
Expressive Power of Definite Descriptions in Modal Logics

Przemysław Andrzej Wałęga1,2

1Department of Computer Science, University of Oxford,
2Department of Logic, University of Łódź

przemyslaw.walega@cs.ox.ac.uk

Abstract

Motivated by applications in knowledge representation and
reasoning, modal and description logics have been recently
extended with definite description operators. Such operators
provide us with a tool for referring to a particular element of
a model by stating a property satisfied only by this element.
This mechanism resembles the way we refer to objects in nat-
ural language, which makes it an attractive component of on-
tology and query languages. In this paper, we aim to provide a
tool for analysing the expressive power of logics with definite
descriptions. In particular, we introduce an adequate bisimu-
lation notion for the basic modal logic extended with definite
descriptions. We exploit the introduced bisimulation to re-
late expressive power of definite descriptions to other opera-
tors and we develop an algorithm for computing the maximal
bisimulation between a pair of models. Furthermore, we con-
sider a simplified setting, where expressions used in definite
descriptions do not mention modal operators. We show how
this restriction impacts our results.

1 Introduction
Definite descriptions are expressions aiming to refer to a
single element by stating its unique property, as in the fa-
mous example ‘the present king of France’ (Russell 1905).
Such expressions provide us with a natural way of re-
ferring to objects, which has been intensively studied by
logicians, linguists, and philosophers and gave rise to a
number of alternatives theories (Pelletier and Linsky 2005;
Hilbert and Bernays 1968; Rosser 1978; Lambert 2001).

In recent year, there is a renewed interest in formal as-
pects of definite descriptions. In particular, a number of
methods for automated reasoning with definite descriptions
have been proposed, including tableau systems, sequent cal-
culi, and natural deduction (Fitting and Mendelsohn 2023;
Indrzejczak and Zawidzki 2021; Indrzejczak and Zawidzki
2023; Indrzejczak 2019; Indrzejczak 2023; Orlandelli 2021;
Kürbis 2021a; Kürbis 2021b). There are also several suc-
cessful implementation, for example, in systems KeYamera
X (Bohrer, Fernández, and Platzer 2019), PROVER9 (Op-
penheimer and Zalta 2011), and Isabelle/HOL (Benzmüller
and Scott 2020; Blumson 2020).

Furthermore, definite descriptions gained interest in the
area of Knowledge Representation (Borgida, Toman, and
Weddell 2016a; Toman and Weddell 2018; Toman and Wed-

dell 2019b), as they introduce a natural way of identify-
ing objects (Borgida, Toman, and Weddell 2016b; Artale
et al. 2021), they can be used instead of object identi-
fiers (Borgida, Toman, and Weddell 2016b; Borgida, Toman,
and Weddell 2017), and as more informative answers to
queries (Toman and Weddell 2019a). In particular, defi-
nite descriptions have been studied in the setting of descrip-
tion logics, by introducing to the language a generalised
form of nominals of the form {ιC}, for a complex con-
cept C (Mazzullo 2022). The intended extension of {ιC}
is a singleton containing a unique element of the model of
which C holds. A similar approach has been considered
in modal logics by extending the (hybrid) satisfaction op-
erators @i. The standard satisfaction operator @i allows
us to refer to the unique modal world satisfying the nom-
inal i. To allow for complex definite descriptions, modal
logics have been recently extended with a generalisation
of @i to the form @ϕ, for arbitrarily complex formulas ϕ
(Wałęga and Zawidzki 2023). Such operators allow us to
express interesting properties, for example, @(¬♦>)> states
that ‘there exists exactly one modal world which has no
outgoing accessibility relation’, @(♦♦♦>)> states that ‘the
longest path (via accessibility relation) in the model is of
length 3’, and @(p∨¬ϕ)ϕ states that ‘formula ϕ holds in ev-
ery world (and p holds in exactly one world)’. In both modal
and description logic setting, recent research tries to deter-
mine what is the exact impact of adding definite descrip-
tions on the expressive power of the logic (Mazzullo 2022;
Wałęga and Zawidzki 2023).

A key tool for analysing and characterising expressive
power is a bisimulation (van Benthem 2014; Milner 1971;
Park 1981)—a relation between elements of two models,
which relates elements that are indistinguishable from the
perspective of a given formal language L. Two main prop-
erties, which are usually required from an adequate no-
tion of an L-bisimulation are the bisimulation invariance
and Hennessy-Milner properties. Bisimulation invariance
states that elements related by an L-bisimulation satisfy the
same formulas of the language L. Hennessy-Milner prop-
erty states that in image-finite (also called finite-branching)
models the opposite implication also holds. The restriction
to image-finite (or more generally, to ω-saturated) models
is essential, since for arbitrary infinite models this opposite
implication does not hold. Such adequate notions of bisimu-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

687

lations have been defined for a number of logics (Blackburn,
De Rijke, and Venema 2002; Areces, Hoffmann, and Denis
2010; De Rijke 1992; Artale et al. 2021), but despite recent
efforts, to the best of our knowledge there is a lack of an ade-
quate bisimulation for a basic modal logic (or basic descrip-
tion logic) extended with definite descriptions. In the case
of modal logic, the established bisimulation satisfies the in-
variance, but not the Hennessy-Milner property (Wałęga and
Zawidzki 2023). In the case of description logics, to obtain
an adequate notion of the bisimulation the language was ex-
tended with the universal modality (Artale et al. 2021). The
main challenge in introducing an adequate notion of a bisim-
ulation is due to the specific non-local behaviour of definite
descriptions, which is particularly hard to capture with con-
ditions imposed on a bisimulation. Indeed, the known con-
ditions used to define bisimulations do not seem to apply to
the case of definite descriptions.

We will aim to close this gap, by introducing a method for
constructing adequate bisimulations for logics with definite
descriptions. We will introduce such bisimulations (Sec-
tion 3) for a logicML(DD) obtained by extending the basic
modal logic with operators @ϕ, and for a logic BML(DD)
which restrictsML(DD) by allowing only for Boolean for-
mulas in the subscripts ϕ of operators @ϕ (both logics are
defined in Section 2). Our notions of bisimulations introduce
a new type of conditions, whose verification is non-trivial.
As we show, however, there is an efficient way of checking
these conditions, which we exploit to develop polynomial-
time algorithms computing maximal bisimulations between
pairs of models (Section 4). Moreover, we apply our notions
of bisimulatons to show that definite descriptions do not al-
low us to define the difference, everywhere, somewhere, and
counting operators (Section 5). Finally we briefly conclude
the paper (Section 6).

2 Modal Logic of Definite Descriptions
In what follows we present the modal logic of definite de-
scriptions ML(DD) (Wałęga and Zawidzki 2023), which
extends the basic modal language with operators for defi-
nite descriptions @ϕ. It allows us to write formulas @ϕψ
with intended meaning that ‘ψ holds in the world in which
ϕ holds‘. The logic exploits a Russellian-style semantics of
such operators, namely satisfiaction of @ϕψ requires exis-
tence and uniqueness of a world satisfying ϕ, as we describe
in details in what follows.

Syntax. Formulas of ML(DD) are generated by the
grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | @ϕϕ,

where p ranges over the set PROP of propositional vari-
ables. The grammar above is minimal, which makes the pre-
sentation of the logic and proving it’s properties more con-
cise, however, it will be sometimes convenient to also use
⊥, >, ∧,→, and �, which stand for standard abbreviations.
We let PROP(ϕ) be the set of all propositional variables oc-
curring in ϕ. We say that a formula is flat if it has no nesting
of @-operators. Note that @ can be nested in various ways,

for example as in @ϕ@ψη, or as in @(@ψη)ϕ; flat formulas
do not allow for any type of nesting.

Definite descriptions. Formulas of the form @ϕψ aim
to express definite descriptions. Observe that ϕ in the
subscript of @ can be complex, namely it can mention
Boolean connectives, diamond modal operator ♦, and @-
operator. It turns out that the form of the allowed sub-
scripts of @-operators impacts computational properties of
the logic (Wałęga and Zawidzki 2023). Therefore, we will
consider in the paper also the restriction ofML(DD), called
BML(DD), where only Boolean formulas are allowed in
the subscripts, that is, formulas ϕ which do not mention
modal operators and @-operators.

Semantics. Semantics ofML(DD) is given in a Kripke-
style, where a frame is a pair F = (W,R) consisting of a
non-empty set W of worlds and an accessibility relation
R ⊆ W ×W . A model based on a frame F = (W,R) is
a tuple M = (W,R, V), where V : PROP −→ P(W) is
a valuation assigning a set of worlds to each propositional
variable. The satisfaction relation |= for M = (W,R, V)
and w ∈W is defined inductively as follows:

M, w |= p iff w ∈ V (p), where p ∈ PROP

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ orM, w |= ψ

M, w |= ♦ϕ iff there exists v ∈W such that
(w, v) ∈ R andM, v |= ϕ

M, w |= @ϕψ iff there exists v ∈W such that
M, v |= ϕ andM, v |= ψ, and

M, v′ 6|= ϕ for all v′ 6= v in W

A formula ϕ is true in a model M, in symbols M |= ϕ,
if M, w |= ϕ for all worlds w in M. We say that ϕ is
satisfiable if there existM and w such thatM, w |= ϕ.

Complexity. It has been shown that satisfiability check-
ing of BML(DD)-formulas is PSpace-complete (Wałęga
and Zawidzki 2023, Theorem 5), so not harder than in
the basic modal logic ML. In ML(DD), where we al-
low for @-operators with arbitrary subscripts, satisfiability
checking becomes ExpTime-complete (Wałęga and Zaw-
idzki 2023, Theorem 4). In particular, ExpTime-hardness is
obtained by a reduction fromML enriched with the univer-
sal modality, in which satisfiability is known to be ExpTime-
complete (Blackburn, De Rijke, and Venema 2002). It is
worth to emphasize that this reduction requires using @-
operators with non-Boolean subscripts, and that the reduc-
tion provides anML(DD)-formula which is equisatisfiable,
but not equivalent to an inputML-formula using universal
modality. This observation will be important for our expres-
sive power results from Section 5.

3 Bisimulations
In this section we will introduce bisimulations forML(DD)
and BML(DD), as powerful model-theoretic tools for

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

688

analysing expressive power of definite descriptions. We will
aim to construct bisimulations which capture exactly the ex-
pressive power of these logics in the sense that our bisimu-
lations will satisfy both the bisimulation invariance and the
Hennessy-Milner properties. Recall that bisimulation invari-
ance states that formulas are invariant under the bisimula-
tion and the Hennessy-Milner property states that for image-
finite (also called finite-branching) models the opposite im-
plication also holds. A bisimulation which satisfies both of
these conditions, allows us to ‘capture exactly’ the expres-
sive power of a logic.

The task of constructing such bisimulations for logics
with definite descriptions is a particularly challenging task
that has not been achieved so far despite several attempts. In
particular, the previous attempts led to too strong conditions,
so that the bisimulation did not satisfy the Hennessy-Milner
property (Wałęga and Zawidzki 2023), or required extend-
ing the language with other operators, in particular with the
universal modality (Artale et al. 2021, Section 4). In what
follows we will show what are the main challenges regard-
ing constructing desired bisimulations and how to overcome
them.

3.1 Main Challenges
We will identify two main challenges regarding introduc-
tion of appropriate bisimulations for logics with definite de-
scriptions. They will allow us to illustrate why the stan-
dard bisimulation forML is inadequate forML(DD) and
BML(DD), as well as what kind of conditions are missing.

A standard bisimulation for ML, which we will call an
ML-bisimulation, between models M = (W,R, V) and
M′ = (W ′, R′, V ′) is any relation Z ⊆W ×W ′ such that
whenever (w,w′) ∈ Z, the following hold:

Atom: w and w′ satisfy the same propositional variables,

Zig: if there is v ∈ W such that (w, v) ∈ R, then there is
v′ ∈W ′ such (v, v′) ∈ Z and (w′, v′) ∈ R′,

Zag: if there is v′ ∈ W ′ such that (w′, v′) ∈ R′, then there
is v ∈W such (v, v′) ∈ Z and (w, v) ∈ R.

We will write M, w -ML M′, w′ if there is an ML-
bisimulation Z betweenM andM′ such that (w,w′) ∈ Z.

Let us now observe two main reasons why the standard
bisimulation does not capture the meaning of definite de-
scriptions. First, let us consider models M and M′ from
Figure 1(a) and the relation Z between their worlds. We can
observe that Z is anML-bisimulation, but bisimilar worlds
w1 and w′1 do not satisfy the sameML(DD)-formulas. In-
deed, M, w1 |= @q>, butM′, w′1 6|= @q>. This example
presents a crucial property of definite descriptions, namely
althoughw1 andw′1 satisfy the sameML-formulas and both
of these worlds have ‘names’—that is, within their mod-
els, they can be unambiguously referred to with someML-
formulas (e.g., q is a name of w1 inM and p is a name of
w′1 inM′)—these worlds do not satisfy the sameML(DD)-
formulas. The reason is that names of w1 inM and names
of w′1 inM′ are not all the same, for example, q is a name of
w1 inM, but it is not a name of w′1 inM′. The fact that the
names of w1 and w′1 are different, depends on the form of

other worlds in the models (w2, w3, w′2, and w′3), which are
neither related by the accessibility relation or by Z to worlds
w1 and w′1. Therefore an adequate definition of bisimula-
tion needs to involve specific ‘non-local’ conditions, unlike
the conditions of the standardML-bisimulation. As we will
show in Section 3.2, requiring that the names in models are
the same, is exactly the condition that is needed to obtain an
adequate definition of a bisimulation forML(DD).

w1
p, q

w2
p

w3
p

w′1
p, q

w′2
q

w′3
q

M

M |= @q>

M′

M′ 6|= @q>

Z

(a)

v1
p

v2

v′1
p

v′2

N

N |= @p♦>

N ′

N ′ 6|= @p♦>

Z ′

(b)

Figure 1: ML-bisimulations Z and Z′ which do not preserve sat-
isfiability of ML(DD)- and BML(DD)-formulas, respectively;
named worlds (see Definition 1) are marked with circles

This could suggest that in BML(DD), where definite de-
scriptions are Boolean, to obtain an adequate definition of
a bisimulation it is sufficient to assume that Boolean names
in two models are the same. Our second observation, how-
ever, shows that it is not the case. Indeed, consider models
N and N ′ from Figure 1 and a relation Z ′ between them.
We can observe that Z ′ is anML-bisimulation and Boolean
names ofN andN ′ coincide. However, bisimilar worlds v2
and v′2 do not satisfy the same BML(DD)-formulas; in par-
ticular, N , v2 |= @p♦>, but N ′, v′2 6|= @p♦>. This raises
additional challenges regarding an adequate definition of a
bisimulation for BML(DD). In Section 3.3 we will show
how to address this difficulty.

3.2 Bisimulation forML(DD)
Following the observation from Figure 1(a), we will define
an ML(DD)-bisimulation by introducing an additional re-
quirement that models have the same ‘names’. We start by
defining formally the notions of names and named worlds.
Definition 1. The set Names(M), of names in a model
M, consists of all ML-formulas ϕ such that ϕ is satis-
fied in a unique world of M. The set NamedWorlds(M),
of named worlds inM, consists of all worlds w inM such
thatM, w |= ϕ, for some ϕ ∈ Names(M).

Equivalently, Names(M) consists of all formulas ϕ such
that M |= @ϕ>. For example, q and p ∧ q are names in
the modelM from Figure 1(a), because these formulas hold
only at w1. Hence w1 is a named world. Note that in the
model M′ the formula p ∧ q is also a name, but q is not,
because it holds in multiple worlds (w′1, w′2, and w′3).

The observation from Figure 1(a) suggests that the exis-
tence of a non-empty ML(DD)-bisimulation between M

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

689

andM′ should require that Names(M) = Names(M′). In-
deed, if ϕ is a name inM, but not inM′, thenM |= @ϕ>,
but M 6|= @ϕ>. Therefore any bisimilar worlds w and
w′ from M and M′, respectively, do not satisfy the same
ML(DD)-formulas. What is even more interesting (and
which we will prove in this subsection) is that the require-
ment Names(M) = Names(M′) is extctly what we need to
add to the standard definition of anML-bisimulation. Thus
we define anML(DD)-bisimulation as follows.
Definition 2. A relation Z is anML(DD)-bisimulation be-
tweenM andM′ if Z = ∅ or both of the following hold:
• Z is anML-bisimulation betweenM andM′,
• Names(M) = Names(M′).
We writeM, w -ML(DD) M′, w′ if (w,w′) ∈ Z for some
ML(DD)-bisimulation Z betweenM andM′.

Note that we explicitly let the empty relation be an
ML(DD)-bisimulation, since the empty relation falls under
the definition of the standardML-bisimulation and we aim
to maintain a close analogy to the standard setting. This,
by the fact that ML(DD)-bisimulations are closed under
(finite and infinite) unions (Blackburn, De Rijke, and Ven-
ema 2002), implies that each pair of models has a unique
maximal ML(DD)-bisimulation. An exemplary maximal
ML(DD)-bisimulation is depicted in Figure 2. Note that
neither the relation from Figure 1(a) nor the one from Fig-
ure 1(b) is an ML(DD)-bisimulation, as required. This is
because the pairs of models fom these figures have different
names.

w1

w2
p

w3
p

w4

w′1

w′2
p

w′3
p

w′4

w′5
p

Z

M M’

Figure 2: A maximal ML(DD)-bisimulation; named worlds are
marked with circles

In the remaining part of this subsection we will prove that
our ML(DD)-bisimulation satisfies both the bisimulation
invariance and the Hennessy-Milner properties. In the proof
of the bisimulation invariance property we will use the fact
thatML(DD)-formulas can be transformed to the flat form,
where no nesting of @-operators occurs, as shown below.
Lemma 3. For each ML(DD)-formula there exists an
equivalent flatML(DD)-formula.

Proof sketch. To flatten a formula ϕ, we can construct an
exponentially long disjunction, where each disjunct is ob-
tained by replacing subformulas of ϕ with all possible com-
binations of > and ⊥. Our construction is similar to the
normalisation procedures for unary modal operators (Areces
and Gorín 2010), generalized quantifiers (Van Der Hoek and

De Rijke 1993, Theorem 2.11), and counting operators (Are-
ces, Hoffmann, and Denis 2010).

Now we will use Lemma 3 to prove the bisimulation in-
variance property.
Theorem 4 (Bisimulation invariance property for
ML(DD)). If M, w -ML(DD) M′, w′ then w and
w′ satisfy the sameML(DD)-formulas.

Proof. Let Z be an ML(DD)-bisimulation between mod-
els M = (W,R, V) and M′ = (W ′, R′, V ′) such that
(w,w′) ∈ Z, for some w ∈ W and w′ ∈ W ′. For an ar-
bitraryML(DD)-formula ϕ we will show thatM, w |= ϕ
if and only ifM′, w′ |= ϕ. To this end, we will construct an
ML-formula ψ such thatM |= ϕ↔ ψ andM′ |= ϕ↔ ψ.
Constructing such ψ will finish the proof because Z is an
ML-bisimulation, and so, Bisimulation Invariance Lemma
forML implies the required equivalence.

By Lemma 3 we can assume that ϕ is flat. Moreover we
assume that ϕ mentions some @-operator, as otherwise it
suffices to let ψ = ϕ. Hence, ϕ has a single subformula of
the form @ηϑ, for someML-formulas η and ϑ. We let

ψ =

{
ϕ[>/@ηϑ], if {η, (η ∧ ϑ)} ⊆ Names(M),

ϕ[⊥/@ηϑ], otherwise,

where ϕ[α/β] is obtained from ϕ by replacing β with α.
Next we will show thatM |= ϕ ↔ ψ. If {η, (η ∧ ϑ)} ⊆

Names(M), we obtain thatM |= @η> andM |= @η∧ϑ>.
Hence M |= @ηϑ, and so M |= ϕ ↔ ϕ[>/@ηϑ]. If
{η, (η ∧ ϑ)} 6⊆ Names(M), we obtain that M 6|= @η> or
M 6|= @η∧ϑ>. In both of these casesM 6|= @ηϑ, therefore
M |= ϕ↔ ϕ[⊥/@ηϑ]. ConsequentlyM |= ϕ↔ ψ.

To show thatM′ |= ϕ↔ ψ it suffices to observe that, by
the definition of anML(DD)-bisimulation, Names(M) =
Names(M′), and to repeat the argumentation above.

Next we show the Hennessy-Milner property for
ML(DD). Similarly as in the standard Hennessy-Milner
Theorem for ML, we will assume that models are image-
finite.
Theorem 5 (Hennessy-Milner property forML(DD)). As-
sume thatM andM′ are image-finite models. It holds that
M, w -ML(DD) M′, w′ if and only if w and w′ satisfy the
sameML(DD)-formulas.

Proof. The left-to-right implication follows from Theo-
rem 4. For the opposite implication assume that the
same ML(DD)-formulas hold at a world w in M and
at a world w′ in M′. Thus the same ML-formulas
hold in these worlds, and so, by the Hennessy-Milner
Theorem for ML (Blackburn, De Rijke, and Venema
2002)[Theorem 2.24], there exists an ML-bisimulation Z
between M and M′ such that (w,w′) ∈ Z. We will
show that Z is also an ML(DD)-bisimulation, that is,
Names(M) = Names(M′). Indeed, if ϕ ∈ Names(M),
then M, w |= @ϕ>. Since the same ML(DD)-formulas
hold at w and w′, we obtain that M′, w′ |= @ϕ>, and so
ϕ ∈ Names(M′). Analogously, ϕ ∈ Names(M′) implies
that ϕ ∈ Names(M), so Names(M) = Names(M′).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

690

As we will show in the next subsection, adapting the def-
inition ofML(DD)-bisimulation to the case of BML(DD)
is not straightforward and requires introducing additional
conditions.

3.3 Bisimulation for BML(DD)
We start by observing that the requirement Names(M) =
Names(M′) is too strong do define a bisimulation for
BML(DD). Indeed, worlds related by Z in Figure 3
satisfy the same BML(DD)-formulas, but Names(M) 6=
Names(M′); in particular ♦p and ¬p ∧ ¬♦p are names in
M (of the worlds w1 and w2, respectively), but they are not
names inM′.

w3
p

w1 w2

w′3
p

w′1 w′2

Z

M

M |= @♦p>

M’

M′ 6|= @♦p>

Figure 3: A BML(DD)-bisimulation which is not an ML(DD)-
bisimulation; named worlds are marked with circles and worlds
with Boolean names are marked with squares

Since BML(DD)-formulas allow in the subscripts of @-
operators for Boolean formulas only, it will be useful to con-
sider Boolean names and worlds with Boolean names as de-
fined below.
Definition 6. Boolean names of a model M is the set
NamesB(M) = {ϕ ∈ Names(M) | ϕ is Boolean}. The set
NamedWorldsB(M), of worlds inM with Boolean names,
consists of all worlds w in M such that M, w |= ϕ, for
some ϕ ∈ NamesB(M).

Boolean names form a subset of all names; similarly
worlds with Boolean names (marked with squares in Fig-
ure 3) form a subset of all named worlds. It turns out,
however, that replacing Names with NamesB in Defini-
tion 2 of an ML(DD)-bisimulation does not allow us
to obtain an appropriate definition of a bisimulation for
BML(DD), as illustrated in Figure 4. Indeed, Z therein
is anML-bisimulation and NamesB(M) = NamesB(M′),
but Z-related worlds w3 and w′3 do not satisfy the same
BML(DD)-formulas. In particular M, w3 6|= @p♦>, but
M′, w′3 |= @p♦>.

Thus, the condition Names(M) = Names(M′) is too
strong and the condition NamesB(M) = NamesB(M′) is
too weak for an appropriate definition of an BML(DD)-
bisimulation. In what follows we show how to provide con-
ditions appropriate for BML(DD).
Definition 7. A relation Z is a BML(DD)-bisimulation be-
tween modelsM andM′ if Z = ∅ or the following hold:
• Z is anML-bisimulation betweenM andM′,
• NamesB(M) = NamesB(M′),

w3

w1 w2

p

w′3

w′1 w′2
p

Z

M

M, w3 6|= @p♦>

M’

M′, w′3 |= @p♦>

Figure 4: A relation which is not a BML(DD)-bisimulation, al-
though NamesB(M) = NamesB(M′); worlds with Boolean names
are marked with squares

• Dom: the domain of Z contains NamedWorldsB(M),
• Rng: the range of Z contains NamedWorldsB(M′).
We writeM, w -BML(DD)M′, w′ if (w,w′) ∈ Z for some
BML(DD)-bisimulation Z betweenM andM′.

As an example of a BML(DD)-bisimulation consider Z
from Figure 3. Next we show thatBML(DD)-bisimulations
satisfy the bisimulation invariance and Hennessy-Milner
properties. It is worth noting that proofs of these prop-
erties for BML(DD) significantly differ from proofs for
ML(DD). In particular our proof of the bisimulation in-
variance lemma forML(DD) heavily relies on the fact that
Names(M) can mention arbitrary ML-formulas, whereas
the proof of the Hennessy-Milner property for ML(DD)
uses the fact that if Names(M) = Names(M′), then each
ML-bisimulation betweenM andM′ is also anML(DD)-
bisimulation. Analogous statements, however, do not hold in
BML(DD).
Theorem 8 (Bisimulation invariance property for
BML(DD)). If M, w -BML(DD) M′, w′ then w
and w′ satisfy the same BML(DD)-formulas.

Proof. Assume that Z is a BML(DD)-bisimulation be-
tween M = (W,R, V) and M′ = (W ′, R′, V ′) such that
(w,w′) ∈ Z, for some w ∈ W and w′ ∈ W ′. We will
show by induction on the structure of a BML(DD)-formula
ϕ, thatM, w |= ϕ if and only ifM′, w′ |= ϕ. Since each
BML(DD)-bisimulation is also an ML-bisimulation, the
base case (when ϕ is a propositional variable) and the in-
ductive step for ϕ of the forms ¬ψ, ψ ∨ η, and ♦ψ can be
shown in the same way as in the proof of the Bisimulation
Invariance Lemma forML (Blackburn, De Rijke, and Ven-
ema 2002; Blackburn, Van Benthem, and Wolter 2007).

The remaining case in the inductive step, when ϕ is of the
form @ψη, is non-standard. If M, w |= @ψη, there exists
v ∈W such thatM, v |= ψ,M, v |= η, and no world u 6= v
in M satisfies ψ. Since @ψη is a BML(DD)-formula, ψ
is a Boolean formula which belongs to NamesB(M) and
v ∈ NamedWorldsB(M). Therefore, by Condition Dom,
there exists v′ ∈ W ′ such that (v, v′) ∈ Z. By the in-
ductive assumption M′, v′ |= ψ and M′, v′ |= η. Hence,
to prove that M′, w′ |= @ψη, it remains to show that ψ
is not satisfied in any world distinct from v′ in M′, that is
ψ ∈ NamesB(M′). This, however, follows from the fact

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

691

that ψ ∈ NamesB(M) and NamesB(M) = NamesB(M′).
ThusM, w |= @ψη implies thatM′, w′ |= @ψη, and in a
symmetric way we can show the opposite implication.

Theorem 9 (Hennessy-Milner property for BML(DD)).
Assume that M and M′ are image-finite models. Then
M, w -BML(DD) M′, w′ if and only if w and w′ satisfy
the same BML(DD)-formulas.

Proof. The left-to-right implication follows from Theo-
rem 8. For the opposite implication let M = (W,R, V),
M′ = (W ′, R′, V ′), and let ! be the BML(DD)-
equivalence relation betweenM andM′, that is, the relation
overW ×W ′ such that w! w′ if and only if w and w′ sat-
isfy the same BML(DD)-formulas. If! is empty, the im-
plication holds vacuously. Hence, we assume that v! v′,
for some v ∈ W and v′ ∈ W ′. We will show that! is a
BML(DD)-bisimulation.

We start by observing that NamesB(M) = NamesB(M′).
Indeed, if ϕ ∈ NamesB(M) and ϕ /∈ NamesB(M′), then
M, v |= @ϕ>, but M′, v′ 6|= @ϕ>. Thus v 6! v′. To
show that! is anML-bisimulation, we can use the same
argumentation as in the proof of Hennessy-Milner property
forML, which shows that theML-equivalence is anML-
bisimulation (Blackburn, De Rijke, and Venema 2002)[The-
orem 2.24]. It remains to show that ! satisfies Condi-
tions Dom and Rng. To show that ! satisfies Condition
Dom, we assume that w ∈ NamedWorldsB(M), for some
w ∈ W . Hence, there exists ϕ ∈ NamesB(M) which is
satisfied only in w. Since NamesB(M) = NamesB(M′),
ϕ ∈ NamesB(M′), and so, there is a unique world w′ ∈W ′
such that M′, w′ |= ϕ. We claim that w ! w′. In-
deed, ifM, w |= ψ, for some BML(DD)-formula ψ, then
M, v |= @ϕψ. As v! v′, we obtain thatM′, v′ |= @ϕψ,
and since w′ is the only world in M′ which satisfies ϕ,
we obtain that M′, w′ |= ψ. Similarly we can show that
M′, w′ |= ψ implies thatM, w |= ψ. Hence we conclude
that the domain of! contains NamedWorldsB(M), that is,
! satisfies Condition Dom. The proof for Condition Rng
is symmetric.

As we have shown, ML(DD)- and BML(DD)-
bisimulations satisfy both the bisimulation invariance and
the Hennessy-Milner properties. The question arises, how-
ever, how to check if a given relation satisfies the new condi-
tions introduced in our definitions of bisimulations. In par-
ticular, how can we check if Names(M) = Names(M′)
and NamesB(M) = NamesB(M′)? In the next section we
will show not only that these conditions can be checked ef-
ficiently (in polynomial time), but also that we can check
them by using known algorithms for constructing the stan-
dardML-bisimulation.

4 Algorithms
In this section we will show algorithms which, given a pair
of models, compute maximal ML(DD)- and BML(DD)-
bisimulations between them. Since models are given as an
input, we assume in this section that both of them are finite.

4.1 Algorithm forML(DD)
In general, our method of computing the maximal
ML(DD)-bisimulation between models M and M′, will
consist in constructing the maximalML-bisimulation Z be-
tween them and checking if Names(M) = Names(M′). If
Names(M) = Names(M′), we will output Z, and other-
wise we will output ∅. Clearly, the main challenge is to
check whether Names(M) = Names(M′). Note that find-
ing a formula which witnesses the fact that Names(M) 6=
Names(M′) cannot be done in a brute force manner, as there
are infinitely many ML-formulas which can be a name in
one model but not in the other.

The main result of this subsection is that checking if
Names(M) = Names(M′) can be performed efficiently
based on the form of Z. In particular, the next theorem
shows that checking if Names(M) = Names(M′) reduces
to checking if Z is a total relation and if the restriction of
Z to NamedWorlds(M) × NamedWorlds(M′) is also total.
This provides us with a very efficient and practical approach
for checking whether Names(M) = Names(M′). Note
that, for clarity of presentation, we assume in the theorem
that Names(M) 6= ∅ and Names(M′) 6= ∅, which can be
easily checked, as we will discuss afterwards.

Theorem 10. Let M and M′ be finite models such that
Names(M) 6= ∅ and Names(M′) 6= ∅. Then the follow-
ing statements are equivalent:

1. Names(M) = Names(M′),
2. the maximal ML-bisimulation Z between M and
M′ is a total relation and the restriction of Z to
NamedWorlds(M)× NamedWorlds(M′) is also total1.

Proof. Assume first that Statement 2 holds. To show that
Statement 1 holds, fix ϕ ∈ Names(M). HenceM, w |= ϕ,
for some w ∈ NamedWorlds(M). By Statement 2 the re-
striction of Z to NamedWorlds(M) × NamedWorlds(M′)
is a total relation, so there is w′ ∈ NamedWorlds(M′)
such that (w,w′) ∈ Z. Hence, by Bisimulation Invariance
Lemma forML, we obtain thatM′, w′ |= ϕ. To prove that
ϕ ∈ Names(M′) it remains to show that there is no v′ in
M′ which is distinct from w′ and such that M′, v′ |= ϕ.
Suppose towards a contradiction that there exists such v′.
By Statement 2 relation Z is total, so there exists v in M
such that (v, v′) ∈ Z, and since Z is anML-bisimulation,
M, v |= ϕ. Moreover, since ϕ ∈ Names(M), we obtain
that v = w. Hence, we have shown that (w,w′) ∈ Z and
(w, v′) ∈ Z which, by the Bisimulation Invariance Lemma
forML, implies w′ and v′ satisfy the sameML-formulas.
Therefore, w′ /∈ NamedWorlds(M), which raises a contra-
diction. We can show analogously that ϕ ∈ Names(M′)
implies that ϕ ∈ Names(M). Hence Statement 1 holds.

For the opposite implication assume that Statement 1
holds and let Z be the maximal ML-bisimulation be-
tween M and M′. To show Statement 2, we need to
show that Z and its restriction to NamedWorlds(M) ×
NamedWorlds(M′) are total. For this, it suffices to show:

1In the paper by a total relation we mean a relation which is
both left-total and right-total.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

692

(i) for any world w inM, if w ∈ NamedWorlds(M), then
there is w′ ∈ NamedWorlds(M′) such that (w,w′) ∈ Z,
and if w /∈ NamedWorlds(M), there is some w′ in M′
such that (w,w′) ∈ Z, and

(ii) for any world w′ in M′, if w′ ∈ NamedWorlds(M′),
there is w ∈ NamedWorlds(M) such that (w,w′) ∈ Z,
and if w′ /∈ NamedWorlds(M′), there is some world w in
M such that (w,w′) ∈ Z.

In what follows we will focus on showing Statement (i) since
the proof of Statement (ii) is analogous.

Assume that w ∈ NamedWorlds(M). Hence there is
ϕ ∈ Names(M) such that M, w |= ϕ. By Statement 1
we obtan that ϕ ∈ Names(M′), so M′, w′ |= ϕ for some
w′ ∈ NamedWorlds(M′). We will show that (w,w′) ∈ Z.
By the Hennessy-Milner property for ML and the fact
that M and M′ are finite (so in particular image-finite),
it suffices to show that w and w′ satisfy the same ML-
formulas ψ. If M, w |= ψ, then ϕ ∧ ψ holds in M only
at w, and so, (ϕ ∧ ψ) ∈ Names(M). Thus, by Statement 1,
(ϕ ∧ ψ) ∈ Names(M′), and so,M′, w′ |= ϕ ∧ ψ. Analo-
gouslyM′, w′ |= ψ implies thatM, w |= ψ, so w and w′
indeed satisfy the sameML-formulas.

Next we assume that w /∈ NamedWorlds(M). Since
Names(M′) 6= ∅, there is some v′ ∈ NamedWorlds(M′).
We let U = W ∪W ′ be the union of worlds W inM and
worlds W ′ inM′ (we assume that W and W ′ are disjoint)
and we let! be theML-equivalence relation over U . For
each u ∈ U we let ϕu be an arbitrarily chosenML-formula
which holds at u (in the model containing this world), but
which does not hold at any u′ ∈ U such that u′ 6! u
(the existence of ϕu follows from the fact that both W and
W ′ are finite). We define ϕ =

∧
u∈W ′\{v′} ¬ϕu. Since

v′ ∈ NamedWorlds(M′), we obtain that v′ 6! u for each
u ∈ W ′ \ {v′}, and so, M′, v′ |= ϕ. Moreover, v′ is the
only world in M′ which satisfies ϕ, so ϕ ∈ Names(M′).
Hence, by Statement 1, ϕ ∈ Names(M). Now suppose to-
wards a contradiction that there is no w′ ∈ W ′ such that
(w,w′) ∈ Z. Thus, by the Hennessy-Milner property for
ML, we obtain that w 6! w′, for all w′ ∈ W ′. Therefore,
by the definition of ϕ, we obtain that M, w |= ϕ. Hence
w ∈ NamedWorlds(M), which raises a contradiction.

Equipped with Theorem 10 we are ready to provide
Algorithm 1, which computes the maximal ML(DD)-
bisimulation between a pair of models. The algorithm
computes three maximal ML-bisimulations: Z between
M and M′ (Line 1), Z1 between M and itself (Line 2),
and Z2 between M′ and itself (Line 3). Bisimulations
Z1 and Z2 are used to compute, respectively, N =
NamedWorlds(M) in Line 4 and N ′ = NamedWorlds(M′)
in Line 5. If N = N ′ = ∅, then neither M or
M′ have named worlds. Hence, the maximal ML(DD)-
bisimulation is Z, and so, the algorithm returns it in Line 6.
If one of N and N ′ is empty but the other is not, then
NamedWorlds(M) 6= NamedWorlds(M′), and so the max-
imal ML(DD)-bisimulation is the empty relation. Hence,
the algorithm returns ∅ in Line 7. Otherwise, the algorithm
checks conditions from Statement 2 in Theorem 10. If they

are satisfied, Z is returned in Line 8. If not, the maximal
ML(DD)-bisimulation is the empty relation, which is re-
turned in Line 9.

Algorithm 1: MaximalML(DD)-bisimulation
Input: modelsM = (W,R, V),M′ = (W ′, R′, V ′)
Output: the maximalML(DD)-bisimulation

betweenM andM′
1 Z := MAXBSIMML(M,M′);
2 Z1 := MAXBSIMML(M,M);
3 Z2 := MAXBSIMML(M′,M′);
4 N := {w ∈W | (w, v) 6∈ Z1 for all v 6= w in W};
5 N ′ := {w ∈W ′ | (w, v) 6∈ Z2 for all v 6= w in W ′};
6 if N = N ′ = ∅ then return Z;
7 if N = ∅ 6= N ′ or N ′ 6= ∅ = N ′ then return ∅;
8 if Z is total over W ×W ′ and Z ∩ (N ×N ′) is total

over N ×N ′ then return Z;
9 else return ∅;

Theorem 11. Algorithm 1 outputs the maximalML(DD)-
bisimulation betweenM andM′.

Proof. Since Z computed in the algorithm is the maximal
ML-bisimulation betweenM andM′, the output of the al-
gorithm needs to be Z if Names(M) = Names(M′), and ∅
otherwise. SinceM is finite, by the Hennessy-Milner prop-
erty for ML, the set Names(M) consists of all worlds in
M which are not ML-bisimilar with any other world in
M. ThusN computed in Line 4 coincides with Names(M),
whereas the set N ′ from Line 5 is Names(M′). If N =
N ′ = ∅ then Names(M) = Names(M′), so Z is correctly
returned in Line 6. If one ofN andN ′ is empty but the other
is not, then NamedWorlds(M) 6= NamedWorlds(M′), so ∅
is correctly returned in Line 7. Otherwise, Names(M) 6= ∅
and Names(M′) 6= ∅. Hence, Names(M) = Names(M′)
if and only if Statement 2 from Theorem 10 holds true. The
conditions checked in Line 8 coincides with Statement 2 so
if they hold, the algorithm correctly returns Z in Line 8, and
otherwise it correctly returns ∅ in Line 9

It is worth to observe that our computation of the maxi-
malML(DD)-bisimulation is feasible in polynomial time.
Indeed, computing the maximalML-bisimulation between
two models is feasible in polynomial time and so are all ad-
ditional computations of Algorithm 1.

Theorem 12. Algorithm 1 terminates in polynomial time.

Importantly, Algorithm 1 not only terminates in polyno-
mial time, but also most of its computations consist in con-
structing standardML-bisimulations. This allows us to del-
egate most of the work to an off-the-shelf approach for com-
puting the standardML-bisimulation.

4.2 Algorithm for BML(DD)
To construct the maximal BML(DD)-bisimulation be-
tween models M and M′, it is crucial to check
whether NamesB(M) = NamesB(M′). Each element of
NamesB(M) ∪ NamesB(M) is a Boolean formula over the

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

693

signature of M and M′ (i.e., over the set of propositional
variables satisfied inM orM′). There is a bounded num-
ber of non-equivalent formulas among them, so one could
determine which of them belong to NamesB(M) and which
to NamesB(M′). The number of the formulas to check, how-
ever, is exponentially large. Instead, we will introduce a
polynomial procedure which exploits the following modi-
fication of Theorem 10, where PC is propositional calculus
and we say that two worlds are PC-equivalent if they satisfy
the same Boolean formulas.

Theorem 13. Let M and M′ be finite models such that
NamesB(M) 6= ∅ and NamesB(M′) 6= ∅. Then the fol-
lowing statements are equivalent:

1. NamesB(M) = NamesB(M),
2. the PC-equivalence relation between worlds in M

and M′ is a total relation, and its restriction to
NamedWorldsB(M)× NamedWorldsB(M′) is also total.

Proof sketch. The proof is similar to the one from Theo-
rem 10. The main difference is that we replace Names
with NamesB, NamedWorlds with NamedWorldsB, andML-
bisimulation with PC-equivalence.

We exploit Theorem 13 to compute, in polynomial
time, the maximal BML(DD)-bisimulation between a pair
of input models M and M′. Our approach is pre-
sented in Algorithm 2. The algorithm computes the set
N = NamedWorldsB(M) in Line 2 and the set N ′ =
NamedWorldsB(M′) in Line 3. However, unlike exploit-
ing ML-bisimulations Z1 and Z2 in Algorithm 1, the sets
N and N ′ are computed in Algorithm 2 directly, namely
by comparing the sets PROP(w) of propositional variables
which hold in a given world w. Then, in Line 6, the PC-
equivalence E between worlds ofM andM′ is computed.
Relation E and Theorem 13 are used in Line 6, similarly as
Z and Theorem 10 are used in Algorithm 1.

Algorithm 2: Maximal BML(DD)-bisimulation
Input: modelsM = (W,R, V),M′ = (W ′, R′, V ′)
Output: the maximal BML(DD)-bisimulation

betweenM andM′
1 Z := MAXBSIMML(M,M′);
2 N := {w ∈W | PROP(w) 6= PROP(v) for all

v 6= w in W};
3 N ′ := {w′ ∈W ′ | PROP(w′) 6= PROP(v′) for all

v′ 6= w′ in W ′};
4 if N = N ′ = ∅ then return Z;
5 if N = ∅ 6= N ′ or N ′ 6= ∅ = N ′ then return ∅;
6 E := {(w,w′) | PROP(w) = PROP(w′) where

w ∈W and w′ ∈W ′};
7 if E is total over W ×W ′ and E ∩ (N ×N ′) is total

over N ×N ′ then return Z;
8 else return ∅;

Theorem 14. Algorithm 2 outputs the maximal
BML(DD)-bisimulation betweenM andM′.

Proof. Algorithm 2 has a similar structure to Algorithm 1,
so after showing that N is NamedWorldsB(M), N ′ is
NamedWorldsB(M′), and E is the PC-equivalence be-
tween worlds in M and M′, we can apply an analo-
gous argumentation as in Theorem 11. To show that N is
NamedWorldsB(M), assume that w ∈ N . Therefore, by
Line 2, PROP(w) 6= PROP(v), for all v ∈ W distinct
from w. Hence,

∧
p∈PROP(w) p ∧

∧
p∈PROP\PROP(w) ¬p is

a name of w, where PROP is the signature of M (i.e.,
the set of all propositional variables which are satisfied in
some worlds of M). Thus, w ∈ NamedWorldsB(M). If
w ∈ NamedWorldsB(M), then there is a Boolean formula
ϕ which holds only in w, and so, there is no v 6= w in
M such that PROP(w) = PROP(v). Therefore w ∈ N .
Similarly we can show that N ′ = NamedWorldsB(M′). Fi-
nally, PROP(w) = PROP(w′) means thatw andw′ arePC-
equivalent, so E computed in Line 8 is the PC-equivalence
relation, as required.

We observe that all the computations in Algorithm 2 are
feasible in polynomial time. This, in particular, includes
computing the maximalML-bisimulation betweenM and
M′, sets N and N ′, as well as the relation E. Thus the
following result holds.

Theorem 15. Algorithm 2 terminates in polynomial time.

4.3 Comparison of Bisimulations
We can observe that, as one would expect from
appropriate notions of ML(DD)-, BML(DD)-, and
ML-bisimulations, ML(DD)-bisimilar worlds are also
BML(DD)-bisimilar, and BML(DD)-bisimilar worlds are
alsoML-bisimilar. Moreover, which is also desired, we can
show that none of the opposite implications hold.

Proposition 16. The following hold:
ifM, w -ML(DD)M′, w′, thenM, w -BML(DD)M′, w′,
ifM, w -BML(DD)M′, w′, thenM, w -MLM′, w′,
for any modelM with a world w and any modelM′ with a
world w′. However, none of the opposite implications holds.

Proof. By the definition, every BML(DD)-bisimulation is
anML-bisimulation, soM, w -BML(DD) M′, w′ implies
that M, w -ML M′, w′. The example from Figure 1 (a)
shows that the opposite implication does not hold and the ex-
ample from Figure 3 shows thatM, w -BML(DD) M′, w′
does not implyM, w -ML(DD)M′, w′.

It remains to show that M, w -ML(DD) M′, w′ im-
plies that M, w -BML(DD) M′, w′. If M, w -ML(DD)

M′, w′, then Names(M) = Names(M′) and there ex-
ists anML(DD)-bisimulation Z betweenM andM′ such
that (w,w′) ∈ Z. If Names(M) = Names(M′) =
∅, then NamesB(M) = NamesB(M′) = ∅, and
so, Conditions Dom and Rng hold vacuously. Hence,
Z is a BML(DD)-bisimulation and M, w -BML(DD)

M′, w′. If Names(M) = Names(M′) 6= ∅, then we
let Z ′ be the maximal ML(DD)-bisimulation between
M and M′. Hence, by Theorem 10, the restriction

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

694

of Z ′ to NamedWorlds(M) × NamedWorlds(M′) is to-
tal. Since NamedWorldsB(M) ⊆ NamedWorlds(M) and
NamedWorldsB(M′) ⊆ NamedWorlds(M′), Conditions
Dom and Rng hold, so Z ′ is a BML(DD)-bisimulation.
Moreover (w,w′) ∈ Z ′, soM, w -ML(DD)M′, w′.

Note that in this section we assumed that models are finite,
which we used in the proof above. In particular we used this
assumption to apply Theorem 10. Our hypothesis is that in
the case of infinite modelsM, w -ML(DD)M′, w′ also im-
plies thatM, w -BML(DD) M′, w′, but we leave verifying
this hypothesis for future work.

5 Application of the New Bisimulations
In this section we will apply the newly introduced bisimula-
tions to show what operators are not definable inML(DD)
and BML(DD). To show that some operator O is not
expressible in a language L, it suffices to provide an L-
bisimulation relating a world w to a world w′ such that a
formula with operator O holds in w but not in w′. In this
way we will show thatML(DD) (and so, also BML(DD))
cannot define the following broadly studied modal opera-
tors: the difference operator D, the everywhere (also known
as the universal) operator A, its dual somewhere operator E,
and the counting operators ∃≥n for all positive integers n.
Semantics of these operators is as follows:

M, w |= Dϕ iff M, v |= ϕ, for some v 6= w,

M, w |= Aϕ iff M, v |= ϕ, for all worlds v,
M, w |= Eϕ iff M, v |= ϕ, for some world v,
M, w |= ∃≥nϕ iff M, v |= ϕ, for at least n distinct v.

Theorem 17. The following are not definable inML(DD):
the difference operator D, the everywhere operator A, the
somewhere operator E, and counting operators ∃≥n for all
positive integers n.

Proof. To show the D, A, and E are not definable in
ML(DD) we construct models M and M′ together with
an ML(DD) bisimulation Z between them, as depicted in
Figure 5(a). It suffices to observe that M, w1 |= Ap, but
M′, w′1 6|= Ap. AlsoM, w1 6|= D¬p, butM′, w′1 |= D¬p.
Moreover,M, w1 6|= E¬p, butM′, w′1 |= E¬p.

Next we show that ∃≥n, for any n ≥ 1, is not definable
inML(DD). If n = 1 then ∃≥n coincides with E which, as
we have shown, is not definable inML(DD). To show that
∃≥n with n ≥ 2 is also not definable, we construct models
N andN ′, as well as anML(DD)-bisimulation Z ′ between
them, as presented in Figure 5(b). Since (v1, v

′
1) ∈ Z ′ and

N , v1 6|= ∃≥np, but N ′, v′1 |= ∃≥np, the result follows.

Theorem 17 reveals an interesting relation between defi-
nite descriptions and the everywhere operator A. On the one
hand, satisfiability checking in modal logic with A reduces
in logarithmic space to satisfiability checking inML(DD)
and both problems are ExpTime-complete (Wałęga and Za-
widzki 2023, Theorem 4). On the other hand, as shown in
Theorem 17, there is no equivalence preserving translation
from modal logic with A toML(DD).

w1

p

w2

p

w3

p

w4

p

w′1
p

w′2
p

w′3

w′4

M

M, w1 |= Ap
M, w1 6|= D¬p
M, w1 6|= E¬p

M′

M′, w′1 6|= Ap
M′, w′1 |= D¬p
M′, w′1 |= E¬p

Z

(a)

v1

v2

v′1

v′2

u′1
p
...
u′n

p

N

N , v1 6|= ∃≥np

N ′

N ′, v′1 |= ∃≥np

Z ′

(b)

Figure 5: ML(DD)-bisimulations Z and Z′ witnessing non-
definability of D, A, E, and ∃≥n in ML(DD)

6 Conclusions

In this paper we have introduced bisimulations adequate for
the propositional modal logic with definite descriptions; in
particular, for the logic ML(DD) where definite descrip-
tion operators @ϕ can mention arbitrarily complex formu-
las ϕ, and for the logic BML(DD) where subscripts ϕ
of the definite description operators can be Boolean for-
mulas only. Our notions of ML(DD)- and BML(DD)-
bisimulations satisfy both the bisimulation invariance and
Hennessy-Milner properties, which makes them important
tools for studying expressive power of the corresponding
logics.

To establish desired notions of bisimulations, we have in-
troduced a new type of conditions, which requires that mod-
els have the same names. Checking if models M and M′
have the same names is a non-trivial task, but we managed
to show that it can be verified by inspecting the form of the
maximal ML-bisimualtion between M and M′. This al-
lowed us to provide polynomial-time algorithms for com-
puting maximal ML(DD)- and BML(DD)-bisimulations
between a pair of models. Most of the computations per-
formed by these algorithms consists in constructing standard
ML-bisimulations, which can be delegated to off-the-shelf
methods. Finally, we have applied our notions of bisimula-
tions, to show that neitherML(DD) nor BML(DD) is ex-
pressive enough to define the difference, everywhere, some-
where, and counting operators.

To the best of our knowledge, requiring that models have
the same names is a novel condition, which has not been
considered in the research on bisimulations (Blackburn,
De Rijke, and Venema 2002; Areces, Hoffmann, and Denis
2010; De Rijke 1992; Artale et al. 2021). We believe that
this condition can be useful for introducing bisimulations
for a wider range of modal logics with definite descriptions,
including description, temporal, and spatial logics. In future
we plan to verify this hypothesis.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

695

Acknowledgments
I am thankful to Matthias Lanzinger for discussing distin-
guishability in modal logics, Valentin Goranko for com-
menting on the correspondence between various types of
bisimulations in modal logics, and Michał Zawidzki for sug-
gesting improvements of presentation.

This research is funded by the European Union (ERC, Ex-
tenDD, project number: 101054714). Views and opinions
expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

References
Areces, C., and Gorín, D. 2010. Coinductive models and
normal forms for modal logics (or how we learned to stop
worrying and love coinduction). Journal of Applied Logic
8(4):305–318.
Areces, C.; Hoffmann, G.; and Denis, A. 2010. Modal logics
with counting. In Proc. of WoLLIC, 98–109.
Artale, A.; Mazzullo, A.; Ozaki, A.; and Wolter, F. 2021. On
free description logics with definite descriptions. In Proc. of
KR, 63–73.
Benzmüller, C., and Scott, D. S. 2020. Automating free
logic in HOL, with an experimental application in category
theory. Journal of Automated Reasoning 64(1):53–72.
Blackburn, P.; De Rijke, M.; and Venema, Y. 2002. Modal
Logic, volume 53.
Blackburn, P.; Van Benthem, J.; and Wolter, F. 2007. Hand-
book of Modal Logic, volume 3.
Blumson, B. 2020. Anselm’s God in Isabelle/HOL.
Bohrer, B.; Fernández, M.; and Platzer, A. 2019. dLι: Def-
inite descriptions in differential dynamic logic. In Proc. of
CADE, 94–110.
Borgida, A.; Toman, D.; and Weddell, G. 2016a. On refer-
ring expressions in information systems derived from con-
ceptual modelling. In Proc. of ER, 183–197.
Borgida, A.; Toman, D.; and Weddell, G. 2016b. On refer-
ring expressions in query answering over first order knowl-
edge bases. In Proc. of KR.
Borgida, A.; Toman, D.; and Weddell, G. E. 2017. Con-
cerning referring expressions in query answers. In Proc. of
IJCAI, 4791–4795.
De Rijke, M. 1992. The modal logic of inequality. The
Journal of Symbolic Logic 57(2):566–584.
Fitting, M., and Mendelsohn, R. L. 2023. First-order modal
logic, volume 480. Springer Nature.
Hilbert, D., and Bernays, P. 1968. Grundlagen der Mathe-
matik I, volume 40.
Indrzejczak, A., and Zawidzki, M. 2021. Tableaux for free
logics with descriptions. In Proc. of TABLEAUX, 56–73.

Indrzejczak, A., and Zawidzki, M. 2023. When iota meets
lambda. Synthese 201(2):1–33.
Indrzejczak, A. 2019. Fregean description theory in proof-
theoretic setting. Logic and Logical Philosophy 28(1):137–
155.
Indrzejczak, A. 2023. Russellian definite description
theory—A proof-theoretic approach. The Review of Sym-
bolic Logic 16(2):624–649.
Kürbis, N. 2021a. A binary quantifier for definite descrip-
tions for cut free free logics. Studia Logica.
Kürbis, N. 2021b. Definite descriptions in intuitionist pos-
itive free logic. Logic and Logical Philosophy 30(2):327–
358.
Lambert, K. 2001. Free logic and definite descriptions. In
New Essays in Free Logic, volume 23. 37–48.
Mazzullo, A. 2022. Finite Traces and Definite Descriptions.
A Knowledge Representation Journey. Ph.D. Dissertation,
Free University of Bozen-Bolzano.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. Citeseer.
Oppenheimer, P. E., and Zalta, E. N. 2011. A
computationally-discovered simplification of the ontolog-
ical argument. Australasian Journal of Philosophy
89(2):333–349.
Orlandelli, E. 2021. Labelled calculi for quantified modal
logics with definite descriptions. Journal of Logic and Com-
putation 31(3):923–946.
Park, D. 1981. Concurrency and automata on infinite se-
quences. In Proc. of GI-Conference, 167–183.
Pelletier, F. J., and Linsky, B. 2005. What is Frege’s theory
of descriptions. In On Denoting: 1905–2005. 195–250.
Rosser, J. B. 1978. Logic for Mathematicians.
Russell, B. 1905. On denoting. Mind 14(56):479–493.
Toman, D., and Weddell, G. E. 2018. Identity resolution
in conjunctive querying over DL-based knowledge bases. In
Proc. of DL.
Toman, D., and Weddell, G. 2019a. Finding all answers to
OBDA queries using referring expressions. In Proc. of AI,
117–129.
Toman, D., and Weddell, G. 2019b. Identity resolution in
ontology based data access to structured data sources. In
Proc. of PRICAI, 473–485.
van Benthem, J. 2014. Modal correspondence theory. Ph.D.
Dissertation, University of Amsterdam.
Van Der Hoek, W., and De Rijke, M. 1993. Generalized
quantifiers and modal logic. Journal of Logic, Language
and Information 2(1):19–58.
Wałęga, P. A., and Zawidzki, M. 2023. Hybrid modal oper-
ators for definite descriptions. In Proc. of JELIA, 712–726.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

696

	Introduction
	Modal Logic of Definite Descriptions
	Bisimulations
	Main Challenges
	Bisimulation for ML(DD)
	Bisimulation for BML(DD)

	Algorithms
	Algorithm for ML(DD)
	Algorithm for BML(DD)
	Comparison of Bisimulations

	Application of the New Bisimulations
	Conclusions

