
Navigating and Querying Answer Sets: How Hard Is It Really and Why?

Dominik Rusovac1 , Markus Hecher2 , Martin Gebser3 , Sarah Alice Gaggl1 , Johannes K. Fichte4
1TU Dresden

2Massachusetts Institute of Technology
3University of Klagenfurt
4Linköping University

firstname.lastname@tu-dresden.de, hecher@mit.edu, martin.gebser@aau.at, johannes.fichte@liu.se

Abstract

Answer set programming is a popular declarative paradigm
with countless applications for modeling and solving combi-
natorial problems. We can view a program as a knowledge
database compactly representing conditions for solutions. Of-
ten we are interested in reasoning about solutions of filtering
answer sets. At the heart of these questions is brave and cau-
tious reasoning. For browsing answer sets, we combine both
as restricting atoms of answer sets is only meaningful for
atoms called facets that belong to some (brave) but not to all
answer sets (cautious). Surprisingly, the precise computational
complexity of facet problems remained widely open so far. In
this paper, we study the complexity of answer set facets. We
establish tight results for reasoning with facets, deciding upper
and lower bounds as well as the exact number of facets, and
comparing facets. Facet reasoning seems to be a natural prob-
lem formalism, residing in complexity families ΣP, ΠP, DP,
and ΘP, up to the third level. Moreover, our study considers
quantitative importance questions on facets and generalizing
from facets to conjunctions, disjunctions, and arbitrary queries.
We complete our results by an experimental evaluation.

1 Introduction
Answer set programming (ASP) is a popular framework for
declarative programming (Marek and Truszczyński 1999;
Niemelä 1999; Brewka, Eiter, and Truszczyński 2011) al-
lowing for encoding a problem by means of rules and con-
straints that form a logic program. Solutions to the pro-
gram are so-called answer sets. Countless problems in AI
and reasoning can be modeled within ASP and solved us-
ing tools such as clingo (Gebser et al. 2014), WASP (Al-
viano et al. 2015), or DLV (Alviano et al. 2017). While
the qualitative and quantitative reasoning problems for ASP
are of high worst-case complexity (Eiter and Gottlob 1995;
Truszczyński 2011; Fichte et al. 2017; Hecher 2022), ad-
vances in highly efficient solvers and encoding techniques
(Gebser et al. 2012) encompass numerous applications, such
as configuration or planning (Soininen and Niemelä 1999;
Gebser, Kaminski, and Schaub 2011).

When using answer set programs to compactly repre-
sent knowledge, for example with configuration problems
(Soininen and Niemelä 1999), we may easily have a vast
number of solutions. Different perspectives to reason with
answer sets have been investigated over the last years,
such as reasoning with incomplete information (Shen and

Eiter 2016), introducing preferences (Brewka et al. 2023),
accessing optimal (Brewka, Niemela, and Truszczynski
2003) or diverging answer sets (Böhl and Gaggl 2022;
Böhl, Gaggl, and Rusovac 2023), and filtering answer sets
(Fichte, Gaggl, and Rusovac 2022).

One of the most natural concepts for filtering answer sets
is to restrict the presence or absence of atoms, which is
only meaningful for atoms called facets that belong to some
answer set (brave atoms) but not to all answer sets (cautious
atoms). Example 1 provides a brief intuition on that concept.
Example 1. Consider the following program

P1 = {p← ∼q; q ← ∼p; r ∨ s← q; t← }.
The answer sets of P1 are AS(P1) = {{p, t}, {q, r, t},
{q, s, t}}. Atom t occurs in all answer sets and is not a
facet. Filtering the answer sets such that every set contains t
yields the same answer sets and excluding t results in no
answer set. However, the atoms p, q, r, and s are facets. Fil-
tering for p yields {p, t}, whereas excluding p yields {q, r, t}
and {q, s, t}. Clearly, we can also query the answer sets
using more complex questions.

Example 1 illustrates the fundamental nature of facets
for filtering answer sets, originally introduced by Alrabbaa,
Rudolph, and Schweizer (2018) and studied recently for com-
paring sequences of facets (Fichte, Gaggl, and Rusovac 2022).
Qualitative and quantitative reasoning based on facets is par-
ticularly useful to understand answer sets and uncertainty.

The complexity of facets, which refers in combinatorics to
one dimension less than the structure itself, is a fundamental
problem in computer science and mathematics (Papadim-
itriou and Yannakakis 1982). In the propositional satisfia-
bility setting (SAT-UNSAT, Unique SAT), facets are mostly
understood (Papadimitriou and Yannakakis 1982). However,
the complexity of problems that involve facets in ASP as well
as qualitative and quantitative reasoning remained widely
open so far. When is the computation of facets hard and
what are its sources of hardness? Can we expect efficient
algorithms? How much harder is counting? We study such
questions and provide a complete complexity landscape for
key fragments of ASP. The problem asking whether a pro-
gram has more facets than a second program already reaches
the third level of the polynomial hierarchy. For fragments
that account to propositional formulas, we reach up to the
second level. Additionally, we may ask what happens if we

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

642

Problem Given Task Disj Tight/Normal Reference

ASPFACETREASON P , a ∈ at(P) a ∈ F(P) ΣP
2 -c NP-c Theorem 4

EXACT-K-FACETS P , k ∈ N0 |F(P)| = k DP
2 -c DP

1 -c Theorem 7
ATLEAST-K-FACETS P , k ∈ N0 |F(P)| ≥ k ΣP

2 -c NP-c Corollary 8
ATMOST-K-FACETS P , k ∈ N0 |F(P)| ≤ k ΠP

2 -c coNP-c Corollary 9
FACETNUMCOMPARE P1, P2 |F(P1)| > |F(P2)| ΘP

3 -c ΘP
2 -c Theorem 10

Table 1: Survey of the complexity results. We list problems in rows and key fragments in columns. Observe that facet reasoning on more
restricted fragments like Horn or Stratified does not provide meaningful insights. Note also that this table immediately yields interesting
consequences for facet reasoning over Boolean formulas (SAT), as there is a strong relation to normal (tight) programs.

go beyond facets and query answer sets by conjunctive or
disjunctive queries, or ASP programs.

Contributions. Our main contributions are as follows.
1. We systematically analyze answer set facets and establish

complexity results for various qualitative and quantitative
problems involving facets, outlined in Table 1. Interest-
ingly, this renders facet reasoning a central problem mod-
eling suite, as complexity spans over canonical classes up
to the third level of the polynomial hierarchy.

2. We introduce fundamental concepts for formulating
generic queries to ASP solution spaces, thereby gener-
alizing facets. We provide unified queries on answer set
programs and establish their computational complexity.
Surprisingly, facet reasoning appears quite robust: Main
reasoning questions can be enhanced by more elaborate
queries without significantly changing their complexity.

3. We present techniques to incorporate our framework and
concepts into existing systems. Indeed, we suggest im-
plementations of facet reasoning that directly build upon
the prominent answer set solver clingo, but could eas-
ily be incorporated into other systems. We then conclude
our work by an initial empirical study, whose results are
promising. Given its central role, we expect facet reason-
ing to be of interest also for other problem formalisms in
KR and AI (e.g., quantified Boolean formulas).

1.1 Related Works
Concepts on facets indirectly also apply to debugging an-
swer sets (Oetsch, Pührer, and Tompits 2018; Dodaro et
al. 2019; De Vos et al. 2012; Schekotihin 2015; Gebser et
al. 2008), where one is interested in understanding or cor-
recting answer set programs. Facets are related to expla-
nations (Fandinno and Schulz 2019; Alviano et al. 2023b;
Eiter and Geibinger 2023; Eiter, Geibinger, and Oetsch 2023),
which aim for understanding why a literal is in an answer set.
Notions of more precise reasoning in ASP have been stud-
ied in the past (Fichte, Hecher, and Nadeem 2022). Beyond
enumeration, there are attempts to count answer sets exactly
(Fichte et al. 2024a; Kabir, Chakraborty, and Meel 2024;
Eiter, Hecher, and Kiesel 2024) or approximately (Fichte
et al. 2024a). Furthermore, we see a relation of facets
to epistemic logic programs (ELP) (Shen and Eiter 2016;
Gelfond 1991), which extend answer set programs by al-
lowing modal operators meaning provably true or possible.

Thereby, consequences from incomplete information about
all or one answer set can be stated in a program itself. Solu-
tions to an ELP can be seen as consequences over multiple
collections of answer sets, known as world views. However,
facets rather complement the epistemic view as they ask for
atoms that are neither provably true nor false but still possi-
ble. In propositional satisfiability, similar concepts to facets
exist where so-called assumptions form fundamental basics
for iterative solving (Eén and Sörensson 2003). Faber and
Woltran (2011) present program rewritings (manifold pro-
grams) for post-processing consequences and apply this to
ideal extensions in abstract argumentation and epistemic pro-
grams. Janhunen et al. (2009) introduce concepts of splitting
answer set programs based on modularity aspects. Uncer-
tainty is directly related to probabilistic answer set program-
ming and related reasoning questions (Bellodi et al. 2020;
Azzolini and Riguzzi 2023b; Azzolini and Riguzzi 2023a).

2 Preliminaries
We assume that the reader is familiar with basics in proposi-
tional logic, ASP, and computational complexity. Below, we
summarize notations.

Computational Complexity. We follow standard termi-
nology in computational complexity (Papadimitriou 1994)
and the Polynomial Hierarchy (PH) (Stockmeyer and Meyer
1973; Stockmeyer 1976; Wrathall 1976). In particular,
∆P

0 := ΠP
0 := ΣP

0 := P and ∆P
i := PΣP

i−1 , ΣP
i := NPΣP

i ,
and ΠP

i := coNPΣP
i for i > 0 where CD is the class C of de-

cision problems augmented by an oracle for some complete
problem in class D. Recall that PH :=

⋃
i∈N ∆P

i (Stock-
meyer 1976). Interestingly, there are also complexity classes
between ΣP

i-1/Π
P
i-1 and ∆P

i . The class ∆
P[log(n)]
i , or ΘP

i for
short, permits only O(log(n)) many ΣP

i-1-oracle calls for ev-
ery instance of size n (Lukasiewicz and Malizia 2017). In
fact, ΘP

0 = ΘP
1 = P, and ΣP

i ∪ ΠP
i ⊆ ΘP

i+1 ⊆ ∆P
i+1 ⊆

ΣP
i+1 ∩ ΠP

i+1 for all i > 0. The complexity class DP
k is de-

fined as DP
k := {L1 ∩ L2 | L1 ∈ ΣP

k , L2 ∈ ΠP
k }, DP = DP

1

(Lohrey and Rosowski 2023), and DP
k is located below ΘP

k .

(Quantified) Boolean Formulas. We define propositional
formulas in the usual way; literals are variables or their nega-
tions. For a propositional formula F , we denote by var(F)
the set of variables of F . Logical operators∧,∨,¬,→,↔ are

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

643

used in the usual meaning. A term is a conjunction of literals,
and a clause is a disjunction of literals. F is in conjunctive
normal form (CNF) if F is a conjunction of clauses, and F
is in disjunctive normal form (DNF) if F is a disjunction of
terms. In both cases, we identify F by the set of its clauses or
terms, respectively. We assume that a propositional formula
is in CNF, unless stated otherwise. Let l ≥ 0 be an integer. A
quantified Boolean formula (QBF) Q is of the form

Q1V1.Q2V2. · · ·QlVl.F,
where Qi ∈ {∀, ∃} for 1 ≤ i ≤ l, Qj 6= Qj+1 for
1 ≤ j ≤ l − 1, and the Vi are disjoint, non-empty sets
of propositional variables with

⋃l
i=1 Vi = var(F) for a

propositional formula F . Given a subset X ⊆ var(F), an
assignment is a mapping τ : X → {0, 1}. The truth eval-
uation Fτ of a propositional formula F is defined in the
standard way. An assignment τ satisfies F if it evaluates to
true, for short Fτ = 1. We say that F is satisfiable if there
is some assignment that satisfies F . For a set M ⊆ var(F),
by τ(M) we refer to its corresponding truth assignment, i.e.,
τ(M) = {var(F)∩M 7→ 1}∪ {var(F) \M 7→ 0}, and use
M |= F as shorthand for Fτ(M) = 1. For a given QBF Q
and an assignment α : X → {0, 1}, Qα is the QBF ob-
tained from Q, where variables x ∈ X are removed from
preceding quantifiers accordingly. A QBF Q with Q1 = ∃
evaluates to true if there is an assignment α : V1 → {0, 1}
such that Qα evaluates to true. If Q1 = ∀, then Q evaluates
to true if, for every assignment α : V1 → {0, 1}, Qα eval-
uates to true. QSATl (QUNSATl) refers to the problem of
deciding satisfiability (unsatisfiability) for a given QBF Q
of quantifier depth l. If Q1 = ∃, the problem QSATl is
ΣP
l -complete, and the problem QUNSATl is ΠP

l -complete
(Kleine Büning and Lettmann 1999; Papadimitriou 1994;
Stockmeyer and Meyer 1973).

Answer Set Programming (ASP). For a comprehensive
introduction, we refer to standard texts (Janhunen and
Niemelä 2016; Calimeri et al. 2020; Gebser et al. 2012). We
restrict ourselves to propositional programs. Let l,m, n be
non-negative integers such that l ≤ m ≤ n, and a1, . . . , an
distinct propositional atoms. A disjunctive rule r is of the
form

a1 ∨ · · · ∨ al ← al+1, . . . , am,∼am+1, . . . ,∼an,
which, intuitively, means that at least one atom of a1, . . . , al
must be true if all atoms al+1, . . . , am are true and there
is no evidence that any atom of am+1, . . . , an is true. By
Hr := {a1, . . . , al}, B+

r := {al+1, . . . , am}, and B−r :=
{am+1, . . . , an}, we denote the head, positive or negative
body atoms of r, respectively. We say that r is normal if
|H(r)| ≤ 1, positive if B(r)− = ∅, and an integrity con-
straint if H(r) = ∅. Usually, if B+

r ∪ B−r = ∅, we simply
write Hr instead of Hr ←. A program P is a set of rules,
where at(P) :=

⋃
r∈P (Hr ∪ B+

r ∪ B−r) denotes its atoms.
Moreover, a program P has a certain property if all its rules
have the property. The dependency digraph DP is the di-
graph defined on the set

⋃
r∈P (Hr ∪ B+

r) of atoms, where
for every rule r ∈ P , two atoms b ∈ B+

r and a ∈ Hr are

joined by an edge (b, a). If DP has no directed cycle, P is
called tight (Fages 1994). By Normal, Disj, and Tight, we
denote the class of all normal, disjunctive, or tight programs,
respectively. An interpretation M ⊆ at(P) satisfies a rule r
if (Hr ∪B−r)∩M 6= ∅ or B+

r *M , and M is a model of P
ifM satisfies every rule r ∈ P . The (GL) reduct of P with re-
spect toM is defined as PM := {Hr ← B+

r | B−r ∩M = ∅}.
Then,M is an answer set of P ifM is a model of P such that
no interpretation N (M is a model of PM (Gelfond and
Lifschitz 1988). We let the set AS(P) consist of all answer
sets of P . The program P is consistent if AS(P) 6= ∅, and
inconsistent otherwise.

Qualitative Reasoning. The consistency problem asks to
decide whether a program P is consistent, which is ΣP

2 -
complete (Eiter and Gottlob 1995). If the input is restricted to
normal programs, the complexity drops to NP-completeness
(Bidoı́t and Froidevaux 1991; Marek and Truszczyński 1991).
We define the brave consequences by

BC(P) :=
⋃

M∈AS(P)

M

and cautious consequences by

CC(P) :=
⋂

M∈AS(P)

M.

For an atom a ∈ at(P), deciding whether a ∈ BC(P) is
ΣP

2 -complete, and whether a ∈ CC(P) is ΠP
2 -complete (Eiter

and Gottlob 1995).

Search Space, Solution Space, and Assumptions. By
search space of a program P , we mean the power set 2at(P)

over the atoms occurring in P , which encapsulates all possi-
ble interpretations. Answer set navigation provides concepts
and notions to select answer sets of P within the solution
space 2AS(P), gathering subsets of the answer sets of P
(Fichte, Gaggl, and Rusovac 2022). An assumption is a lit-
eral ` used for selecting the answer sets of P such that `
holds. Therefore, the integrity constraint ic(`) := { ← ∼`},
where∼¬a stands for a, allows us to incorporate the assump-
tion ` into P [`] := P ∪ ic(`). For a set L of literals, let
∼L := {∼` | ` ∈ L} and ¬L := {¬` | ` ∈ L}, assuming
that ¬¬a = a. By L+ and L−, we denote the sets of vari-
ables a occurring as positive literals ` = a or negative literals
` = ¬a in L, respectively.

ASP Facets. Facets restrict assumptions to (literals over)
atoms of a program P that are meaningful, i.e., atoms belong-
ing to some but not to all answer sets (Alrabbaa, Rudolph,
and Schweizer 2018). Thus, we let

F(P) := BC(P) \ CC(P).

The literature (Fichte, Gaggl, and Rusovac 2022) sometimes
distinguishes excluding and including facets, depending on
whether the facets should be part of answer sets or not. For
computational aspects, it suffices to focus on including facets,
which we do in the following, unless stated otherwise.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

644

AS(P1) =
{
{ p , t}, { q , r , t}, { q , s , t}

}

{
{ p , t}, { q , r , t}

}¬s q{
{q, r , t}, {q, s , t}

}
p ¬p{

{p, t}
} {

{q, r, t}
} ¬rr {

{q, s, t}
}

0.50.25

1 1 1 1

Figure 1: Parts of the search space of program P1 in between the set
of all answer sets AS(P1) and singletons. Boxed atoms are facets
in the respective sub-space. Edges are labeled with the activated
facet (next to rectangle) and its significance (in rectangle).

3 Complexity of ASP Facets
Before we systematically analyze computational problems
that arise with ASP facets, we note that the number of facets
directly measures the amount of uncertainty in possible an-
swer sets. A facet ` ∈ {a,¬a} can be seen as an uncertain
event a, since a can either be included in or be excluded from
answer sets. When we assume the truth of a facet (assump-
tion), we reduce uncertainty among the answer sets. This
leads to the notion of significance (Böhl, Gaggl, and Rusovac
2023), defined as follows for a program P and a literal `:

S[P, `] :=
|F(P)| − |F(P [`])|

|F(P)| .

Example 2 (Technical Example). Reconsider program P1

from Example 1, its answer sets AS(P1) = {{p, t}, {q, r, t},
{q, s, t}}, and facets p, q, r, and s. Figure 1 illustrates the
effects of gradually assuming facets being excluded or in-
cluded from answer sets in form of a decision tree. More
precisely, on the first level, we only illustrate s being ex-
cluded or q included. We observe that S[P1,¬s] = 0.25
and S[P1, q] = 0.5, meaning that q is twice as signifi-
cant to the answer sets as ¬s. Furthermore, if we inves-
tigate p or q, we have that S[P1, p] = S[P1,¬q] = 1 and
S[P1,¬p] = S[P1, q] = 0.5. Thus, p as well as q have high
significance among the facets.
Example 3 (Uncertainty Application). Today, learning is
a core topic in AI. Reliable interpretability and explain-
ability of learnt systems are under intense investigation,
for example, to discover logical rules and enable predic-
tions (Barbiero et al. 2023). Consider a program Psum

that learns the sum S of adding two digits A and B (Man-
haeve et al. 2018), i.e., S = A+B, using rules of the form
prediction sum(S)← digitL(A) ∧ digitR(B). Recall
that S = A + B implies A = S − B and B = S − A,
which we can use to visualize potential errors by employ-
ing significance. Consequently, if we assume that S to-
gether with either input digit A or B are fixed, no uncer-
tainty should occur. We can check this by determining
whether S[Psum[prediction sum(S)], digitL(B)] = 1
and S[Psum[prediction sum(S)], digitR(B)] = 1. Fig-
ure 2 illustrates significance for values of S and A or B.

Note that ¬digitL(X) means that A 6= X . Hence, exclud-
ing a certain input digit does not yield certain results as
significance is different from 1. Now, assume that the train-
ing process resulted in prediction sum(8) for digitL(3)
and digitR(6). Then, both facets for prediction sum(8)
have a significance of 0.842, which is different from 1 and
thus indicates an error.

Now, we are ready to start with a natural reasoning prob-
lem, which we define from the notions above. ASPFACE-
TREASON asks, given a program P and an atom a ∈ at(P),
to decide whether a ∈ F(P). We start with a lower and
upper bound on the ASPFACETREASON problem.

Theorem 4. Let P be a program and a ∈ at(P). The prob-
lem ASPFACETREASON is

1. for disjunctive programs ΣP
2 -complete,

2. for tight programs NP-complete, and
3. for normal programs NP-complete.

Before we establish our theorem, we require the follow-
ing two lemmas and introduce auxiliary definitions. For
a set M ⊆ at(P), we define M ′ := {a′ | a ∈ M} and
cp(P) := {H ′r ← B+

r
′
,∼B−r

′ | r ∈ P}. In other words,
when constructing cp(P), we simply replace each atom in P
by another fresh atom.

First, we establish that we can detect facets by employing
the consistency problem. Therefore, we ask whether a pro-
gram P under the assumption of an atom a ∈ at(P) along
with the opposite assumption ¬a′ on a copy cp(P) result in
a new program that is consistent. In this way, we ensure that
the respective atom a belongs to some but not to all answer
sets of P , which is precisely the condition for a brave but not
cautious consequence.

Lemma 5. Let P be a program and a ∈ at(P). Then,
a ∈ F(P) if and only if the program P [a] ∪ cp(P [¬a])
is consistent.

Proof. First, we observe that {b1, . . . , b`} ∈ AS(P) if and
only if {b′1, . . . , b′`} ∈ AS(cp(P)) holds by construction,
since cp(P) contains fresh auxiliary atoms that are in one-
to-one correspondence with at(P). Hence, we have that
AS(P ∪ cp(P)) = AS(P)×AS(cp(P)).
(⇒): Assume that a ∈ F(P). Then, there are answer sets
M1,M2 ∈ AS(P) such that a ∈ M1 and a /∈ M2. Since
M ′2 ∈ AS(cp(P)), we have thatM1∪M ′2 ∈ AS(P ∪cp(P)).
Along with the fact that M1 ∪ M ′2 is a model of ic(a) ∪
ic(¬a′), we conclude thatM1∪M ′2 ∈ AS(P [a]∪cp(P [¬a])).
Thus, the program P [a] ∪ cp(P [¬a]) is consistent, which
establishes the only-if direction.
(⇐): Assume that P [a] ∪ cp(P [¬a]) is consistent. Then,
there is an answer set M ∈ AS(P [a] ∪ cp(P [¬a])). By
construction, we have that M ∈ AS(P ∪ cp(P)), a ∈ M ,
and a′ /∈ M . For M1 := M ∩ at(P) and M ′2 := M ∩
at(cp(P)), this yields M1,M2 ∈ AS(P) such that a ∈ M1

and a /∈M2. We conclude that a ∈ F(P), which establishes
the if direction.

Next, we show that we can employ a simple trick to con-
nect the consistency problem and reasoning for a facet. There-

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

645

d
i
g
i
t
L
(0

)
d
i
g
i
t
L
(1

)
d
i
g
i
t
L
(2

)
d
i
g
i
t
L
(3

)
d
i
g
i
t
L
(4

)
d
i
g
i
t
L
(5

)
d
i
g
i
t
L
(6

)
d
i
g
i
t
L
(7

)
d
i
g
i
t
L
(8

)
d
i
g
i
t
L
(9

)
d
i
g
i
t
R
(0

)
d
i
g
i
t
R
(1

)
d
i
g
i
t
R
(2

)
d
i
g
i
t
R
(3

)
d
i
g
i
t
R
(4

)
d
i
g
i
t
R
(5

)
d
i
g
i
t
R
(6

)
d
i
g
i
t
R
(7

)
d
i
g
i
t
R
(8

)
d
i
g
i
t
R
(9

)
¬d

i
g
i
t
L
(0

)
¬d

i
g
i
t
L
(1

)
¬d

i
g
i
t
L
(2

)
¬d

i
g
i
t
L
(3

)
¬d

i
g
i
t
L
(4

)
¬d

i
g
i
t
L
(5

)
¬d

i
g
i
t
L
(6

)
¬d

i
g
i
t
L
(7

)
¬d

i
g
i
t
L
(8

)
¬d

i
g
i
t
L
(9

)
¬d

i
g
i
t
R
(0

)
¬d

i
g
i
t
R
(1

)
¬d

i
g
i
t
R
(2

)
¬d

i
g
i
t
R
(3

)
¬d

i
g
i
t
R
(4

)
¬d

i
g
i
t
R
(5

)
¬d

i
g
i
t
R
(6

)
¬d

i
g
i
t
R
(7

)
¬d

i
g
i
t
R
(8

)
¬d

i
g
i
t
R
(9

)

prediction sum(0)
prediction sum(1)
prediction sum(2)
prediction sum(3)
prediction sum(4)
prediction sum(5)
prediction sum(6)
prediction sum(7)
prediction sum(8)
prediction sum(9)

prediction sum(10)
prediction sum(11)
prediction sum(12)
prediction sum(13)
prediction sum(14)
prediction sum(15)
prediction sum(16)
prediction sum(17)
prediction sum(18)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Heatmap illustrating significance. The color of a cell indicates the significance S[Psum[prediction sum(X)], `], where X ∈
{0, 1, . . . , 18} and ` ∈ {digitL(0), . . . , digitR(0), . . . ,¬digitL(0), . . . ,¬digitR(0), . . .}. The significance is taken to be 0 if ` is not a
facet of Psum[prediction sum(X)].

fore, we generate an answer set that contains some fresh atom
and another one that does not contain this atom.

Lemma 6. Let P be a program, b and b′ fresh atoms, and
P ′ = P ∪ {b ← ∼b′; b′ ← ∼b}. Then, the program P is
consistent if and only if b ∈ F(P ′).

Proof. (⇒): Assume that the program P is consistent. Then,
there is an answer set M ∈ AS(P). By construction, M ∪
{b} and M ∪ {b′} are answer sets of P ′, where b /∈ M .
We conclude that b ∈ F(P ′), which establishes the only-if
direction.
(⇐): Assume that b ∈ F(P ′). Then, b ∈ BC(P ′) yields the
existence of an answer set M ∈ AS(P ′) such that b ∈ M .
By construction, we have that M \ {b} is an answer set of P .
Thus, the program P is consistent, which establishes the if
direction.

Now we are ready to establish the proof of Theorem 4.

Proof of Theorem 4. (“Membership”): By Lemma 5, we
can decide a ∈ F(P) by checking whether the program
Pa := P [a] ∪ cp(P [¬a]) is consistent. We observe that
Pa is disjunctive, tight, or normal if and only if the same
property holds for P . By well-known results for the con-
sistency problem (Truszczyński 2011), we conclude that
ASPFACETREASON ∈ ΣP

2 for disjunctive programs P , and
ASPFACETREASON ∈ NP if P is tight or normal.

(“Hardness”): The program P ′ from Lemma 6 is disjunctive,
tight, or normal if and only if the same property holds for P .
Since the consistency problem is ΣP

2 -hard for disjunctive pro-
grams P , and NP-hard if P is tight or normal (Truszczyński
2011), we conclude the corresponding hardness results for
deciding whether b ∈ F(P ′).

3.1 Exact Number of Facets
Next, we turn our attention to the complexity of counting
facets, where the number of facets is bound by 0 ≤ |F(P)| ≤
|at(P)| for a program P . Before we study the function
problem, we investigate a parameterized version by taking
a bound k on the number of facets as input. In detail, the
problem EXACT-K-FACETS asks, given a program P and an
integer k, to decide whether |F(P)| = k. The next statement
establishes upper and lower bounds.

Theorem 7. Let P be a program and integer k ∈ N0. The
problem EXACT-K-FACETS is

1. for disjunctive programs DP
2 -complete,

2. for tight programs DP-complete, and
3. for normal programs DP-complete.

Proof. We reduce to/from DP- (Papadimitriou and Yan-
nakakis 1982) and DP

2 -complete (Shen and Eiter 2016;
Lohrey and Rosowski 2023) problems.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

646

(“Membership”):
Tight/Normal. We reuse the idea of the construction from
Lemma 5, while replacing the assumptions and integrity
constraints by rules that allow for an atom to not be a facet.
Replicating this construction for all atoms a ∈ at(P), a
sequential at least k counter permits checking whether at
least k atoms are facets. In more detail, we make use of the
following shorthands for atoms a ∈ at(P):

Pa := P bc
a ∪ P cc

a ∪ {af ← abc
a ,∼acc

a }
where P bc

a and P cc
a construct different copies of P that re-

place each atom b ∈ at(P) by a fresh atom bbc
a or bcc

a , re-
spectively. The role of P bc

a is to indicate a ∈ BC(P) by the
truth of abc

a , and likewise P cc
a witnesses a /∈ CC(P) if acc

a
is false. Hence, the atom af can be true only if a ∈ F(P).
Then, we rely on existing works in propositional satisfiability,
cf. (Tseytin 1983; Sheridan 2004), to define a sequential at
least k counter with respect to at(P) = {a1, . . . , an} by the
following program:

Pk := {si,1 ← afi | 1 ≤ k ≤ i ≤ n} ∪
{si,j ← afi , si+1,j−1 | k − j < i < n, 1 < j ≤ k} ∪
{si,j ← si+1,j | k − j < i < n, 1 ≤ j ≤ k} ∪
{ ← ∼s1,k | 1 ≤ k}

The program Pk yields s1,k as true if and only if at least
k ≥ 1 of the atoms {af1 , . . . , afn} hold, which in turn means
that |F(P)| ≥ k. Now consider the programs:

P fc
cons := Pk ∪

⋃
a∈at(P)Pa

P fc
incons := Pk+1 ∪

⋃
a∈at(P)Pa.

Since Pk and Pk+1 check for at least k or k+1 facets, respec-
tively, we require consistency for P fc

cons, and inconsistency for
P fc

incons. For tight as well as normal programs, these problems
are in NP or coNP (Truszczyński 2011), respectively, which
establishes DP-membership.
Disjunctive. The same construction also works for disjunc-
tive programs, while increasing the complexity by one level.

(“Hardness”):
Tight/Normal. We reduce from SAT-UNSAT to asking for
exactly k facets. Therefore, let Fsat and Funsat be propo-
sitional formulas in CNF given as sets {Lx1 , . . . , Lxmx

} of
clauses for x ∈ {sat, unsat}, where each clause Lxi is repre-
sented by the set of its literals. Without loss of generality, we
assume that Lxi 6= ∅ and Lxi ∩ ¬Lxi = ∅, i.e., the clauses are
neither inconsistent nor tautological. For x ∈ {sat, unsat},
we associate the formula Fx with the following program:

Px := {bxa ← ∼bx¬a; bx¬a ← ∼bxa | a ∈ var(Fx)} ∪
{sxi ← bx` | 1 ≤ i ≤ mx, ` ∈ Lxi } ∪
{sx ← cx, sx1 , . . . , s

x
mx
}.

Then, we construct the program P from Psat and Punsat:

P := Psat ∪ Punsat ∪ {csat ← ∼cunsat; cunsat ← ∼csat;

← csat,∼ssat}.

Next, we show that the following condition holds:
| F(P)| = 3+2·(|var(Fsat)|+|var(Funsat)|)+|Fsat|+|Funsat|
if and only if Fsat is satisfiable and Funsat is unsatisfiable.

By construction, any answer set M ∈ AS(P) contains ei-
ther bxa or bx¬a for each a ∈ var(Fx) and x ∈ {sat, unsat}. In-
tuitively, we represent the possible truth assignments for Fsat
and Funsat by the combinations of bxa or bx¬a, respectively, and
make sure that all of them are “generated” into answer sets
including cunsat. Moreover, we have that sxi ∈M if and only
if bx` ∈ M for some literal ` ∈ Lxi . Intuitively, an atom sxi
represents that the truth assignment selected via bx` atoms
satisfies the clause Lxi ∈ Fx.

Now, by cx ∈M , we establish that sx ∈M if and only if
the assignment {a 7→ 1 | bxa ∈ M} ∪ {a 7→ 0 | bx¬a ∈ M}
satisfies Fx. Hence, there is some answer set M ∈ AS(P)
for which sx ∈ M if and only if Fx is satisfiable. Finally,
the integrity constraint ← csat,∼ssat ensures that there is no
answer set M ∈ AS(P) such that {csat, ssat} ⊆ M if and
only if Fsat is unsatisfiable.

In consequence, we conclude for the set of facets: If Fsat
is unsatisfiable, F(P) ⊆ {sunsat} ∪⋃

x∈{sat,unsat}({bxa, bx¬a |
a ∈ var(Fx)} ∪ {sxi | 1 ≤ i ≤ mx}). If Fsat is satisfiable,
{cunsat, csat, ssat} ∪⋃

x∈{sat,unsat}({bxa, bx¬a | a ∈ var(Fx)} ∪
{sxi | 1 ≤ i ≤ mx}) ⊆ F(P). Moreover, sunsat ∈ F(P) if
and only if Funsat is satisfiable. In turn, the claim holds that
| F(P)| = 3+2·(|var(Fsat)|+|var(Funsat)|)+|Fsat|+|Funsat|
if and only if Fsat is satisfiable and Funsat is unsatisfiable,
which establishes the reduction and thus hardness.

Disjunctive. We reduce from 2-QBF SAT-UNSAT (valid-
invalid) to asking for exactly k facets, employing a well-
known reduction of the QSAT2 problem to disjunctive pro-
grams (Eiter and Gottlob 1995). Therefore, letQsat andQunsat
be QBFs of the form ∃V x1 .∀V x2 .Fx for x ∈ {sat, unsat},
where we represent propositional formulas Fx in DNF as
sets {Lx1 , . . . , Lxmx

} of terms Lxi given by the set of their
literals. Then, we construct a program P ′, reusing the con-
struction of program P , from the following programs Px for
x ∈ {sat, unsat}:

Px := {bxa ← ∼bx¬a; bx¬a ← ∼bxa | a ∈ V x1 } ∪
{bxa ← sx; bx¬a ← sx; bxa ∨ bx¬a | a ∈ V x2 } ∪
{sx ← cx, bx`1 , . . . , b

x
`l
| 1 ≤ i ≤ mx,
Lxi = {`1, . . . , `l}}.

As above, any answer set M ∈ AS(P ′) contains either
bxa or bx¬a for x ∈ {sat, unsat} and each variable a ∈ V x1 .
For each variable a ∈ V x2 , we have that {bxa, bx¬a} ∩M 6= ∅
due to the disjunctive rule bxa ∨ bx¬a. Provided that cx ∈M ,
the rules bxa ← sx and bx¬a ← sx establish that {sx} ∪
{bxa, bx¬a | a ∈ V x2 } ⊆M if and only if Mx

1 ∪Mx
2 |= Fx for

Mx
1 := {a ∈ V x1 | bxa ∈ M} and every Mx

2 ⊆ V x2 . Hence,
some answer set M ∈ AS(P ′) with sx ∈ M exists if and
only if ∃V x1 .∀V x2 .Fx is satisfiable. Consequently, similar
reasoning as in the Tight/Normal case yields that F(P ′) =
{cunsat, csat, ssat}∪⋃x∈{sat,unsat}{bxa, bx¬a | a ∈ V x1 ∪V x2 } and
| F(P ′)| = 3 + 2 · (|V sat

1 ∪ V sat
2 | + |V unsat

1 ∪ V unsat
2 |) if and

only if Qsat is satisfiable and Qunsat is unsatisfiable.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

647

Corollary 8. Let P be a program and integer k ∈ N0.
The problem ATLEAST-K-FACETS, which asks whether
|F(P)| ≥ k, is

1. for disjunctive programs ΣP
2 -complete,

2. for tight programs NP-complete, and
3. for normal programs NP-complete.

Proof. Reconsidering the membership part of the proof of
Theorem 7, we require the consistency check for P fc

cons only.
For the hardness part(s), we consider programs P := Psat ∪
{csat ← ∼cunsat; cunsat ← ∼csat} along with k := 3 + 2 ·
|var(Fsat)|+ |Fsat| or k := 3 + 2 · |V1 ∪ V2|, respectively, in
order to decide whether a propositional formula Fsat in CNF
or a QBF of the form ∃V1.∀V2.Fsat is satisfiable.

Corollary 9. Let P be a program and integer k ∈ N0.
The problem ATMOST-K-FACETS, which asks whether
|F(P)| ≤ k, is

1. for disjunctive programs ΠP
2 -complete,

2. for tight programs coNP-complete, and
3. for normal programs coNP-complete.

Proof. Dual to the proof of Corollary 8, membership requires
the inconsistency check for P fc

incons only. Moreover, programs
P := Punsat ∪ {csat ← ∼cunsat; cunsat ← ∼csat} and either
k := 2 + 2 · |var(Funsat)|+ |Funsat| or k := 2 + 2 · |V1 ∪ V2|
express deciding unsatisfiability for a propositional formula
Funsat in CNF or a QBF of the form ∃V1.∀V2.Funsat.

Next, we establish complexity results comparing the num-
ber of facets of two given programs. Our results rely on the
reductions as established in the proof of Theorem 7. The
FACETNUMCOMPARE problem asks, given two programs P1

and P2, to decide whether |F(P1)| > |F(P2)|.
Theorem 10. Let P1 and P2 be programs. The problem
FACETNUMCOMPARE is

1. for disjunctive programs ΘP
3 -complete,

2. for tight programs ΘP
2 -complete, and

3. for normal programs ΘP
2 -complete.

Proof. (“Membership”): By binary search over 0 ≤ k ≤
|at(P1)|, the number k := |F(P1)| of facets can be deter-
mined with at most O(log(|at(P1)|)) many oracle calls on
programsP fc

1cons
andP fc

1incons
as in the proof of Theorem 7. Then,

deciding whether |F(P1)| > |F(P2)| amounts to checking
|F(P2)| ≤ k− 1, where Corollary 9 provides the complexity.

(“Hardness”): We reduce from PARITY(QSATl) for 1 ≤
l ≤ 2, where QSAT1 matches SAT and PARITY(QSATl)
is ΘP

l+1-complete (Eiter and Gottlob 1997; Wagner 1987).
Therefore, let I1, . . . , In be instances of QSATl, ordered such
that Ii−1 is satisfiable if Ii is satisfiable for 1 < i ≤ n. Then,
the QSATl instances I1, . . . , In satisfy PARITY(QSATl) if
I1, . . . , Ii are satisfiable and Ii+1, . . . , In are unsatisfiable
for an odd integer 1 ≤ i ≤ n. For each QSATl instance Ii,
let the program Pi be constructed similar to Psat from the
hardness part of the proof of Theorem 7, where we denote
the csat and ssat atoms by csat

i or ssat
i , respectively, and assume

{p, t}

{q, r, t}

{q, s, t}

σp∧t(P1)

σ(r∨s)∧(¬p∨q)(P1)

σ(¬r∧s)∨(p∧¬q)(P1)AS(P1)

Figure 3: Euler diagram illustrating relationships between answer
sets of program P1 from Example 1 according to propositional
queries. The outer circle represents the set AS(P1) of all answer
sets, while the colored regions indicate specific subsets.

without loss of generality that at(Pi) ∩ at(Pj) = ∅ for all
1 ≤ i < j ≤ n. Now consider the programs:

Podd :=
⋃n
i=1(Pi ∪ {csat

i ← ∼cunsat
i ; cunsat

i ← ∼csat
i })

Peven := Podd ∪ { ← ssat
2·i−1,∼ssat

2·i | 1 ≤ i ≤ dn/2e}.
By construction, we have that

F(Podd) =
⋃n
i=1({cunsat

i } ∪ (at(Pi) \ {ssat
i }) ∪

{ssat
i | Ii is satisfiable})

and F(Peven) ⊆ F(Podd). The integrity constraints added
by Peven establish that F(Peven) = F(Podd) if and only if
max({0} ∪ {1 ≤ i ≤ n | Ii is satisfiable}) is even. We
conclude that |F(Podd)| > |F(Peven)| holds if and only if the
QSATl instances I1, . . . , In satisfy PARITY(QSATl).

4 Querying Solution Spaces
So far, we have associated facets with single assumptions
only. However, Figure 1 already illustrates that constraining
answer sets by several assumptions is interesting for sys-
tematically and gradually restricting the presence or absence
of atoms. Applications related to declarative queries (Codd
1970) rely on such elaborate techniques to reason with data.

4.1 Selecting Answer Sets
To enable declarative querying, we consider propositional
queries that allow us to select answer sets matching specific
conditions. For a program P and a propositional formula F ,
we denote the answer sets of P that satisfy F by σF (P) :=
{M ∈ AS(P) | M |= F}. Moreover, we say that F is
simple if var(F) ⊆ at(P).

Example 11. Figure 3 illustrates the selection of answer sets
among those of program P1 from Example 1. We find that

σ(¬r∧s)∨(p∧¬q)(P1) = AS(P1[p]) ∪AS(P1[s])

= AS(P1[¬q]) ∪AS(P1[¬r])
= σ(p∨s)∧(¬q∨¬r)(P1)

= {{p, t}, {q, s, t}}.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

648

Next, we consider basic selection operations on answer
sets and provide techniques to express a propositional query
itself in ASP. Thereby, we immediately settle computational
aspects as the complexity does not increase. In the following,
we let L denote a set of literals.

4.2 Matching All Elements (Terms)
If we are interested in the answer sets that satisfy all literals
in L, we can consider the conjunction over L (also called
term or cube in the propositional satisfiability setting). We
easily observe that selection on a term coincides with taking
its literals L as assumptions.
Observation 12. Let P be a program and L a set of literals.
Then, σ∧

`∈L `
(P) = AS(P ∪ { ← ∼` | ` ∈ L}).

Proof. By definition, σ∧
`∈L `

(P) = {M ∈ AS(P) | M |=∧
`∈L `}. Since

∧
`∈L ` holds if and only if every ` ∈ L

evaluates to true, we have that σ∧
`∈L `

(P) = {M ∈ AS(P) |
L+ ⊆ M,L− ∩M = ∅}. We conclude that σ∧

`∈L `
(P) =

AS(P ∪ { ← ∼` | ` ∈ L}).

4.3 Matching at Least One Element (Clauses)
If we are interested in the answer sets that satisfy some (at
least one) literal in L, we can simply consider the disjunction
over L and make the following observation.
Observation 13. Let P be a program and L a set of literals.
Then, σ∨

`∈L `
(P) = AS(P ∪ { ← ∼L}).

Proof. By definition, σ∨
`∈L `

(P) = {M ∈ AS(P) | M |=∨
`∈L `}. Since

∨
`∈L ` holds if and only if some ` ∈ L

evaluates to true, we have that σ∨
`∈L `

(P) = {M ∈ AS(P) |
(L+∩M)∪(L−\M) 6= ∅}. We conclude that σ∨

`∈L `
(P) =

AS(P ∪ { ← ∼L}).

4.4 Matching CNFs
When selecting answer sets that match a formula F in CNF,
we require the answer sets to satisfy at least one literal of each
clause. Letting F be given as set {L1, . . . , Lm} of clauses,
where each clause Li is represented by the set of its literals,
we make the following observation.
Observation 14. Let P be a program and F a simple for-
mula in CNF. Then, σF (P) = AS(P ∪{ ← ∼Li | Li ∈ F}).

Proof. The integrity constraints { ← ∼Li | Li ∈ F} yield
the intersection of answer sets in σ∨

`∈Li
`(P) over all clauses

Li ∈ F , which establishes the observation.

4.5 Matching DNFs
For a formula F in DNF, we require the answer sets to sat-
isfy all literals of at least one term. Representing F as set
{L1, . . . , Lm} of terms Li given by the set of their literals,
the selection on F can be expressed as follows.
Observation 15. Let P be a program and F a simple for-
mula in DNF. Then, σF (P) = {M \ {a1, . . . , am} | M ∈
AS(P ∪ {ai ← ∼` | 1 ≤ i ≤ m, ` ∈ Li} ∪ { ←
a1, . . . , am})}, where a1, . . . , am are fresh atoms.

Proof. Any M ∈ AS(P ∪ {ai ← ∼` | 1 ≤ i ≤ m,
` ∈ Li} ∪ { ← a1, . . . , am}) excludes at least one atom
ai ∈ {a1, . . . , am}. Along with the fact that ai /∈ M if and
only if var(F)∩M |= Li, the observation is immediate.

Example 16. Reconsider Example 11 and Figure 3. Map-
ping the CNF formula (p ∨ s) ∧ (¬q ∨ ¬r) to ASP yields
the set { ← ∼p,∼s; ← q, r} of integrity constraints. For
the DNF formula (¬r ∧ s) ∨ (p ∧ ¬q), we obtain the rules
{a1 ← r; a1 ← ∼s; a2 ← ∼p; a2 ← q; ← a1, a2}.
Example 17 (Example 3 continued). Recall the pre-
dicted sum 8 = 3 + 6 from Example 3. Query-
ing for answer sets that match the CNF formula
prediction sum(8) ∧ (digitL(3) ∨ digitR(6)) re-
veals this erroneous prediction in view of {digitL(3),
digitR(6), prediction sum(8), prediction sum(9)} ∈
AS(Psum ∪ { ← ∼prediction sum(8); ← ∼digitL(3),
∼digitR(6)}). For a practical demonstration, such example
queries can be explored in an interactive web application.1

4.6 Non-Simple Formulas
For formulas F containing variables that do not occur in a
program P , we can also use the above constructions and add
a “choice rule” a ∨ a′ for each a ∈ var(F) \ at(P). This
does not increase the complexity, unless the number |var(F)|
of variables is significantly larger than the original number
|at(P)| of atoms.

5 Empirical Case Study
To demonstrate that reasoning upon facets is practically
feasible, we conduct experiments on planning, argumenta-
tion, and configuration problem instances (Rusovac et al.
2024). We compare three approaches to count facets, all
making use of the solver clingo (Gebser et al. 2014) ver-
sion 5.6.2.2 Our experiments are performed on an eight
core Intel i7-10510U CPU 1.8 GHz machine with 16 GB
of RAM, limiting the runtime on each instance to 60 sec-
onds. Considering the explorative nature of our case study,
we refrain from an extensive setup (Fichte et al. 2024b;
Fichte et al. 2021).

Solvers. The fasb system3 uses clingo to obtain brave
and cautious consequences, and then the facets can be
read off as their difference. While the total number of
answer sets may be exponential, algorithms to compute
brave or cautious consequences (Alviano et al. 2023a;
Gebser, Kaufmann, and Schaub 2009) avoid an exhaustive
enumeration and inspect a linear number of answer sets only.
Moreover, the model-guided approach runs clingo
with its default optimization strategy (Gebser et al. 2015) on
a prototypical meta-encoding of our theoretical reduction (cf.
Lemma 5), turning the input into a manifold program (Faber
and Woltran 2011) such that an optimal answer set yields
the facets. The core-guided approach works similar to

1https://drwadu.github.io/web-fasb.github.io/kr-example/
2https://github.com/potassco/clingo/releases/tag/v5.6.2
3https://github.com/drwadu/fasb/releases/tag/v0.2.0-beta

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

649

https://drwadu.github.io/web-fasb.github.io/kr-example/
https://github.com/potassco/clingo/releases/tag/v5.6.2
https://github.com/drwadu/fasb/releases/tag/v0.2.0-beta

solver median[s] mean[s] solved
fasb 0.6 11.2 92
core-guided 60.1 59.0 7
model-guided 60.1 60.0 2

Table 2: Overview of runtimes and numbers of solved instances out
of 100 instances.

model-guided solving, yet running clingo with a core-
guided optimization strategy (--opt-strategy=usc).

Instances. We consider instances that admit a large number
of answer sets as well as many facets, making them interest-
ing for selection queries or filtering among a large number
of answer sets. Our benchmark set includes four smoke test
planning instances as well as four claim-centric argumenta-
tion frameworks by Böhl, Gaggl, and Rusovac (2023), the
latter relying on preferred extensions that necessitate dis-
junction, and four PC configuration instances (Fichte, Gaggl,
and Rusovac 2022). Moreover, eight Linux package con-
figuration instances stem from the 2012 MISC competition
(Mancoosi Project 2019), where we omit optimization cri-
teria on guessed packages forming the configuration. The
instances are randomly selected from the available bench-
mark sets, and we additionally construct queries on each
instance, resulting in a total number of 100 instances to run:
the 20 original instances and variants that append randomly
generated queries, corresponding to simple {1, 2}-CNFs and
{1, 2}-DNFs that comprise three clauses or terms each.

Expectations. We expect that (E1) the theoretical reduc-
tion is limited in practice due to its size overhead, and that
(E2) the core-guided approach comes nevertheless close
to fasb due to the optimization strategy exploiting local
structure.

Observations. Table 2 reveals that fasb outperforms both
the model-guided and core-guided reduction ap-
proaches. The eight instances unsolved by fasb are dis-
junctive programs that express argumentation frameworks by
Böhl, Gaggl, and Rusovac (2023). We also observe that the
core-guided optimization strategy yields more solved
instances than the model-guided approach, but its seven
solved instances still remain far from fasb’s performance.

Summary. Our results confirm expectation (E1), but do not
match (E2). The algorithmic approach of fasb dominates re-
duction, regardless of the optimization strategy used to obtain
the facets. We also note that computing facets for disjunctive
programs is not only theoretically, but also practically, harder
than for normal programs. Overall, our experiments demon-
strate that both qualitative and quantitative reasoning upon
the facets of an ASP program is feasible, utilizing the search
algorithms readily supplied by state-of-the-art solvers.

6 Conclusion and Future Work
In this paper, we provide the first thorough study of the
computational complexity of ASP facets. We systematically
investigate qualitative and quantitative problems involving
facets, establishing the complexity results outlined in in Ta-
ble 1. Interestingly, this renders facet reasoning a central
problem modeling suite, as complexity spans over canonical
classes up to the third level of the polynomial hierarchy. In ad-
dition, we extend facet reasoning to queries on ASP solution
spaces. We show that facet reasoning is quite robust, as more
elaborate queries do not significantly increase the complexity.
This underlines the significance of facets for analyzing large
solution spaces. Finally, we conduct an empirical evaluation
studying several approaches to compute facets. Our experi-
ments demonstrate the feasibility of facet reasoning, where
state-of-the-art solvers’ algorithms for obtaining brave and
cautious consequences show to be particularly efficient.

Given its central role for qualitative and quantitative
problem settings, we expect facet reasoning to be of inter-
est for various formalisms in KR and AI, e.g., quantified
Boolean formulas, classical planning (Speck, Mattmüller, and
Nebel 2020), abstract argumentation (Dachselt et al. 2022;
Dewoprabowo et al. 2022; Fichte, Hecher, and Meier 2024),
claim-centric argumentation (Fichte et al. 2023), description
logics, epistemic logic programming (Eiter et al. 2024), con-
straint programming, and paraconsistent reasoning (Fichte,
Hecher, and Meier 2021).

Our research opens up many promising directions for fu-
ture work. It will be interesting to investigate and charac-
terize practical applications that can be addressed by facet
reasoning, while approximate or even exact solution counting
techniques would be required otherwise. In the context of
diversity of solutions (Ingmar et al. 2020), facets might be
a promising tool to partition solution spaces at reasonable
computational cost. Moreover, we plan to investigate the
complexity of facets in the presence of preferences (Brewka
et al. 2023). For reliability, also proofs of correctness might
be of interest, which can be obtained by proof systems (Al-
viano et al. 2019; Fichte, Hecher, and Roland 2022).

Acknowledgments
The authors are listed in reverse alphabetical order. Work has
partially been carried out while Hecher and Fichte visited the
Simons Institute at UC Berkeley. Our research is supported
by the Austrian Academy of Sciences (ÖAW), DOC Fel-
lowship; the Austrian Science Fund (FWF), grants P30168
and J4656; the BMBF, grant 01IS20056 NAVAS; the BMBF
and DAAD, project 57616814 SECAI; ELLIIT funded by
the Swedish government; the Society for Research Funding
in Lower Austria (GFF), grant ExzF-0004; and the Vienna
Science and Technology Fund (WWTF), grants ICT19-065
and ICT22-023. We are grateful to the anonymous reviewers
for valuable comments that helped to improve this paper.

References
Alrabbaa, C.; Rudolph, S.; and Schweizer, L. 2018.
Faceted answer-set navigation. In RuleML+RR’18, 211–225.
Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

650

https://secai.org/

Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015.
Advances in WASP. In LPNMR’15, 40–54. Springer.
Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The ASP
system DLV2. In LPNMR’17, 215–221. Springer.
Alviano, M.; Dodaro, C.; Fichte, J. K.; Hecher, M.; Philipp,
T.; and Rath, J. 2019. Inconsistency proofs for ASP: The ASP-
DRUPE format. Theory and Practice of Logic Programming
19(5-6):891–907.
Alviano, M.; Dodaro, C.; Fiorentino, S.; Previti, A.; and
Ricca, F. 2023a. ASP and subset minimality: Enumera-
tion, cautious reasoning and MUSes. Artificial Intelligence
320:103931:1–25.
Alviano, M.; Trieu, L. L. T.; Son, T. C.; and Balduccini, M.
2023b. Advancements in xASP, an XAI system for answer
set programming. In ICCL’23. CEUR Workshop Proceedings
(CEUR-WS.org).
Azzolini, D., and Riguzzi, F. 2023a. Inference in probabilistic
answer set programming under the credal semantics. In
AIxIA’23, 367–380. Springer.
Azzolini, D., and Riguzzi, F. 2023b. Lifted inference for
statistical statements in probabilistic answer set program-
ming. International Journal of Approximate Reasoning
163:109040.
Barbiero, P.; Ciravegna, G.; Giannini, F.; Zarlenga, M. E.;
Magister, L. C.; Tonda, A.; Lio, P.; Precioso, F.; Jamnik, M.;
and Marra, G. 2023. Interpretable neural-symbolic concept
reasoning. In ICML’23, 1801–1825. PMLR.
Bellodi, E.; Alberti, M.; Riguzzi, F.; and Zese, R. 2020. Map
inference for probabilistic logic programming. Theory and
Practice of Logic Programming 20(5):641–655.
Bidoı́t, N., and Froidevaux, C. 1991. Negation by default and
unstratifiable logic programs. Theoretical Computer Science
78(1):85–112.
Böhl, E., and Gaggl, S. A. 2022. Tunas - fishing for diverse
answer sets: A multi-shot trade up strategy. In LPNMR’22,
89–102. Springer.
Böhl, E.; Gaggl, S. A.; and Rusovac, D. 2023. Representative
answer sets: Collecting something of everything. In ECAI’23,
271–278. IOS Press.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T. 2023.
A general framework for preferences in answer set program-
ming. Artificial Intelligence 325:104023.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Brewka, G.; Niemela, I.; and Truszczynski, M. 2003. Answer
set optimization. In IJCAI’03. IJCAI Organization.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. Theory
and Practice of Logic Programming 20(2):294–309.
Codd, E. F. 1970. A relational model of data for large shared
data banks. Communications of the ACM 13(6):377–387.

Dachselt, R.; Gaggl, S. A.; Krötzsch, M.; Méndez, J.; Ruso-
vac, D.; and Yang, M. 2022. NEXAS: A visual tool for
navigating and exploring argumentation solution spaces. In
COMMA’22, 116–127. IOS Press.
De Vos, M.; Kisa, D. G.; Oetsch, J.; Pührer, J.; and Tompits,
H. 2012. Annotating answer-set programs in Lana. Theory
and Practice of Logic Programming 12(4-5):619–637.
Dewoprabowo, R.; Fichte, J. K.; Gorczyca, P. J.; and Hecher,
M. 2022. A practical account into counting Dung’s exten-
sions by dynamic programming. In LPNMR’22, 387–400.
Springer.
Dodaro, C.; Gasteiger, P.; Reale, K.; Ricca, F.; and Schekoti-
hin, K. 2019. Debugging non-ground ASP programs: Tech-
nique and graphical tools. Theory and Practice of Logic
Programming 19(2):290–316.
Eén, N., and Sörensson, N. 2003. An extensible SAT-solver.
In SAT’08, 502–518. Springer.
Eiter, T., and Geibinger, T. 2023. Explaining answer-set
programs with abstract constraint atoms. In IJCAI’23, 3193–
3202. IJCAI Organization.
Eiter, T., and Gottlob, G. 1995. On the computational cost of
disjunctive logic programming: Propositional case. Annals
of Mathematics and Artificial Intelligence 15(3-4):289–323.
Eiter, T., and Gottlob, G. 1997. The complexity class ΘP

2 :
Recent results and applications in AI and modal logic. In
FCT’97, 1–18. Springer.
Eiter, T.; Fichte, J. K.; Hecher, M.; and Woltran, S. 2024.
Epistemic logic programs: Non-ground and counting com-
plexity. In IJCAI’24, 3333–3341. IJCAI Organization.
Eiter, T.; Geibinger, T.; and Oetsch, J. 2023. Contrastive
explanations for answer-set programs. In JELIA’23, 73–89.
Springer.
Eiter, T.; Hecher, M.; and Kiesel, R. 2024. aspmc: New fron-
tiers of algebraic answer set counting. Artificial Intelligence
330:104109.
Faber, W., and Woltran, S. 2011. Manifold answer-set
programs and their applications. In Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning –
Essays Dedicated to Michael Gelfond on the Occasion of His
65th Birthday, 44–63. Springer.
Fages, F. 1994. Consistency of Clark’s completion and
existence of stable models. Methods of Logic in Computer
Science 1(1):51–60.
Fandinno, J., and Schulz, C. 2019. Answering the “why”
in answer set programming – a survey of explanation ap-
proaches. Theory and Practice of Logic Programming
19(2):114–203.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer set solving with bounded treewidth revisited. In
LPNMR’17, 132–145. Springer.
Fichte, J. K.; Hecher, M.; McCreesh, C.; and Shahab, A.
2021. Complications for computational experiments from
modern processors. In CP’21, 25:1–25:21. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

651

Fichte, J. K.; Hecher, M.; Mahmood, Y.; and Meier, A. 2023.
Quantitative reasoning and structural complexity for claim-
centric argumentation. In IJCAI’23, 3212–3220. IJCAI
Organization.
Fichte, J. K.; Gaggl, S. A.; Hecher, M.; and Rusovac, D.
2024a. IASCAR: Incremental answer set counting by any-
time refinement. Theory and Practice of Logic Programming
1–28.
Fichte, J. K.; Geibinger, T.; Hecher, M.; and Schlögel, M.
2024b. Parallel empirical evaluations: Resilience despite
concurrency. In AAAI’24, 8004–8012. AAAI Press.
Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2022. Rushing
and strolling among answer sets – navigation made easy. In
AAAI’22, 5651–5659. AAAI Press.
Fichte, J. K.; Hecher, M.; and Meier, A. 2021. Knowledge-
base degrees of inconsistency: Complexity and counting. In
AAAI’21, 6349–6357. AAAI Press.
Fichte, J. K.; Hecher, M.; and Meier, A. 2024. Counting
complexity for reasoning in abstract argumentation. Journal
of Artificial Intelligence Research 80.
Fichte, J. K.; Hecher, M.; and Nadeem, M. A. 2022. Plausi-
bility reasoning via projected answer set counting – a hybrid
approach. In IJCAI’22, 2620–2626. IJCAI Organization.
Fichte, J. K.; Hecher, M.; and Roland, V. 2022. Proofs
for propositional model counting. In SAT’22, 30:1–30:24.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In AAAI’08, 448–453. AAAI Press.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer set solving in practice. Morgan & Claypool
Publishers.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + control: Preliminary report. CoRR
abs/1405.3694.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Romero, J.; and
Schaub, T. 2015. Progress in clasp series 3. In LPNMR’15,
368–383. Springer.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. aspcud:
A linux package configuration tool based on answer set pro-
gramming. In LoCoCo’11, 12–25. EPTCS.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. The
conflict-driven answer set solver clasp: Progress report. In
LPNMR’09, 509–514. Springer.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In ICLP/SLP’88, 1070–
1080. MIT Press.
Gelfond, M. 1991. Strong introspection. In AAAI’91, 386–
391. AAAI Press.
Hecher, M. 2022. Treewidth-aware reductions of normal
ASP to SAT – is normal ASP harder than SAT after all?
Artificial Intelligence 304:103651.
Ingmar, L.; Garcia de la Banda, M.; Stuckey, P. J.; and Tack,
G. 2020. Modelling diversity of solutions. In AAAI’20,
1528–1535. AAAI Press.

Janhunen, T., and Niemelä, I. 2016. The answer set program-
ming paradigm. AI Magazine 37(3):13–24.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. Jour-
nal of Artificial Intelligence Research 35:813–857.
Kabir, M.; Chakraborty, S.; and Meel, K. S. 2024. Exact ASP
counting with compact encodings. In AAAI’24, 10571–10580.
AAAI Press.
Kleine Büning, H., and Lettmann, T. 1999. Propositional
logic – deduction and algorithms. Cambridge University
Press.
Lohrey, M., and Rosowski, A. 2023. On the complexity
of diameter and related problems in permutation groups.
In ICALP’23, 134:1–134:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.
Lukasiewicz, T., and Malizia, E. 2017. A novel character-
ization of the complexity class ΘP

k based on counting and
comparison. Theoretical Computer Science 694:21–33.
Mancoosi Project. 2019. Data from the Mancoosi solver
competition and articles. Zenodo: https://zenodo.org/records/
3556644.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. DeepProbLog: Neural probabilistic
logic programming. In NeurIPS’18, 3753–3763. Curran
Associates, Inc.
Marek, W., and Truszczyński, M. 1991. Autoepistemic logic.
Journal of the ACM 38(3):588–619.
Marek, V. W., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: A 25-Year Perspective, 375–398.
Springer.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Oetsch, J.; Pührer, J.; and Tompits, H. 2018. Stepwise
debugging of answer-set programs. Theory and Practice of
Logic Programming 18(1):30–80.
Papadimitriou, C. H., and Yannakakis, M. 1982. The
complexity of facets (and some facets of complexity). In
STOC’82, 255–260. ACM.
Papadimitriou, C. H. 1994. Computational Complexity.
Addison-Wesley.
Rusovac, D.; Hecher, M.; Gebser, M.; Gaggl, S. A.; and
Fichte, J. K. 2024. Navigating and querying answer sets:
How hard is it really and why? (Empirical case study). Zen-
odo: https://doi.org/10.5281/zenodo.12737216.
Schekotihin, K. 2015. Interactive query-based debugging of
ASP programs. In AAAI’15, 1597–1603. AAAI Press.
Shen, Y.-D., and Eiter, T. 2016. Evaluating epistemic
negation in answer set programming. Artificial Intelligence
237:115–135.
Sheridan, D. 2004. The optimality of a fast CNF conversion
and its use with SAT. In SAT’04, 329–334.
Soininen, T., and Niemelä, I. 1999. Developing a declarative

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

652

https://zenodo.org/records/3556644
https://zenodo.org/records/3556644
https://doi.org/10.5281/zenodo.12737216

rule language for applications in product configuration. In
PADL’99, 305–319. Springer.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
top-k planning. In AAAI’20, 9967–9974. AAAI Press.
Stockmeyer, L. J., and Meyer, A. R. 1973. Word problems
requiring exponential time. In STOC’73, 1–9. ACM.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theoretical Computer Science 3(1):1–22.
Truszczyński, M. 2011. Trichotomy and dichotomy results on
the complexity of reasoning with disjunctive logic programs.
Theory and Practice of Logic Programming 11(6):881–904.
Tseytin, G. S. 1983. On the complexity of derivation in
propositional calculus. In Automation of Reasoning: 2: Clas-
sical Papers on Computational Logic 1967–1970, 466–483.
Springer.
Wagner, K. W. 1987. More complicated questions about
maxima and minima, and some closures of NP. Theoretical
Computer Science 51:53–80.
Wrathall, C. 1976. Complete sets and the polynomial-time
hierarchy. Theoretical Computer Science 3(1):23–33.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

653

	Introduction
	Related Works

	Preliminaries
	Complexity of ASP Facets
	Exact Number of Facets

	Querying Solution Spaces
	Selecting Answer Sets
	Matching All Elements (Terms)
	Matching at Least One Element (Clauses)
	Matching CNFs
	Matching DNFs
	Non-Simple Formulas

	Empirical Case Study
	Conclusion and Future Work

