
ASP Chef: Draw and Expand

Mario Alviano , Luis Angel Rodriguez Reiners
DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy

{mario.alviano, luis.reiners}@unical.it

Abstract

ASP Chef is a versatile tool built upon the principles of An-
swer Set Programming (ASP), offering a unique approach to
problem-solving through the concept of ASP recipes. In this
paper, we explore two key components of ASP Chef: the
Graph ingredient and one of its extension mechanisms for
registering new ingredients. The Graph ingredient serves as
a fundamental feature within ASP Chef, allowing users to in-
terpret instances of a designed predicate to construct graphs
from the data. Through this capability, ASP Chef facilitates
the visualization and analysis of complex relationships and
structures inherent in various domains. Furthermore, ASP
Chef offers a flexible extension mechanism that empowers
users to register new recipes as custom ingredients. These
custom ingredients, defined by sequences of mappings from
interpretations to interpretations, can be stored locally within
the local storage of the browser. This enables users to expand
the capabilities of ASP Chef to suit their specific needs and
use cases, fostering a collaborative environment where users
can share and reuse custom ingredients seamlessly. Notably,
the addition of new ingredients does not impose requirements
on the utilization of recipes that employ them, underscoring
the modular and interoperable design of ASP Chef.

1 Introduction
In the realm of Knowledge Representation and Reasoning
(KRR), the ability to encode and manipulate complex do-
mains in a computer-readable format is paramount. Such
encoding enables the automation of tasks, synthesis of infor-
mation, and execution of sophisticated reasoning processes
by specialized engines (Balduccini, Barborak, and Ferrucci
2023). Answer Set Programming (ASP), a declarative ap-
proach to problem-solving, has garnered increasing atten-
tion from both researchers and practitioners for its ability
to combine high-level linguistic constructs with advanced
solving algorithms for combinatorial search and optimiza-
tion (Brewka, Eiter, and Truszczynski 2011; Erdem, Gel-
fond, and Leone 2016; Lifschitz 2019; Kaminski et al. 2023;
Alviano et al. 2023).

Despite its theoretical computational power, ASP is not
designed to serve as a general-purpose programming lan-
guage. Instead, ASP is most effective when employed to
address specific tasks within a broader pipeline, where input
and output are expected to interface with modules poten-
tially implemented in different paradigms (Bertolucci et al.

Figure 1: All 9 paths of length 3 includes at least one selected town
(in red). Path 1 is highlighted in green.

2021). This necessity for interoperability poses a significant
challenge for ASP practitioners, who often find themselves
tasked with mapping data between different formats at each
module of the pipeline. Recognizing this challenge, ASP
CHEF1 was recently introduced as a novel approach to ASP
problem-solving (Alviano, Cirimele, and Reiners 2023). At
its core lies the concept of the ASP recipe, a chain of ingredi-
ents representing distinct computational tasks. Each ingredi-
ent encapsulates operations typical of ASP engines, such as
combinatorial search and optimization, as well as any other
data manipulation task. By processing ASP recipes, ASP
CHEF provides users with a flexible framework to employ
ASP directly through logic rules or indirectly via pre-defined
operations implemented using ASP engines. For example,
consider the problem of Fighting with the gang of Billy the

1http://asp-chef.alviano.net/, or http://asp-chef.alviano.net/s/
for tutorials and examples

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

720

http://asp-chef.alviano.net/
http://asp-chef.alviano.net/s/


Kid2, a scenario from the LP/CP Programming Contest se-
ries.3 Here, the goal is to monitor a minimum number of
towns such that each path visiting a specified number of dis-
tinct towns includes at least one monitored town (see Fig-
ure 1 for an example). While this problem can be tack-
led using a monolithic ASP encoding approach (using un-
interpreted function symbols to compute paths at ground-
ing time), ASP CHEF offers a simpler alternative by breaking
down the problem into a series of ASP ingredients, each ad-
dressing a specific computational task: paths are computed
by enumerating answer sets of a program, and provided in
input to a second program that selects a minimum number
of towns covering all paths.4

ASP CHEF adopts a uniform format for the input and out-
put of each operation, which simplifies the design of ASP
recipes and enhances their compatibility with diverse mod-
ules and data formats. Furthermore, ASP CHEF provides a
web application, which serves as a platform for implement-
ing ASP pipelines and experimenting with ASP recipes in
practical settings. It is important to note that ASP CHEF is not
intended to be an IDE for ASP, but instead it aims to be a low
code way to define ASP-powered pipelines. ASP CHEF can
be used for fast prototyping, in courses (e.g., set up tutori-
als, with visualizations, and ask students to fill in the encod-
ings) and in production environments (e.g., to post-process
data of other tools addressing hard computational tasks). In
fact, a pipeline can process data of any sort, as soon as it
is in the format of relational facts. Content that is not natu-
rally representable in such a format can be Base64-encoded
(via operations provided by ASP CHEF), and subsequently
interpreted by other ingredients of the pipeline (for an anal-
ogy, email attachments are Base64-encoded in the body of
the email and opened by external applications). The use of
Base64 enables several interesting use cases, as for example
the possibility to provide input as Comma-Separated Values
(CSV) or in JavaScript Object Notation (JSON), and easily
obtain a relational representation by using specialized oper-
ations available in ASP CHEF. Additionally, Base64 is used
to encode templates (Alviano et al. 2024) such as the sym-
metric closure of a binary relation: the ingredient Base64-
encodes the rules for the symmetric closure of the specified
relation so that they can be used by subsequent ingredients
in the recipe, such as SearchModels and Optimize, for ex-
ample to enforce that a guessed relation is symmetric.

Interestingly, an ASP recipe is essentially a sequence of
mappings from interpretations to interpretations. Each in-
gredient within the recipe contributes to this mapping pro-
cess, performing specific operations or computations on the
input interpretations and producing transformed interpreta-
tions as output. Therefore, a recipe can be thought of as
the composition of the mappings defined by its individual
ingredients. Consider a simple analogy: just as a recipe
in cooking consists of a series of steps that transform raw

2https://github.com/lpcp-contest/lpcp-contest-2019/blob/
master/billykid/billykid.md

3https://github.com/lpcp-contest
4A tutorial on this problem is available online at https://asp-

chef.alviano.net/s/tutorials/billy-the-kid

ingredients into a finished dish, an ASP recipe consists of
a series of operations that transform input interpretations
into desired output interpretations. Each ingredient within
the recipe corresponds to a specific step in this transforma-
tion process. Given this perspective, it becomes natural to
view a recipe itself as a new ingredient that can be used in
broader recipes. Just as individual ingredients can be com-
bined to create more complex dishes, recipes can be com-
bined to create more sophisticated computational processes.
This abstraction allows users to modularize and reuse com-
putational logic, promoting flexibility, scalability, and main-
tainability in ASP-based problem-solving.

By treating recipes as ingredients, ASP CHEF enables
users to build upon existing computational logic, abstracting
away implementation details and focusing on higher-level
problem-solving tasks. Among the recipes that users may
want to reuse in several other recipes, visualizations in terms
of graphs stand out as particularly valuable. Graph visual-
izations provide intuitive and insightful representations of
data structures, relationships, and patterns, making complex
information more accessible and understandable to users. In
ASP CHEF, the Graph operation facilitates the generation of
graph visualizations as side output within recipes. The oper-
ation takes input interpretations and constructs a graph rep-
resentation based on the instances of a specified predicate as
a side output. These instances specify nodes and links, with
additional properties defining attributes such as color, label,
shape, and directionality. The operation then translates these
instances into a graphical representation, by interpreting the
properties associated with nodes and links in the graph. For
instance, the color property might determine the color of a
node or link, while the label property could provide a textual
label to annotate nodes or links.

All in all, this paper presents an extension mechanism of
ASP CHEF that allows users to register new recipes as custom
ingredients, thereby expanding the capabilities of the tool
to address diverse computational tasks. We use the Graph
operation to provide concrete examples to demonstrate the
extension mechanism in action, and we illustrate how users
can define custom recipes that leverage the Graph operation
to generate graph visualizations from input data. In particu-
lar, we aim to provide readers with a comprehensive under-
standing of how ASP CHEF can be extended and customized
to address a wide range of computational tasks.

2 Background
Section 2.1 introduces the ASP notions used in examples;
readers familiar with ASP can skip this section. Section 2.2
provides some background on ASP CHEF that was already
presented at ASPOCP’23 (Alviano, Cirimele, and Reiners
2023) and an invited speech at CILC’24.

2.1 Answer Set Programming

All sets and sequences considered in this paper are finite if
not differently specified. Let P, F, V be fixed nonempty
sets of predicate names, function names and variables.
Function and predicate names are associated an arity, a non-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

721

https://github.com/lpcp-contest/lpcp-contest-2019/blob/master/billykid/billykid.md
https://github.com/lpcp-contest/lpcp-contest-2019/blob/master/billykid/billykid.md
https://github.com/lpcp-contest


negative integer;5 set F includes at least one function name
of arity 0. Terms are inductively defined as follows: vari-
ables are terms; if f ∈ F has arity n, and t1, . . . , tn are
terms, then f(t1, . . . , tn) is a term (parentheses are omitted
if n = 0). A ground term is a term with no variables. An
atom is of the form p(t1, . . . , tn), where p ∈ P has arity
n. A ground atom is an atom with no variables. A literal is
an atom possibly preceded by the default negation symbol
not; they are referred to as positive and negative literals. A
conjunction conj (t) is a possibly empty sequence of literals
involving the terms t. An aggregate is of the form

#func{ta, t′ : conj (t)} ⊙ tg (1)

where func ∈ {SUM, MIN, MAX} is an aggregation function,
⊙ ∈ {<,≤,≥, >,=, ̸=} is a binary comparison operator,
conj (t) is a conjunction, t′ is a possibly empty sequence of
terms, and tg and ta are terms. Let

#COUNT{t′ : conj (t)} ⊙ tg

be syntactic sugar for

#SUM{1, t′ : conj (t)} ⊙ tg.

A choice is of the form

t1 ≤ {atoms} ≤ t2 (2)

where atoms is a possibly empty sequence of atoms, and
t1, t2 are terms. Let ⊥ be syntactic sugar for 1 ≤ {} ≤ 1
(used for strong constraints, and possibly omitted to lighten
the notation). A penalty is expressed as [c@l, t], where c, l
are terms referred to as cost and level, and t is a sequence of
distinguishing terms. A rule is of the form

head :- body . (3)

where head is an atom or a choice or a penalty, and body is
a possibly empty sequence of literals and aggregates.6 For a
rule r, let H(r) denote the atom or choice or penalty in the
head of r; let BΣ(r), B+(r) and B−(r) denote the sets of
aggregates, positive and negative literals in the body of r; let
B(r) denote the set BΣ(r) ∪ B+(r) ∪ B−(r). If H(r) is
a penalty, let cost(r) denote its cost, let level(r) denote its
level, and let dist(r) denote its distinguishing terms; in this
case, r is also called a weak constraint.

A variable X occurring in B+(r) is a global variable.
Other variables occurring among the terms t of some aggre-
gate in BΣ(r) of the form (1) are local variables. And any
other variable occurring in r is an unsafe variable. A safe
rule is a rule with no unsafe variables. A program Π is a set
of safe rules. Let Πw denote the program comprising all and
only the weak constraints of Π. Let Πh denote the program
Π \Πw. A substitution σ is a partial function from variables
to ground terms; the application of σ to an expression E is

5A predicate (or function) name and its arity are possibly writ-
ten as p/n, where p is a name and n an integer. Note that p/1, p/2,
p/3 can be simultaneously members of P (or F), that is, overload-
ing of predicate (and function) names is permitted.

6Symbol :- is omitted if body is empty. The penalty of a
rule, if any, is written after the body in the actual syntax supported
by mainstream ASP systems.

denoted by Eσ. Let instantiate(Π) be the (infinite) set of
rules obtained from rules of Π by substituting global vari-
ables with ground terms, in all possible ways; note that local
variables are still present in instantiate(Π). The Herbrand
base of Π, denoted base(Π), is the (infinite) set of ground
atoms occurring in instantiate(Π).

The language of ASP supports a richer syntax. For the
purpose of this article, we mention the possibility to de-
fine constants, combine terms in expressions and compare
expressions with binary comparators with the natural inter-
pretation. Moreover, each atom occurring in a choice of
the form (2) can be associated with a conjunctive condition,
using the syntax p(t) : condition; in many cases (essen-
tially, if aggregates are not recursive), it is possible to re-
place p(t) : condition with p′(t), where p′ is a fresh predi-
cate (a predicate not occurring elsewhere), by adding to the
program the rule p′(t) :- condition. Finally, t1 and t2 are
optional in (2), and when absent their default values are es-
sentially 0 and ω (the first uncountable ordinal).
Example 1. Consider line 3 in Figure 2:

{wall(X,Y)} :- grid(X,Y).

The above choice rule is used to define the search
space of the problem, that is, it is possible to build a
wall in every cell of the grid. (Note that the choice
is equivalent to 0 <= {wall(X,Y)} <= ω, or also to
0 <= {wall(X,Y)} <= 1.)

Consider now line 1:

grid(X,Y) :- size(R,C), X=1..R,
Y=1..C.

It defines the cells of the grid given its R×C size: X is in the
integer interval 1..R, and Y is in 1..C.

Finally, consider line 14:

:∼ wall(X,Y). [ 1@2, X,Y]

The above weak constraint provides a penalty of 1 at the
second level for each wall built in the grid. ■

An interpretation is a set of ground atoms.7 For an in-
terpretation I , relation I |= · is defined as follows: for a
ground atom p(c), I |= p(c) if p(c) ∈ I , and I |= not p(c)
if p(c) /∈ I; for a conjunction conj (t), I |= conj (t) if
I |= α for all α ∈ conj (t); for an aggregate α of the form
(1), the aggregate set of α w.r.t. I , denoted aggset(α, I),
is {⟨ta, t′⟩σ | conj (t)σ ∈ I, for some substitution σ}; if
func is SUM, I |= α if (

∑
⟨ca,c′⟩∈aggset(α,I) ca) ⊙ tg is

a true expression over integers; if func is MIN, I |= α
if (min⟨ca,c′⟩∈aggset(α,I) ca) ⊙ tg is a true expression; if
func is MAX, I |= α if (max⟨ca,c′⟩∈aggset(α,I) ca) ⊙ tg is
a true expression; for a choice α of the form (2), I |= α
if t1 ≤ |I ∩ atoms | ≤ t2 is a true expression over integers;
for a penalty [w@l], I |= [w@l] always; for a rule r with no
global variables, I |= B(r) if I |= α for all α ∈ B(r), and
I |= r if I |= H(r) whenever I |= B(r); for a program Π,
I |= Π if I |= r for all r ∈ instantiate(Π), or equivalently

7Note that we are only considering finite interpretations, as
those involving an infinite number of atoms are not relevant for
our work.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

722



1 grid(X,Y) :- size(R,C), X = 1..R, Y = 1..C.

2 % guess walls, leave sufficient space to all POI
3 {wall(X,Y)} :- grid(X,Y).
4 :- poi(X,Y,D), wall(X',Y'), |X-X'| + |Y-Y'| < D.

5 % attack all cells in the border
6 attack(X,Y) :- size(R,C), X = 1, Y = 1..C, not wall(X,Y).
7 attack(X,Y) :- size(R,C), X = R, Y = 1..C, not wall(X,Y).
8 attack(X,Y) :- size(R,C), Y = 1, X = 1..R, not wall(X,Y).
9 attack(X,Y) :- size(R,C), Y = C, X = 1..R, not wall(X,Y).

10 % expand the attack if no wall blocks it
11 delta(X,Y) :- X = -1..1, Y = -1..1, |X|+|Y| = 1.
12 attack(X+DX,Y+DY) :- attack(X,Y), delta(DX,DY), grid(X+DX,Y+DY), not wall(X+DX,Y+DY).

13 :- poi(X,Y,_), attack(X,Y). % fail if a POI is under attack

14 :∼ wall(X,Y). [ 1@2, X,Y] % minimize walls
15 :∼ attack(X,Y). [-1@1, X,Y] % break ties by maximizing the number of cells under attack

Figure 2: ASP encoding for the Fortress problem: Given a R× C grid with points-of-interest (POI), each POI requiring some area free-of-
walls in order to be functional, build walls to protect all POI from external attacks. The less walls the better, the less cells inside the walls the
better.

for all r ∈ instantiate(Πh). The cost associated with an
interpretation is defined as

cost(Π, I) :=
∑

⟨c,l,t⟩∈penset(Πw,I)

c · ωl (4)

where ω is the first uncountable ordinal, and

penset(Πw, I) := {⟨cost(r), level(r), terms(r)⟩
| r ∈ instantiate(Πw), I |= B(r)}.

For a rule r of the form (3) and an interpretation I , let
expand(r, I) be the following set:

expand(r, I) := {p(c) :- body .

| p(c) ∈ I occurs in H(r)}.
The reduct of Π w.r.t. I is the program comprising the ex-
panded rules of instantiate(Π) whose body is true w.r.t. I ,
that is,

reduct(Π, I) :=
⋃

r∈instantiate(Πh), I|=B(r)

expand(r, I).

An answer set of Π is an interpretation A such that A |= Π
and no I ⊂ A satisfies I |= reduct(Π, A). Let AS (Π)
be the set of answer sets of Π. A is an optimal answer
set of Π if A ∈ AS (Π) and no I ∈ AS (Π) satisfies
cost(Π, I) > cost(Π, A). Let AS∗(Π) be the set of opti-
mal answer sets of Π.
Example 2 (Continuing Example 1). Let I comprise
size(1,2), attack(1,1), wall(1,2), and no other
atom. The instantiation of the program comprises, among
other rules, the following instances of line 6 in Figure 2:

attack(1,1) :- size(1,2), 1 = 1,
1 = 1..2, not

wall(1,1).
attack(1,2) :- size(1,2), 1 = 1,

2 = 1..2, not
wall(1,2).

size(23,23).
poi( 9, 9,3). poi( 9,11,2). poi(

9,13,3).
poi( 9,15,3). poi(10,10,1).

poi(10,14,2).
poi(12, 9,6). poi(12,14,3).

poi(14,10,1).
poi(14,15,2). poi(15, 9,3).

poi(15,14,1).

Figure 3: An instance of Fortress (top) and a graphi-
cal representation of its optimal solution (bottom). An
ASP CHEF tutorial based on this problem is available at
https://asp-chef.alviano.net/s/tutorials/fortress.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

723

https://asp-chef.alviano.net/s/tutorials/fortress


In the program reduct, the above rules are replaced by

attack(1,1) :- size(1,2), 1=1, 1 =
1..2.

According to lines 14–15, the cost associated with I is
1 · ω2 − 1 · ω1. Anyhow, note that I is not a model of the
program because, for example, line 11 is not satisfied. A
concrete instance of Fortress and its optimal answer set are
shown in Figure 3. The cost associated with the answer set
is 34 · ω2 − 404 · ω1. ■

2.2 ASP Recipes and ASP Chef
Let Base64 be the function associating every binary string
with a longer binary string that can be interpreted as print-
able ASCII characters; the output string is obtained accord-
ing to RFC 4648 §4.8 Let Base64−1 be the inverse function
of Base64 .
Example 3. Let t be the following text:

.,.,4,.

.,1,.,.

.,.,2,.

.,3,.,.

Hence, Base64 (t) is b := LiwuLDQsLgouLDEsLiwuCi4
sLiwyLC4KLiwzLC4sLg==, and Base64−1(b) = t. ■

In the following the term object refers to any finite ele-
ment of a fixed universe (comprising, among other elements,
strings, numbers, graphs, atoms, programs, and sequences).
The notation [x1, . . . , xn] is used to refer to a (finite) se-
quence of n ≥ 0 objects, where each object xi is associated
with index i. Moreover, by space we refer to a (possibly
infinite) set of objects, and the Boolean values are denoted
by t and f . Abusing notation, let us associate atoms in an
interpretation with indices (starting from 1), that is, in the
following we will use the term interpretation for referring to
a (finite) sequence of distinct atoms. Moreover, among the
interpretations we include the inconsistent interpretation ⊥
to represent errors. Let I be the set of all sequences of in-
terpretations. An operation O is a function with signature
O : I −→ I , that is, a function receiving in input a sequence
of interpretations and producing in output a sequence of in-
terpretations.
Example 4. Let O be the operation replacing every atom
of the form __base64__(b) as follows: if Base64−1(b)
is interpreted as comma-separated values (CSV), for each
cell in row r and column c whose value is v, atom
__cell__(r,c,v) is added to the output. If b is the one
from Example 3, then O([[__base64__(b)]]) is [[I]], where
I is

__cell__(1,1,"."). __cell__(1,2,".").
__cell__(1,3,4). __cell__(1,4,".").
__cell__(2,1,"."). __cell__(2,2,1).
__cell__(2,3,"."). __cell__(2,4,".").
__cell__(3,1,"."). __cell__(3,2,".").
__cell__(3,3,2). __cell__(3,4,".").
__cell__(4,1,"."). __cell__(4,2,3).
__cell__(4,3,"."). __cell__(4,4,".").

8https://datatracker.ietf.org/doc/html/rfc4648#section-4

Note that integers are mapped to integer terms, and every-
thing else is mapped to string terms. ■

An operation O with side output space S is a function
with signature O : I −→ I × S . No particular restriction
is imposed to the side output space; common cases include
the set of strings, the set of graphs, and the set containing
the empty set (to essentially have operations with no side
output as a special case); to lighten the notation, if the side
output space is {∅}, we simply omit it. Let O|I denote the
operation obtained from O by discarding the side output.

Example 5. Let O be the identity operation (simply for-
warding the input), with side output the Base64-decoded
content of any atom of the form __base64__(b). For ex-
ample, if b is the one from Example 3, then the side output of
O([[__base64__(b)]]) is t from Example 3.

In ASP CHEF, the O operation is called OutputEncoded-
Content. A similar operation, named Output, can be used
to show the output produced by the preceding ingredient in
the recipe. Both operations are useful to check intermedi-
ate results, even if a better alternative is to define graphical
visualizations and embed them in a Recipe ingredient (see
Section 4). ■

A parameterized operation O with parameter space P
and side output space S is a function with signature
P −→ (I −→ I × S), that is, O⟨P ⟩ is an operation with
side output space S for each parameter value P ∈ P (note
that angle brackets are used to denote a parameterized op-
eration instantiation). No particular restriction is imposed
to the parameter space; common cases include the set of in-
tegers, the set of strings, sets of tuples, and the set contain-
ing the empty set (to have non-parameterized operations as a
special case); to lighten the notation, if the parameter space
is {∅}, we simply omit it.

Example 6. Let ParseCSV be the operation from Exam-
ple 4, with parameters decode predicate , output predicate
and separator to customize the processed input predicate
(__base64__ in the example), the predicate of the produced
output atoms (__cell__ in the example), and the separator
of the CSV content (, in the example).

Let OutputEncodedContent be the operation from Exam-
ple 5, with parameters predicate to customize the processed
input predicate (__base64__ in the example). ■

An ingredient is an instantiation of a parameterized oper-
ation with side output, that is, if O is a parameterized oper-
ation with parameter space P and side output space S , and
P ∈ P is a parameter value, then O⟨P ⟩ is an ingredient. A
recipe is a tuple of the form (encode, Ingredients , decode),
where Ingredients is a (finite) sequence of ingredients, and
encode and decode are Boolean values. Intuitively, the in-
put of a recipe is either (the string representation of) a se-
quence of interpretations in I, or a string to be Base64 -
encoded. The input is processed by the pipeline of in-
gredients, possibly producing some side output along the
way. Finally, some encoded content is possibly decoded.
Such an intuition is formalized next. Let Ingredients com-
prise n ≥ 0 ingredients O1⟨P1⟩, . . . , On⟨Pn⟩, and let sin
be the string in input. The output and side output of the

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

724

https://datatracker.ietf.org/doc/html/rfc4648##section-4


recipe (encode, Ingredients , decode) given sin are respec-
tively sout and S1, . . . , Sn defined as follows:

• I0 is one of (i) [[__base64__("s")]], if encode is true,
where s = Base64 (sin); (ii) the sequence of interpre-
tations represented by sin , where interpretations are sep-
arated by the reserved character § and atoms are repre-
sented as facts, if sin conforms to this specification; (iii)
[⊥] otherwise, to report an error.

• For each i = 1, . . . , n, let Ii be Oi⟨Pi⟩|I(Ii−1), and Si

be the side output of Oi⟨Pi⟩(Ii−1). Essentially, each in-
gredient of the recipe receives a sequence of interpreta-
tions from the previous computational step, and produces
in output a sequence of interpretations for the next com-
putational step. Possibly, a side output is also produced.

• Let sout be the string obtained by concatenating the atoms
of In represented as facts, one per line, and using §
as the separator for interpretations. If decode is true,
sout is further processed by replacing every occurrence of
__base64__(s) with (the ASCII string associated with)
Base64−1(s); in this case, if Base64−1(s) produces an
error, then sout is simply the string representation of [⊥].

Let R(sin) = [sout , S1, . . . , Sn] denote the fact that sout
and S1, . . . , Sn are the output and side output of a recipe R
given an input string sin .

Example 7. Let R be (t, Ingr , f), where Ingr com-
prises OutputEncodedContent⟨__base64__⟩ and
ParseCSV⟨__base64__, __cell__, ,⟩. Let b, t be
from Example 3, and I be from Example 4. Hence, R(t)
is [[[I]], t, ∅]. Indeed, the CSV in input is first mapped to
__base64__(b), then decoded and shown as a side output,
and finally mapped to facts. ■

ASP CHEF supports more than 80 operations, enabling fast
prototyping of pipelines to address combinatorial tasks. Be-
fore moving to the next sections, where we focus on the
Graph and Recipe operations, let us give an example of the
frequently used SearchModels and Optimize operations.

Example 8. Let SearchModels be the operation with param-
eters rules and number , replacing each interpretation I in
input with up to number answer sets of rules extended with
the facts in I . For example, if the recipe from Example 7 is
extended with the ingredient SearchModels⟨Π, 1⟩, where Π
is

given((X,Y),V) :- __cell__(X,Y,V), V !=
".".

size(S) :- S = #count{X :
__cell__(X,_,_)}.

square(S') :- size(S), S' = 1..S, S'*S' =
S.

then the interpretation I from Example 4 is extended with

given((1,3),4). given((2,2),1).
given((3,3),2). given((4,2),3).
size(4). square(2).

Similarly, Optimize has the same parameters but produces
optimal answer sets. ■

3 Graph Operation
The Graph operation takes two parameters, namely
predicate (a predicate name in P) and echo (a Boolean
value). If echo is t, the sequence of interpretations in input
is forwarded in output. Otherwise, if echo is f , instances of
predicate are removed from the input interpretations before
forwarding them in output. If the input comprises exactly
one interpretation, the side output produced by the Graph
operation is obtained by processing instances of predicate;
otherwise, an error is shown as side output. In ASP CHEF,
the Graph operation uses D3.js force graphs, but it is pos-
sible to fix the position of nodes to obtain other types of
visualization.

Instances of predicate are expected to specify a graph
representation of the interpretation in input. The arity
of predicate is not fixed, that is, all atoms of the form
predicate(t) in input are processed, regardless of the length
of t. The first term in t must be one of node(ID),
link(SOURCE,TARGET) and defaults. The other terms
in t have the form property(VALUE ). Currently, the fol-
lowing properties can be specified for a node:

• label, with VALUE being a single term to be used as
the label of the node (or none to associate the node with
no label);

• image, with VALUE being the URL of an image to be
drawn on top of the node;

• color, with VALUE being an HTML color code to be
used to draw the node;

• text_color, with VALUE being an HTML color code
for the label of the node (if any);

• font, with VALUE being a CSS font family for the label
of the node (if any);

• shape, with VALUE being circle, square or a se-
quence of (pairs of) integers defining a polygon; the shape
is used to draw the node;

• radius, with VALUE being a positive integer defining
the size of the node (or 0 for the default radius) in case
shape is circle or square;

• opacity, with VALUE being an integer giving the per-
centage of opacity of the node;

• fx and fy, with VALUE being an integer, to fix the posi-
tion of the node (or none to let the position be determined
by applying forces);

• draggable, with VALUE being empty, to let the node
be dragged when clicked with the pointer;

• undraggable, with VALUE being empty, to inhibit
dragging of the node.

Regarding links, the following properties can be specified:

• label, with VALUE being a single term to be used as
the label of link (or none to associate the link with no
label);

• color, with VALUE being an HTML color code to be
used to draw the link;

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

725



block((row, Row), (Row, Col))
:- Row = 1..S, Col = 1..S, size(S).

block((col, Col), (Row, Col))
:- Row = 1..S, Col = 1..S, size(S).

block((sub, Row', Col'), (Row, Col))
:- Row = 1..Size, Col = 1..Size,

Row' = (Row-1) / S, Col' = (Col-1) /
S,
size(Size), square(S).

Figure 4: ASP program to produce the blocks of s2 × s2 Sudoku,
where s and s2 are given by predicates square and size.

• text_color, with VALUE being an HTML color code
for the label of the link (if any);

• opacity, with VALUE being an integer giving the per-
centage of opacity of the link;

• directed, with VALUE being empty, to draw a directed
link;

• undirected, with VALUE being empty, to draw an
undirected link.

Finally, the properties to set defaults are the following:

• node_image, node_color, node_text_color,
node_font, node_shape, node_radius,
node_opacity, node_draggable and
node_undraggable;

• link_color, link_text_color, link_opacity,
directed and undirected.

If a property does not meet the above format, it is reported
and ignored.

Example 9. A s2 × s2 Sudoku is a s2 × s2 grid partially
filled with digits in the interval 1..s2. The goal is to fill in
the remaining cells avoiding duplicates in each block (row,
column and non-overlapping s × s box). The CSV in Ex-
ample 3 actually encodes a 4 × 4 Sudoku with four given
clues. Example 8 provides a fact representation of the in-
stance. Blocks can be materialized by the program in Fig-
ure 4. A graphical representation can be obtained by provid-
ing to the Graph operation the answer set of the program in
Figure 5. Lines 4–7 define the following defaults: nodes are
drawn as squares with radius 10. Lines 8–13 define a back-
ground node, black, whose size and position are determined
from the size of the Sudoku. Lines 14–17 define a node for
each cell, and determine its position. Lines 18–20 add la-
bels to the cells with a given clue; the default color of labels
is black. Lines 21–24 add blue labels to the guessed cells.
The graphical representation is shown in Figure 7, where
the solution is obtained by computing the answer set of the
program in Figure 6. ■

4 Recipe Operation and Serialization
A recipe is serialized in a compressed JSON object to ob-
tain a URL that can be interpreted by ASP CHEF. The JSON
object comprises the list of ingredients, with their parame-
ters, among other elements such as the Boolean flags encode

1 #const radius = 10.
2 #const size = 2*radius.
3 #const grid = size + 1.

4 __graph__(defaults,
5 node_shape(square),
6 node_radius(radius)
7 ).

8 __graph__(node(background),
9 color(black),

10 fx(((N+1) * grid + S) / 2),
11 fy(((N+1) * grid + S) / 2),
12 radius((N * grid) / 2 + S)
13 ) :- size(N), square(S).

14 __graph__(node((Row,Col)),
15 fx(Col * grid + BCol),
16 fy(Row * grid + BRow)
17 ) :- block((sub,BRow,BCol), (Row,Col)).

18 __graph__(node(Cell),
19 label(Value)
20 ) :- given(Cell, Value).
21 __graph__(node(Cell),
22 label(Value),
23 text_color(blue)
24 ) :- assign(C,V), not given(C,V).

Figure 5: ASP program producing the facts for the Graph ingredi-
ent drawing s2×s2 Sudoku, where s and s2 are given by predicates
square and size, given clues are encoded by predicate given,
blocks are materialized by the program in Figure 4, and assigned
values are given by predicate assign.

% guess values, matching the given clues
1 <= {assign((R,C), V) : V = 1..S} <= 1

:- size(S), R = 1..S; C = 1..S.
:- given(C,V), not assign(C,V).

% no duplicates in any block
:- block(B,C), block(B,C'), C != C',

assign(C,V), assign(C',V).

% all values in every block
:- block(B,_), size(S), V = 1..S,

#count{C: block(B,C), not
assign(C,V)}=0.

Figure 6: ASP program to solve s2×s2 Sudoku, where s and s2 are
given by predicates square and size, given clues are encoded
by predicate given, and blocks are materialized by the program
in Figure 4.

Figure 7: Side output of the Graph ingredient processing the facts
produced by the programs in Figures 4–5 combined with the facts
in Example 8 (left), and with its solution obtained with the program
in Figure 6 (right).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

726



and decode, and the input for the recipe. This way, the URL
can be shared to move a recipe and its input in a different
browser, without the need to interact with a remote server
(if not for loading the ASP CHEF application). Additionally,
URLs can be shortened by storing them in a GitHub repos-
itory; the short URL is obtained from the path of the file
storing the original URL. This way, the sharing of recipes is
further simplified, and ASP CHEF recipes inherit the version-
ing mechanism of GitHub.

Example 10. The JSON representation of the recipe (and
input) from Example 7 is the following:

{
"input":
".,.,4,.\n.,1,.,.\n.,.,2,.\n.,3,.,.",

"encode_input": true,
"decode_output": false,
"recipe": [

{
"operation": "Output Encoded

Content",
"options": {

"predicate": "__base64__"
}

},
{

"operation": "Parse CSV",
"options": {

"decode_predicate": "__base64__",
"output_predicate": "__cell__",
"separator": ","

}
}

]
}

Above we simplified the format to ease the presentation.
The actual URL encoding the recipe from Example 7 takes
730 characters, and starts with https://asp-chef.alviano.
net/#eJzFk9tymz... We stored the recipe in our GitHub
repository, and it can be accessed with the short URL
https://asp-chef.alviano.net/ s/example@KR2024. ■

The Recipe operation takes two parameters, namely
name (an optional name to give to the recipe ingredient)
and Ingredients (the actual sequence of ingredients com-
posing the recipe ingredient itself); in the implementation,
the list of ingredients is given by the URL serialization of
a recipe, possibly shortened, from which Boolean flags and
input are simply ignored. Input parameters of the recipe it-
self must be provided by facts. The sequence of interpre-
tations in input traverses all ingredients of the recipe in-
gredient, and is therefore processed as the ingredients of
the recipe ingredient were part of the main recipe. For-
mally, if (f , Ingredients , f)(sin) = [sout , S1, . . . , Sn], then
the recipe ingredient maps the sequence sin to the sequence
sout , and produces the side output [S1, . . . , Sn].

Example 11. Consider a recipe that Base64-encodes the in-
put and whose only ingredient is the recipe https://asp-chef.
alviano.net/ s/example@KR2024. For the input

foo,bar

Figure 8: The SudokuVisualizer recipe ingredient. By clicking
REGISTER the user has the possibility to add the ingredient as
a registered operation.

Figure 9: Registered recipe ingredients are available in the list of
operations, so that they can be added to the main recipe as any other
operation.

Figure 10: Documentation associated with the registered recipe.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

727

https://asp-chef.alviano.net/#eJzFk9tymz...
https://asp-chef.alviano.net/#eJzFk9tymz...
https://asp-chef.alviano.net/s/example@KR2024
https://asp-chef.alviano.net/s/example@KR2024
https://asp-chef.alviano.net/s/example@KR2024


Sudoku Visualizer
https://asp-chef.alviano.net/s/recipe-ingredients/Sudoku+Visualizer
Visualize a Sudoku instance or solution encoded by predicates `given/2` and `assign/2`.
Blocks are expected to be already materialized by the following program (where `size/1`

and `square/1` give the size of the Sudoku):
```asp
block((row, Row), (Row, Col)) :- Row = 1..Size, Col = 1..Size, size(Size).
block((col, Col), (Row, Col)) :- Row = 1..Size, Col = 1..Size, size(Size).
block((sub, Row', Col'), (Row, Col)) :- Row = 1..Size, Col = 1..Size, Row' = (Row-1) / S,

Col' = (Col-1) / S, size(Size), square(S).
```

Figure 11: URL and documentation to register the Sudoku Visualizer operation via the RegisterRecipes operation.

it produces

__cell__(1,1,"foo"). __cell__(1,2,"bar").

(and the input text as side output).
For a more interesting example, let us consider the input

t from Example 3. If the sequence of ingredients is extended
with (i) a SearchModels ingredient with the program in Ex-
ample 8, (ii) a SearchModels ingredient with the program
in Figure 4, (iii) a SearchModels ingredient with the pro-
gram in Figure 5, and (iv) a Graph ingredient with predicate
__graph__, the graphical representation shown in Figure 7
(left) is produced as a side output.

Further extending the recipe with (v) a SearchModels
ingredient with the program in Figure 6, (vi) a Search-
Models ingredient with the program in Figure 5, and
(vii) a Graph ingredient with predicate __graph__, the
graphical representation shown in Figure 7 (right) is
also produced as a side output. It can be observed
that (iii)–(iv) and (vi)–(vii) are the same sequence of
ingredients. They can be packed as a recipe, asso-
ciated with a short URL (https://asp-chef.alviano.net/ s/
recipe-ingredients/Sudoku+Visualizer) and replaced by two
recipe ingredients pointing to the short URL. The simpli-
fied recipe is accessible at https://asp-chef.alviano.net/ s/
sudoku-example@KR2024. ■

Recipe ingredients can be registered as new operations to
expand the list of operations supported by ASP CHEF. A reg-
istered recipe is stored in the local storage of the browser,
so to ease the reuse of the same recipe ingredient in multi-
ple recipes. When a registered recipe is added to the main
recipe, the list of ingredients of the main recipe is extended
with a recipe ingredient pointing to the URL of the registered
recipe. This way, the main recipe does not dependent on
the local storage of the browser, so that the main recipe can
still be shared with any other browser, even with no knowl-
edge about the registered recipes. Moreover, if the registered
recipe uses a short URL, in case the recipe is updated (i.e.,
the URL stored in GitHub is modified), all recipes using the
registered ingredient are automatically updated as well.

Example 12. The visualization of Sudoku instances and
their solutions is a good candidate for expanding the list of
operations supported by ASP CHEF, at least for those users
interested in Sudoku puzzles. Figure 8 shows a Recipe ingre-
dient pointing to the URL storing the Sudoku Visualizer. The

Recipe ingredient is assigned the name dumbo/Sudoku
Visualizer, which is also shown in the header of the
ingredient. If the user click the REGISTER button, the
list of operations is extended with the &r/dumbo/Sudoku
Visualizer operation, as shown in Figure 9. ■

Finally, ASP CHEF provides the RegisterRecipes oper-
ation, with parameters prefix and predicate , to register
recipes stored in atoms of the form predicate(Base64).
Here, Base64 is a Base64-encoded text whose first line is
the name of the recipe ingredient, the second line is its URL,
and any remaining line is used to provide the documenta-
tion for the registered recipe. The prefix is prepended to
the name of the recipe (to obtain a namespace mechanism to
further ease the sharing of recipes).

Example 13. Let the text shown in Figure 11 be the input of
a recipe that Base64-encodes its input and whose sequence
of ingredients comprises only a RegisterRecipes ingredient
with prefix dumbo and predicate __base64__. The new op-
eration &r/dumbo/Sudoku Visualizer is added to ASP
CHEF, and associated with the documentation shown in Fig-
ure 10. ■

5 Related Work
Various tools and frameworks supporting the development
of Answer Set Programming (ASP) programs have been pre-
sented in the literature, catering to different aspects of ASP-
based problem-solving. Notably, Integrated Development
Environments (IDEs) such as ASPIDE (Febbraro, Reale,
and Ricca 2011), SEALION (Busoniu et al. 2013), and
LOIDE (Calimeri et al. 2018) have been designed to facili-
tate the creation and management of ASP programs. While
ASPIDE and SEALION are desktop applications, LOIDE
stands out as a web-based IDE. In contrast, ASP CHEF, while
not intended to be an IDE, offers a unique browser-based en-
vironment for ASP-based problem-solving, leveraging tech-
nologies such as CLINGO-WASM to run ASP computations
entirely within the browser without the need for a backend
server; among the advantages of such a serverless approach
there is the possibility to develop proof-of-concept solvers
and interactive examples that can be shared within a sci-
entific article—e.g., see the fast prototyping approach pro-
posed in (Costantini and Formisano 2024) to address reduct-
based semantics for Epistemic Logic Programs. Addition-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

728

https://asp-chef.alviano.net/s/recipe-ingredients/Sudoku+Visualizer
https://asp-chef.alviano.net/s/recipe-ingredients/Sudoku+Visualizer
https://asp-chef.alviano.net/s/sudoku-example@KR2024
https://asp-chef.alviano.net/s/sudoku-example@KR2024


ally, several works have focused on simplifying the devel-
opment of ASP modules and microservices, aligning with
the goal of employing ASP in a non-monolithic manner
(Calimeri and Ianni 2006; Costantini and Gasperis 2018;
Cabalar, Fandinno, and Lierler 2020; Costantini, Gasperis,
and Lauretis 2021; Cabalar et al. 2023). These efforts share
common ground with ASP CHEF in promoting modular and
flexible ASP-based problem-solving approaches.

Visualization of ASP output has been addressed by vari-
ous tools and frameworks, including ASPVIZ (Cliffe et al.
2008), IDPD3 (Lapauw, Dasseville, and Denecker 2015),
and KARA (Kloimüllner et al. 2011), all of which utilize
predicates to describe graphical representations of ASP so-
lutions. Although these tools offer rich visualization capa-
bilities, they typically require additional software installa-
tions and may lack browser-based accessibility. More re-
cent endeavors, such as CLINGRAPH (Hahn et al. 2022) and
ASPECT (Bertagnon, Gavanelli, and Zanotti 2023), aim to
produce high-quality graphical representations of ASP solu-
tions, exportable in LATEX. The Graph operation introduced
in Section 3 aligns with the aforementioned efforts in visu-
alizing ASP output. While the current state of the Graph
operation may not match the richness of other visualization
tools in terms of features like animation, it offers distinct ad-
vantages such as browser-based accessibility and interactiv-
ity. Furthermore, as a side output within ASP CHEF recipes,
the Graph operation provides flexibility in showcasing inter-
mediate states of computational pipelines, enhancing trans-
parency and understanding in ASP-based problem-solving
processes and possibly reducing the number of debug ses-
sions with tools like DWASP-GUI (Dodaro et al. 2019). As a
final remark, we observe that ASP CHEF has the possibility
to interact with external servers, and some proof-of-concept
servers are available in the GitHub repository9 to interact
with CLINGRAPH and ASPECT.

6 Conclusion
ASP CHEF is a versatile tool built upon the principles of ASP.
Here we focused on one of its extension mechanism, using
the Graph operation as a practical example and use case.
The extension mechanism empowers users to register new
recipes as custom ingredients, expanding the capabilities of
the tool to accommodate a wide range of problem domains
and computational workflows. Looking ahead, ASP CHEF
has the potential for further development and refinement.
Future efforts could focus on expanding the library of avail-
able operations and ingredients, enhancing the usability and
user experience of the tool, and fostering a vibrant commu-
nity of users and contributors. For example, we started to
collect recipe ingredients to form a library10 whose opera-
tions can be selectively added to local ASP CHEF instantia-
tions.

Acknowledgments
This work was partially supported by Italian Ministry
of University and Research (MUR) under PRIN project

9https://github.com/alviano/asp-chef
10https://asp-chef.alviano.net/s/recipe-ingredients

PRODE “Probabilistic declarative process mining”, CUP
H53D23003420006 under PNRR project FAIR “Future AI
Research”, CUP H23C22000860006, under PNRR project
Tech4You “Technologies for climate change adaptation and
quality of life improvement”, CUP H23C22000370006, and
under PNRR project SERICS “SEcurity and RIghts in the
CyberSpace”, CUP H73C22000880001; by Italian Min-
istry of Health (MSAL) under POS projects CAL.HUB.RIA
(CUP H53C22000800006) and RADIOAMICA (CUP
H53C22000650006); by Italian Ministry of Enterprises
and Made in Italy under project STROKE 5.0 (CUP
B29J23000430005); and by the LAIA lab (part of the SILA
labs). Mario Alviano is a member of the Gruppo Nazionale
Calcolo Scientifico-Istituto Nazionale di Alta Matematica
(GNCS-INdAM).

References
Alviano, M.; Dodaro, C.; Fiorentino, S.; Previti, A.; and
Ricca, F. 2023. ASP and subset minimality: Enumeration,
cautious reasoning and muses. Artif. Intell. 320:103931.
Alviano, M.; Ianni, G.; Pacenza, F.; and Zangari, J. 2024.
Rethinking answer set programming templates. In Geb-
ser, M., and Sergey, I., eds., Practical Aspects of Declar-
ative Languages - 26th International Symposium, PADL
2024, London, UK, January 15-16, 2024, Proceedings, vol-
ume 14512 of Lecture Notes in Computer Science, 82–99.
Springer.
Alviano, M.; Cirimele, D.; and Reiners, L. A. R. 2023. In-
troducing ASP recipes and ASP chef. In ICLP Workshops,
volume 3437 of CEUR Workshop Proceedings. CEUR-
WS.org.
Balduccini, M.; Barborak, M.; and Ferrucci, D. A. 2023.
Pushing the limits of clingo’s incremental grounding and
solving capabilities in practical applications. Algorithms
16(3):169.
Bertagnon, A.; Gavanelli, M.; and Zanotti, F. 2023. AS-
PECT: answer set representation as vector graphics in la-
tex. In CILC, volume 3428 of CEUR Workshop Proceedings.
CEUR-WS.org.
Bertolucci, R.; Capitanelli, A.; Dodaro, C.; Leone, N.;
Maratea, M.; Mastrogiovanni, F.; and Vallati, M. 2021.
Manipulation of articulated objects using dual-arm robots
via answer set programming. Theory Pract. Log. Program.
21(3):372–401.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Busoniu, P.; Oetsch, J.; Pührer, J.; Skocovsky, P.; and Tom-
pits, H. 2013. Sealion: An eclipse-based IDE for answer-
set programming with advanced debugging support. Theory
Pract. Log. Program. 13(4-5):657–673.
Cabalar, P.; Fandinno, J.; Schaub, T.; and Wanko, P. 2023.
On the semantics of hybrid ASP systems based on clingo.
Algorithms 16(4):185.
Cabalar, P.; Fandinno, J.; and Lierler, Y. 2020. Modular
answer set programming as a formal specification language.
Theory Pract. Log. Program. 20(5):767–782.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

729

https://asp-chef.alviano.net/s/recipe-ingredients


Calimeri, F., and Ianni, G. 2006. Template programs for
disjunctive logic programming: An operational semantics.
AI Commun. 19(3):193–206.
Calimeri, F.; Germano, S.; Palermiti, E.; Reale, K.; and
Ricca, F. 2018. Developing ASP programs with ASPIDE
and LoIDE. Künstliche Intell. 32(2-3):185–186.
Cliffe, O.; Vos, M. D.; Brain, M.; and Padget, J. A. 2008.
ASPVIZ: declarative visualisation and animation using an-
swer set programming. In ICLP, volume 5366 of Lecture
Notes in Computer Science, 724–728. Springer.
Costantini, S., and Formisano, A. 2024. Solver fast proto-
typing for reduct-based ELP semantics. In Angelis, E. D.,
and Proietti, M., eds., Proceedings of the 39th Italian Con-
ference on Computational Logic, Rome, Italy, June 26-
28, 2024, volume 3733 of CEUR Workshop Proceedings.
CEUR-WS.org.
Costantini, S., and Gasperis, G. D. 2018. Dynamic goal
decomposition and planning in MAS for highly changing
environments. In CILC, volume 2214 of CEUR Workshop
Proceedings, 40–54. CEUR-WS.org.
Costantini, S.; Gasperis, G. D.; and Lauretis, L. D. 2021. An
application of declarative languages in distributed architec-
tures: ASP and DALI microservices. Int. J. Interact. Multim.
Artif. Intell. 6(5):66–78.
Dodaro, C.; Gasteiger, P.; Reale, K.; Ricca, F.; and Schekoti-
hin, K. 2019. Debugging non-ground ASP programs: Tech-
nique and graphical tools. Theory Pract. Log. Program.
19(2):290–316.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of answer set programming. AI Mag. 37(3):53–68.
Febbraro, O.; Reale, K.; and Ricca, F. 2011. ASPIDE: in-
tegrated development environment for answer set program-
ming. In LPNMR, volume 6645 of Lecture Notes in Com-
puter Science, 317–330. Springer.
Hahn, S.; Sabuncu, O.; Schaub, T.; and Stolzmann, T. 2022.
Clingraph: ASP-based visualization. In LPNMR, volume
13416 of Lecture Notes in Computer Science, 401–414.
Springer.
Kaminski, R.; Romero, J.; Schaub, T.; and Wanko, P. 2023.
How to build your own asp-based system?! Theory Pract.
Log. Program. 23(1):299–361.
Kloimüllner, C.; Oetsch, J.; Pührer, J.; and Tompits, H.
2011. Kara: A system for visualising and visual editing of
interpretations for answer-set programs. In INAP/WLP, vol-
ume 7773 of Lecture Notes in Computer Science, 325–344.
Springer.
Lapauw, R.; Dasseville, I.; and Denecker, M. 2015.
Visualising interactive inferences with IDPD3. CoRR
abs/1511.00928.
Lifschitz, V. 2019. Answer Set Programming. Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

730


	Introduction
	Background
	Answer Set Programming
	ASP Recipes and ASP Chef

	Graph Operation
	Recipe Operation and Serialization
	Related Work
	Conclusion

