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Abstract

Generalization is an important ability that allows humans
to tackle complex problems by identifying common prob-
lem structures and omitting irrelevant details. Whereas such
ability comes naturally to humans, it has proved challenging
to establish within AI systems. Although different research
communities have tackled this challenge, their focus has usu-
ally been set on developing efficient algorithms for concrete
problems, and a general theoretical understanding of the gen-
eralization ability is still lacking. In the context of Answer Set
Programming (ASP), a well-established knowledge represen-
tation and reasoning paradigm for solving highly combinato-
rial search problems, research on generalization has primarily
focused on forgetting and projection, two related operations
that aim at the omission of irrelevant details, while abstrac-
tion, an operation that aims at providing a higher-level view
on the common solution and problem structures, has largely
been overlooked. In this paper, we develop the theoretical
foundation for generalized reasoning through abstraction in
ASP, focusing on the notion of abstraction through vocabu-
lary clustering. We formally characterize when abstraction
is possible, semantically define the desired result, investigate
syntactic operators to obtain such abstractions, and study the
computational complexity of this problem.

1 Introduction
Abstracting over and forgetting about (ir)relevant details are
abilities that humans unwittingly use when tackling complex
problems, enhancing their decision-making through flexi-
bility under changing conditions, especially by generalizing
to newly encountered information. While humans naturally
handle such capabilities, developing them within AI systems
has proven a challenging problem. For AI systems rooted in
logic and Knowledge Representation and Reasoning (KRR),
such capabilities are particularly important. While these sys-
tems are transparent and understandable by humans, in the
sense that drawn conclusions can be concisely traced and ex-
plained, the high computational effort of reasoning imposes
limits on their usage in the face of large knowledge bases.
Thus, they need to acquire abstraction abilities that allow
them to simplify their complex decision-making, focusing
on the key elements, and to conduct generalized reasoning.

A number of different ideas have been used to approach
this problem in KRR. Forgetting (Lin and Reiter 1994)
focuses on finding a representation over a reduced lan-

guage, thereby omitting information no longer deemed rele-
vant, and has been studied together with closely related no-
tions, including uniform interpolation (Visser 1996), vari-
able elimination (Lang, Liberatore, and Marquis 2003) or
ignorance (Baral and Zhang 2005), being applied for exam-
ple to Description Logics (Ghilardi, Lutz, and Wolter 2006;
Wang et al. 2010; Lutz and Wolter 2011), Answer Set Pro-
gramming (Gonçalves, Knorr, and Leite 2023; Gonçalves
et al. 2020; Eiter and Kern-Isberner 2018), Planning (Er-
dem and Ferraris 2007), and Modal Logic (Zhang and Zhou
2009). Another line of research focuses on induction, such
as discovering higher-order abstractions for learning logic
programs (Hocquette, Dumančić, and Cropper 2023), or us-
ing anti-unification for generalization computation used for
inductive inference, covering First-and Higher-Order Logic,
as well as Description Logics, the latter commonly un-
der the term of least common subsumers (see (Cerna and
Kutsia 2023) and references therein). Another line of re-
search is generalized planning, where the aim is to obtain
a generalized plan that can solve multiple instances of a
planning problem. This was tackled, e.g., by means of
abstraction (Srivastava, Immerman, and Zilberstein 2011;
Illanes and McIlraith 2019) and by learning such plans
(Bonet, Francès, and Geffner 2019; Bonet et al. 2019). The
main focus here has been to propose algorithms that can ef-
ficiently compute such plans, without establishing a theory
for generalized reasoning that could apply to other domains.

In this paper, we are focusing on building the theoretical
foundations for generalized reasoning in the context of an-
swer set programming (ASP) (Gelfond and Lifschitz 1991;
Brewka, Eiter, and Truszczyński 2011), a well-established
KRR paradigm for solving highly combinatorial search
problems, permitting the combination of a declarative repre-
sentation of these together with varying instances. Here, we
are investigating generalization using abstraction by clus-
tering the vocabulary, providing a higher-level view on the
common solution and problem structures. More concretely,
we are interested in finding abstractions that preserve the
dependencies in a program under potential addition of facts,
which resembles the notion of uniform equivalence (Maher
1986; Sagiv 1987; Eiter and Fink 2003) and is well-aligned
with the concept of varying instances (of facts) in ASP. We
illustrate our motivation in the following example.
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Example 1. Let us consider the following program P .

reachHanoi ← takePlane.

reachHanoi ← takeTrain.

attendKR ← reachHanoi .

Since both, taking the plane and taking the train, allow
us to reach Hanoi and thus attend KR, the details of which
transportation is taken could be abstracted over by applying
a mapping m to P that maps both takePlane and takeTrain
to useTransportation (and all other atoms to themselves)
yielding the program Q below.

reachHanoi ← useTransportation.

attendKR ← reachHanoi .

We can see that Q preserves all the dependencies between
the abstracted atoms and the rest of the atoms. In other
words, if P is extended with further facts F over the lan-
guage U , then Q together with the abstracted facts m(F )
would still yield corresponding abstracted answer sets.

We note that related work on generalization in ASP, which
has primarily focused on forgetting and projection, does not
match this idea. Both notions have been studied in particu-
lar under uniform equivalence, the former, as UP-forgetting
(Gonçalves et al. 2019; Gonçalves et al. 2021) removing cer-
tain information by restricting the admitted language of the
program, and the latter under simplification via projection
(Saribatur and Woltran 2023), without such restriction, but
eliminating simplifiable information in the end. In addition,
domain abstractions allow one to compute approximated so-
lutions of problems that can be refined subsequently (Sari-
batur, Eiter, and Schüller 2021), which conceptually does
not match either. Here, we focus on reducing the vocabu-
lary through an abstraction mapping that clusters the atoms,
which sets the ground for further research in the topic of
generalization. Our main contributions are as follows.
• We provide the notion of uniform m-abstractions for an

abstraction mapping m that clusters atoms in the vocabu-
lary, satisfying relations resembling uniform equivalence.

• We provide necessary and sufficient conditions for testing
whether a program can have uniform m-abstractions.

• We introduce a model-based representation to capture
such uniform m-abstractions.

• We define a syntactic clustering operator that can obtain
the abstraction whenever possible while preserving the
original rules as much as possible.

• We provide complexity results for the problems of decid-
ing uniform m-abstractability and equivalence testing.
Our paper is organized as follows. We recall preliminaries

(Sect. 2), introduce, in Sect. 3, our main notion of uniform
m-abstractions, with the necessary conditions for it, and pro-
vide, in Sect. 4, the semantic characterization and define the
result semantically. Sect. 5 investigates a syntactic cluster-
ing method, we discuss related formalisms in Sect. 6, while
complexity results are provided in Sect. 7. We close with
a discussion of the potential of the notion for generalized
reasoning in ASP in Sect. 8, and conclude in Sect. 9.

2 Background
We use the traditional representation of a rule r of the form
A1 ∨ · · · ∨ Al ← Al+1, . . . , Am,not Am+1, . . . , not An,

where 0 ≤ l ≤ m ≤ n, all Ai, 1 ≤ i ≤ n, are atoms
from a first-order language, and not is default negation.
We also write r as H(r) ← B(r) or H(r) ← B+(r),
not B−(r). We call H(r) = {A1, . . . , Al} the head of
r, B+(r) = {Al+1, . . . , Am} the positive body of r and
B−(r) = {Am+1, . . . , An} the negative body of r. If
H(r) = ∅, occasionally written as ⊥, then r is a constraint;
and if B(r) = ∅ and l = 1, then r is a fact.

A rule r is normal if l ≤ 1, and positive if B−(r) = ∅. A
rule is Horn, if it is normal and positive.

A disjunctive logic program (DLP) is a finite set of rules.
In the rest of the paper, we focus on propositional programs
over a set of propositional atoms U . Programs with variables
reduce to their ground versions as usual. Unless stated other-
wise, the term program refers to a disjunctive logic program.

An interpretation I is a set of atoms from U , those atoms
that are true in I . As usual, I is a model of a program P ,
denoted by I |= P , if it maps all rules of P to true. The GL-
reduct of program P w.r.t. an interpretation I is given by
P I = {H(r) ← B+(r) | r ∈ P,B−(r) ∩ I = ∅}, and I is
an answer set of P if it is a minimal model of P I . We denote
the set of all answer sets by AS (P ). Two programs P1, P2

are equivalent if AS (P1) = AS (P2), strongly equivalent
(SE), denoted by P1 ≡ P2, if AS (P1 ∪ R) = AS (P2 ∪ R)
for every program R over U , and uniformly equivalent (UE),
denoted by P1 ≡u P2, if AS (P1 ∪ R) = AS (P2 ∪ R) for
any set of facts R over U .

An SE-interpretation is a pair ⟨X,Y ⟩ such that X ⊆ Y ⊆
U ; it is total if X = Y and non-total otherwise. An SE-
interpretation ⟨X,Y ⟩ is an SE-model of a program P if Y |=
P and X |= PY , and we denote by SE (P ) the set of all SE-
models of P .

A set Y of atoms is also an answer set of P if ⟨Y, Y ⟩ ∈
SE (P ) and no non-total ⟨X,Y ⟩ ∈ SE (P ) exists, and two
programs P1 and P2 are strongly equivalent iff SE (P1) =
SE (P2) (Turner 2001). The characterization of uniform
equivalence of programs can be captured by their UE-
models (Eiter, Fink, and Woltran 2007) which are defined
as UE (P ) = {⟨Y, Y ⟩ ∈ SE (P )} ∪ max≥{⟨X,Y ⟩ ∈
SE (P ) and X ⊂ Y } where max≥ chooses the maximal
elements of a set according to a given relation ≥, and
⟨X ′, Y ′⟩ ≥ ⟨X,Y ⟩ iff Y ′ = Y and X ⊆ X ′. Then
P1 ≡u P2 iff UE (P1) = UE (P2).

The following result for DLPs will be useful.

Proposition 1 ((Eiter et al. 2013)). For each DLP P , it holds
that for all ⟨X,Y ⟩, ⟨Z,Z⟩ ∈ SE (P ) s.t. Y ⊆ Z, ⟨X,Z⟩ ∈
SE (P ).

3 Uniform m-abstractions
In this section, we introduce abstractions as a way to gen-
eralize over programs. The main idea is to map atoms from
the program language to atoms in a smaller language in such
a way that the answer sets of the original program and the
resulting abstraction correspond, independently of the facts,
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i.e., the instance data, added to the program, in line with the
notion of uniform equivalence.

To this end, we first formalize such mappings.
Definition 1. Given sets of atoms U , U ′ with |U| ≥ |U ′|, a
mapping m is a surjective function m : U 7→ U ′.

We admit to conveniently apply mappings also to sets of
sets of atoms, as well as sets of rules and/or facts and pro-
grams in a pointwise manner.

Hence, m may map several atoms from U to the same
element in U ′. Such elements in U ′ are called cluster atoms
and atoms in U mapped to these clustered atoms.
Definition 2. Given a mapping m : U 7→ U ′, the set U ′

is composed of the set of cluster atoms U ′
c = {a ∈ U ′ |

|m−1(a)| > 1} and the set of singleton atoms U ′
s = U ′ \U ′

c.
At the same time, U is composed of the set of clustered atoms
Cl = {a ∈ U | m(a) ∈ U ′

c}, and the set of non-clustered
atoms NCl = U \ Cl.

We sometimes apply these notions also to subsets of U
and U ′. For singleton atoms, without loss of generality, we
commonly assume that they result from the identity map-
ping, i.e., m(a) = a for a ∈ U ′

s. Note that this means that
no atom in Cl can be mapped to any such singleton atom.

The following definition captures semantically the out-
lined idea of a uniform abstraction w.r.t. a mapping m.
Definition 3. Given a program P (over U ) and a mapping
m, Q (over U ′) is a uniform m-abstraction of P if, for any
set F of facts over U , we have

m(AS(P ∪ F )) = AS(Q ∪m(F )). (1)

Example 2. Recall program P from Ex. 11 and the indi-
cated abstraction Q. Clearly, with m : {p, t} 7→ u,2 Q is a
uniform m-abstraction of P .

Naturally, for a fixed m, such a uniform m-abstraction
may not exist.
Example 3. Consider program P

a← not b b← not a c← a

and mapping m : {b, c} 7→ k. Then m(AS(P )) =
{{a, k}, {k}}. It is well-known that answer sets of disjunc-
tive programs are subset-minimal, hence no corresponding
program Q can exist. Now, we could be tempted to intro-
duce programs with double negation, just like in Forget-
ting in Answer Set Programming (Gonçalves, Knorr, and
Leite 2023) to overcome this issue, but it turns out that this
does not resolve the issue. For F1 = {b ←}, we obtain
AS(P ∪ F1) = {{b}}, while for F2 = {c ←}, we obtain
AS(P ∪ F2) = {{a, c}, {b, c}}. Now, m(F1) = m(F2) =
{k ←}, so, by Def. 3, we need to find a Q that with {k ←}
has simultaneously two different sets of answer sets.

This begs the question whether given a program P there
always exists an m (besides the trivial one with U = U ′)
such that there is a uniform m-abstraction.

1We will abbreviate takePlane , takeTrain , reachHanoi ,
attendKR, useTransportation by p, t, h, a, u respectively.

2We simplify notation and commonly only represent clustered
atoms in mappings explicitly this way.

Example 4. Consider the following program P :

a← not a, b

For F1 = {a←}, we obtain AS(P∪F1) = {{a}}, while for
F2 = {b ←}, we obtain AS(P ∪ F2) = {}. Since the only
non-trivial m for P would be m : {a, b} 7→ k, it follows that
there are programs that have no non-trivial abstractions.

In the previous examples, we have determined the impos-
sibility of certain results, essentially by taking advantage of
the fact that sets of facts F , whose mapping results under m
coincide, have a unique set of answer sets on the right-hand
side of (1). Then, these different sets of facts have to have
the same set of answer sets together with P (on the left-hand
side of (1)). The next proposition captures this necessary
condition on the answer sets of P .
Proposition 2. If there is a uniform m-abstraction of P ,
then, for all Y and all sets of facts Z,Z ′ s.t. m(Z ′) = m(Z):

If Y ∈ AS (P ∪ Z), then

∃Y ′ s.t. m(Y ′) = m(Y ) and Y ′ ∈ AS (P ∪ Z ′)

Proof. Suppose Q is a uniform m-abstraction of P , and
consider any Y , and any sets of facts Z and Z ′ such that
m(Z ′) = m(Z) and Y ∈ AS (P ∪ Z). The latter, by (1)
(of Def. 3), implies that m(Y ) ∈ AS (Q ∪ m(Z)). Since
m(Z ′) = m(Z) we have that m(Y ) ∈ AS (Q ∪ m(Z ′)).
Finally, using again (1), we can conclude that there is some
Y ′ ∈ AS (P ∪ Z ′) such that m(Y ′) = m(Y ).

Example 5. Recall program P from Ex 1, and consider
m : {t, a} 7→ k. We have {t, h, a} ∈ AS (P ∪ {t}), but nei-
ther {t, h, a} nor {p, h, a} in AS (P ∪ {a}). Hence, t and a
cannot be joined alone in an abstraction, only together with
further atoms, namely h.

Applying Prop. 2 this way to determine if an abstraction
does not exist, would require to check this condition for all
such possible sets of facts (and corresponding answer sets).

Instead, using this knowledge, we focus on obtaining nec-
essary conditions for uniform m-abstractability in terms of
SE-models that provide a more fine-grained interpretation.
The main idea here is to also preserve the answer sets un-
der different sets of added atoms. For SE-models, this cor-
responds to ensuring that different total and non-total SE-
models, whose Y components collapse into the same un-
der abstraction, are compatible. The conditions in Prop. 3
below capture different relevant situations as follows: ∆m

u1

ensures that if there is a non-total SE-model ⟨X,Y ⟩ that is
abstracted into a total one, then there must exist another to-
tal model ⟨Y ′, Y ′⟩ that allows the former to be an answer
set if X is added to P 3; ∆m

u2
captures the case that if there

is a total model ⟨Y, Y ⟩ such that adding X to P would make
it an answer set of P , then, for any set of facts X ′ that co-
incides with X under abstraction, some superset Y ′ of X ′,
coinciding with Y under abstraction, is also an answer set;
and ∆m

u3
captures that, for any total model ⟨Y, Y ⟩ of P , if

Y contains one or more clustered atoms, then there is a total
model containing all of those atoms abstracted to the same.

3Note that this total model cannot be larger by Prop. 1.
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To that end, we introduce notation to refer to sets X where
a non-total SE-model of a given Y that is equal or larger than
X does not exist. Formally, ∄mod⊇(X,Y ) represents that,
for each M with X ⊆M ⊂ Y , ⟨M,Y ⟩ /∈ SE (P ).
Proposition 3. If there is a uniform m-abstraction of P ,
then P satisfies the following:

∆m
u1

: For each ⟨X,Y ⟩ ∈ SE (P ) with X ⊂ Y and m(X) =
m(Y ), there exists Y ′ ⊇ X with m(Y ′) = m(Y ),
⟨Y ′, Y ′⟩ ∈ SE (P ) and ∄mod⊇(X,Y ′).
∆m

u2
: For each X,Y,X ′ with X ⊂ Y , ⟨Y, Y ⟩ ∈

SE (P ), ∄mod⊇(X,Y ) and m(X) = m(X ′), there exists
⟨Y ′, Y ′⟩ ∈ SE (P ) with m(Y ′) = m(Y ), X ′ ⊆ Y ′ and
∄mod⊇(X

′, Y ′).
∆m

u3
: ⟨Y, Y ⟩ ∈ SE (P ) implies ⟨Y ∪C ′, Y ∪C ′⟩ ∈ SE (P ),

where C ′ = m−1(m(Y ∩ Cl)).

Proof. Let Q be a uniform m-abstraction of P .
∆m

u1
: Consider ⟨X,Y ⟩ ∈ SE (P ) with X ⊂ Y and

m(X) = m(Y ), and assume no Y ′ ⊇ X exists with
m(Y ′) = m(Y ), ⟨Y ′, Y ′⟩ ∈ SE (P ) and ∄mod⊇(X,Y ′).
We have ⟨Y, Y ⟩ ∈ SE (P ), and thus ⟨Y, Y ⟩ ∈ SE (P ∪ Y ),
and Y ∈ AS (P ∪ Y ). By our assumption, we cannot find
a Y ′ ∈ AS(P ∪X) such that m(Y ′) = m(Y ). By Prop. 2
and m(X) = m(Y ), we get that there is no uniform m-
abstraction of P , which is a contradiction.
∆m

u2
: Consider X,Y,X ′ with X ⊂ Y , ⟨Y, Y ⟩ ∈ SE (P ),

∄mod⊇(X,Y ), and m(X) = m(X ′), and assume there is
no ⟨Y ′, Y ′⟩ ∈ SE (P ) with m(Y ′) = m(Y ), X ′ ⊆ Y ′

and ∄mod⊇(X
′, Y ′). By ∄mod⊇(X,Y ), we have Y ∈

AS (P ∪ X). At the same time, by our assumption, there
is no Y ′ ∈ AS (P ∪ X ′) such that m(Y ′) = m(Y ) and
m(X) = m(X ′) which by Prop. 2, indicates that there is no
uniform m-abstraction of P , and we derive a contradiction.
∆m

u3
: Consider ⟨Y, Y ⟩ ∈ SE (P ) and assume ⟨Y ∪C ′, Y ∪

C ′⟩ ̸∈ SE (P ), with C ′ = m−1(m(Y ∩ Cl)). Then there
exists no Y ′ ∈ AS(P ∪(Y ∪C ′)) with m(Y ′) = m(Y ). We
have ⟨Y, Y ⟩ ∈ SE (P ∪ Y ) and Y ∈ AS (P ∪ Y ), and since
m(Y ) = m(Y ∪ C ′), by Prop. 2, we obtain a contradiction
to Q being a uniform m-abstraction of P .

Let us illustrate the conditions on the running example.
Example 6 (continued from Ex. 1 and 2). Consider the cor-
responding SE-models4 to check the conditions in Prop. 3.

⟨∅, ha⟩ ⟨a, ha⟩ ⟨ha, ha⟩ ⟨∅, a⟩ ⟨a, a⟩
⟨∅, ∅⟩ ⟨∅, tha⟩ ⟨a, tha⟩ ⟨ha, tha⟩ ⟨tha, tha⟩

⟨∅, pha⟩ ⟨a, pha⟩ ⟨ha, pha⟩ ⟨pha, pha⟩
⟨∅, tpha⟩ ⟨a, tpha⟩ ⟨ha, tpha⟩
⟨tha, tpha⟩ ⟨pha, tpha⟩ ⟨tpha, tpha⟩

For ∆m
u1

, let us examine ⟨X,Y ⟩ = ⟨pha, ptha⟩, since pha ⊂
ptha and m(pha) = m(ptha) = uha. Then there is Y ′ =
pha with m(Y ) = m(Y ′), and there is no M with pha ⊆
M ⊂ pha. A similar argument can be made for the only
other case ⟨tha, ptha⟩, thus the condition is satisfied.

4We follow a common convention and abbreviate sets in SE-
interpretations such as {a,b} with the sequence of its elements, ab.

For ∆m
u2

, let us consider ⟨p, pha⟩ ̸∈ SE (P ) and no larger
non-total model ⟨M,pha⟩ exists. Since the condition is nat-
urally satisfied for X ′ = {p}, we look at X ′ = {t} since
m(t) = m(p) = u. There is ⟨tha, tha⟩ ∈ SE (P ) with-
out a non-total model that is equal or larger than ⟨t, tha⟩.
One can see that always such a Y ′ can be found for any
non-total SE-interpretation ⟨X,Y ⟩ ̸∈ SE (P ), and no larger
SE-interpretation is a model. Thus the condition is satisfied.

For ∆m
u3

, we look at ⟨pha, pha⟩. Here the set of clustered
atoms is Cl = {p, t}, and Y ∩ C = {p}. The condition
states for C ′ = m−1(m(p)) = m−1(u) = {p, t}, ⟨Y ∪
C ′, Y ∪ C ′⟩ = ⟨ptha, ptha⟩ ∈ SE(P ) should hold, which
is indeed the case. The same holds for ⟨tha, tha⟩, thus the
condition is satisfied.

Given that each of the conditions in Prop. 3 are conse-
quences of Prop. 2, we may wonder, whether there is one
that implies the other. We see next that this is not the case.
First, ∆m

u1
does not imply the other two.

Example 7. Consider the program from Ex. 3 and the map-
ping m : {a, b} 7→ k. We have the following SE-models.

⟨ac, ac⟩ ⟨b, b⟩ ⟨b, bc⟩ ⟨bc, bc⟩
⟨∅, abc⟩ ⟨b, abc⟩ ⟨c, abc⟩
⟨ac, abc⟩ ⟨bc, abc⟩ ⟨abc, abc⟩

In this case, ∆m
u3

is not satisfied since ⟨b, b⟩ ∈ SE (P ), but
⟨ab, ab⟩ is not. Also, ∆m

u2
is not satisfied. Consider ⟨a, ac⟩ ̸∈

SE (P ). Yet, we have ⟨b, bc⟩ ∈ SE (P ) and m(a) = m(b)
and m(ac) = m(bc). At the same time, ∆m

u1
is satisfied for

the relevant models ⟨ac, abc⟩ and ⟨bc, abc⟩.
Also, ∆m

u3
does not imply the other two either.

Example 8. Consider program P with a← and b← not b
with m : {a, b} 7→ k, and SE (P ) = {⟨a, ab⟩, ⟨ab, ab⟩}.
Then, ∆m

u1
is not satisfied, since for the only non-total SE

model ⟨a, ab⟩ there does not exist any such required Y ′.
Then, ∆m

u2
is not satisfied either, since ⟨b, ab⟩ ̸∈ SE (P ),

but m(a) = m(b) and ⟨a, ab⟩ ∈ SE (P ), but ∆m
u3

clearly is.
Finally, ∆m

u2
is not more general than the other two either.

Example 9. Consider program P from Ex. 4 with the only
non-trivial mapping m : {a, b} 7→ k and SE (P ) =
{⟨∅, ∅⟩, ⟨∅, a⟩, ⟨a, a⟩, ⟨∅, ba⟩, ⟨a, ba⟩, ⟨b, ba⟩, ⟨ba, ba⟩}. ∆m

u2

trivially holds for lack of missing non-total SE-models, while
∆m

u3
holds by ⟨ba, ba⟩ ∈ SE (P ). Yet, ∆m

u1
does not hold be-

cause of ⟨b, ba⟩ ∈ SE (P ).
Alternatively, consider program P ′ with rules a ∨ d ←,

and ← a, m : {a, d} 7→ k, and SE (P ) = {⟨d, d⟩}. Here,
∆m

u1
and ∆m

u2
are trivially satisfied, but ∆m

u3
is not.

Yet, ∆m
u2

is closely connected with UE-models, as, to-
gether with Prop. 1, we can obtain a result that establishes
that certain non-total UE-models ⟨X,Y ⟩ entail, for those Y ′

that coincide with Y under m, the existence of correspond-
ing non-total UE-models ⟨X ′, Y ′⟩ as follows. 5

Proposition 4. Let P satisfy ∆m
u2

. If there exists ⟨X,Y ⟩ ∈
UE (P ) with m(X) ⊂ m(Y ) and X ∩ Cl = Y ∩ Cl, then,

5For full versions of proofs throughout the paper see https://
www.dbai.tuwien.ac.at/user/saribat/pub/kr24 supp.pdf.
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for all ⟨Y ′, Y ′⟩ ∈ SE (P ) with m(Y ′) = m(Y ), we have
⟨(X \ Cl) ∪ (Y ′ ∩ Cl), Y ′⟩ ∈ UE (P ).

Proof sketch. Assume for ⟨X,Y ⟩ ∈ UE (P ) with m(X) ⊂
m(Y ) and X∩Cl = Y ∩Cl, there exists ⟨Y ′, Y ′⟩ ∈ SE (P )
with m(Y ′) = m(Y ) s.t. ⟨(X \ Cl) ∪ (Y ′ ∩ Cl), Y ′⟩ /∈
UE (P ). Then either (a) ⟨(X\Cl)∪(Y ′∩Cl), Y ′⟩ /∈ SE (P )
or (b) there exists some X ′ ⊃ (X \ Cl) ∪ (Y ′ ∩ Cl) s.t.
X ′ ⊂ Y ′ and ⟨X ′, Y ′⟩ ∈ UE (P ). For (a), if there is a
greater non-total model, we apply step (b). If not, we take
into account ∆m

u2
which yields a contradiction due to the

property on DLPs. For (b), as ⟨X ′, Y ′⟩ satisfies the same
conditions of the proposition, we apply the same argument
to X ′. Doing this recursively, eventually case (b) will not be
applicable, and a contradiction by (a) will be obtained.

Example 10. Consider program P that satisfies ∆m
u2

with
{⟨bx, abx⟩, ⟨abx, abx⟩, ⟨ay, aby⟩, ⟨aby, aby⟩} ⊆ SE (P )
and m : {x, y} 7→ k. Then, by Prop. 4, we also have
{⟨ax, abx⟩, ⟨by, aby⟩} ⊆ SE (P ).

This connection to UE-models is no mere coincidence,
but deeply rooted in the notion of uniform m-abstractions.

4 Characterizing Abstractability
In this section, we provide a semantic characterization of
uniform m-abstraction in terms of the UE-models of the
given program. As we will see, this turns out to be the case,
provided ∆m

u1
,∆m

u2
, and ∆m

u3
hold, i.e., they are sufficient

conditions for the existence of a uniform m-abstraction.
To that end, we first capture those X for which, for all

different total SE-models ⟨Y ′, Y ′⟩ that are mapped to the
same Y , and all X ′ compatible with X under m within Y ′,
a UE-model exists that contains X ′. The idea is that X is
only considered if adding X itself or any of its variants under
abstraction as facts to P does not admit an answer set.
Definition 4. Let P be program, m : U→U ′ a mapping, and
Y ⊆ U ′ such that ∃Y ′ ∈ m−1(Y ) and ⟨Y ′, Y ′⟩ ∈ SE (P ).

Sm
Y (P ) = max≥{X | m(X) ⊂ Y and ∀Y ′ ∈ m−1(Y ) s.t.

⟨Y ′, Y ′⟩ ∈ SE (P ) and ∀X ′ ⊂ Y ′ s.t.

m(X ′) = m(X) : ∃M s.t. X ′ ⊆M ⊂ Y ′

and ⟨M,Y ′⟩ ∈ UE (P )}

Here the relation ≥ for max is the usual superset relation
⊇ on sets of atoms X .
Example 11 (Ex. 7 ctd). For Y = {k}, consider ⟨b, b⟩ with-
out non-total models, thus Sm

{k}(P ) = ∅. For Y = {k, c},
we have Y ′ as {a, c}, {b, c}, and {a, b, c}. Though, e.g.,
⟨b, bc⟩ ∈ UE (P ), we get Sm

{k,c}(P ) = ∅. If we add ⟨a, ac⟩
to SE (P ), then Sm

{k,c}(P ) = {∅}, and if we additionally
have ⟨ab, abc⟩ ∈ SE (P ), then Sm

{k,c}(P ) = {{ab}}.

Note that m(X ′) = m(X) ensures the alignment under
the abstraction. In particular, for cases where X includes
some clustered atom(s), Sm

Y (P ) may contain different X
that coincide under the mapping. This will not be an issue,
as for characterizing uniform m-abstractions, we will con-
sider the unique abstracted non-total model ⟨m(X),m(Y )⟩.

We now move on to defining m-UE-models, as the UE-
models under an abstraction mapping m, which will be cru-
cial for the characterization of the uniform m-abstractions.

Definition 5. Let P be program and m a mapping. The set
of m-UE-models of P , denoted UEm(P ), is defined as:

{⟨m(X),m(Y )⟩ | X ∈ Sm
m(Y )(P ), ⟨Y, Y ⟩ ∈ SE (P )}

∪ {⟨m(Y ),m(Y )⟩ | ⟨Y, Y ⟩ ∈ SE (P )}

Example 12 (continued from Ex. 1 and 2). We obtain the
following maximal non-total models by Def. 4:

Sm
∅ (P ) = ∅ Sm

{a}(P ) = {∅}
Sm
{ha}(P ) = {{a}} Sm

{uha}(P ) = {{ha}}

I.e., for ∅ no non-total model exists, for {a} and
{h, a} only one corresponding Y ′ exists, and for
{u, h, a} several Y ′ exist, and among them, {h, a}
refers to the consensual maximal non-total model. Thus
we have UEm(P ) = {⟨uha, uha⟩, ⟨ha, uha⟩, ⟨a, a⟩,
⟨∅, a⟩, ⟨ha, ha⟩, ⟨a, ha⟩, ⟨∅, ∅⟩}.

We now show that there is a correspondence between the
m-UE-models of a program and the UE-models of its uni-
form m-abstraction (provided it exists). For now, this result
is restricted to m creating only one cluster.

Proposition 5. Let P be program and m a mapping such
that |m(Cl)| = 1. If Q is a uniform m-abstraction of P ,
then it satisfies

UEm(P ) = UE (Q). (2)

Proof sketch. For the inclusion UEm(P ) ⊆ UE (Q), we
assume that ⟨X,Y ⟩ ∈ UEm(P ), but ⟨X,Y ⟩ /∈ UE (Q).
The non-trivial case is when X ⊂ Y , and we have two
cases: there exists ⟨M,Y ⟩ ∈ UE (Q) s.t. X ⊂ M ⊂ Y ;
or ⟨X,Y ⟩ /∈ SE (Q). In both cases, we reach a contradic-
tion with the fact that X∗ ∈ Sm

Y (P ) for X∗ ∈ m−1(X).
For the reverse inclusion, assume that ⟨X,Y ⟩ ∈ UE (Q)

but suppose that ⟨X,Y ⟩ /∈ UEm(P ). The non-trivial case is
X ⊂ Y . We consider X∗ = max≥(m

−1(X)) and have two
alternatives: X∗ does not satisfy the conditions of Sm

Y (P );
or X∗ is not maximal among those that satisfy Sm

Y (P ). In
both cases this contradicts ⟨X,Y ⟩ ∈ UE (Q).

At the same time, we can use this characterization to show
that, for arbitrary mappings m, the necessary conditions for
a uniform m-abstraction in Prop. 3 are also sufficient.

Theorem 6. Let P be program and m a mapping. If P satis-
fies ∆m

u1
,∆m

u2
, and ∆m

u3
, then it has a uniform m-abstraction

Q with UE (Q) = UEm(P ).

Proof sketch. Let P be program and m be a mapping such
that P satisfies ∆m

u1
,∆m

u2
, and ∆m

u3
. Consider Q with

UE (Q) = UEm(P ). Since it is possible to construct a DLP
from a given set of SE-models (or UE-models), cf. Sct. 3.1 in
(Eiter et al. 2013), Q is well-defined. For such P and Q, we
assume that Q is not a uniform m-abstraction and thus (1)
of Def. 3 cannot hold. We consider all cases that invalidate
this definition and derive a contradiction for each one.
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We obtain that ∆m
u1
,∆m

u2
and ∆m

u3
are indeed necessary

and sufficient conditions for uniform m-abstractions.

Corollary 7. Let P be program and m be a mapping. P has
a uniform m-abstraction iff P satisfies ∆m

u1
,∆m

u2
, and ∆m

u3
.

In addition, for the case where |m(Cl)| = 1, Prop. 5 and
Thm. 6 entail that (2) provides a semantic characterization
of the uniform m-abstraction in terms of UE-models.

Of course, we want this characterization to hold for arbi-
trary m. For that we first show that satisfaction of ∆m

u1
,∆m

u2
,

and ∆m
u3

is compositional in the following sense.

Lemma 8. Let P be a program, Q a uniform m1-
abstraction of P s.t. UE (Q) = UEm(P ), and m = m1 ◦
m2 with |m2(Cl2)| = 1. If P satisfies ∆m

u1
,∆m

u2
, ∆m

u3
,

∆m1
u1

,∆m1
u2

, ∆m1
u3

, then Q satisfies ∆m2
u1

,∆m2
u2

, and ∆m2
u3

.

Proof sketch. Consider such P , Q, and m = m1 ◦m2 with
Cl = Cl1 ∪Cl2. For each ∆m2

ui
, the proof proceeds by con-

sidering that the respective conditions of ∆m2
ui

hold. Then,
since UE (Q) = UEm(P ), we can determine SE-models
in SE (P ) that permit the application of the ∆m

ui
and ∆m1

ui
,

respectively, which allows to show that also corresponding
UE-models exist SE (Q) that validate ∆m2

ui
.

Note that this works as intended, since any atom resulting
from clustering by m1 is not clustered further by m2.

Thus, we can generalize the result from Prop. 5 as follows.

Theorem 9. Let P be program and m a mapping. If Q is a
uniform m-abstraction of P , then it satisfies

UE (Q) = UEm(P ). (3)

Proof sketch. If Q is a uniform m-abstraction of P , then, by
Prop. 3, P satisfies ∆m

u1
,∆m

u2
and ∆m

u3
. Then, by Thm. 6, P

has a uniform m-abstraction Q′ with UE (Q′) = UEm(P ).
We show by induction that the uniform m-abstraction is
unique, i.e., UE (Q) = UE (Q′).

Together with Thm. 6, this allows us to conclude that this
semantic characterization is indeed unique.

Corollary 10. Let P be program and m a mapping. Any
uniform m-abstraction Q of P satisfies UE (Q)=UEm(P ).

Having established uniform m-abstractions and their
characterization in terms of UE-models, we now look at
the extreme cases of clustering. For the trivial mapping m
(without any clusters), ∆m

u1
,∆m

u2
, and ∆m

u3
are always satis-

fied and Sm
Y (P ) amounts to the non-total UE-models of P .

Thus, UEm(P ) = UE (P ), and the equality (2) amounts to
UE (P ) = UE (Q), which is uniform equivalence.

Corollary 11. Let m be a trivial mapping, i.e., Cl = ∅.
• Any program is uniform m-abstractable.
• Q is uniform equivalent to P iff Q is a uniform m-

abstraction of P .

On the other hand, as we have already seen in Ex. 4, for a
mapping m that clusters all the elements, not every program
might have a uniform m-abstraction, since some ∆ condi-
tion can easily be violated (as shown in Ex. 9).

5 Syntactic Clustering
In this section, we investigate syntactic methods to provide
the desired results of uniform m-abstraction. The main idea
employed here is that of a syntactic rewriting, where the oc-
currences of the elements mapped to the same cluster will
simply be replaced by that cluster, i.e., the mapping is ap-
plied to all atoms occurring in the program.
Definition 6. Given a rule r : H(r)← B(r), m(r) yields

m(H(r))← m(B(r)). (4)

Then, the mapping of P , m(P ), is defined as
⋃

r∈P m(r).

E.g., the presented result in Ex. 1 exactly matches m(P ).
Next, we first restrict our considerations to a class of pro-

grams for which we will show that the mapping of P pro-
vides a uniform m-abstraction.
Definition 7. Let P be a program and m a mapping. P is
called m-positive if for each rule r ∈ P , B−(r) ∩ Cl = ∅.

Note that this only prevents clustered atoms to occur
negated in the program, and Horn programs and positive
programs naturally are m-positive for any m.

We first present a connection between the SE models of
an m-positive program P and its mapping m(P ).
Lemma 12. Let P be an m-positive program. It holds that
SE (m(P )) ⊆ m(SE (P )).

Proof sketch. Let ⟨X,Y ⟩ ∈ SE (m(P )). We claim
that ⟨Xs ∪ C ′, Ys ∪ C ′′⟩ ∈ SE (P ) for some C ′ =
m−1(Xc), C

′′ = m−1(Yc) exists. Assume it is not the case.
Then there is at least one rule in P which prevents it from be-
ing an SE-model. Then, for all such C ′, C ′′ there is an r ∈ P

such that either Ys∪C ′′ ̸|= r or Xs∪C ′ |= B(rYs∪C′′
) while

Xs∪C ′ ⊭H(rYs∪C′′
). By the construction of m(P ), we are

able to derive a contradiction to ⟨X,Y ⟩ ̸∈ SE (m(P )).

This allows us to show for m-positive programs, that the
mapping of P indeed is a uniform m-abstraction.
Theorem 13. Let P be an m-positive program that has
a uniform m-abstraction. Then m(P ) is a uniform m-
abstraction of P .

Proof sketch. We first show that UEm(P ) = UE (m(P ))
holds for a single cluster, which by Prop. 5 and Thm. 6 en-
tails that m(P ) is a uniform m-abstraction of P . We assume
that this equality does not hold, and consider all cases that
invalidate it, taking into account the rules in P that are mod-
ified by m, reaching a contradiction for each one. Then,
following the same kind of argument as in Lemma 8 and
Thm. 9, we can show that m can have several clusters.

However, simply applying the mapping does not always
work, namely when there are cyclic dependencies over nega-
tion in the rules involving atoms to cluster.
Example 13. Consider program the P

a← not b b← not a

with mapping m : {a, b} 7→ k. Then m(AS(P )) = {{k}}.
Clearly Q = {k ←} is a uniform-m-abstraction. However,
m(P ) would consist of k ← not k without answer sets.
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While this problem cannot be avoided in general, for cer-
tain programs, such as the one in the previous example, it
is possible to employ elimination of negation from DLPs,
building on the notion of here-total SE-interpretations.
Definition 8 ((Eiter et al. 2013)). A set S of SE-inter-
pretations is here-total iff ⟨X,Y ⟩ ∈ S implies ⟨X,X⟩∈S.

Example 14 (Ex. 13 ctd). The SE-models of P are
{⟨ab, ab⟩, ⟨a, ab⟩, ⟨b, ab⟩, ⟨∅, ab⟩, ⟨a, a⟩, ⟨b, b⟩} which are
not here-total as ⟨∅, ∅⟩ /∈ SE (P ), but its UE-models are.

This observation can be taken advantage of, since it has
been shown that negation can be eliminated from a program
with here-total UE-models.
Theorem 14 ((Eiter et al. 2013) adapted). Let P be a DLP.
Then, there exists a positive program P ′ such that P ≡u P ′

iff UE (P ) is here-total.

It was shown that such a P ′ can be obtained by left-
shifting of the not-literals.
Example 15 (Ex. 13 ctd). The UE-equivalent program of P
after left-shifting of negation is P ′ : a∨ b. We then apply the
mapping operator to obtain m(P ′) : k which is a uniform
m-abstraction of P ′ (and, therefore, also of P ).

Thus, for programs that are not m-positive but uniform
m-abstractable, if their UE-models are here-total, we can
create a UE-equivalent P ′ to apply the mapping operator.

There are still programs P which are neither m-positive
nor have here-total UE-models, but still achieve a correct
abstraction just using m(P ).
Example 16. Consider the program P

b← a,not c c← b a← b a← c b← c

with SE-models ⟨∅, ∅⟩, ⟨∅, abc⟩, ⟨a, abc⟩, ⟨abc, abc⟩ and m :
{b, c} 7→ k for which P is uniform m-abstractable. P is nei-
ther m-positive nor its UE-models here-total, but applying
m to P yields a uniform m-abstraction:

k ← a,not k k ← k a← k

Yet, if we extend P with e ← not f and f ← not e and
the mapping with {e, f} 7→ l, then the result is neither m-
positive nor has here-total UE-models, but none of the pre-
sented methods would provide the desired abstraction. Thus,
further refinements may be investigated in the future taking
into account, e.g., the possibility of considering here-total
UE-models only for some of the clustered atoms.

6 Related Formalisms
We now connect uniform m-abstractions to related work in
ASP in the scope of generalization, namely, work on forget-
ting and simplifications, tailored here towards UE-models.

UP-forgetting Forgetting aims at eliminating a set of
atoms from a knowledge base while preserving all relation-
ships (direct and indirect) between the remaining atoms. In
the context of ASP, this notion has been explored exten-
sively, and a large variety of classes of forgetting opera-
tors has been defined, satisfying differing sets of properties

(Gonçalves, Knorr, and Leite 2023). Central among them
is a property called strong persistence, which essentially re-
lies on the correspondence of the answer sets under strong
equivalence between a program and its result of forgetting.

In this context, UP-forgetting (Gonçalves et al. 2019)
emerged as a notion that establishes this semantic correspon-
dence between a program and its forgetting result based on
uniform equivalence. Formally, given a program P and a set
V ⊆ U , a forgetting operator f satisfies uniform persistence
if: AS(f(P, V )∪R) = AS(P ∪R)∥V , for all sets of facts R
with U(R) ⊆ U \ V , where S∥V is the restriction of S to V .
It was shown that there is a class of forgetting operators that
satisfies this property, unlike the general case under strong
forgetting (Gonçalves et al. 2020).

We can observe that even though the definitions of uni-
form persistence and uniform m-abstractions share certain
characteristics (using uniform equivalence to compare a pro-
gram and its modification), both are inherently different.
Though both reduce the number of distinct atoms, forgetting
removes them from the signature, while abstraction conjoins
atoms if possible. In particular, an m-abstraction may not
exist, while UP-forgetting is always possible.

Example 17. Recall program P from Ex. 3 with mapping
m : {b, c} 7→ k. We know that no uniform m-abstraction
exists, even if double negation is used, but uniform forgetting
is applicable, for any set of atoms, including {b, c}. The
answer sets of P are {{a, c}, {b}}. Here the forgetting result
needs to ensure, that, e.g., with empty R the answer sets over
a program not mentioning b and c still has to answer sets
{{a}, {}} which can be achieved by a← not not a.

Note that forgetting commonly requires the usage of dou-
ble negation, but this is a matter of representation, which
does not help in the case of uniform m-abstractions.

Finally, syntactic UP-forgetting has been investigated
(Gonçalves et al. 2021), showing that this is possible as long
as certain rules involving double negation are not present.

Uniform Simplification Notions of simplification (Sarib-
atur and Woltran 2023) were introduced based on the idea to
capture and preserve relations between programs and their
simplifications, taking into account the entire language for
the validation using some equivalence notion, unlike forget-
ting, which restricts to the remaining language. It turned
out that this can be viewed as capturing as simplifiable
atoms that semantically correspond to facts. In this setting,
uniform simplification by omission (Saribatur and Woltran
2023) focuses on preserving the relevant UE-models.

Definition 9 ((Saribatur and Woltran 2023)). Given A ⊆ U
and a program P (over U ), program Q (over A = U \A) is
a uniform A-simplification of P if for any set F of facts over
U , we have AS(P ∪ F )|A = AS(Q ∪ F|A). P is uniform
A-simplifiable if there exists such a program Q.

It was shown that the SE-models of a uniform A-
simplifiable program need to adhere to certain conditions,
similar in spirit to those presented in Prop. 3, and, if satis-
fied, the simplification can be characterized by the relevant
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UE-models just projecting away those atoms to be omit-
ted. A corresponding syntactic operator is presented which
omits those atoms from the program, and which is applica-
ble whenever simplification is possible.

Note that the difference between abstraction and simplifi-
cation is that, for the latter, we might have SE-models which
do not contain any atoms to omit, while still agreeing on the
projection with other SE-models, which cannot happen with
abstraction. Thus in order to relate these two notions, we
need to impose a restriction on the SE-models, namely, that
all SE-models ⟨X,Y ⟩ contain a clustered atom in X from
each cluster in the mapping.
Definition 10. Let P be a program and m : U 7→ U ′ a map-
ping. P is called U ′

c-insistent if, for each ⟨X,Y ⟩ ∈ SE (P ),
X ∩m−1(k) ̸= ∅ hold for all k ∈ U ′

c.
It is possible to observe that, for such restricted U ′

c-
insistent P , the conditions ∆m

u1
, ∆m

u2
, and ∆m

u3
reduce to

those of uniform simplifiability for omitting those atoms in
Cl (see (Saribatur and Woltran 2023)). We thus obtain:
Proposition 15. Let m be a mapping and P a U ′

c-insistent
program. If P is uniform m-abstractable, then P is uniform
U ′
c-simplifiable.
If we consider a single cluster only, then under these re-

strictions (on abstractions), these two notions correspond.
Proposition 16. Let m be a mapping with |U ′

c| = 1 and P a
U ′
c-insistent program. P is uniform m-abstractable iff P is

uniform U ′
c-simplifiable.

Note though that the actual individual results of applying
simplification and abstraction do not correspond:
Example 18. Consider the program P as

a ∨ b. d← a, c. d← b, c.

Now consider the abstraction mapping m : {a, b} 7→ k. In
all of the SE-models of P either a or b appears, thus P is
{a, b}-insistent. Here P is both uniform m-abstractable
and uniform A-simplifiable for A = {a, b}. For simplifi-
cation, we would obtain a single rule d ← c, whereas for
abstraction we have k ← and d← k, c.

Note that in the example above, by symmetry of a and
b in the program structure, uniform m-abstraction is appli-
cable. Since, in addition, both together could be viewed as
facts, simplification also is. In general, the latter is not the
case. Also, if possible, simplifying a single atom provides a
simplified program, whereas abstraction amounts to a trivial
mapping. Together with the inherent differences in the char-
acterizations under UE-models, this shows that while seem-
ingly building on syntactically similar notions, cf. Defs. 3
and 9, they represent entirely different ideas and results.

7 Complexity
We assume familiarity with basic concepts of complexity
theory. For comprehensive details we refer to (Papadim-
itriou 2003; Arora and Barak 2009).
Theorem 17. Let P be a program over U and m : U →
U ′ be a mapping. Deciding whether P is uniform m-
abstractable is ΠP

3 -complete.

Proof. We show ΠP
3 membership by analysing the three

conditions of Proposition 3 separately. ΠP
3 -hardness is ob-

tained by knowing that uniform simplifiability, which is ΠP
3 -

hard, is a special case of uniform abstractability (Prop. 16).
(∆u1

) Membership: We give ΣP
3 membership for the

complementary problem: It suffices to guess an SE-
interpretation ⟨X,Y ⟩ and check whether ⟨X,Y ⟩ ∈ SE (P )
and ∀Y ′ ⊇ X with Y ′ ⊂ Y , m(Y ′) = m(Y ) and
⟨Y ′, Y ′⟩ ∈ SE (P ), ∃M with X ⊆ M ⊂ Y ′, ⟨M,Y ′⟩ ∈
SE (P ). Inspecting the quantifier structure of this condi-
tion, and since SE-model checking is in P (Eiter, Fink, and
Woltran 2007), yields the required membership.

(∆u2 ) Membership: Again, we give ΣP
3 membership for

the complementary problem: It suffices to guess interpre-
tations X,Y , with X ⊂ Y and check whether ⟨Y, Y ⟩ ∈
SE (P ), and (a) exists M with X ⊆ M ⊂ Y , ⟨M,Y ⟩ ∈
SE (P ), or (b) exists X ′ with m(X) = m(X ′), such that
for all ⟨Y ′, Y ′⟩ ∈ SE (P ) with m(Y ′) = m(Y ) such
that X ′ ⊆ Y ′ there is an M ′ with X ′ ⊆ M ′ ⊂ Y ′,
⟨M ′, Y ′⟩ /∈ SE (P ). Since SE-model checking is in P , we
derive that (a) is in NP; while (b) due to the quantifier struc-
ture yields a ΣP

3 procedure; together with our overall guess
for X,Y , it follows that the entire procedure remains in ΣP

3 .
(∆u3 ) Membership: we solve the complementary prob-

lem, and guess ⟨Y, Y ⟩ ∈ SE (P ) so that ⟨Y ∪C ′, Y ∪C ′⟩ ̸∈
SE (P ) for C ′ = m−1(m(Y ∩ Cl)) - this is in coNP.

For checking whether some Q is a uniform m-abstraction
of a given P , we give only an upper bound. The triv-
ial lower bound is obtained by utilizing the observation in
Cor. 11 where we have seen that for the trivial mapping m
this checking amounts to uniform equivalence between P
and Q. We anticipate that matching lower bounds can be
obtained but leave this for future work.
Theorem 18. Given a mapping m, a program P which
is uniform m-abstractable, and a program Q, checking
whether Q is a uniform m-abstraction of P is in ΠP

3 and
ΠP

2 -hard.

Proof. For given P , Q, and m, we check for the equality
(1) defining Q to be a uniform m-abstraction. For the com-
plementary problem, we guess a set F of facts and an inter-
pretation I checking its containment in AS (P ∪ F ) and the
containment of m(I) in AS (Q∪m(F )), but that it does not
hold for both. As answer set computation for propositional
DLPs is in ΠP

2 , the equality check is contained in ΣP
3 .

Let us look at the particular case of Horn programs to see
whether deciding abstractability or checking for an abstrac-
tion becomes easier. For deciding uniform abstractability
for a mapping m, we need to be checking for ∆m

u1
,∆m

u2
and

∆m
u3

. For ∆m
u1

, we can in fact take advantage of the follow-
ing property on the SE-models of Horn programs: ⟨X,Y ⟩ ∈
SE (P ) iff X ⊆ Y, ⟨X,X⟩ ∈ SE (P ) and ⟨Y, Y ⟩ ∈ SE (P )
(Wang et al. 2014). The existence of such ⟨X,X⟩ automat-
ically satisfies ∆m

u1
for any m. However the remaining two

conditions ∆m
u2

and ∆m
u3

still need to be checked and the
complexity does not seem to be reduced.

For checking whether some Q is a uniform m-abstraction
of a Horn program P , we can take advantage of the fact that,
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by Def. 7 and Thm. 13, Q is Horn as well, and that answer
set computation for Horn programs is in P.
Theorem 19. Given a mapping m, a Horn program P
which is uniform m-abstractable, and a Horn program Q,
checking whether Q is a uniform m-abstraction of P is in
coNP.

The same argument can be adapted for here-total pro-
grams (including positive programs) using Thm. 14, which
ensures that any here-total program can be converted into a
positive program, and that answer set computation of posi-
tive programs is in coNP.
Theorem 20. Given a mapping m, a program P which
is uniform m-abstractable and has here-total UE-models,
and a program Q that has here-total UE-models, checking
whether Q is a uniform m-abstraction of P is in ΠP

2 .

8 Discussion
In this section, we discuss the potential of the introduced
notions to capture generalized reasoning in ASP.

Generalizing to new information The human ability of
generalization from given information (or examples) to ap-
ply when encountering new information (or examples) sim-
ilar to existing ones, is referred as analogical abstraction
in psychology and a widely studied concept (Gentner and
Hoyos 2017). In the context of ASP, being able to con-
struct an abstraction of a given program which admits exten-
sions with further detailsfor which the abstraction still holds
would be a powerful tool for reasoning.
Example 19 (continued from Ex. 1 and 2). Con-
sider extending P to P ′ over U ′ = U ∪ {takeCar}
by adding the rule reachHanoi ← takeCar . The
dependencies between takeCar and the other atoms
are same as these dependencies for takePlane or
takeTrain . Thus extending the original mapping m :
{takePlane, takeTrain} 7→ useTransportation to m′ :
{takePlane, takeTrain, takeCar} 7→ useTransportation
would be possible and the existing Q would remain the same
as the uniform m′-abstraction.

This observation leads to the following conjecture which
for simplicity only considers one cluster and where a/e rep-
resents the replacement of a with e.
Conjecture 21. Let P be a program over U and uniform
m-abstractable. Consider U ∪ {e}. If P ′ is of form P ∪
{r|a/e | r ∈ P, a ∈ r} for some a ∈ Cl, then P ′ is uniform
abstractable for m′ where Clm′ = Clm ∪ {e}.

Observe that this syntactic check with existing rules con-
taining clustered elements is needed to ensure that we pre-
serve the dependencies within the propositional program.
We leave investigating this for future work.

Generalized planning Generalized planning is the prob-
lem of finding a plan that can work for a set of planning
problem instances. This problem is widely studied in AI,
and approached under different perspectives, including ab-
straction. We consider this problem in the context of ASP.

Planning is an important application domain for ASP, also
referred as answer set planning (Tran et al. 2022). Previous
work towards generalized planning aims at finding confor-
mant plans under incomplete information (Romero, Schaub,
and Son 2017). The notion of quantified ASP (Fandinno et
al. 2021) also seems to have potential to capture generalized
planning, which so far has not been studied. Here we ap-
proach generalized planning in ASP via abstraction.

Example 20. Consider the blocksworld problem with mul-
tiple tables. We have 3 blocks where b1 is located on
top of table t1, b2 is located on top of b3 and b3 can
be on any of the tables t2 − t10. Thus we have differ-
ent possible initial states I1, . . . , I9 depending on where
b3 is located. The aim is to find a plan to reach the
goal state G where the blocks are piled up on table t1.
Now consider an abstraction mapping m that distinguishes
the chosen table t1 and clusters the remaining tables into
t̂2. An abstract plan to achieve the abstract goal state
m(G) from the abstract initial state is move(b2, t̂2, 0),
move(b3, t1, 1),move(b2, b3, 2),move(b1, b2, 3).

When we map this abstract plan back to any instance
of the original domain, we have different possible original
plans to execute (depending on which table b2 is moved to at
step 0). Any of these plans can achieve the goal from any of
the initial states.

Our introduced notion can be extended to capture the
above example. For this, we first would need to restrict the
notion of uniform m-abstractions to a set of set of facts, de-
scribing the planning instances, and then allow only for the
abstraction of these atoms of importance. This would then
allow us to characterize such a generalized planning via ab-
straction, or along these lines generalized reasoning.

9 Conclusion
We have introduced a novel equivalence notion employ-
ing clustering-based abstraction to capture the irrelevance
of details in ASP programs, while ensuring that the se-
mantics of the original program is preserved under sets of
added atoms w.r.t. the modified signature in the spirit of
uniform equivalence. We have provided the necessary and
sufficient conditions for such uniform m-abstractions for an
abstraction mapping m in terms of the SE-models, and a
semantic model-based characterization for the uniform m-
abstractions. We have also investigated syntactic clustering
that, for certain program classes, can essentially be achieved
by merely applying the mapping to the atoms of the pro-
gram, and we have studied the computational complexity of
deciding uniform m-abstractability and equivalence testing.

We have also discussed the potential of the notion in terms
of capturing generalized reasoning in ASP, which is a line
of research we plan to continue. As the current notion takes
into account clustering of atoms that might not be intuitive,
e.g.. clustering takeTrain and reachHanoi in Ex. 1 is ad-
missible, we plan to extend our work to allow for only cer-
tain types of atoms to be clustered. For that, a relativized
version of our notion restricting the language of the further
atoms to be added may be helpful, similar to the relativiza-
tion of the simplification notion which allowed to capture
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forgetting (Saribatur and Woltran 2024), and then employ
this in the context of modularity in ASP (Oikarinen and Jan-
hunen 2008). Such extensions would also allow us to tackle
another important issue we left for future work, namely how
to find the right abstractions automatically, which, without
any guidance, is likely unfeasible. Here, complementarily,
also inductive logic programming for ASP, taking advantage
of tools such as ILASP (Law, Russo, and Broda 2018), may
prove useful to find abstractions for families of instances.

Other avenues of future work include the idea of investi-
gating a notion that may permit to tackle clustering (of some
atoms) and forgetting (of other atoms) simultaneously, or
lifting these results to the non-ground case, possibly taking
into account observations from domain clustering (Saribatur,
Eiter, and Schüller 2021), which then could also provide a
path towards generalized planning and its theoretical foun-
dations.
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