general patterns for nonmonotonic reasoning, pre-
sented by Kraus, Lehman, and Magidor (1990).

Definition 7. Given a knowledge base K and the conse-
quence relation ⊢ of classical logic, we identify the follow-
ing list of |∼-properties:9

• Direct consistency (dcon): K |̸∼¬φ, if K |∼φ.
• Consistency (con): {φ | K |∼φ} ⊬ ⊥.
• Introduction of conjunction (and): K |∼φ∧ψ, if K |∼φ

and K |∼ψ.
• Logical equivalence (le): K |∼φ iff K |∼ψ for ⊢φ↔ ψ.
• Right weakening (we): K |∼ψ implies K |∼φ, if ψ ⊢ φ.
• Free formulas (free): K |∼φ if φ∈ out(F ,

⋂
MCN(K)).

• Strong inference (strong): K |∼φ, if φ ∈ out(F ,N ′)
for all N ′ ∈ MCN(K).

• Cautious monotonicity (cm): K |∼ψ, if K |∼φ and K ⊕
φ |∼ψ.

• Cautious cut (ct): K |∼ψ, if K |∼φ and K ⊕ φ |∼ψ.
• Cautious reflexivity (cref): K ⊕ φ |∼φ if φ ̸⊢ ⊥. 10

Theorem 1. Table 2 depicts some relations between the
properties of the inconsistency measures and those of the
entailment relations based on them.

9Each property quantifies over all K ∈ K and formulas φ,ψ.
10Although (cref) is a well-known property, we note that it is

not desirable for normative entailments and, indeed, I/O logics are
designed to not satisfy (cref) (Makinson and van der Torre 2001).
Intuitively, if something is factually (and so consistently) the case,
this does not necessarily mean that it ought to be the case.
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Property Entailment(s) Condition(s) on I

(dcon) |∼I,x
cmc none

(dcon) |∼I,x
mc− ⊕x-bi-innocent choice

(dcon) |∼I,x
mc+ ⊕x-bi-guilty choice

(dcon) |∼I,x
smc ⊕x-bi-subtractive ⊖-innocent choice

(dcon) |∼I,x
rmc ⊕-bi-subtractive ⊥-innocent choice

(con) |∼I,x
cmc ⊕x-contrastive innocent choice

(con) |∼I,x
mc− ⊕x-innocent choice

(con) |∼I,x
mc+ ⊕x-guilty choice

(con) |∼I,x
smc ⊕x-subtractive ⊖-innocent choice

(con) |∼I,x
rmc ⊕x-subtractive ⊥-innocent choice

(free) |∼I,x
cmc, |∼

I,x
mc− ⊕x-free independence

(strong) |∼I,x
cmc, |∼

I,x
mc− ⊕x-strong independence

(cm) |∼I,x
cmc, |∼

I,x
mc− ⊕x-monotonicity, ⊕x-bi-innocent choice

(ct) |∼I,x
mc− ⊕x-upper bounding

(ct) |∼I,x
cmc ⊕x-bi-innocent choice, ⊕x-upper bounding

(le) |∼I,x
cmc, |∼

I,x
mc− none

(le) |∼I,x
mc+, |∼

I,x
rmc none

(we) |∼I,x
cmc, |∼

I,x
mc− ⊕x-weakening

(we) |∼I,x
mc+ ⊕x-weakening

(and) |∼I,x
mc− ⊕x-consistency by cases

(and) |∼I,x
cmc ⊕x-consistency by cases, ⊕x-monotonicity

⊕x-bi innocent choice

Table 2: Conditions on the inconsistency measures for satisfying
logical properties of the corresponding entailment, for x ∈ {c, f}.

Proof. Below, we demonstrate some cases. Let x ∈ {c, f}.

(dcon) and |∼I,x
cmc: The claim directly follows by the defini-

tion of the entailment relation.

(con) and |∼I,x
mc−: Assume (con) fails. So, for some K there

are φ1, . . . , φn such that K |∼φi for all i = 1, . . . , n and
φ1, . . . , φn ⊢ ⊥. Without loss of generality, suppose that
{φ1, . . . , φn} is a minimal conflict. Then, {¬φ1, . . . ,¬φn}
is a minimal truth set. Also, I(K ⊕x ¬φi) > I(K). This is
a violation of (⊕x-innocent choice).

(free) and |∼ ∈ {|∼I,x
cmc, |∼

I,x
mc−}: Consider a formula φ ∈

out(F ,
⋂
MCN(K)) and suppose that (free independence)

holds. Then, I(K ⊕x φ) ≤ I(K) < I(K ⊕x ¬φ). This
immediately implies that K |∼φ. The converse is similar.

(strong) and |∼ ∈ {|∼I,x
cmc, |∼

I,x
mc−}: Similar to the previous

case.

(le) and |∼ ∈ {|∼I,x
cmc, |∼

I,x
mc−, |∼

I,x
mc+, |∼

I,x
rmc} : These claims

follow from the following fact. Let K = ⟨F , C,N⟩, let φ
and ψ be logically equivalent. Then, for i ∈ {1, . . . , 4},
(i) outi(N ,F ∪ {φ}) = outi(N ,F ∪ {ψ}), (ii) if Ξ ∈
{MINi,MRNi,MCNi} and x ∈ {c, f}, then Ξ(K ⊕x φ) =
Ξ(K ⊕x ψ), (iii) K⊥φ = K⊥ψ.

We turn now to some specific cases. The following exam-
ples provide some negative results (due to reasons of space
we do not provide an exhaustive list of counter-examples).

Example 15. Let K = ⟨∅, ∅, ∅⟩. Then, K⊕x p |̸∼ p for each
|∼ ∈ {|∼I,x

cmc, |∼
I,x
mc+, |∼

I,x
mc−, |∼

I,x
smc, |∼

I,x
rmc} and x ∈ {c, f}.

Example 16. Example 11 illustrates a failure of (dcon) for
|∼Iprob,c

mc+ and |∼Iprob,x
smc . Example 12 shows a failure of (le) for

|∼I#,c
rmc . Example 13 illustrates a failure of (free) for ⊕f -

based entailments.

In contrast to the previous examples, we note that care-
ful choices of the inconsistency measures and merging op-
erators do lead to robust entailment relations. Namely, by
Proposition 2 one can show that IMRN-based entailments are
such relations. The following theorem vindicates this.

Theorem 2. Let |∼ ∈ {|∼I,x
cmc, |∼

I,x
mc−}, where I = IMRN,

x ∈ {c, f}, and out ∈ {out1, . . . , out4}. Then, |∼ satisfies

• (we) and (le);
• (free) and (strong) for x = c;

• (dcon) for |∼ = |∼I,x
cmc;

• (dcon), (con), (and), (cm) and (ct) for x = c;
• (dcon), (con), (and), (cm) and (ct) for x = f and out ∈
{out2, out4}.

Proof. Follows from Proposition 2 and Theorem 1.

6 Related Work, Conclusion, and Outlook
Related work. Applications of inconsistency measures
are diverse, ranging from network intrusion detection (McA-
reavey et al. 2011), to conflict management in ontologies
(Ma et al. 2007), rule-based expert systems in internal
medicine (Picado-Muiño 2011), as well as reasoning with
temporal and spatial information (Condotta, Raddaoui, and
Salhi 2016), and software requirements engineering (Mu,
Liu, and Jin 2012). There is a considerable amount of work
on inconsistency measures (see, e.g., the surveys in (Grant
and Martinez 2018; Thimm and Wallner 2019)) and how
they can be used for drawing conclusions in the context of
propositional logics (Jabbour, Ma, and Raddaoui 2014; Mu,
Wang, and Wen 2014; Jabbour et al. 2016; Salhi 2021; Liu,
Besnard, and Doutre 2023), probabilistic conditional logic
(Thimm 2013), non-monotonic logic (Ulbricht, Thimm, and
Brewka 2018), relational databases (Livshits et al. 2021;
Parisi and Grant 2023), and business rule bases (Corea and
Thimm 2020). In the context of a normative setting, the
properties of entailment relations that are induced by in-
consistency measures are studied in this paper relative to
the well-known postulates of defeasible inference in (Kraus,
Lehmann, and Magidor 1990).

A number of formalisms have been proposed for reason-
ing about inconsistencies in the light of normative conflicts
(e.g., (Beirlaen, Straßer, and Meheus 2013)), including some
that are based on I/O logics. Most of these approaches
are based on the identification of maximal consistent sub-
sets of norms, e.g., extended with priority orderings (Liao et
al. 2018; Parent 2011). Interestingly, (Parent 2011) shows
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a strong connection between I/O logic and Reiter’s default
logic. Furthermore, I/O logic knows extensions with per-
missive norms which are, e.g., derivable through absence of
norms to the contrary (Olszewski, Parent, and van der Torre
2021). Recently, scholars became increasingly interested in
characterizations of I/O reasoning, and normative reasoning
in general, using formal argumentation (Peirera et al. 2017;
Liao et al. 2018; Straßer and Arieli 2019; van Berkel and
Straßer 2022; Arieli, van Berkel, and Straßer 2024). Never-
theless, these approaches, whether through traditional MCN
approaches or instantiated argumentation frameworks, do
not allow for the quantification of norm conflicts.

Conclusion. To the best of our knowledge, this is the first
study on the integration of inconsistency measures in the
context of normative reasoning. Such a combination pro-
vides nonmonotonic inference systems that are adequate to
the specific characteristics of normative systems, combining
factual contexts, norms, and constraints. In order to do so,
we enhanced the well-established I/O formalism with vari-
ous inconsistency measures. Accordingly, we provided an
in-depth analysis of these measures and the resulting entail-
ment relations, the latter are interpreted to yield recommen-
dations to agents. Figure 1 provides a schematic illustration
of our conceptual contribution (encased by a dashed line) to
the I/O paradigm and defeasible reasoning in general.

input reasoning mechanisms output
(knowledge base) (inference relations)

Recommendations

Obligations

Input/Output 
detachment
operations

Facts

Norm 
code

Maximally 
consistent 
sets

constraints

(conflict sensitive)

Inconsistency
 measures

This paper

Figure 1: A schematic description of the framework.

This paper utilizes inconsistency measurement (a) to pro-
vide a postulate-driven study of normative reasoning, and
(b) to introduce a novel approach to nonmonotonic entail-
ment. Accordingly, this work is relevant not only to nor-
mative reasoning per-se, but has links to other disciplines
of knowledge representation and reasoning, such as for-
malisms for consistency tolerance by inconsistency mea-
surements, belief revision and causal reasoning, and non-
monotonic logic in general.

Like related works on inconsistency measures for deduc-
tive systems (see, e.g., (Liu, Besnard, and Doutre 2023)),
the conclusions regarding the quality of the inferences ob-
tained in our case are not unequivocal. As we have seen,
combinations of specific measures and entailment relations
have several advantages as well as shortcomings over other
combinations, or in comparison to other accepted normative
inference systems that are not based on inconsistency mea-
sures. Since this work does not pretend to be an exhaustive

review of all the accepted measures and all the resulting re-
lations induced by them, we focused on various properties
of the inconsistency measures, in particular IMRN, and their
effect on commonly studied properties of the resulting (nor-
mative) entailment relations. We highlight three takeaways:

1. Revision by constraints (⊕c) is in general superior to re-
vision by facts (⊕f );

2. Many inconsistency measures from the literature do not
perform well as a basis for normative reasoning;

3. Nevertheless, some entailment relations induced by the
inconsistency measure IMRN offer an attractive approach
to normative reasoning. Besides satisfying central prop-
erties of defeasible inference, they also allow for a more
fine-grained analysis of a normative system than standard
approaches based on maximal consistent subsets.

Outlook. Our results pave the way for various future re-
search directions such as investigating local inconsistency
measures which identify in how many minimally inconsis-
tent norm sets a norm plays a part. Such local measures may
prove useful for normative system revision procedures, e.g.,
by identifying norms that are the most problematic in gen-
erating conflicts. In this respect, we will study the proper-
ties of inconsistency measures through adding and retracting
norms to a normative system.

We also aim to investigate computational complexity,
which we conjecture is the same as the complexity of rea-
soning of maximal consistent sets, since the former is based
(via a linear transformation) on the latter.

Another future work avenue would be to differentiate and
study inconsistency measures for different types of conflicts,
such as contrary-to-duty and specificity cases. In relation to
this, we also intend to include the norm synthesis problem:
identifying the set of norms that prevents conflicting states
(Shoham and Tennenholtz 1995).

Last, while this paper adopted the I/O formalism at its
base, a natural topic for further exploration is to see what
other defeasible normative reasoning mechanisms may ben-
efit from reasoning with various inconsistency measures and
entailment relations; e.g., defeasible deontic logics (Nute
1997; Olivieri et al. 2024).
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