
Complexity of Weighted First-Order Model Counting in the Two-Variable
Fragment with Counting Quantifiers: A Bound to Beat

Jan Tóth , Ondřej Kuželka
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

{tothjan2, ondrej.kuzelka}@fel.cvut.cz

Abstract
We study the time complexity of weighted first-order model
counting (WFOMC) over the logical language with two vari-
ables and counting quantifiers. The problem is known to be
solvable in time polynomial in the domain size. However,
the degree of the polynomial, which turns out to be relatively
high for most practical applications, has never been prop-
erly addressed. First, we formulate a time complexity bound
for the existing techniques for solving WFOMC with count-
ing quantifiers. The bound is already known to be a poly-
nomial with its degree depending on the number of cells of
the input formula. We observe that the number of cells de-
pends, in turn, exponentially on the parameters of the count-
ing quantifiers appearing in the formula. Second, we propose
a new approach to dealing with counting quantifiers, reduc-
ing the exponential dependency to a quadratic one, therefore
obtaining a tighter upper bound. It remains an open ques-
tion whether the dependency of the polynomial degree on the
counting quantifiers can be reduced further, thus making our
new bound a bound to beat.

1 Introduction
The weighted first-order model counting (WFOMC) prob-
lem was originally proposed in the area of lifted inference
as a method to perform probabilistic inference over statis-
tical relational learning (SRL) models on the lifted level
(Van den Broeck et al., 2011). It allowed, among other
things, fast learning of various SRL models (Van Haaren
et al., 2015). However, its applications have ranged be-
yond (symbolic) probabilistic reasoning since then, includ-
ing conjecturing recursive formulas in enumerative combi-
natorics (Barvı́nek et al., 2021) and discovering combinato-
rial integer sequences (Svatoš et al., 2023).

Regardless of the particular application context, WFOMC
is also used to define a class of tractable (referred to as
domain-liftable) modeling languages, i.e., languages which
permit WFOMC computation in time polynomial in the do-
main size. The logical fragment with two variables was the
first to be identified as such (Van den Broeck, 2011; Van den
Broeck, Meert, and Darwiche, 2014). Negative result prov-
ing that logic with three variables contains #P1-complete
counting problems followed (Beame et al., 2015), spawn-
ing many attempts to recover at least some of the expressive
power provided by three and more variables, yet retaining
the domain-liftability property.

Kazemi et al. (2016) introduced two new liftable classes,
namely S2FO2 and S2RU. Kuusisto and Lutz (2018) ex-
tended the two-variable fragment with one function con-
straint and showed such language to be domain-liftable, too.
That result was later generalized to the two-variable frag-
ment with counting quantifiers, denoted by C2 (Kuželka,
2021). Moreover, several axioms can be added on top of
the counting quantifiers, still retaining domain-liftability as
well (van Bremen and Kuželka, 2021b; Tóth and Kuželka,
2023; Malhotra and Serafini, 2023; Malhotra, Bizzaro, and
Serafini, 2023).

It follows from the domain-liftability of C2 that WFOMC
computation time over formulas from C2 can be upper-
bounded by a polynomial in the domain size. However, it
turns out that the polynomial’s degree depends exponentially
on the particular counting quantifiers appearing in the for-
mula. In this paper, we propose a new approach to dealing
with counting quantifiers, when computing WFOMC over
C2, which decreases the degree’s dependency on the count-
ing parameters from an exponential to a quadratic one, lead-
ing to a super-exponential speedup overall.1

2 Background
Notation-wise, we adhere to the standard way of writing
both algebraic and logical formulas. For readability pur-
poses, we sometimes use · to denote multiplication, and
other times, as is also common, we drop the operation sign.
We use boldface letters such as x to denote vectors and for
any n ∈ N, [n] denotes the set {1, 2, . . . , n}.

2.1 First-Order Logic
We work with a function-free subset of first-order logic
(FOL). A particular language is defined by a finite set of
variables V , a finite set of constants (also called the domain)
∆ and a finite set of predicates P . Assuming a predicate
P ∈ P with arity k, we also write P/k ∈ P . An atom has
the form P (t1, t2, . . . , tk) where P/k ∈ P and ti ∈ ∆ ∪ V
are called terms. A literal is an atom or its negation. A set
of formulas can be then defined inductively. Both atoms and
literals are formulas. Given some formulas, more complex
formulas may be formed by combining them using logical

1This paper is accompanied by a technical report available at
https://arxiv.org/abs/2404.12905.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

676

https://arxiv.org/abs/2404.12905

connectives or by surrounding them with a universal (∀x) or
an existential (∃x) quantifier where x ∈ V .

A variable x in a formula is called free if the formula con-
tains no quantification over x; otherwise, x is called bound.
A formula is called a sentence if it contains no free variables.
A formula is called ground if it contains no variables.

We use the definition of truth (i.e., semantics) from Her-
brand Logic (Hinrichs and Genesereth, 2006). A language’s
Herbrand Base (HB) is the set of all ground atoms that can
be constructed given the sets P and ∆. A possible world,
usually denoted by ω, is any subset of HB. Atoms contained
in a possible world ω are considered to be true, the rest, i.e.,
those contained in HB \ ω, are considered false. The truth
value of a more complex formula in a possible world is de-
fined naturally. A possible world ω is a model of a formula
φ (denoted by ω |= φ) if φ is satisfied in ω.

FOL Fragments We often do not work with the entire lan-
guage of FOL but rather some of its fragments. The simplest
fragment we work with is the logic with at most two vari-
ables, denoted as FO2. As the name suggests, any formula
from FO2 contains at most two logical variables.

The second fragment that we consider is the two-variable
fragment with cardinality constraints. We keep the restric-
tion of at most two variables, but we recover some of the
expressive power of logics with more variables by introduc-
ing an additional syntactic construct, namely a cardinality
constraint (CC). We denote such language as FO2 + CC.
CCs have the form (|P | = k), where P ∈ P and k ∈ N.
Intuitively, such a cardinality constraint is satisfied in ω if
there are exactly k ground atoms with predicate P therein.

Finally, the fragment that we pay most of our attention to
is the two-variable logic with counting quantifiers, denoted
by C2. A counting quantifier is a generalization of the tra-
ditional existential quantifier. For a variable x ∈ V , a quan-
tifier of the form (∃=kx), where k ∈ N, is allowed by our
syntax. Satisfaction of formulas with counting quantifiers
is defined naturally, similar to the satisfaction of cardinal-
ity constraints. For example, ∃=kx ψ(x) is satisfied in ω if
there are exactly k constants {A1, A2, . . . , Ak} ⊆ ∆ such
that ∀i ∈ [k] : ω |= ψ(Ai).2

Note the distinction between cardinality constraints
and counting quantifiers. While the counting formula
∃=kx R(x) can be equivalently written using a single cardi-
nality constraint (|R| = k), the formula ∀x∃=ky R(x, y) no
longer permits such a simple transformation.

2.2 Weighted First-Order Model Counting
Let us start by formally defining the task that we study.

Definition 1. (Weighted First-Order Model Counting) Let φ
be a formula over a fixed logical language L. Let (w,w) be

2Both CCs and counting quantifiers can also be defined to allow
inequality operators. However, in the techniques that we study, in-
equalities are handled by transforming them to equalities (Kuželka,
2021). After such transformation, one must repeatedly solve the
case with equalities only. Hence, for brevity, we present only that
one case.

a pair of weight functions assigning a weight to each predi-
cate in L. Let n be a natural number. DenoteMOD(φ, n)
the set of all models of φ on a domain on size n. We define
WFOMC(φ, n,w, w) =∑

ω∈MOD(φ,n)

∏
l∈ω

w(pred(l))
∏

l∈HB\ω

w(pred(l)),

where the function pred maps each literal to its predicate.
In general, WFOMC is a difficult problem. There exists

a sentence with three logical variables, for which the com-
putation is #P1-complete with respect to n (Beame et al.,
2015). However, for some logical languages, WFOMC can
be computed in time polynomial in the domain size, which
is also referred to as the language being domain-liftable.
Definition 2. (Domain-Liftability) Consider a logical lan-
guage L. The language is said to be domain-liftable if and
only if for any fixed φ ∈ L and any n ∈ N, it holds that
WFOMC(φ, n,w, w) can be computed in time polynomial
in n.

Thus, when we study domain-liftable languages, we fo-
cus on the time complexity with respect to the domain size,
which is assumed to be the only varying input. That is
also called data complexity of WFOMC in other literature
(Beame et al., 2015).

In the remainder of this text, it is often the case that we
reduce one WFOMC computation (instance) to another over
a different (larger) formula, possibly with fresh (not appear-
ing in the original vocabulary) predicates. Even then, the
assumed input language remains fixed in the context of the
new WFOMC instance. Moreover, if we do not specify
some of the weights for the new predicates, they are assumed
to be equal to 1.

The first language proved to be domain-liftable was the
language of UFO2, i.e., universally quantified FO2 (Van den
Broeck, 2011), which was later generalized to the entire FO2

fragment (Van den Broeck, Meert, and Darwiche, 2014).
The original proof, making use of first-order knowledge
compilation (Van den Broeck et al., 2011), was later refor-
mulated using 1-types (which we call cells) from logic liter-
ature (Beame et al., 2015).
Definition 3. (Valid Cell) A cell of a first-order formula φ
is a maximal consistent conjunction of literals formed from
atoms in φ using only a single variable. Moreover, a cell
C(x) of a first-order formula φ(x, y) is valid if and only if
φ(t, t) ∧ C(t) is satisfiable for any constant t ∈ ∆.
Example 1. Consider φ = G(x) ∨H(x, y).
Then φ has four cells:

C1(x) = ¬G(x) ∧ ¬H(x, x),

C2(x) = ¬G(x) ∧H(x, x),

C3(x) = G(x) ∧ ¬H(x, x),

C4(x) = G(x) ∧H(x, x).

However, only cells C2, C3 and C4 are valid.
Another domain-liftable language is FO2+CC. WFOMC

over FO2+CC is solved by repeated calls to an oracle solv-
ing WFOMC over FO2. The number of required calls de-
pends on the arities of predicates that appear in cardinality

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

677

constraints. Consider Υ =
∧m

i=1 (|Ri| = ki) and let us de-
note α(Υ) =

∑m
i=1 (arity(Ri) + 1). For an FO2+CC for-

mula Γ = Φ ∧ Υ such that Φ ∈ FO2 and Υ same as above,
we will require nα calls to the oracle (Kuželka, 2021).

Having defined WFOMC, valid cells, and function α, we
can state known upper bounds for computing WFOMC over
FO2 and FO2 + CC. We concentrate those results into a
single theorem.

Theorem 1. Let Γ be an FO2 sentence with p valid cells.
Let Υ =

∧m
i=1 (|Ri| = ki) be m cardinality constraints,

where R1, R2, . . . , Rm are some predicates from the lan-
guage of Γ and each ki ∈ N. For any n ∈ N and any fixed
weights (w,w), WFOMC(Γ, n, w, w) can be computed in
time O(np+1), and WFOMC(Γ ∧ Υ, n, w, w) can be com-
puted in time O(nα(Υ) · np+1). Since both the bounds are
polynomials in n, both languages are domain-liftable.

The first bound follows from the cell-based domain-
liftability proof (Beame et al., 2015).3 The second bound
follows from Propositions 4 and 5 in Kuželka (2021).

It is important to note that Theorem 1 assumes all math-
ematical operations to take constant time. Hence, the theo-
rem omits factors relating to bit complexity, which Kuželka
(2021) also addresses. However, those factors remain the
same in all transformations that we consider. Therefore, we
omit them for improved readability. For a more detailed dis-
cussion on bit complexity, see the accompanying technical
report.

2.3 Solving WFOMC with Counting Quantifiers
Yet another domain-liftable language is the language of C2.
WFOMC over C2 is solved by a reduction to WFOMC over
FO2 + CC (Kuželka, 2021). The reduction consists of sev-
eral steps that we review in the lemmas below. The lemmas
concentrate results from other publications. Hence, we make
appropriate references to each of them.

First, we review a specialized Skolemization procedure for
WFOMC (Van den Broeck, Meert, and Darwiche, 2014),
which turns an arbitrary FO2 sentence into a UFO2 sen-
tence. Since all algorithms for solving WFOMC over FO2

expect a universally quantified sentence as an input, this is
a paramount procedure. Compared to the source publica-
tion, we present a slightly modified Skolemization proce-
dure. The modification is due to Beame et al. (2015).

Lemma 1. Let Γ = Q1x1Q2x2 . . . QkxkΦ(x1, . . . , xk) be
a first-order sentence in prenex normal form with each quan-
tifier Qi being either ∀ or ∃ and Φ being a quantifier-
free formula. Denote by j the first position of ∃. Let
x = (x1, . . . , xj−1) and φ(x, xj) = Qj+1xj+1 . . . QkxkΦ.

3The state-of-the-art algorithm for computing WFOMC over
FO2, i.e., FastWFOMC, improves the bound considerably in some
cases (van Bremen and Kuželka, 2021a). However, as the improve-
ments are not guaranteed in the general case, we work with this
bound as an effective worst case. Moreover, as we demonstrate in
the experimental section, our new encoding described further in the
text improves the FastWFOMC runtime for C2 sentences reduced
to FO2 + CC as well.

Set
Γ′ = ∀x ((∃xjφ(x, xj))⇒ A(x)) ,

where A is a fresh predicate. Then, for any n ∈ N and any
weights (w,w) with w(A) = 1 and w(A) = −1, it holds
that

WFOMC(Γ, n, w, w) = WFOMC(Γ′, n, w, w).

Lemma 1 suggests how to eliminate one existential quan-
tifier. By transforming the implication inside Γ′ into a dis-
junction, we obtain a universally quantified sentence. Re-
peating the procedure for each sentence in the input formula
will eventually lead to one universally quantified sentence.

Next, we present a technique to eliminate negation of a
subformula without distributing it inside. The procedure
builds on ideas from the Skolemization procedure, and it was
presented as Lemma 3.4 in Beame et al. (2015). It was also
described as a relaxed Tseitin transform in Meert, Vlasse-
laer, and Van den Broeck (2016).
Lemma 2. Let ¬ψ(x) be a subformula of a first-order logic
sentence Γ with k free variables x = (x1, . . . , xk). Let C/k
and D/k be two fresh predicates with w(C) = w(C) =
w(D) = 1 and w(D) = −1. Denote Γ′ the formula
obtained from Γ by replacing the subformula ¬ψ(x) with
C(x). Let Υ = (∀x C(x) ∨D(x)) ∧ (∀x C(x) ∨ ψ(x)) ∧
(∀x D(x) ∨ ψ(x)). Then, it holds that

WFOMC(Γ, n, w, w) = WFOMC(Γ′ ∧Υ, n, w, w).

Finally, we move to dealing with counting quantifiers.4
We start with a single counting quantifier. The approach
follows from Lemma 3 in Kuželka (2021).
Lemma 3. Let Γ be a first-order logic sentence. Let Ψ be a
C2 sentence such that Ψ = ∃=kx R(x). Let Ψ′ = (|R| = k)
be a cardinality constraint. Then, it holds that

WFOMC(Γ ∧Ψ, n, w, w) = WFOMC(Γ ∧Ψ′, n, w, w).

Next, we deal with a specific case of a formula quantified
as ∀∃=k. The following lemma was Lemma 2 in Kuželka
(2021)
Lemma 4. Let Γ be a first-order logic sentence. Let Ψ be a
C2 sentence such that Ψ = ∀x∃=ky R(x, y). Let Υ be an
FO2 + CC sentence defined as

Υ = (|R| = k · n) ∧ (∀x∀y R(x, y)⇔
k∨

i=1

fi(x, y))

∧
∧

1≤i<j≤k

(∀x∀y fi(x, y)⇒ ¬fj(x, y))

∧
k∧

i=1

(∀x∃y fi(x, y)),

where fi/2 are fresh predicates not appearing anywhere
else. Then, it holds that

WFOMC(Γ ∧Ψ, n, w, w) =
WFOMC(Γ ∧Υ, n, w, w)

(k!)n
.

4For brevity, the counting subformula in Lemmas 3, 4 and 5
contains only a single atom on a predicate R. That does not im-
pede generality as the atom may represent a general subformula
φ equated to the atom using an additional universally quantified
sentence, i.e., ∀x R(x) ⇔ φ(x) or ∀x∀y R(x, y) ⇔ φ(x, y).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

678

Algorithm 1 Converts C2 formulas into UFO2 + CC
Input: Sentence Γ ∈ C2

Output: Sentence Γ∗ ∈ UFO2 + CC
1: for all sentence ∃=kx ψ(x) in Γ do
2: Apply Lemma 3
3: end for
4: for all sentence ∀x∃=ky ψ(x, y) in Γ do
5: Apply Lemma 4
6: end for
7: for all subformula φ(x) = ∃=ky ψ(x, y) in Γ do
8: Create new predicates R/2 and A/1
9: Let µ← ∀x∀y R(x, y)⇔ ψ(x, y)

10: Let ν ← ∀x A(x)⇔ (∃=ky R(x, y))
11: Apply Lemmas 2, 5, and 4 to ν
12: Replace φ(x) by A(x)
13: Append µ ∧ ν to Γ
14: end for
15: for all sentence with an existential quantifier in Γ do
16: Apply Lemma 1
17: end for
18: return Γ

Finally, we present a case that helps deal with an arbitrary
counting formula. It was originally presented as Lemma 4
in Kuželka (2021).

Lemma 5. Let Γ be a first-order logic sentence. Let Ψ be
a C2 sentence such that Ψ = ∀x A(x) ∨ (∃=ky R(x, y)).
Define Υ = Υ1 ∧Υ2 ∧Υ3 ∧Υ4 such that

Υ1 = ∀x∀y ¬A(x)⇒ (R(x, y)⇔ BR(x, y))

Υ2 = ∀x∀y (A(x) ∧BR(x, y))⇒ UR(y))

Υ3 = (|UR| = k)

Υ4 = ∀x∃=ky BR(x, y),

where UR/1 and BR/2 are fresh predicates not appearing
anywhere else. Then, it holds that

WFOMC(Γ ∧Ψ, n, w, w) =
WFOMC(Γ ∧Υ, n, w, w)(

n
k

) .

Algorithm 1 shows how to combine the lemmas above to
reduce WFOMC over C2 to WFOMC over UFO2 + CC.

3 An Upper Bound for Existing Techniques
As we have already mentioned above, WFOMC(φ, n,w,w)
for φ ∈ FO2 + CC can be computed in time O(np+1+α),
where p is the number of valid cells of φ (Beame et al.,
2015; Kuželka, 2021) and α =

∑m
i=1 (arity(Ri) + 1) with

R1, R2, . . . , Rm being all the predicates appearing in cardi-
nality constraints. Let us see how the bound increases when
computing WFOMC over C2.

3.1 A Worked Example on Removing Counting
To be able to compute WFOMC of a particular C2 sentence,
we must first encode the sentence in UFO2 + CC. Let us

start with an example of applying Algorithm 1 to do just
that.

Consider computing WFOMC(φ, n,w,w) for the sen-
tence

φ = ∃=kx∃=ly ψ(x, y), (1)
where ψ is a quantifier-free formula from the two-variable
fragment and k, l ∈ N.

First, let us introduce two new fresh predicates, namely
R/2 and P/1. The predicate R will replace the formula
ψ and P will do the same for the counting subformula
∃=ly ψ(x, y). Specifically, we obtain

φ(1) =
(
∃=kx P (x)

)
(2)

∧
(
∀x P (x)⇔

(
∃=ly R(x, y)

))
. (3)

∧ (∀x∀y R(x, y)⇔ ψ(x, y)) (4)

While Sentence 2 is already easily encoded using a single
cardinality constraint as Lemma 3 suggests, Sentence 3 re-
quires more work. Let us split the sentence into two impli-
cations:

φ(2) = (|P | = k) ∧ (∀x∀y R(x, y)⇔ ψ(x, y)) (5)

∧
(
∀x P (x)⇒

(
∃=ly R(x, y)

))
(6)

∧
(
∀x P (x)⇐

(
∃=ly R(x, y)

))
. (7)

Sentence 6 can easily be rewritten into a form processable
by Lemma 5, whereas Sentence 7 will first need to be trans-
formed using Lemma 2, since the sentence can be rewrit-
ten as

∀x P (x) ∨ ¬
(
∃=ly R(x, y)

)
.

After applying Lemma 2, we obtain

φ(3) = (|P | = k) ∧ (∀x∀y R(x, y)⇔ ψ(x, y)) (8)

∧
(
∀x P (x) ∨

(
∃=ly R(x, y)

))
(9)

∧
(
∀x C(x) ∨

(
∃=ly R(x, y)

))
(10)

∧
(
∀x D(x) ∨

(
∃=ly R(x, y)

))
(11)

∧ (C(x) ∨D(x)) ∧
(
∀x P (x)⇔ ¬P (x)

)
, (12)

with w(D) = −1. Apart from applying Lemma 2, we also
introduced another fresh predicate P/1, which wraps the
negation of P for brevity further down the line.

Next, we need to apply Lemma 5 three times to Sentences
9 through 11. The repetitions can, luckily, be avoided. By
the distributive property of conjunctions and disjunctions,
we can factor P/1, C/1 and D/1 out from the sentences,
thus obtaining

φ(4) = (|P | = k) ∧ (∀x∀y R(x, y)⇔ ψ(x, y)) (13)

∧
(
∀x F (x)⇔

(
C(x) ∧D(x) ∧ P (x)

))
(14)

∧
(
∀x F (x) ∨

(
∃=ly R(x, y)

))
(15)

∧ (C(x) ∨D(x)) ∧
(
∀x P (x)⇔ ¬P (x)

)
, (16)

Let us denote Tl(K,L) the transformation result when ap-
plying Lemma 5 to a sentence(

∀x K(x) ∨
(
∃=ly L(x, y)

))
,

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

679

which is now the form of Sentence 15. After that applica-
tion, our original sentence φ becomes

φ(5) = (|P | = k) ∧ (∀x∀y R(x, y)⇔ ψ(x, y))

∧ Tl(F,R) ∧
(
∀x F (x)⇔

(
C(x) ∧D(x) ∧ P (x)

))
∧ (C(x) ∨D(x)) ∧

(
∀x P (x)⇔ ¬P (x)

)
.

We are still not done. The result of Lemma 5 still con-
tains another counting quantifier. Specifically, the sentence
Tl(K,L) contains the subformula

∀x∃=ly BL(x, y),

whereBL/2 is a fresh predicate. We need Lemma 4 to elim-
inate this counting construct. Using said lemma will turn
Tl(K,L) into

T ′
l (K,L) = ∀x∀y ¬K(x)⇒

(
L(x, y)⇔ BL(x, y)

)
(17)

∧ ∀x∀y (K(x) ∧BL(x, y))⇒ UL(y)) (18)

∧
(
|UL| = l

)
∧
(
|BL| = n · l

)
(19)

∧ ∀x∀y BL(x, y)⇔
l∨

i=1

fi(x, y) (20)

∧
∧

1≤i<j≤l

(∀x∀y fi(x, y)⇒ ¬fj(x, y)) (21)

∧
l∧

i=1

(∀x∃y fi(x, y)) . (22)

We have obtained an FO2 +CC sentence. Unfortunately,
we are still unable to directly compute WFOMC for such
a formula either. The problem lies in the l sentences mak-
ing up Formula 22, each containing an existential quantifier.
Following Lemma 1, we can replace each ∀x∃y fi(x, y)
with ∀x∀y ¬fi(x, y) ∨ Ai(x), where Ai/1 is a fresh pred-
icate with w(Ai) = −1 for each i. Denote T ′′

l (K,L) the
result of applying such change to T ′

l (K,L). Finally, we ob-
tain a UFO2 + CC sentence

φ∗ = (|P | = k) ∧ (∀x∀y R(x, y)⇔ ψ(x, y))

∧ T ′′
l (F,R) ∧

(
∀x F (x)⇔

(
C(x) ∧D(x) ∧ P (x)

))
∧ (C(x) ∨D(x)) ∧

(
∀x P (x)⇔ ¬P (x)

)
.

3.2 Deriving the Upper Bound
As one can observe, the formula φ∗ in the example above
has grown considerably compared to its original form. The
question is whether the formula growth can influence the
asymptotic bound from Theorem 1. At first glance, the an-
swer may seem negative. That is due to the fact that the
transformation only extends the vocabulary (which is as-
sumed to be fixed), adds cardinality constraints (which are
concentrated in the function α), and increases the length of
the input formula (which is also constant with respect to n).
However, there is one caveat to be aware of. When extend-
ing the vocabulary, we may introduce new valid cells. The

vocabulary is fixed once WFOMC computation starts, but
if we have formula Γ ∧ Φ such that Γ ∈ FO2 + CC and
Φ ∈ C2, then this formula already has p valid cells. Once
we construct Γ ∧ Φ∗, where Φ∗ ∈ FO2 + CC is obtained
from Φ using Algorithm 1, the new formula will have p∗
valid cells and, possibly, p ≤ p∗. If we wish to express
a complexity bound for C2, we should inspect the possible
increase in p to obtain p∗.

To deal with an arbitrary C2 formula, we need to be able
to deal with subformulas such as the one in Sentence 3. As
one can observe from both the example above and Algo-
rithm 1, encoding such a sentence in UFO2 + CC requires,
in order of appearance, Lemmas 2, 5, 4 and 1. Applying
Lemmas 2 and 5 introduces only a constant number of fresh
predicates. Hence, the increase in p can be expressed by
multiplying with a constant β. See the accompanying tech-
nical report for the derivation of a value for β.

Although the constant β may increase our polynomial de-
gree considerably, there is another, much more substantial,
influence. An application of Lemma 4, which additionally
requires Lemma 1 to deal with unskolemized formulas such
as in Formula 22 will introduce 2k new predicates. Although
k is a parameter of the counting quantifiers, i.e., part of the
language, and the language is assumed to be fixed, the size
of the encoding of C2 in UFO2 +CC obviously depends on
k. Hence, the number of cells may also increase with respect
to k, and, as we formally state below, it, in fact, does.

Lemma 6. For any m ∈ N, there exists a sentence Γ =
φ∧
∧m

i=1

(
∀x∃=kiy ψi(x, y)

)
such that the UFO2+CC en-

coding of Γ obtained using Lemma 4 hasO(p ·
∏m

i=1 γ(ki))
valid cells, where p is the number of valid cells of φ and
γ(k) = (k + 2) · 2k−1.

Proof. Consider the sentence

Γ =

m∧
i=1

(∀x∀y Ei(x, y)⇒ Ei(y, x))∧ (23)

m∧
i=1

(
∀x∃=kiy Ei(x, y)

)
. (24)

In this setting, φ is Formula 23 and it has p = 2m valid
cells. We need to apply Lemmas 4 and 1 m times to encode
sentences in Formula 24 into UFO2+CC. Let us investigate
one such application.

First, consider valid cells of φ, that contain Ei(x, x) neg-
atively. Then all fij(x, x) must also be negative (the index
j now refers to the predicates introduced in a single ap-
plication of Lemma 4), which will immediately satisfy all
skolemization clauses obtained by application of Lemma 1.
Hence, the atomsAij(x) will be allowed to be present either
positively or negatively for all j. Thus, the number of such
cells will increase 2ki times.

Second, consider valid cells of φ, that contain Ei(x, x)
positively. Then exactly one of fij(x, x) can be satisfied in
each cell. That will cause the number of cells to be multi-
plied by ki. Next, for a particular cell, denote t the index
such that fit(x, x) is positive in that cell. Then all Aij(x)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

680

such that j ̸= t will again be free to assume either a posi-
tive or a negative form. Only Ait(x) will be fixed to being
positive. Hence, the number of such cells will further be
multiplied by 2ki−1.

Overall, for a single application of Lemma 4, the number
of cells will be O(p · 2ki + p · ki · 2ki−1) ∈ O(p · (ki + 2) ·
2ki−1), where we upper bound both partitions of the valid
cells of φ by their total number. After repeated application
of Lemmas 4 and 1, the bound above directly leads to the
bound we sought to prove.5

One last consideration for dealing with all of C2 is
Lemma 3. The lemma adds one new cardinality constraint
to the formula, which does not increase the number of cells
in any way. It will, however, require more calls to an oracle
for WFOMC over FO2. That influence on the overall bound
can still be concentrated in the function α. To distinguish
the values from before encoding C2 and after, let us denote
the new value α′.

Finally, we are ready to state the overall time complexity
bound for computing WFOMC over C2.

Theorem 2. Consider an arbitrary C2 sentence rewrit-
ten as φ = Γ ∧

∧m
i=1

(
∀x Pi(x)⇔

(
∃=kiy Ri(x, y)

))
,

where Γ ∈ FO2 + CC. For any n ∈ N and any fixed
weights (w,w), WFOMC(φ, n,w, w) can be computed in
time O(nα′ · n1+p·

∏m
i=1 β·γ(ki)), where p is the number of

valid cells of Γ, α′ and β are constants with respect to both
n and the counting parameters ki and γ(k) = (k+2) ·2k−1.

Proof. The proof mostly follows from Lemma 6 and the dis-
cussion above.

The last thing to show is that the bound on the number of
cells derived in Lemma 6 is as general as possible (i.e., there
is no other sentence that would invalidate the upper bound).
That is straightforward. The sentence Γ shown in the proof
of Lemma 6 affords the atoms with the predicates fi and
Ai the highest possible number of degrees of freedom. The
truth values of the atoms are determined only by sentences
added through the application of Lemmas 4 and 1. There-
fore, there cannot be more valid cells, and the bound is as
loose as possible, even though the claim in Lemma 6 is only
existential.

For a complete proof, see the accompanying technical re-
port.

4 Improving the Upper Bound
Let us now inspect the bound from Theorem 2. Although
it is polynomial in n, meaning that C2 is, in fact, domain-
liftable (Kuželka, 2021), we can see that the number of valid
cells (a part of the polynomial’s degree) grows exponentially
with respect to the counting parameters ki. In this section,

5In the proof, we opted for as simple formula as possible. It
would be easy to handle computing WFOMC for Γ by decompos-
ing the problem into m identical and independent problems. It is,
however, also easy to envision a case where such decomposition is
not as trivial. Consider adding constraints such that for each x and
y, there is only one i such that Ei(x, y) is satisfied.

we propose an improved encoding to the one from Lemma 4
which reduces said growth to a quadratic one.

The new encoding does not build on entirely new princi-
ples, instead, it takes the existing transformation and makes
it more efficient. As in Lemma 4, we will describe the situa-
tion for dealing with one ∀∃=k-quantified subformula. The
procedure could easily be generalized to havingm ∈ N such
subformulas by repeating the process for each of them inde-
pendently.

The most significant issue with the current encoding are
the Skolemization predicates Ai/1, which increase the num-
ber of valid cells exponentially with respect to k. The new
encoding will seek to constrain those predicates so that the
increase is reduced. Let us start with a formula

Γ = φ ∧ ∀x∃=ky ψ(x, y), (25)

where φ ∈ FO2 + CC and ψ is quantifier-free. Let us also
consider the encoding of Γ in UFO2 + CC, i.e.,

Γ∗ = φ ∧ (∀x∀y R(x, y)⇔ ψ(x, y)) ∧ (|R| = n · k)

∧

(
∀x∀y R(x, y)⇔

k∨
i=1

fi(x, y)

)
∧

∧
1≤i<j≤k

(∀x∀y fi(x, y)⇒ ¬fj(x, y))

∧
k∧

i=1

(∀x∀y ¬fi(x, y) ∨Ai(x)) ,

with fresh predicates R/2, fi/2 and Ai/1 and weights
w(Ai) = −1 for all i ∈ [k].

4.1 Canonical Models
The new encoding will leverage a concept that we call a
canonical model, which we gradually build in this subsec-
tion.

Let ω be a model of Γ∗ and t ∈ ∆ be an arbitrary domain
element. Denote At ⊆ [k] the set of indices such that

ω |=
∧

j∈At

Aj(t) ∧
∧

j∈[k]\At

¬Aj(t).

Now, let us transform ω into ωt, which will be another model
of Γ∗.

First, we separate all atoms in ω (atoms true in ω) without
the predicates fi/2 andAi/1 into the setR0, atoms onAi/1
not containing the constant t intoRA

t and atoms on fi/2 not
containing the constant t on the first position intoRf

t .
Second, we define an auxiliary injective function gt :
At 7→ [k] mapping elements of At to the first |At| positive
integers, i.e.,

gt(j) = |{j′ ∈ At | j′ ≤ j}| (26)

Third, we define a set of atoms Anew
t such that

Anew
t = {Agt(j)(t) | ω |= Aj(t)},

i.e., we accumulate the Skolemization atoms with the con-
stant t that are satisfied in ω and we change their indices to

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

681

the first |At| positive integers. Next, we do a similar thing
for atoms with fi’s and the constant t at the first position.
Note that we use the same function gt that was defined (with
respect to At) in Equation 26. Hence, we construct a set

Fnew
t = {fgt(j)(t, t

′) | ω |= fj(t, t
′), t′ ∈ ∆}.

Finally, we are ready to define the new model of Γ∗ as

ωt = R0 ∪ Anew
t ∪ Fnew

t ∪
⋃

t′∈∆\{t}

(
RA

t′ ∪R
f
t′

)
.

Lemma 7. For any ω |= Γ∗ and any t ∈ ∆, ωt constructed
as described above is another model of Γ∗.

Proof. To prove the claim, it is sufficient to note that we
can permute the indices i, and the sentence Γ∗ will remain
the same. The transformation permutes the indices so that
the atoms Ai(t) that are satisfied have the lowest possible
indices.

Now, suppose that we take some model of Γ∗ and we re-
peatedly perform the transformation described above for all
domain elements, i.e., for some ordering of the domain such
as ∆ = {t1, t2, . . . , tn}, we construct ωt1 from ω, then we
construct ωt2 from ωt1 and so on, until we obtain ωtn = ω∗.
Note that several models ω can lead to the same ω∗. Thus,
ω∗ effectively induces an equivalence class.

Definition 4. A model ω∗ constructed in the way described
above is a canonical model of Γ∗. Moreover, all models
of Γ∗ that lead to the same canonical model are called A-
equivalent.6

A property of A-equivalent models will be useful in what
follows. We formalize it as another lemma.

Lemma 8. Let ω∗ be a canonical model of Γ∗. There are∏
t∈∆

(
k

|At|

)
(27)

models that are A-equivalent to ω∗. Moreover, any two A-
equivalent models have the same weight.

Proof. It follows from the proof of Lemma 7 that the atoms
of Ai’s that are true in ω∗ have the lowest possible indices.
Hence, for a fixed t ∈ ∆, the number of models that lead
to ω∗ depends only on the number of ways that we can split
the indices between the satisfied and the unsatisfied atoms.
There are k indices to choose from, and for a fixed assign-
ment, the setAt holds the indices of satisfiedAj(t)’s, which
leads directly to Equation 27.

The second claim follows from the fact that the transfor-
mation of any ω into ω∗ does not change the number of true
atoms of any given predicate.

6The letter “A” simply refers to the Skolemization predicates
that we call Ai, although they could be called anything else.

4.2 The New Encoding
In this subsection, we use the concept of canonical models
and observations from Lemma 8 to devise an encoding that
counts only canonical models. By weighing them accord-
ingly, we then recover the correct weighted model count of
the original problem.

Let us start by introducing new fresh predicates Ci/1.
We will want an atom Cj(t) to be true if and only if
A1(t), A2(t), . . . Aj(t) were the only Skolemization atoms
satisfied in a model of Γ∗ (the old encoding). Intuitively, the
predicates Ci will constrain the models to only correspond
to canonical models. Thus, we define Ci’s as

ΓC =
k∧

j=0

∀x Cj(x)⇔

 ∧
h∈[j]

Ah(x) ∧
∧

h∈[k]\[j]

¬Ah(x)

 .

The new encoding can then be described as

Γnew = Γ∗ ∧ ΓC ∧

∀x k∨
j=0

Cj(x)

 . (28)

The final disjunction was added to make sure that we only
count canonical models (at least one of Ci’s is satisfied).

One more thing to consider is the weights for the pred-
icates Ci. A particular atom Cj(t) is satisfied in a model
ω if the model is a canonical model corresponding to Cj(t)
according to the sentence ΓC . Following Lemma 8, such
a model represents an entire set of A-equivalent models,
each with the same weight. Hence, if Cj(t) is satisfied, we
should count the model weight of ω as many times as how
many A-equivalent models to ω there are. If Cj(t) is, on
the other hand, unsatisfied, we want to keep the weight the
same. Therefore, we set w(Ci) =

(
k
i

)
and w(Ci) = 1 for all

i ∈ [k].

Lemma 9. For any sentence Γ ∈ C2 such as the one in
Equation 25 and Γnew ∈ UFO2 + CC obtained from Γ as
in Equation 28, for any n ∈ N and any weights (w,w) ex-
tended for predicates Ci as above, it holds that

WFOMC(Γ, n, w, w) =
WFOMC(Γnew, n, w, w)

(k!)n
.

Proof. The factor comes from Lemma 4. The rest of the
proof follows from the discussion above. For more formal
proof, see the accompanying technical report.

4.3 The Improved Upper Bound
With the new encoding, we can decrease the number of valid
cells of a sentence obtained after applying Lemma 4 to a C2

sentence. Hence, we can improve the upper bound on time
complexity of computing WFOMC over C2. Using the same
notation as in Theorem 2, we can formulate Theorem 3.
Theorem 3. Consider an arbitrary C2 sentence rewrit-
ten as φ = Γ ∧ Φ, where Γ ∈ FO2 + CC and Φ =∧m

i=1

(
∀x Pi(x)⇔

(
∃=kiy Ri(x, y)

))
. For any n ∈ N and

any fixed weights (w,w), WFOMC(φ, n,w, w) can be com-
puted in timeO(nα′ ·n1+p·

∏m
i=1 β·γ′(ki)), where p is the num-

ber of valid cells of Γ and γ′(k) = O(k2 + 2k + 1).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

682

Proof. Let us derive γ′. All other values can be derived
identically as in the proof of Theorem 2.

Let us return to the sentence from the proof of
Lemma 6, i.e, Γ =

∧m
i=1 (∀x∀y Ei(x, y)⇒ Ei(y, x)) ∧∧m

i=1

(
∀x∃=kiEi(x, y)

)
. As we already know, sentence Γ

causes the largest increase in the number of valid cells.
With the old encoding, most of the truth values of

the Skolemization atoms with predicates Ai were uncon-
strained, leading to an exponential blowup. Due to Equa-
tion 28, that is no longer the case. The sentence ΓC forces
Cj(t) to be true if and only if A1(t), A2(t), . . . , Aj(t) are
true and all other Ai(t) with j < i ≤ k are false. Hence,
if Cj′(t) is true, then all other Cj(t) with j′ ̸= j are false.
Moreover, at least one Ci(t) must be true due to the final
disjunction in Equation 28.

Therefore, we only have (k+1) possibilities for assigning
truth values to atoms with Ci predicates. The truth values of
atoms with Ai’s are then directly determined without any
more degrees of freedom. Hence, for both cases considered
in the proof of Lemma 6, we receive a factor (k+1) instead
of the exponential. Thus, we obtain γ′ = O(p · (k+1)+ p ·
k · (k + 1)) ∈ O(p · (k2 + 2k + 1)).

5 Experiments
In this section, we support our theoretical findings by pro-
viding time measurements for various WFOMC computa-
tions using both the old and the new C2 encoding. We also
provide tables comparing the number of valid cells p, which
determines the polynomial degree, giving a more concrete
idea of the speedup provided by the new encoding.

For all of our experiments, we used FastWFOMC.jl,7 an
open source Julia implementation of the FastWFOMC algo-
rithm (van Bremen and Kuželka, 2021a), which is arguably
the state-of-the-art, reported by its authors to outperform the
first approach to computing WFOMC in a lifted manner,
i.e, ForcLIFT,8 which is based on knowledge compilation
(Van den Broeck et al., 2011). Apart from time measure-
ments for C2 sentences, we also inspect sentences from one
of the domain-liftable C2 extensions, namely C2 with the
linear order axiom (Tóth and Kuželka, 2023).

Most of our experiments were performed in a single
thread on a computer with an AMD Ryzen 5 7500F CPU
running at 3.4GHz and having 32 GB RAM. Problems con-
taining the linear order axiom, which have considerably
higher memory requirements, were solved using a machine
with AMD EPYC 7742 CPU running at 2.25GHz and hav-
ing 512 GB of RAM.

5.1 Performance Measurements
First, consider a C2 sentence encoding k-regular undirected
graphs without loops, i.e.,

Γ1 = (∀x ¬E(x, x)) ∧ (∀x∀y E(x, y)⇒ E(y, x))

∧
(
∀x∃=ky E(x, y)

)
.

7https://github.com/jan-toth/FastWFOMC.jl
8https://dtaid.cs.kuleuven.be/wfomc

k 3 4 5
pold 8 16 32
pnew 4 5 6

Table 1: Number of valid cells for k-regular graphs

In our experiments, we simply count the number of such
graphs on n vertices, i.e., we set w(E) = w(E) = 1, and
we compute WFOMC(Γ1, n, w, w) for gradually increasing
domain sizes n. Since our new encoding is aimed at improv-
ing the runtime with respect to the counting parameter k, we
perform the computation for several different parameters k
as well.

Figure 1 shows the measured runtimes for k ∈ {3, 4, 5}.
As one can observe, the new encoding surpasses the old in
each case. The difference may not seem as distinct for k =
3 compared to k = 4 or k = 5, but it is still substantial.
For one, runtime for n = 51 already exceeded runtime of
1000 seconds in the case of the old encoding, whereas the
new encoding did not reach that value even for n = 70.
Additionally to the figure, Table 1 shows the number of valid
cells pold produced by the old encoding of Γ1 into UFO2 +
CC and pnew produced by the new one. As one can observe,
e.g., for k = 5, the new encoding reduces the runtime from
O(n33) to O(n7).

See the accompanying technical report for time measure-
ments on additional and more complex C2 formulas.

Next, let us consider a sentence from the language of C2

extended with the linear order axiom. Sentence Γ2 encodes
a graph similar to the Model A of the Barabási-Albert model
(Albert and Barabási, 2002), an algorithm for generating
random networks:

Γ2 = (∀x Eq(x, x)) ∧ (|Eq| = n)

∧ ∃=k+1x K(x)

∧ ∀x ¬R(x, x)
∧ ∀x∀y K(x) ∧K(y) ∧ ¬Eq(x, y)⇒ R(x, y)

∧ ∀x∃=ky R(x, y)

∧ ∀x∀y R(x, y) ∧ ¬ (K(x) ∧K(y))⇒ y ≤ x
∧ ∀x∀y K(x) ∧ ¬K(y)⇒ x ≤ y
∧ Linear(≤)

In a sense, the graph encoded by Γ2 on n vertices is se-
quentially grown. We start by ordering the vertices using
the linear order axiom. Then, a complete graph Kk+1 is
formed on the first k + 1 vertices. Afterward, we start
growing the graph by appending remaining vertices i ∈
{k + 2, k + 3, . . . , n} one at a time. When appending a
vertex i, we introduce k outgoing edges that can only con-
nect to the vertices {1, 2, . . . , i − 1}, i.e., all the new edges
have a form (i, j) where j ∈ {1, 2, . . . , i − 1}. Ultimately,
when counting the number of such graphs, we may not be
interested in the same solutions differing by vertex ordering
only, so we can divide the final number by n!. The order-
ing through the linear order axiom is, however, a very use-
ful modeling construct—without it, modeling graphs such as

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

683

https://github.com/jan-toth/FastWFOMC.jl
https://dtaid.cs.kuleuven.be/wfomc

(a) 3-regular (b) 4-regular (c) 5-regular

Figure 1: Runtime for counting k-regular graphs

Figure 2: Runtime for counting BA(3) graphs

the one above would likely not be possible in a domain-lifted
way.

From now on, let us refer to graphs defined by the sen-
tence Γ2 as BA(k). Figure 2 depicts the runtime for count-
ing the graphs BA(3) on n vertices using the old and the
new encoding. The problems lead to 16 and 8 valid cells,
respectively.

Furthermore, we can easily define a Markov Logic Net-
work (Richardson and Domingos, 2006) on the BA(k)
graphs and, using WFOMC, perform exact lifted inference
therein. See the accompanying technical report for such an
experiment.

5.2 Remarks on Performance
The experiments confirm that the new encoding is indeed
more efficient, outperforming the old encoding on all tested
instances (including the additional test scenarios presented
in the accompanying technical report). While that should
not come as a surprise, since we have derived a bound prov-
ably better than the old one, it is also not completely obvi-
ous because FastWFOMC uses many algorithmic tricks that
partially make up for the inefficiencies of the old encoding.
However, not even our new bound allowed us to compute
WFOMC within reasonable time for large domain sizes on
all the tested problems.

Still, one should keep in mind that the alternative, that
is, solving WFOMC by propositionalization to WMC scales

extremely poorly, as was repeatedly shown in the lifted in-
ference literature (Meert, Van den Broeck, and Darwiche,
2014). Thus, we must rely on algorithms operating at the
lifted level. Our work extends the domains that can be
efficiently handled by lifted algorithms, but more work is
needed to extend the reach of lifted inference algorithms fur-
ther.

6 Related Work
This work builds on a long stream of results from the area
of lifted inference (Poole, 2003; de Salvo Braz, Amir, and
Roth, 2005; Jha et al., 2010; Gogate and Domingos, 2011;
Taghipour et al., 2013; Braun and Möller, 2016; Dilkas and
Belle, 2023). Particularly, we continue in the line of research
into the task of weighted first-order model counting (Van den
Broeck et al., 2011; Van den Broeck, 2011; Van den Broeck,
Meert, and Darwiche, 2014; Beame et al., 2015; Kazemi et
al., 2016; Kuusisto and Lutz, 2018; Kuželka, 2021; van Bre-
men and Kuželka, 2021b; Malhotra and Serafini, 2022; Tóth
and Kuželka, 2023; Malhotra and Serafini, 2023; Malhotra,
Bizzaro, and Serafini, 2023).

To the best of our knowledge, there is no other literature
available on the exact complexity of computing WFOMC
for C2 sentences. The closest resource is the one proving
C2 to be domain-liftable (Kuželka, 2021), which we directly
build upon and, in some sense, extend. Besides that, Mal-
hotra and Serafini (2022) later proposed a slightly different
approach to dealing with counting quantifiers, although they
did not analyze the method’s exact complexity either. How-
ever, as shown in the accompanying technical report, their
techniques are also super-exponential in the counting param-
eters, not offering any speedup. Another relevant resource,
concerned with designing an efficient algorithm for comput-
ing WFOMC over FO2, is van Bremen and Kuželka (2021a)
whose FastWFOMC algorithm remains state-of-the-art and
it can be used as a WFOMC oracle required to deal with
cardinality constraints.

7 Conclusion
The best existing bound for the time complexity of com-
puting WFOMC over C2 is polynomial in the domain size
(Kuželka, 2021). However, as we point out, the polyno-
mial’s degree is exponential in the parameter k of the count-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

684

ing quantifiers. Using the new techniques presented in this
paper, we reduce the dependency of the degree on k to a
quadratic one, thus achieving a super-exponential speedup
of the WFOMC runtime with respect to the counting param-
eter k.

The new encoding can potentially improve any appli-
cations of WFOMC over C2 or make some applications
tractable in the practical sense. We support this statement
further in the experimental section, where we provide run-
time measurements for computing WFOMC of several C2

sentences and sentences from a domain-liftable C2 exten-
sion.

It remains an open question whether the complexity can
be reduced even further. Thus, we only consider our new
bound a bound to beat, and we certainly hope that someone
will beat it in the future.

Acknowledgments
This work has received funding from the European
Union’s Horizon Europe Research and Innovation pro-
gram under the grant agreement TUPLES No 101070149.
JT’s work was also supported by a CTU grant no.
SGS23/184/OHK3/3T/13.

References
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics
of complex networks. Reviews of modern physics 74(1):47.
Barvı́nek, J.; van Bremen, T.; Wang, Y.; Železný, F.; and
Kuželka, O. 2021. Automatic conjecturing of p-recursions
using lifted inference. In Inductive Logic Programming:
30th International Conference, ILP 2021, Virtual Event, Oc-
tober 25–27, 2021, Proceedings, 17–25. Berlin, Heidelberg:
Springer-Verlag.
Beame, P.; Van den Broeck, G.; Gribkoff, E.; and Suciu,
D. 2015. Symmetric weighted first-order model counting.
In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’15,
313–328. New York, NY, USA: Association for Computing
Machinery.
Braun, T., and Möller, R. 2016. Lifted junction tree al-
gorithm. In KI 2016: Advances in Artificial Intelligence:
39th Annual German Conference on AI, Klagenfurt, Austria,
September 26-30, 2016, Proceedings 39, 30–42. Springer.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-
order probabilistic inference. In Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelli-
gence, 1319–1325. Morgan Kaufmann San Francisco.
Dilkas, P., and Belle, V. 2023. Synthesising recursive func-
tions for first-order model counting: Challenges, progress,
and conjectures. In Proceedings of the 20th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023,
198–207.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In Proceedings of the Twenty-Seventh Conference
on Uncertainty in Artificial Intelligence, UAI’11, 256–265.
Arlington, Virginia, USA: AUAI Press.

Hinrichs, T., and Genesereth, M. 2006. Herbrand logic.
Technical Report LG-2006-02, Stanford University, Stan-
ford, CA. http://logic.stanford.edu/reports/LG-2006-02.pdf.
Jha, A.; Gogate, V.; Meliou, A.; and Suciu, D. 2010. Lifted
inference seen from the other side: The tractable features.
Advances in Neural Information Processing Systems 23.
Kazemi, S. M.; Kimmig, A.; Van den Broeck, G.; and Poole,
D. 2016. New liftable classes for first-order probabilistic
inference. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NIPS’16,
3125–3133. Red Hook, NY, USA: Curran Associates Inc.
Kuusisto, A., and Lutz, C. 2018. Weighted model counting
beyond two-variable logic. In Proceedings of the 33rd An-
nual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, 619–628.
Kuželka, O. 2021. Weighted first-order model counting in
the two-variable fragment with counting quantifiers. Journal
of Artificial Intelligence Research 70:1281–1307.
Malhotra, S., and Serafini, L. 2022. Weighted model count-
ing in fo2 with cardinality constraints and counting quanti-
fiers: A closed form formula. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36(5), 5817–
5824.
Malhotra, S., and Serafini, L. 2023. Weighted first order
model counting with directed acyclic graph axioms. ArXiv
abs/2302.09830.
Malhotra, S.; Bizzaro, D.; and Serafini, L. 2023. Lifted
inference beyond first-order logic. ArXiv abs/2308.11738.
Meert, W.; Van den Broeck, G.; and Darwiche, A. 2014.
Lifted inference for probabilistic logic programs. Technical
report, KU Leuven and University of California.
Meert, W.; Vlasselaer, J.; and Van den Broeck, G. 2016. A
relaxed tseitin transformation for weighted model counting.
In International Workshop on Statistical Relational AI.
Poole, D. 2003. First-order probabilistic inference. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, volume 3, 985–991.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62(1–2):107–136.
Svatoš, M.; Jung, P.; Tóth, J.; Wang, Y.; and Kuželka,
O. 2023. On discovering interesting combinatorial integer
sequences. In Elkind, E., ed., Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelli-
gence, IJCAI-23, 3338–3346. International Joint Confer-
ences on Artificial Intelligence Organization. Main Track.
Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H. 2013.
Lifted variable elimination: Decoupling the operators from
the constraint language. Journal of Artificial Intelligence
Research 47:393–439.
Tóth, J., and Kuželka, O. 2023. Lifted inference with linear
order axiom. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37(10), 12295–12304.
van Bremen, T., and Kuželka, O. 2021a. Faster lifting for
two-variable logic using cell graphs. In de Campos, C., and
Maathuis, M. H., eds., Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, volume

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

685

161 of Proceedings of Machine Learning Research, 1393–
1402. PMLR.
van Bremen, T., and Kuželka, O. 2021b. Lifted inference
with tree axioms. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation and
Reasoning, 599–608.
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.;
and De Raedt, L. 2011. Lifted probabilistic inference by
first-order knowledge compilation. In Walsh, T., ed., Pro-
ceedings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2178–2185. AAAI
Press/International Joint Conferences on Artificial Intelli-
gence.
Van den Broeck, G.; Meert, W.; and Darwiche, A. 2014.
Skolemization for weighted first-order model counting. In
Proceedings of the Fourteenth International Conference on
Principles of Knowledge Representation and Reasoning,
KR’14, 111–120. AAAI Press.
Van den Broeck, G. 2011. On the completeness of first-order
knowledge compilation for lifted probabilistic inference. In
Proceedings of the 24th International Conference on Neural
Information Processing Systems, NIPS’11, 1386–1394. Red
Hook, NY, USA: Curran Associates Inc.
Van Haaren, J.; Van den Broeck, G.; Meert, W.; and Davis, J.
2015. Lifted generative learning of markov logic networks.
Machine Learning 103(1):27–55.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

686

	Introduction
	Background
	First-Order Logic
	Weighted First-Order Model Counting
	Solving WFOMC with Counting Quantifiers

	An Upper Bound for Existing Techniques
	A Worked Example on Removing Counting
	Deriving the Upper Bound

	Improving the Upper Bound
	Canonical Models
	The New Encoding
	The Improved Upper Bound

	Experiments
	Performance Measurements
	Remarks on Performance

	Related Work
	Conclusion

