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Abstract

We present dPASP, a novel declarative probabilistic logic
programming framework that allows for the specification of
discrete probabilistic models by neural predicates, relational
logic constraints, and interval-valued probabilistic choices.
This expressive combination facilitates the construction of
models that combine low-level perception (images, texts, etc)
and common-sense reasoning, thus providing an excellent
tool for neurosymbolic reasoning. To support all such fea-
tures, we discuss several semantics for probabilistic logic
programs that allow one to express nondeterminism, non-
monotonic reasoning, contradiction, and (vague) probabilis-
tic knowledge. We also discuss how gradient-based learn-
ing can be performed with neural predicates and probabilistic
choices under selected semantics. To showcase the possibil-
ities offered by the framework, we present case studies that
exploit different semantics and constructs.

github.com/kamel-usp/dpasp

1 Introduction

One can combine logic programming and probabilistic
modeling in a myriad of ways: by adopting different syn-
tax and semantics for the logic language, for the proba-
bilistic part, or yet by considering different ways of mar-
rying the two (Sato and Kameya 1997; Muggleton 2003;
Poole 2008; Fuhr 2000; Costa et al. 2002; Vennekens, De-
necker, and Bruynooghe 2009; Nickles and Mileo 2014;
Fierens et al. 2015; Hadjichristodoulou and Warren 2012;
Baral, Gelfond, and Rushton 2009; BáRány et al. 2017;
Alviano et al. 2023; Lee and Wang 2016).

Probabilistic logic programming offers an expressive and
intuitive language for the specification of probabilistic mod-
els with context-specific independence, determinism and pa-
rameter sharing (Riguzzi 2018; De Raedt et al. 2008). While
some of these languages are radically different, many differ
only by the choice of the logic part, with a common proba-
bilistic syntax and semantics, or by how probability mass is
distributed among the models of underlying logic programs.

In this paper we describe dPASP (differentiable
Probabilistic Answer Set Programming), a highly expressive

∗ This work was partially done while RLG was at the Instituto
de Matemática e Estatı́stica, Universidade de São Paulo.

language and accompanying computational framework that
encompasses many of the existing formalisms for proba-
bilistic logic programming that fit into Sato’s distribution
semantics (Sato 1995). dPASP handles logic programs with
disjunctive heads, aggregation, integrity constraints, and
recursion through negation (under the stable model seman-
tics); it can cope with inconsistencies (e.g., contradictions)
by means of least undefined partial stable model semantics
(Przymusinski 1991) or smProbLog semantics (Totis,
De Raedt, and Kimmig 2023); it allows for interval-valued
probabilistic facts (hence decision-theoretic programs) and
neural annotated disjunctions (i.e., facts annotated with
probabilities specified by neural probabilistic classifiers).
Finally, it performs EM-based parameter learning of prob-
abilistic facts and end-to-end gradient-based learning of
neural annotated disjunctions, thus enabling neurosymbolic
reasoning.

We start by presenting the syntax and semantics of
dPASP’s language (Sections 2–6), then discuss the imple-
mentation details of inference and parameter learning of the
system (Section 7), and conclude with some experiments
that showcase the framework’s features (Section 8).

2 Stratified Probabilistic Programs
We start with the simplest syntax and semantics of locally
stratified probabilistic logic programs. To make this descrip-
tion succinct yet accessible, we follow a more intuitive ex-
position and defer to (Gebser et al. 2012; Lifschitz 2019) for
a full presentation of logic programming concepts.

A probabilistic logic program is a finite set of Annotated
Disjunctive Rules (ADRs). dPASP adopts a syntax similar
to ProbLog (Fierens et al. 2015). ADRs, or simply rules, are
written as
p1::a1;. . .;pk::ak :- b1,. . .,bn,not bn+1,. . .,not bn+m.

Each pi is a probability value (a number in (0, 1]) such
that

∑k
i=1 pi ≤ 1. We omit the corresponding value if

pi = 1. Each ai or bi is an atom represented by an ex-
pression p(t1, . . . , to), where p is a string starting with a
lower case letter representing a predicate name, and each tj ,
j = 1, . . . , o, is either a string starting with lower case, de-
noting constants, or a string starting with an upper case letter
representing (logical) variables. The atoms a1, . . . , ak are
called the head of the rule, and the atoms b1, . . . , bn (resp.,
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bn+1, . . . , bn+m) are called the positive body (resp., negative
body). A rule is called a(n integrity) constraint if its head is
empty, and it is called a (probabilistic) fact if the head is a
singleton and the body is empty.
Example 1. Here is an example of a simple (constraint-
free) program stating the relationship between stress, smok-
ing and peer influence:
person(anna). person(bob). smokes(anna).
0.4::stressed(X) :- person(X).
0.3::influences(anna,bob).
smokes(X) :- stress(X).
smokes(X) :- influences(Y,X), smokes(Y).

The body of rules with non-probabilistic heads can also
contain arithmetic operations and comparisons over vari-
ables with integer domains, e.g.
sum(A,B,Z) :- digit(A,X), digit(B,Y), Z=X+Y, X<Y.

The grounding of the program produces a variable-free pro-
gram by replacing every rule with every possible variable-
free form of the rule in a consistent way (i.e., each occur-
rence of a variable symbol in a rule is mapped into the same
constant).
Example 2. The grounding of the program in Example 1 is:
person(anna). person(bob). smokes(anna).
smokes(anna).
0.4::stressed(anna) :- person(anna).
0.4::stressed(bob) :- person(bob).
0.3::influences(anna,bob).
smokes(anna) :- stress(anna).
smokes(anna) :- influences(anna,anna), smokes(anna).
smokes(anna) :- influences(bob,anna), smokes(bob).
smokes(bob) :- stress(bob).
smokes(bob) :- influences(bob,bob), smokes(bob).
smokes(bob) :- influences(anna,bob), smokes(anna).

The semantics of a program is given by the semantics of
its grounding, thus we now consider a variable-free program
P . A total choice is a function σ that maps each rule r to a
head atom ai or to the symbol ⊥r, which does not appear in
the program. We define the probability of a selection ai =
σ(r) for a given rule r as the corresponding probability value
P(σ(r)) = pr, or as 1 −

∑k
i=1 pi if σ(r) = ⊥r. A total

choice denotes a collection of fully independent categorical
random variables

P(σ) =
∏
r∈P

P(σ(r)). (1)

Intuitively, a total choice produces a pure logic program by
replacing each ADR r by the rule
σ(r) :- b1,. . .,bn,not bn+1,. . .,not bn+m.

A σ-interpretation is a function Iσ mapping each ground
atom to either 0 or 1. The interpretation satisfies a set of
atoms a = (a1, . . . , am), written Iσ |= a, if Iσ(ai) = 1 for
all ai ∈ a. The interpretation Iσ is a model if it satisfies each
rule that is not mapped into ⊥r, that is, if for each r ∈ P we
have that either σ(r) = ⊥r or I(σ(r)) ≥ min({I(bi) : i =
1, . . . , n}, {1−I(bi) : i = n+1, . . . , n+m}). Intuitively, a
rule is satisfied if the atom of the head is selected by σ when-
ever all atoms of the body are satisfied. A model is minimal

if Iσ ≤ Iσ′ implies σ = σ′, where ≤ is taken coordinate-
wise. We denote by Γ(σ) the set of minimal σ-models of
P .

The dependency graph of a ground probabilistic program
P contains a node for every ground atom. There is an edge
X → Y if there is a rule in P such that X is some atom
bi in its body and Y is an atom aj in its head. If bi is posi-
tive, the arrow is labeled as positive, otherwise we label it as
negative (note that we admit more than one arrow between a
pair of nodes, i.e., it is a multigraph). If the graph does not
contain a cycle involving a negative arrow, then we say that
the program is stratified. The ground program in Example 2
is stratified (as it contains no negation). A well-known result
is that constraint-free stratified logic programs have exactly
one minimal model (Dantsin 1992). This implies that for
any total choice σ, we have that |Γ(σ)| = 1.

Given a stratified probabilistic program, for each atom
a, we associate an indicator random variable χa such that
χa(σ) = 1 if the respective single minimal model satisfies a
(i.e., Iσ(a) = 1), else χa(σ) = 0. This is Sato’s distribution
semantics for probabilistic logic programs (Sato 1995).
Example 3. The stratified ground program in Example 2
has 8 total choices with non-zero probability, listed below
along with some events (we abbreviate predicate names and
constants):

χstr(a) χstr(b) χinf(a,b) χsmo(b) P(σ)
0 0 0 0 0.252
1 0 0 0 0.168
0 1 0 1 0.168
1 1 0 1 0.112
0 0 1 1 0.108
1 0 1 1 0.072
0 1 1 1 0.072
1 1 1 1 0.048

2.1 Inference
The most typical inference one draws with probabilistic
models is to compute the marginal probability of some set
of query atoms, say q = {q1, . . . , qn}, possibly condi-
tional on some evidence, say e = {e1, . . . , en}. First, note
that the query and evidence can be associated to an indi-
cator random variable χa, that returns 1 iff each atom ai
in a is satisfied by some minimal model Iσ . We define
P(a) := P(χa = 1) = P({σ : Iσ(a) = 1}). Thus, we
are generally interested in computing:

P(q|e) =
∑

σ:Iσ|=q,e P(σ)∑
σ:Iσ|=e P(σ)

. (2)

Such a query is encoded in dPASP by the special directive
#query.
Example 4. Consider the (stratified ground) program in Ex-
ample 2 and extend it with the following queries:
#query smokes(bob).
#query smokes(bob), stressed(anna).
#query stressed(anna) | smokes(bob).

By collecting the probabilities in Example 3, one can ver-
ify that P(smo(b)) = 0.58, P(smo(b), str(a)) = 0.232 and
P(str(a)|smo(b)) = 0.4.
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2.2 Neural Predicates
The probabilities associated with ADRs often result from
statistical models such as neural networks. In such cases, it
is convenient to allow a tight integration of statistical mod-
eling tools and logic programming, so that one can build so-
lutions that combine machine learning and probabilistic and
logical reasoning.

One of the main advantages of dPASP over similar
systems – e.g. DEEPPROBLOG (Manhaeve et al. 2021),
NEURASP (Yang, Ishay, and Lee 2020) and SCALLOP (Li,
Huang, and Naik 2023) – is the ability to easily integrate
Python code that specifies a statistical model, such as a prob-
abilistic classifier, with a probabilistic program. This is per-
formed via the #python and #end. directives, whose purpose
is to encapsulate arbitrary Python code. Code within this
block is executed and the functions can be used to assign a
probabilistic semantics to predicates of the logic program,
using expressions of the form:
?::atom(X) as @PythonClass :- input(X).

The predicate names atom and input are user-defined; the
first represents the output of the network, the second repre-
sents its input. PythonClass is the Python object (e.g., a Py-
Torch module specialization). Variable X is used to associate
possibly multiple groundings of the predicate atom or input
to different inputs of the model. The symbol ? indicates the
neural predicate’s parameters are learnable from data. The
user can instead use a ! symbol to denote them as fixed.

Example 5. Consider an event whose occurrence is gov-
erned by a Poisson distribution with expected rate equals
one. Say that there is a 20% chance that preventive mea-
sures will be taken to counter the effect of the event; if such
measures are not taken, then a disaster follows.

#python
import torch as t
class Poisson(t.nn.Module):
def __init__(self):

super().__init__()
self.l = t.nn.Parameter(t.tensor([1.0]))
self.p = t.distributions.poisson.Poisson(self.l)

def forward(self,x):
return t.exp(self.p.log_prob(x))

#end.
!::event(X) as @Poisson :- input(X).
0.2::counter_measures.
disaster :- event(X), not counter_measures.
#query disaster. % P(disaster)

The predicate event is true (selected) with probability given
by the output of the statistical model represented by the Py-
Torch class Poisson, which in turn depends on the input of
the object, represented by the (user-defined) predicate input.
For example, if input(2021) represents an input of 2.0 to the
model, then event(2021) is true with probability ≈ 0.184,
and thus P(disaster) ≈ 0.8 ∗ 0.184 = 0.147.

The interface between raw data (fed to the neural network
in the python code part) and program constants is managed
by a special rule of the form
atom(x) ∼ test(@func1).

In this rule, atom is a user-defined one-place predicate name
used to represent the input of the statistical model in the pro-
gram, x is an arbitrary constant identifying a particular ob-
ject (since the same network can be used several times in
the same program) and test is a reserved predicate, whose
argument is a Python function name defined in #python that
returns data in the appropriate format. Arguments can be
optionally passed as input to @func1, which are then passed
down to the Python function that define the data. Data can
be shared among neural networks in the program by associ-
ating the neural rules with the same data predicate.
Example 6. Suppose we have a Python function that takes
a year and returns the number of occurrences of an event
in that year (e.g., extracted from some web service or data
base). We are interested in the joint probability of the ob-
served frequency of events for three consecutive years.
#python
class Poisson(t.nn.Module): # ...
def get_data(year):

data = {2020: 0., 2021: 2., 2022: 4.}
return [[data[year]]]

#end.
input(2020) ∼ test(@get_data(2020)).
input(2021) ∼ test(@get_data(2021)).
input(2022) ∼ test(@get_data(2022)).
!::evt(X) as @Poisson :- input(X).
joint :- evt(Y1),evt(Y2),evt(Y3),Y2=Y1+1,Y3=Y2+1.
#query joint.

The program outputs P(joint) ≈ 0.001.
A neural predicate can be associated with a multiclass

classifier by specifying the domain of the output of a sta-
tistical model. This is performed by Neural Annotated Dis-
junctive Rules (NADRs):
?::atom(X, {v1, . . . , vk}) as @model :- input(X).

where v1, . . . , vk are constants relating to the class labels of
the statistical model defined by the Python class model.
Example 7. Suppose we want to reason over the values of
images containing handwritten digits, whose values are pre-
dicted by some neural probabilistic classifier implemented
by some class DigitNet. We can represent this by the follow-
ing program.
input(d0) ∼ test(@get_img(0)).
input(d1) ∼ test(@get_img(1)).
?::digit(X, {0..9}) as @DigitNet :- input(X).
sum(Z) :- digit(d0,X), digit(d1,Y), Z=X+Y.
odd_sum :- digit(d0,X), digit(d1,Y), X\2=0, Y\2=1.
odd_sum :- digit(d0,X), digit(d1,Y), X\2=1, Y\2=0.

The two images are represented by constants d0 and d1 in
the program, and are manipulated by the Python function
get_img. The neural predicate digit is equivalent to:
p1::digit(X,0); . . .; p10::digit(X,9) :- input(X).

with the probabilities pi as given by the 10-dimensional out-
put of the network for the input associated to some ground-
ing of X (either d0 or d1).

Neural predicates can also be extended to handle net-
works whose output contains multiple independent predic-
tors. Syntactically, this is done through a semicolon (e.g.,
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p(X; {a, b, c})) instead of a colon (e.g., p(X, {a, b, c}))
in the neural predicate declaration.
Example 8. Suppose we are interested in knowing the prob-
ability that a Poisson distributed event will occur with some
frequency between 3 and 7 times.
#python
class Poisson(t.nn.Module): # ...
def get_data(): return [list(range(10))]
#end.
input(data) ∼ test(@get_data).
?::event(X; {0..9}) as @Poisson :- input(X).
target :- event(X,K), K > 2, K < 8.
#query target.

The syntax 0..9 is a shorthand for the list (0, . . . , 9). Note
that the predicate event takes two arguments: the first one
is the constant that represents the input to the Python class
(a 10-dimension tensor, in this case); the second one is the
constant representing the dimension of the output. This pro-
gram thus outputs P(target) ≈ 0.079.

One can also combine the two extensions, and
produce NADRs that are linked to models that out-
put several independent multiclass classifiers, e.g.
p(X, {c1, c2, c3}; {o1, o2}) defines an NADR with
two independent classifiers o1 and o2, both with three
classes c1, c2 and c3 each.

3 Normal Probabilistic Programs
We now examine non-stratified programs, i.e. probabilistic
programs that induce logic programs with more than one in-
tended model. We focus our attention to normal programs
of this kind: ones restricted to only a single atom as head.

The semantics of programs with cycles that go through
negations relies on the notion of a program’s reduct. Given
a σ-interpretation Iσ , the reduct of program P w.r.t. Iσ is the
program where each rule r is substituted by
σ(r) :- b1,. . . ,bn.

if max{I(bn+i) : i = 1, . . . ,m} = 0, else the rule is dis-
carded. Note that the transformation produces a not-free
program; hence the program reduct is stratified and thus ad-
mits a single minimal model. We say that an interpretation
Iσ is a stable model if it is the minimal model of the program
reduct w.r.t. it. This is the stable model semantics for normal
programs (Gebser et al. 2012; Lifschitz 2019). A program
might have 0, 1 or multiple σ-stable models for a fixed σ.
Example 9. Consider the non-stratified program:
0.4::stressed(anna).
work(anna) :- not nap(anna).
nap(anna) :- not work(anna), not stressed(anna).

For σ 7→ stressed(anna), we have a single σ-stable model
that assigns Iσ(work(anna)) = 1 and Iσ(nap(anna)) = 0.
For σ 7→ ⊥, we have two σ-stable models: one that assigns
Iσ(work(anna)) = 1 and Iσ(nap(anna)) = 0, and another
that assigns Iσ(work(anna)) = 0 and Iσ(nap(anna)) = 1.

Note that under the stable model semantics, the indicator
random variable χa related to an atom a is not well-defined
since there might be σ-stable models assigning different val-
ues Iσ(a) to a. To make it a proper random variable, we need

to assign a probability distribution over such σ-stable mod-
els.

Let Γstable(σ) denote the σ-stable models of a program,
and Γa

stable(σ) be the subset of σ-stable models that satisfy an
atom a. We denote by ω a selection of one particular σ-stable
model in Γstable(σ); that is, χa is a function of both σ and
ω. The maximum entropy (maxent) probabilistic semantics
assumes that ω is uniformly distributed:

Pmaxent(a) = P(χa = 1) =
∑
σ

P(σ)
|Γa

stable(σ)|
|Γstable(σ)|

. (3)

Maxent is named after the fact that the above defined prob-
ability maximizes entropy over all probabilities consistent
with P(σ). That remains true even if we allow for arbitrary
P(σ) whose marginals agree with the probabilities of body
free rules (Dantsin 1992). While maxent shows interesting
properties, it makes some unjustified assumptions regard-
ing the selection of stable models; for one thing, it dilutes
probability mass among the many stable models, and it does
not allow one to differentiate between uncertainty that arises
from severe uncertainty (e.g., logical non-determinism) and
aleatory uncertainty (statistical estimates).

Another common choice of probabilistic semantics is to
act conservatively, and consider the bounds obtained by as-
suming every possible extension of P(σ) to P(σ, ω). The
credal semantics computes tight lower and upper bounds on
such probabilities:

P(a) = P({σ : Γa
stable(σ) = Γstable(σ)}), (4)

P(a) = P({σ : Γa
stable(σ) ̸= ∅}). (5)

The lower and upper probabilities define sub and super-
additive functions, respectively P(a)+P(b) ≤ 1 and P(a)+
P(b) ≥ 1 for disjoint a and b. Those bounds are akin to cau-
tious and brave semantics used in Answer Set Programming
to draw logical inferences under multiple intended model
programs (Gebser et al. 2012). Note that, by construction,
Pmaxent(a) ∈ [P(a),P(a)]. Also, for stratified programs all
three values coincide.
Example 10. Consider again the program in Example 9. To
select the semantics in dPASP, we use:
#semantics maxent. % maxent semantics.
#semantics credal. % credal semantics.

The program’s output (predicates and constants abbrevi-
ated) is

P(n(a)) = 0.0, Pmaxent(n(a)) = 0.3, P(n(a)) = 0.6,

P(w(a)) = 0.4, Pmaxent(w(a)) = 0.7, P(w(a)) = 1.0.

Example 11. Here is a more intricate non-stratified pro-
gram, taken from (Totis, De Raedt, and Kimmig 2023, Ex-
ample 6), that represents a probabilistic argumentation sce-
nario involving six abstract arguments (a1, . . . , a6), prob-
abilistic support and attack relations, and prior argument
probabilities.
0.4::base(a1). 0.8::base(a2). 0.3::base(a3).
0.7::base(a4). 0.6::base(a5). 0.7::base(a6).
pos(A) :- arg(A).
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0.6::neg(a6) :- arg(a1). 0.3::neg(a1) :- arg(a4).
0.8::neg(a1) :- arg(a2). 0.7::neg(a2) :- arg(a1).
0.6::pos(a4) :- arg(a5). 0.5::pos(a1) :- arg(a3).
arg(A) :- pos(A), not neg(A).

The following table shows the marginal probabilities for
each argument under the maxent and credal semantics. Ar-
guments that are not attacked by others (a3, a4 and a5) have
narrower intervals for the credal semantics.

a1 a2 a3 a4 a5 a6

P 0.13 0.59 0.30 0.81 0.60 0.57
Pmaxent 0.22 0.68 0.30 0.81 0.60 0.61
P 0.30 0.76 0.30 0.81 0.60 0.64

We conclude this section with two important observa-
tions. First, both the maxent and credal semantics require
that Γstable(θ) is non-empty for each σ; this condition is
called consistency (Cozman and Mauá 2020), and is re-
quired by most probabilistic logic frameworks. The second
observation is that both probabilistic semantics are agnostic
to the choice of logic semantics, that is, similar and alter-
native semantics can be created simply by adopting differ-
ent sets of intended models Γ(θ), as long as such sets are
non-empty. For example, an alternative semantics would
be to adopt the well-founded models semantics (Fierens et
al. 2015), which is currently not implemented in dPASP.
We will discuss in Section 5 how to extend the maxent and
credal semantics to three-valued semantics that cope with
inconsistencies.

4 Disjunctive Programs
Another interesting feature that dPASP borrows from An-
swer Set Programming is to allow non-probabilistic disjunc-
tion in the head. A disjunctive rule is an expression:
a1;. . .;ak :- b1,. . .,bn,not bn+1,. . .,not bn+m.

The rule encodes the knowledge that some atom of the head
must be satisfied whenever the body is satisfied.

The (extended) stable semantics of probabilistic programs
with disjunctive heads is given by the minimal σ-models of
program reduct, with disjunctive rules r being discarded if
there is an atom bn+i in the negative body being satisfied
(hence its negation is not), else they are transformed into
not-free rules
a1;. . .;ak :- b1,. . .,bn.

Note that unlike in the transformation for ADRs, the heads
of disjunctive rules are not affected by other rules that are
not discarded in the transformation. Thus, disjunctive rules
can encode non-determinism even in the program reduct. An
interpretation is σ-stable if it is a minimal model (not neces-
sarily unique) of its program reduct.

Example 12. The following program computes the proba-
bility that a 3-node random graph is 2-colorable.
node(1). node(2). node(3).
0.5::edge(X,Y) :- node(X), node(Y), X < Y.
edge(X,Y) :- edge(Y,X), X > Y.
fail :- edge(X,Y), color(X,C), color(Y,C).
color(X,red) :- fail, node(X).
color(X,blue) :- fail, node(X).

color(X,red); color(X,blue) :- node(X).
colorable :- not fail.
#query colorable.

The program outputs P(colorable) = Pmaxent(colorable) =
P(colorable) = 7/8.

The previous program is an example of an encoding tech-
nique called saturation, where non-solutions of a combina-
torial problem are mapped into a single maximal model (one
that satisfies the maximum number of atom), which is thus
minimal iff no other (stable) model exists. In the example,
the non-colorable graphs are represented by models that sat-
isfy both color(x,red) and color(x,blue) for each node x.
This technique requires the use of disjunction in heads.

5 Handling Inconsistencies
As noted previously, the probabilistic semantics are only
defined for consistent programs. Yet, there are situations
where one wants to admit σ-induced contradictory logic
programs that allow no stable model (Lee and Wang 2016;
Totis, De Raedt, and Kimmig 2023).

One approach to cope with such inconsistencies is to ex-
tend the logic semantics to admit an undefined state for
atoms, denoting that they are involved in a contradiction.
dPASP allows for two such semantics: one introduced in
Totis, De Raedt, and Kimmig 2023 and one that extends the
least undefined stable semantics of logic programs (Przy-
musinski 1991).

To enable the modeling of rules with negated atoms for
representing an inhibition effect (thus differing from the
usual classic negation interpretation of Answer Set Program-
ming), smProbLog (Totis, De Raedt, and Kimmig 2023)
proposes a three-valued semantics that coincides with the
maxent stable model semantics whenever Γstable(σ) is non-
empty, otherwise assigning a single model Iσ(a) = 0.5 for
every atom a. The value 0.5 denotes an undefined state (be-
tween false, represented by 0, and true, represented by 1).
This type of modeling thus allows one to renormalize the
probability function over the total choices with consistent
programs by conditioning on any atom being not undefined.
For instance, we can query for
#query smokes(anna) | not undef smokes(anna).
#query undef smokes(anna).
#semantics smproblog.

under the smProbLog semantics to obtain, respectively, the
probability that anna smokes over the σ-induced programs
where such atom (and thus all others) are defined, as well as
the probability of the complement of the conditioning event.

The least undefined stable model semantics (L-stable, for
short) acts strictly, and leaves only atoms that are involved in
contradictions undefined. It is based on {0, 0.5, 1}-valued σ-
interpretations, where Iσ(a) = 0.5 denotes that a is deemed
undefined (or undecided) by the interpretation. The program
reduct w.r.t. such Iσ changes only in that undefined atoms in
the body are substituted with a reserved atom undef, which
is not present in the program and such that Iσ(undef) = 0.5.
Then we say that a three-valued σ-interpretation Iσ is a
partial stable model in the same way as {0, 1}-valued σ-
interpretations; that is, if it is a minimal model of its pro-
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gram reduct. Note that for three-valued interpretations,
Iσ(a) = 1− Iσ(a) iff Iσ(a) = 0.5; thus, interpretations that
leave all atoms undefined satisfy every rule and are hence
models (but not necessarily minimal models).

The L-stable model semantics selects only stable models
that are least undefined: Iσ ∈ Γls(σ) iff there is no different
I ′σ such that Iσ(a) ̸= 0.5 implies I ′σ(a) ̸= 0.5. The maxent
L-stable semantics replaces Γstable(σ) with Γls(σ) in Eq. (3).
Similarly, the credal L-stable semantics (Rocha and Cozman
2022) replaces the stable models with L-stable models in
Eqs. (4) and (5).

Example 13. We compare two semantics that allow for in-
consistent probabilistic programs (i.e., programs with con-
tradictions): L-stable and smProbLog. We use a reduced
variant of the asthma example provided in (Totis, De Raedt,
and Kimmig 2023), which extends Example 2 with knowl-
edge about the development of asthma. To allow for rules
that imply the negation of an atom a (when the body is sat-
isfied), we create copies a_pos and a_neg that represent pos-
itive and negative variants, and a constraint that enforces
consistency among the three atoms.
person(1). person(2). person(3). person(4).
0.1::asthma(X) :- person(X).
0.3::stress(X) :- person(X).
0.3::influences(1,2). 0.6::influences(2,1).
0.2::influences(2,3). 0.7::influences(3,4).
0.9::influences(4,1).
0.4::smokes_pos(X) :- stress(X).
smokes_pos(X) :- influences(Y,X), smokes(Y).
smokes_neg(X) :- asthma(X).
smokes(X) :- smokes_pos(X), not smokes_neg(X).
0.4:: asthma(X) :- smokes(X).

We present the probability of the atoms smokes(X) being un-
defined in the following table.

undef smokes(i)
i

1 2 3 4
smProbLog 0.2223 0.2223 0.2223 0.2223

L-stable 0.1548 0.0828 0.0599 0.0909

This program has only one σ-model for each σ, so the credal
and maxent semantics coincide.

6 Imprecisely Specified Probabilities
The credal semantics produces probability intervals related
to the non-determinism created by multiple stable models
for a fixed probabilistic choice. That is, the uncertainty over
probability values is the result of the logical semantics of the
program.

Some situations however are better captured by uncer-
tainty about the values of probabilities given as input, that is,
the probabilities associated with ADRs (Mauá and Cozman
2023). To address such situations, dPASP currently accepts
interval-valued probabilistic facts of the form
[p, q]::a.

where 0 ≤ p ≤ q ≤ 1 and a is an arbitrary ground atom.
The expression indicates that a is true with some probability
p ≤ P(a) ≤ q. Any credal network (i.e., a Bayesian network
whose conditional probabilities are specified as intervals)

can be represented as a probabilistic logic program with
interval-valued probabilistic facts, with some local complex-
ity overhead on the in-degree of nodes (Mauá and Cozman
2023).

The semantics of programs with interval-valued proba-
bilistic facts extends the credal semantics as follows: let
γ be a function that selects an end-point for each probabil-
ity interval (i.e., it selects either p or q for [p, q]). Obtain a
probabilistic program Pγ by replacing intervals by the point
probability value selected by γ, for each interval-valued rule.
Then the lower (resp., upper) probability P(a) (resp., P(a))
of an atom a is the minimum (resp., maximum) probability
of a of all such programs Pγ . We call such semantics also
credal semantics, as it produces intervals and reduces to the
previous credal semantics when intervals are singletons.

Example 14. An interesting use of interval-valued proba-
bilistic facts is decision making. Suppose we want to decide
whether to take an umbrella when leaving home. According
to the forecast, there is a 40% chance of rain. Say that we
assign a utility of 0 if it rains and we did not take the um-
brella, 0.1 if it does not rain and we took the umbrella, 0.5 if
it rains and we took the umbrella, and 1.0 if it does not rain
and we did not take the umbrella. The following program
encodes such a situation:

[0,1]::umbrella. 0.4::rain.
0.1::sad :- not rain, umbrella.
0.5::happy :- rain, umbrella.
very_happy :- not rain, not umbrella.
util :- sad. util :- happy. util :- very_happy.
#query util.

Then the credal semantics is P(util) = 0.26 and P(util) =
0.6, and reflects the expected utility of the worst and best
actions, respectively.

7 The dPASP System
In this section, we describe the implementation details of
the dPASP computational system, an open-source software
available at https://github.com/kamel-usp/dpasp.1 The sys-
tem can be used as a stand-alone command that takes a pro-
gram in dPASP domain specific language and prints out the
results of queries, or as a Python library for integration into
a larger system. Most of the system was designed with flex-
ibility in mind, so that different combinations of semantics
can be tested and implemented easily. The downside is that
the system currently lacks semantics-specific optimizations
(e.g. knowledge compilation and relevance pruning).

7.1 Inference
Inference in dPASP currently comes in two flavors: exact in-
ference by exhaustive enumeration, and approximate infer-
ence through answer set enumeration by optimality (Pajunen
and Janhunen 2021). Selecting which algorithm is used is
done through the #inference directive. If no such directive
is present in the program, exact inference is used by default.

1A quick-guide and setup tutorial on dPASP can be found at
https://kamel.ime.usp.br/pages/learn dpasp.
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Figure 1: Approximate values (in blue) and ground truth (in green)
versus number of models for the inference in Example 11.

Exact inference Exact inference in dPASP is done by enu-
merating all total choices and using clingo’s solver (Gebser
et al. 2017) to list all models for each induced logic program.
Under the maxent semantics, this amounts to brute-force
computing Equation (2) for each model I . For the credal
semantics, we compute lower and upper bounds through the
exact algorithm described in (Cozman and Mauá 2020). Per-
forming exact inference by this exhaustive approach, under
either (probabilistic) semantics, limits the scalability of in-
ference to programs with few NADRs and ADRs.

Approximate inference An approximate inference algo-
rithm based on answer set enumeration by optimality (Pa-
junen and Janhunen 2021) is available in a limited capacity
through the directive #inference aseo.

Example 15. Example 11 contains 12 probabilistic rules
and facts, amounting to a total of 4096 total choices. To
compute the query P(arg(a1)) by answer set enumeration
by optimality, we extend the program as follows.

#inference aseo, nmodels=2048.
#query arg(a1).

Parameter nmodels specifies the number of optimality mod-
els to be enumerated.

Figure 1 shows the approximated values of
P(arg(a1)), . . . ,P(arg(a4)) (under the maxent and
stable model semantics) as the number of models increases.

More scalable approximate inference based on knowledge
compilation (Totis, De Raedt, and Kimmig 2023), sampling
(Tuckey, Russo, and Broda 2021; Azzolini, Bellodi, and
Riguzzi 2023) and variational methods are planned features
for future versions of dPASP, which is currently in an early
stage of development.

Partial, L-stable and smProbLog semantics Internally,
dPASP only accepts the stable model semantics when per-
forming inference or learning. To enable support to differ-
ent semantics, we implement translation procedures to the
stable model semantics.

The partial stable model semantics in dPASP is imple-
mented via the translation described in (Janhunen et al.
2006). In a nutshell, dPASP creates an auxiliary atom and
rule for each non-probabilistic atom in the program and du-
plicates logic rules in order to allow undefined values for

non-probabilistic atoms. The L-stable semantics is imple-
mented by checking, for each total choice, whether there
exists a stable model for the program: in the positive case,
dPASP performs inference over the stable models of such a
program, otherwise it queries from the translated program’s
partial stable models. Inference under the smProbLog se-
mantics follows a similar approach: when enumerating total
choices, if it so happens that the induced program has no sta-
ble model, we add a model where all atoms are undefined.

Maximum entropy semantics If the maxent semantics is
selected, it is sufficient to simply add up the (uniform) prob-
abilities of each model that is consistent with the query; this
is the same procedure done in Yang, Ishay, and Lee 2020.
dPASP’s exact inference computes the counts |Γa

stable(σ)|
and |Γstable(σ)| by calling clingo’s routine for enumerating
stable models.

Credal semantics For the credal semantics, one is inter-
ested in the interval of all probabilities P(q|e) obtained by
some probability model. This interval can be described by
its lower and upper values, which in dPASP are obtained by
the exact algorithm described in (Cozman and Mauá 2020).
In short, we compute the lower P(q|e) and upper P(q|e)
probabilities by iterating over each total choice σ and count-
ing the models where (a) every model satisfies both q and e,
(b) some model satisfies both q and e, (c) every model sat-
isfies e but does not satisfy some value in q, and (d) some
model satisfies e but does not satisfy some value in q. The
credal interval is then [0, 0] if b + c = 0 and d > 0, [1, 1] if
a+ d = 0 and b > 0, and [a/(a+ d), b/(b+ c)] otherwise.

Credal facts in dPASP are only available when the credal
semantics is selected. To perform inference with credal
facts, dPASP constructs four multilinear polynomials cor-
responding to a, b, c and d; each term is a total choice θ,
each coefficient is the probability of θ, and indeterminates
in the polynomial are x if χx = 1 in σ or 1 − x otherwise.
The domain of the polynomial is the Cartesian product of all
pairs of lower and upper probabilities in credal facts. The
functions a(x)/(a(x) + d(x)) and b(x)/(b(x) + c(x)) are
then optimized in order to find the two global minima and
maxima respectively, with the first amounting to the lower
and the second the upper probabilities of the queries.

7.2 Parameter Learning
dPASP currently implements three maximum likelihood pa-
rameter learning rules for the maxent stable model seman-
tics: (i) a fixed-point learning procedure for non-neural pro-
grams that matches EM, (ii) a Lagrange multiplier deriva-
tion for gradient ascent, and (iii) an implementation of
NEURASP’s learning procedure (Yang, Ishay, and Lee
2020). All three procedures optimize the parameters (prob-
abilities of ADRs and neural network parameters of NDRs)
w.r.t. to the loglikelihood L(O) of a set of observations O
(sets of atoms considered true), assumed i.i.d.

To understand the need for our alternative parameter
learning method, we first discuss the shortcomings of the
NEURASP learning rule. The procedure updates parame-
ters P(χx = 1) = px by the standard gradient rule p ←
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SYSTEM
STRUCTURE PROBABILISTIC SEMANTICS INFERENCE LEARNING

Non-strat? Incons? CA? PR? Imp Prob? Semantics Exact Approximate PR NR
DEEPPROBLOG ✗ ✗ ✓ ✓ ✗ Distribution SDD DPLA∗ EM SGD
NEURASP ✓ ✗ ✓ ✗ ✗ Maxent Enumerative ✗ ✗ SGD
SCALLOP ✗ ✗ ✗ ✓ ✗ Provenance SDD Top-k SGD SGD
dPASP ✓ ✓ ✓ ✓ ✓ Maxent, credal Enumerative ASEO EM SGD

Table 1: Overview of some of the features in DEEPPROBLOG, NEURASP, SCALLOP and dPASP and how they compare to each other.

p− η∇ρL(O). When parameters are outputs of neural net-
works, the update rule can produce infeasible values (i.e.,
they are not normalized probability distributions). This issue
can be mitigated by either projecting the parameters back to
the feasible set or ensuring that parameter updates lie within
the feasible set, for instance by using a softmax layer. To
avoid this issue and allow for arbitrary output layers, we in-
stead constrain parameters to remain within the feasible set
by employing Lagrange multipliers.

For simplicity, we assume w.l.o.g. that the atoms in heads
of ADRs and NADRS do not unify with heads of any other
rule. Hence, such atoms are true in some stable model only
if they are selected by the corresponding total choice. Let σx

denote a total choice that selects atom x from its (N)ADR.
The constrained derivative ∂

∂px
L(O) of the log-likelihood

function with respect to the probability P(χx = 1) = px
subject to

∑
x′ px′ = 1, px ≥ 0 is:(

1− 1

m

)
1

P(O)

∑
σx

P(σx)

P(χx = 1)
· |Γ

O
stable(σx)|
|Γstable(σx)|

− 1

m

∑
x, x ̸=x

1

P(O)

∑
σx

P(σx)

P(χx = 1)
· |Γ

O
stable(σx)|
|Γstable(σx)|

.

(6)

where m is the number of atoms in the head.
Interestingly, Eq. (6) yields a similar expression to

NEURASP’s learning rule, with the only distinction being
the factors 1− 1

m and 1
m . Thus, when m = 2, the Lagrangian

rule is equivalent to halving the learning rate of NEURASP’s
rule. For m > 2, rule (6) assigns more weight to the proba-
bility of interpretations consistent with the observation, and
less weight to its complement. This is more sensible, since
the latter sums over more terms than the former.

The extension of (6) to the neural case is trivial: by ap-
plying the chain rule on the derivative of the log-likelihood
with respect to the output px of the corresponding output of
the neural network, we easily find that the resulting gradient
is (6) multiplied by the derivative of the neural network with
respect to network weights w:

∂

∂w
L(O) =

∂

∂px
L(O)

∂

∂w
px(x), (7)

where ∂
∂wpx(x) is the standard backward pass in a neural

network computed using PyTorch’s features.

7.3 Related Systems
Neurosymbolic programming languages have become in-
creasingly popular in the last few years, with each imple-
mentation boasting a host of different features and seman-
tics. Given the many (often subtle) differences between

them, it is useful to compare some of these available systems
and contrast them with dPASP. More specifically, we pro-
vide a short comparison of dPASP against DEEPPROBLOG,
NEURASP and SCALLOP (Table 1).

In columns 2–4 of Table 1, systems are classified w.r.t. to
the expressiveness of their language in three different dimen-
sions: whether the language (i) accepts non-stratified pro-
grams (hence models non-determinism), (ii) handles incon-
sistencies (e.g. three-valued logic) or (iii) allows for com-
plex arguments (i.e. complex terms as arguments for predi-
cates, e.g. f(g(x), y)). Note that although ProbLog accepts
non-stratified programs and handles inconsistencies with the
smProbLog semantics, this extension is not yet implemented
in DEEPPROBLOG. Both dPASP and NEURASP allow for
non-stratified programs through their stable model seman-
tics, but only dPASP handles inconsistencies in the program
through the L-stable semantics. SCALLOP is based on Dat-
alog (Abiteboul, Hull, and Vianu 1995), a syntactic subset
of Prolog (Colmerauer 1990) – and thus stratified – with no
support for complex arguments or inconsistencies.

Columns 5–6 classify the systems in terms of expressive-
ness for uncertainty specification. We distinguish between
support for (i) probabilistic rules, and (ii) imprecise spec-
ification of probabilities (e.g., interval-valued probabilistic
facts). Even though NEURASP does not natively support
non-neural probabilistic rules, these can be expressed as
neural predicates associated with a simple probabilistic clas-
sifier. dPASP is the only to allow for imprecise probabili-
ties. In terms of semantics, DEEPPROBLOG follows Sato’s
distribution semantics (Sato 1995), SCALLOP defines its se-
mantics by means of provenance semirings (Green, Kar-
vounarakis, and Tannen 2007), NEURASP adopts the max-
ent semantics, and dPASP admits both maxent and credal.
All these semantics coincide for stratified programs.

The last four columns summarize inference and learn-
ing routines for each system. Both DEEPPROBLOG and
SCALLOP compile programs to sentential decision diagrams
(SDDs, Darwiche 2011), a special form of logic circuit, on
which they perform weighted model counting (WMC) for
exact inference (Manhaeve et al. 2021). NEURASP and
dPASP exhaustively enumerate all models. For approxi-
mate inference, DEEPPROBLOG uses an A∗-like search over
the SLD resolution tree to approximate probabilistic queries
(Manhaeve, Marra, and De Raedt 2021), SCALLOP com-
putes the top-k proofs and then performs WMC on the re-
sulting compiled SDD (the exact version is the particular in-
stance when k is the number of total choices) and dPASP
performs answer set enumeration by optimality (ASEO,
see Section 7.1). Parameter learning is done through
expectation-maximization (EM) for non-neural probabilis-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

738



concept learners ensemble
recall acc. recall

Digit 0 0.93 0.97 0.99
Digit 1 0.86 0.94 0.96
Digit 2 0.81 0.93 0.97

Table 2: Performance of individual concept learners (on their task)
and recall of the ensemble classifier.

tic programs in DEEPPROBLOG and dPASP, and stochastic
gradient descent (SGD) for neural programs in all systems.

8 Case Studies
We now present two case studies showcasing dPASP. We
first show how the system can be used to combine neural
concept learners into an ensemble, increasing the overall ac-
curacy of the system. In a following case study, we compare
the performance of our system against two competitors on
the task of parameter learning in image classification.

8.1 Data Fusion and Uncertainty Quantification
A concept learner is a binary classifier trained to recognize
only objects of a certain class. Classifiers made of ensemble
of concept learners are flexible in that classes can be added
or removed without need for a full re-training, and that con-
cept learners can be deployed and trained in a decentralized
fashion (Verbaeten and Van Assche 2003; Cao, Brbić, and
Leskovec 2021; Núñez, Fidalgo, and Morales 2007).

We perform an experiment on MNIST to showcase the
ability of dPASP to combine predictions from a set of con-
cept learners, comparing the maxent and credal probabilistic
semantics. In this experiment, the digits 0, 1 and 2 of the
dataset act as different concepts. For each digit, we train a
convolutional neural network (CNN) to act as a specialized
concept learner in a one-versus-all approach with negative
sampling to ensure balancedness of positive/negative labels.

The first two columns of Table 2 show the recall (w.r.t.
the concept learned) and accuracy of each model on MNIST
test data (restricted to the digits labeled 0, 1 or 2). The rela-
tively smaller recall shows a tendency of binary classifiers to
classify objects as not being their learned concepts. Further-
more, the relatively higher accuracy is caused by the dataset
being unbalanced for each concept.

data(x) ∼ test(@test), train(@train).
?::concept(1,X) as @CLearner1 :- data(X,1).
?::concept(2,X) as @CLearner2 :- data(X,2).
?::concept(3,X) as @CLearner3 :- data(X,3).
class(1) :- not class(2),not class(3),not novel.
class(2) :- not class(1),not class(3),not novel.
class(3) :- not class(1),not class(2),not novel.
novel :- not class(1),not class(2),not class(3).
:- class(C),not concept(C,X).
#query class(1). #query class(2). #query class(3).

The above program defines a multiclass classifier (with a
novel class label) which can either use the maxent or credal
semantics. The performance of the classifier based on the
maxent semantics is presented in the right column of Table
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Figure 2: Left: set accuracy by size of credal classification. Right:
accuracy versus uncertainty (imprecision or entropy).

2. The classifier accuracy (considering all classes/concepts)
is 0.98, thus surpassing that of its components.

We can use the credal semantics to either produce more
conservative inferences or to assess the predictive uncer-
tainty. We say that a concept learner dominates another one
if the lower probability of the former concept is higher than
the upper probability of the latter. A credal classification
outputs only non-dominated class labels.

Figure 2 (left) contains the set accuracy (i.e. the percent-
age of credal classifications containing the correct label) as a
function of the number of non-dominated classes. 2727 clas-
sifications were vacuous (when no class is dominated), and
410 were precise (a single class dominated others). Figure 2
(right) plots classification accuracy of the maxent classifier
against the uncertainty as measured by either the entropy of
the maxent classifier (blue) or by the length of the probabil-
ity interval computed by the credal semantics (orange). One
sees that both entropy and imprecision correlate well with
accuracy, but imprecision is easier to interpret.

8.2 Distant Learning: MNIST Addition
We compare the performance of dPASP to NEURASP,
DEEPPROBLOG, SCALLOP and a purely data-driven CNN
on the task of learning addition of MNIST image digits, a
common distant supervision benchmark for neural proba-
bilistic logic programs (Manhaeve et al. 2021). Given two
unlabelled images (e.g. and ) of digits, and the corre-
sponding atom (e.g. sum(9)) as a distant label, the program
must learn to identify the sum of digits.

The code for this task is shown below, consisting of boil-
erplate data pre-processing and classifier definition func-
tions (omitted for brevity), and a simple and short proba-
bilistic logic section. The full program can be found in the
project’s repository.
#python
def DigitNet(): ... # neural network classifier
def mnist_tr(i): ... # train images for i-th digit
def mnist_te(i): ... # test images for i-th digit
def labels(): ... # sum(z) labels
#end.
input(0) ∼ test(@mnist_te(0)), train(@mnist_tr(0)).
input(1) ∼ test(@mnist_te(1)), train(@mnist_tr(1)).
?::digit(X, {0..9}) as @DigitNet :- input(X).
sum(Z) :- digit(0, X), digit(1, Y), Z = X+Y.
#semantics maxent.
#learn @labels, lr = 0.001, niters = 5, batch = 1000.
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Figure 3: Sum and digit classification accuracy and training time
(in parentheses) for dPASP, NEURASP, DEEPPROBLOG, SCAL-
LOP and CNN. Left: accuracy per iteration of classifying sums.
Right: accuracy of learned networks on classifying digits.

We follow the same neural network architecture and pa-
rameters used in Manhaeve et al. 2021 for the MNIST digit
addition task. Figure 3 shows a comparison of the perfor-
mance both in terms of classification accuracy and train-
ing time. The plot on the left compares the accuracy of
classifying the correct sum of digits, while the plot on the
right shows the digit classification accuracy of the program-
embedded neural network during learning. CNN SUM cor-
responds to the performance of evaluating a CNN whose in-
put is a single image consisting of concatenating the two
digits and whose output are the probabilities of the 19 pos-
sible two-digit sum values; CNN DIGIT is the accuracy of
a single digit classification network under the same parame-
ter conditions as dPASP, SCALLOP, NEURASP and DEEP-
PROBLOG. We report the performance of dPASP and SCAL-
LOP with training batch sizes of 500 and 1000.

Unsurprisingly, both purely data-driven CNN approaches
performed poorly compared to neurosymbolic approaches.
In particular, CNN SUM struggled to even break 50% ac-
curacy, while CNN DIGIT quickly converged to the 80%
mark, below that of neural probabilistic logic frameworks.
We again stress the fact that these results were obtained
by subjecting all systems to the same learning parame-
ters. Comparing dPASP against SCALLOP, DEEPPROBLOG
and NEURASP, we find that, under the same parame-
ters, NEURASP converges faster, although the difference is
small. This difference might be explained by the correction
factor discussed in Section 7.2, which might require a dif-
ferent learning rate to equalize convergence.

Lastly, we note the surprisingly small difference gap in
training times (in parentheses) for dPASP and CNNs. We
conjecture that the main factor is implementation overhead:
dPASP is mostly written in C, with a simple Python wrap-
per; in contrast, the pure PyTorch implementation still runs
significant portions in Python.

9 Conclusion
We presented dPASP, a framework for neurosymbolic rea-
soning and learning based on probabilistic logic program-
ming. We discussed syntax and semantics of the language,
and commented on inference and learning implementations
in the system. We showed use cases that illustrate the
features and potential applications. There is still much to
achieve to make the system more broadly applicable and ef-
fective. In particular, more efficient learning and inference
routines need to be devised to scale to larger domains.
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