KR2024Proceedings of the 21st International Conference on Principles of Knowledge Representation and ReasoningProceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning

Hanoi, Vietnam. November 2-8, 2024.

Edited by

ISSN: 2334-1033
ISBN: 978-1-956792-05-8

Sponsored by
Published by

Copyright © 2024 International Joint Conferences on Artificial Intelligence Organization

CE-QArg: Counterfactual Explanations for Quantitative Bipolar Argumentation Frameworks

  1. Xiang Yin(Imperial College London)
  2. Nico Potyka(Cardiff University)
  3. Francesca Toni(Imperial College London)

Keywords

  1. Argumentation-General
  2. Explanation, abduction and diagnosis-General

Abstract

There is a growing interest in understanding arguments' strength in Quantitative Bipolar Argumentation Frameworks (QBAFs). Most existing studies focus on attribution-based methods that explain an argument's strength by assigning importance scores to other arguments but fail to explain how to change the current strength to a desired one. To solve this issue, we introduce counterfactual explanations for QBAFs. We discuss problem variants and propose an iterative algorithm named Counterfactual Explanations for Quantitative bipolar Argumentation frameworks (CE-QArg). CE-QArg can identify valid and cost-effective counterfactual explanations based on two core modules, polarity and priority, which help determine the updating direction and magnitude for each argument, respectively. We discuss some formal properties of our counterfactual explanations and empirically evaluate CE-QArg on randomly generated QBAFs.