
A Uniform Language to Explain Decision Trees

Marcelo Arenas1,2 , Pablo Barceló1 , Diego Bustamante1 , Jose Caraball1 , Bernardo Subercaseaux3

1Pontificia Universidad Católica de Chile
2RelationalAI

3Carnegie Mellon University

Abstract

The formal XAI community has studied a plethora of inter-
pretability queries aiming to understand the classifications
made by decision trees. However, a more uniform understand-
ing of what questions we can hope to answer about these
models, traditionally deemed to be easily interpretable, has
remained elusive. In an initial attempt to understand uni-
form languages for interpretability, Arenas et al. (2021) pro-
posed FOIL, a logic for explaining black-box ML models, and
showed that it can express a variety of interpretability queries.
However, we show that FOIL is limited in two important
senses: (i) it is not expressive enough to capture some crucial
queries, and (ii) its model-agnostic nature results in a high
computational complexity for decision trees. In this paper, we
carefully craft two fragments of first-order logic that allow for
efficiently interpreting decision trees: Q-DT-FOIL and its op-
timization variant OPT-DT-FOIL. We show that our proposed
logics can express not only a variety of interpretability queries
considered by previous literature but also elegantly allows
users to specify different objectives the sought explanations
should optimize for. Using finite model-theoretic techniques,
we show that the different ingredients of Q-DT-FOIL are
necessary for its expressiveness, and yet that queries in Q-
DT-FOIL can be evaluated with a polynomial number of
queries to a SAT solver, as well as their optimization versions
in OPT-DT-FOIL. Besides our theoretical results, we provide
a SAT-based implementation of the evaluation for OPT-DT-
FOIL that is performant on industry-size decision trees.

1 Introduction
Formal XAI. The increasing need to comprehend the de-
cisions made by machine learning (ML) models has fos-
tered a large body of research in explainable AI (XAI) meth-
ods (Molnar, 2022), leading to the introduction of numerous
queries and scores that aim to explain the predictions pro-
duced by such models. Within the wide variety of methods
and subareas in XAI, our work is part of the formal XAI ap-
proach (Marques-Silva and Ignatiev, 2022; Darwiche, 2023;
Marques-Silva, 2023), which aims to ground the study of
explainability in a mathematical framework. In this line, our
work leverages ideas from finite model theory (Libkin, 2004)
to study the complexity and expressiveness of a fragment of
first order logic tailored to explain decision trees, as well as
ideas from automated reasoning to produce efficient CNF
encodings for evaluating these queries through SAT solvers.

Decision Trees and Explanations. Decision trees are a
very popular choice of ML models for tabular data, and one of
the standard arguments in favor of their use is their supposed
interpretability (Gunning and Aha, 2019; Molnar, 2022; Lip-
ton, 2016). However, the formal XAI community has shown
that the interpretability of decision trees is nuanced, and that
even for these apparently simple models, some kinds of expla-
nations are easy to produce while others are computationally
challenging (Audemard et al., 2022b; Barceló et al., 2020;
Arenas et al., 2022; Izza, Ignatiev, and Marques-Silva, 2020,
2022). Let us immediately present some examples of queries
(illustrated in Figure 1) that have been considered in the liter-
ature (Darwiche and Hirth, 2020; Barceló et al., 2020; Izza,
Ignatiev, and Marques-Silva, 2022).

• Minimal/Minimum Sufficient Reasons: Given an input in-
stance e and a decision tree T , what is the smallest subset
S of features in e such that the classification T (e) is pre-
served regardless of the values of the features outside S?
The notion of smallest can be defined either in terms of set
containment (minimal) or cardinality (minimum).

• Minimum Change Required/Maximum Change Allowed:
Given an input instance e and a decision tree T , what is
the smallest set of features that must be changed in e to
change the classification T (e)? Conversely, what is the
largest set of features that can be changed in e without
changing the classification T (e)?

• Minimal Determinant Feature Set: Given a decision tree
T , what is the smallest set of features that, when fixed,
determines the classification of any input instance?

Motivation for Interpretability Languages. The variety
of interpretability queries and scores that have been proposed
in the literature can be seen as a call for interpretability lan-
guages in which such queries could be expressed in a uniform
manner. We highlight two reasons for the development of
interpretability languages:

• No Silver-Bullet Principle: The variety of interpretabil-
ity queries seems to reflect the fact that no single kind of
explanation is always the best. Moreover, it is often not
a single query or score, but a combination of them, that
provides the best explanation (Doshi-Velez and Kim, 2017;
Marques-Silva and Ignatiev, 2023). In the same line, it has

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

60

(a) Minimum Sufficient Reason (b) Minimum Change Required (c) Maximum Change Allowed (d) Determinant Feature Set

Figure 1: Illustration of different explanations for decision trees of 500 leaves over the binarized MNIST dataset (Deng, 2012). The explanations
are obtained using our implementation over the OPT-DT-FOIL queries described in Section 5. Figure 1a displays a minimum sufficient reason
for an image classified as 1, where the white pixels of the original image that are part of the explanation are highlighted in perfect white, and
the black pixels that are part of the explanation are highlighted in red. Arguably, this explanation reveals that the model, trained to recognize
digit 1, has learned to detect a slanted vertical stripe of white pixels, surrounded by black pixels. Figure 1b shows that adding a single white
pixel to the image of a 3 is enough to change its classification (cf. one-pixel attacks (Su, Vargas, and Sakurai, 2019)). Interestingly, Figure 1c
shows that one can simultaneously flip all pixels on an image of digit 8 while retaining its classification, showing the model is somewhat
invariant to the roles of white and black pixels in the original image. Finally, Figure 1d shows that a subset of the pixels, around the center of
MNIST images (colored in yellow), is enough to determine the verdicts of a model trained to detect digit 1. As an application, one could
leverage this knowledge to reduce the dimensionality of the dataset by cropping the borders.

been shown that some widely used explainability scores,
believed to be theoretically mature and robust, may behave
counterintuitively in certain situations (Ignatiev, Narodyt-
ska, and Marques-Silva, 2019b; Ignatiev, 2020; Camburu
et al., 2019; Slack et al., 2020; Kumar et al., 2020; Huang
and Marques-Silva, 2023).

• A Uniform Understanding of Interpretability: As posed
by (Barceló et al., 2020), the computational complexity of
interpretability queries on a class of models (e.g., decision
trees, neural networks) can be seen as a measure of their
interpretability. However, existing analyses (see also (Al-
fano et al., 2024; Lin et al., 2024)) rely on the particular
queries being chosen. In contrast, by analyzing the com-
plexity of evaluating interpretability queries in a uniform
language, we can obtain a more general understanding of
the interpretability of a class of models.

A first step toward ML interpretability languages was car-
ried out by Arenas et al. (2021), who designed a simple ex-
plainability language based on first-order logic, called FOIL
(first-order interpretability logic), that was able to express
some basic explainability queries. However, as noted by Are-
nas et al. (2021), the primary purpose of FOIL was not to
serve as a practical explainability language but as a founda-
tion upon which such languages could be constructed. To
date, nevertheless, we have no complete understanding of
why FOIL is not a good practical language for explainability,
nor what needs to be added to it in order to make it a more
effective tool for performing such tasks. To gain a deeper
understanding of this issue, we introduce two desiderata that
any language used for explainability queries should meet:

• Rich expressive power: The language should be able to
express a broad range of explainability queries used in
practice. Some desirable characteristics in terms of expres-
siveness are the combination of queries (e.g., is there a
minimum sufficient reason common to two input instances
e and e′?), and the possibility of expressing preferred ex-
planations that contain specific features of interest to the

user (Audemard et al., 2022a; Alfano et al., 2024).

• Efficiency: The complexity of the language used to express
explainability queries must be manageable. Note that this
does not necessarily imply that the evaluation should take
polynomial time; SAT solvers are a mature technology that
allows to solve many NP-hard problems in practice, and
has been effective in computing explanations for various
ML models (Izza and Marques-Silva, 2021; Yu et al., 2020;
Ignatiev and Silva, 2021). In this sense, a language whose
evaluation requires a small number of calls to a SAT solver
can still be practical, which is the case in our work.

Theoretical Contributions. We start by assessing the suit-
ability of FOIL as an explainability language. Regarding its
expressive power, we show that there are crucial explainabil-
ity queries that cannot be expressed in this language, e.g., the
query minimum sufficient reason (Shih, Choi, and Darwiche,
2018; Barceló et al., 2020), as described earlier, cannot be ex-
pressed in FOIL. Regarding computational complexity, we
show that, under some widely believed complexity assump-
tions, queries expressed in FOIL cannot be evaluated with a
polynomial number of calls to an NP oracle. Specifically, we
show that the FOIL evaluation problem over decision trees
is hard for each level of the polynomial hierarchy, which
goes well beyond the problems that can be solved with a
polynomial number of calls to an NP oracle.

Considering these limitations, we pursue progress along
two key avenues: First, we define an extension of FOIL
that can capture many of the explainability notions found in
practice. Then, we seek a meaningful restriction of it that
maintains expressive richness while remaining compatible
with evaluation via SAT solver technology.

• Regarding the extension of FOIL, we enhance it with
a simple predicate ⪯ that enables reasoning about the
cardinalities of sets of features. This addition allows us to
express minimum sufficient reason and other cardinality-
based inquiries like minimum change required.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

61

• The high complexity of FOIL + {⪯} motivates the de-
sign of DT-FOIL, a similar logic to FOIL + {⪯} that
is tailored specifically for decision trees, which makes it
evaluation tractable. In particular, by guarding quantifi-
cation, formulas in DT-FOIL can be evaluated in poly-
nomial time. Unfortunately, this guarded quantification
prevents DT-FOIL from expressing queries relating to
minimization, or more in general, that require unbounded
quantification. From this observation, we study two pos-
sible ways forward: (i) Q-DT-FOIL, a simple extension
of DT-FOIL that allows for unbounded quantification
without alternations, and (ii) OPT-DT-FOIL, an optimiza-
tion version of DT-FOIL. We show that the evaluation
problem for Q-DT-FOIL lies in the Boolean hierarchy
(BH), thus requiring a constant number of calls to an NP or-
acle (e.g., a SAT solver), and that the evaluation problem
for OPT-DT-FOIL is in PNP, thus requiring a polynomial
number of calls to an NP oracle.

Implementation. We provide a partial implementation of
the evaluation of Q-DT-FOIL and OPT-DT-FOIL queries
over decision trees, leveraging modern SAT-solvers and auto-
mated reasoning techniques for obtaining efficient CNF en-
codings. The fragment of Q-DT-FOIL and OPT-DT-FOIL
queries that we can evaluate includes all examples of queries
presented in this paper. The reason for our implementation
being limited is that, part of the theoretical evaluation algo-
rithm in PNP for certain queries relies on a polynomial-time
subroutine stemming from finite model theory whose con-
stant factor is prohibitively large. Nonetheless, for the subset
of queries that we can evaluate, we show that our implemen-
tation runs in the order of magnitude of seconds over decision
trees with thousands of nodes and hundreds of features, thus
making it suitable for practical use (cf. (Izza, Ignatiev, and
Marques-Silva, 2020; Gomes Mantovani et al., 2024)).

Additional Material. Complete proofs for the
results in this paper can be found at https:
//arxiv.org/abs/2310.11636. The reposi-
tory containing the implementation is available at
https://github.com/jtcaraball/goexpdt,
and the repository with the experiments from this paper
is available at https://github.com/jtcaraball/
goexpdt-experiments.

2 Background
Models and instances. We use an abstract notion of a
model of dimension n, and define it as a Boolean function
M : {0, 1}n → {0, 1}.1 We write dim(M) for the dimen-
sion of a model M. A partial instance of dimension n is a
tuple e ∈ {0, 1,⊥}n, where ⊥ is used to represent undefined
features. We define e⊥ = {i ∈ {1, . . . , n} | e[i] = ⊥}. An
instance of dimension n is a tuple e ∈ {0, 1}n, that is, a
partial instance without undefined features.

1We focus on Boolean models, which is common in formal XAI
research (Wäldchen et al., 2021; Audemard et al., 2022b; Cabodi et
al., 2024).

2

1u: 4

3 4 3 true

true 4 false true 1 false

false true truev: false

0 1

0 1

0 1

0 1

0 10 1

0 1 0 1

Figure 2: Example of a decision tree of dimension 4.

Given partial instances e1, e2 of dimension n, we say
that e1 is subsumed by e2 if, and only if, e1[i] = e2[i],
for every i ∈ {1, . . . , n} with e1[i] ̸= ⊥. That is, it is
possible to obtain e2 from e1 by replacing some unknown
values. For example, (1,⊥) is subsumed by (1, 0), but it is
not subsumed by (0, 0). A partial instance e can be seen as
a compact representation of the set of instances e′ such that
e is subsumed by e′, where such instances e′ are called the
completions of e.

Decision trees. A decision tree over instances of dimension
n is a rooted directed tree T with labels on edges and nodes
such that: (i) each leaf is labeled with true or false; (ii)
each internal node (a node that is not a leaf) is labeled with
a feature i ∈ {1, . . . , n}; (iii) each internal node has two
outgoing edges, one labeled 0 and the other one labeled 1; and
(iv) in every path from the root to a leaf, no two nodes on that
path have the same label. Every instance e ∈ {0, 1}n defines
a unique path πe = u1 · · ·uk from the root u1 to a leaf uk

of T such that: if the label of ui is j ∈ {1, . . . , n}, where
i ∈ {1, . . . , k − 1}, then the edge from ui to ui+1 is labeled
with e[j]. Further, the instance e is positive, denoted by
T (e) = 1, if the label of uk is true; otherwise the instance e
is negative, which is denoted by T (e) = 0. For example, for
the decision tree T in Figure 2 and instances e1 = (0, 0, 1, 1)
and e2 = (0, 1, 1, 0), it holds that T (e1) = 1 and T (e2) =
0.

2.1 First Order Interpretability Logic (FOIL)
Our work is inspired by the first-order interpretability logic
(FOIL) (Arenas et al., 2021), which is a simple explainability
language rooted in first-order logic. In particular, FOIL is
nothing else than first-order logic over two relations on the
set of partial instances of a given dimension: A unary relation
POS which indicates the value of an instance in a model, and
a binary relation ⊆ that represents the subsumption relation
among partial instances.

Given a vocabulary σ consisting of relations R1, . . ., Rℓ,
recall that a structure A over σ consists of a domain, where
quantifiers are instantiated, and an interpretation for each
relation Ri. Moreover, given a first-order formula φ defined
over the vocabulary σ, we write φ(x1, . . . , xk) to indicate

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

62

https://arxiv.org/abs/2310.11636
https://arxiv.org/abs/2310.11636
https://github.com/jtcaraball/goexpdt
https://github.com/jtcaraball/goexpdt-experiments
https://github.com/jtcaraball/goexpdt-experiments

that {x1, . . . , xk} is the set of free variables of φ. Finally,
given a structure A over the vocabulary σ and elements a1,
. . ., ak in the domain of A, we use A |= φ(a1, . . . , ak) to
indicate that formula φ is satisfied by A when each variable
xi is replaced by element ai (1 ≤ i ≤ k).

Consider a model M with dim(M) = n. The structure
AM representing M over the vocabulary formed by POS
and ⊆ is defined as follows. The domain of AM is the
set {0, 1,⊥}n of all partial instances of dimension n. An
instance e ∈ {0, 1}n is in the interpretation of POS in AM
if and only if M(e) = 1, and no partial instance including
undefined features is contained in the interpretation of POS.
Moreover, a pair (e1, e2) is in the interpretation of relation ⊆
in AM if and only if e1 is subsumed by e2. Finally, given a
formula φ(x1, . . . , xk) in FOIL and partial instances e1, . . .,
ek of dimension n, model M is said to satisfy φ(e1, . . . , ek),
denoted by M |= φ(e1, . . . , ek), if AM |= φ(e1, . . . , ek).

Notice that for a decision tree T , the structure AT can be
exponentially larger than T . Hence, AT is a theoretical con-
struction needed to formally define the semantics of FOIL,
but that should not be built when verifying in practice if a
formula φ is satisfied by T .

2.2 Expressing interpretability queries in FOIL
It will be instructive for the rest of our presentation, to see
a few examples of how FOIL can be used to express some
natural explainability queries on models. In these examples
we make use of the following FOIL formula:

FULL(x) = ∀y (x ⊆ y → y ⊆ x).

Notice that if M is a model and e is a partial instance, then
M |= FULL(e) if and only if e is also an instance (i.e., it has
no undefined features). We also use the formula

ALLPOS(x) = ∀y
(
(x ⊆ y ∧ FULL(y)) → POS(y)

)
,

such that M |= ALLPOS(e) if and only if every completion
e′ of e is a positive instance of M. Analogously, we define a
formula ALLNEG(x).

A sufficient reason (SR) for an instance e over a model M
is a partial instance e′ such that e′ ⊆ e and each completion
of e′ takes the same value over M as e. We can define SRs
in FOIL as follows:

SR(x, y) = FULL(x) ∧ y ⊆ x ∧
(POS(x) → ALLPOS(y)) ∧ (¬POS(x) → ALLNEG(y)).

In fact, it is easy to see that M |= SR(e, e′) if and only
if e′ is a SR for e over M. Notice that e is always a SR
for itself. However, we are typically interested in SRs that
satisfy some optimality criterion. A common such criterion
is that of being minimal (Shih, Choi, and Darwiche, 2018;
Izza, Ignatiev, and Marques-Silva, 2020; Barceló et al., 2020).
Formally, e′ is a minimal SR for e over M, if e′ is a SR for
e over M and there is no partial instance e′′ that is properly
subsumed by e′ that is also a SR for e. Let us write x ⊂ y
for x ⊆ y ∧ ¬(y ⊆ x). Then for

MINIMALSR(x, y) = SR(x, y)∧∀z (z ⊂ y → ¬SR(x, z)),

we have that M |= MINIMALSR(e, e′) if and only if e′

is a minimal SR for e over M. Minimal SRs have also

been called prime implicants or abductive explanations in the
literature (Ignatiev, Narodytska, and Marques-Silva, 2019a;
Marques-Silva, 2022).

A usual global interpretability question about an ML model
is to decide which features are sufficient/relevant for the
prediction (Huang et al., 2023; Darwiche and Hirth, 2020).
In other words, which features determine the decisions made
by the model. Such a notion can be defined in FOIL as
follows:

DFS(x) = ∀y
(
SUF(x, y) → (ALLPOS(y) ∨ ALLNEG(y))

)
where SUF(x, y) is a FOIL formula (SUF stands for same
undefined features) such that M |= SUF(e, e′) if and only if
e⊥ = e′⊥, i.e., the sets of undefined features in e and e′ are
the same (see the supplementary material for the definition
of SUF). Then we have that M |= DFS(e) if and only if
for every e′ with e⊥ = e′⊥, all completions of e′ receive the
same classification over M. That is, the output of the model
on each instance is invariant to the features that are undefined
in e. We call this a Determinant Feature Set (DFS).

As before, we can also express that e is minimal with
respect to feature determinacy using the formula:

MINIMALDFS(x) = DFS(x) ∧ ∀y (y ⊂ x → ¬DFS(y)).

3 Limitations of FOIL
As we show in this section, FOIL fails to meet either of the
two criteria we are looking for in a practical language that
provides explanations about decision trees. The first issue
is its limited expressivity: there are important notions of
explanations that cannot be expressed in this language. The
second issue is its high computational complexity: There are
queries in FOIL that cannot be evaluated with a polynomial
number of calls to an NP oracle.

3.1 Limited expressiveness
In some scenarios we want to express a stronger condition for
SRs and DFSs: not only that they are minimal, but also that
they are minimum. Formally, a SR e′ for e over M is min-
imum, if there is no SR e′′ for e over M with |e′′⊥| < |e′⊥|,
i.e., e′′ has more undefined features than e′. Analogously, we
can define the notion of minimum DFS. One can observe that
a DFS is minimum if and only if it is minimal (Shahaf Bas-
san, 2023). Therefore, the FOIL formula MINIMALDFS(x)
presented earlier indicates that e is both the minimum and
minimal DFS. This is however not the case for SRs; a suf-
ficient reason can be minimal without being minimum. The
following theorem shows that FOIL cannot express the query
that verifies if a partial instance e′ is a minimum SR for a
given instance e over decision trees. Due to space constrains,
see supplementary material for all proofs.
Theorem 1. There is no formula MINIMUMSR(x, y) in
FOIL such that, for every decision tree T , instance e and par-
tial instance e′, we have that T |= MINIMUMSR(e, e′) ⇔
e′ is a minimum SR for e over T .

3.2 High complexity
For each query φ(x1, . . . , xk) in FOIL, we define its associ-
ated problem EVAL(φ) as follows.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

63

PROBLEM: EVAL(φ)
INPUT: A decision tree T and partial instances

e1, . . . , ek of dimension n
OUTPUT: YES, if T |= φ(e1, . . . , ek),

and NO otherwise

It is known that there exists a formula ϕ(x) in FOIL for
which its evaluation problem over the class of decision trees
is NP-hard (Arenas et al., 2021). We want to determine
whether the language FOIL is appropriate for implementa-
tion using SAT encodings. Thus, it is natural to ask whether
the evaluation problem for formulas in this logic can always
be decided in polynomial time by using a NP oracle. How-
ever, we prove that this is not always the case. Although the
evaluation of FOIL formulas is always in the polynomial
hierarchy (PH), there exist formulas in FOIL for which their
corresponding evaluation problems are hard for every level
of PH. Based on widely held complexity assumptions, we
can conclude that FOIL contains formulas whose evaluations
cannot be decided in polynomial time by using a NP oracle.
Theorem 2. The following statements hold:
1. Let ϕ be a FOIL formula. Then there exists k ≥ 0 such

that EVAL(ϕ) is in the ΣP
k complexity class.

2. For every k ≥ 0, there is an FOIL-formula ϕk such that
EVAL(ϕk) is ΣP

k -hard.

4 A Better Logic to Explain Decision Trees
According to the previous section, we have two limitations
regarding FOIL that we need to address in order to build
a practical language to provide explanations about decision
trees. This imposes two needs on us: on one hand, we must
extend FOIL to increase its expressive power, and on the
other hand, we must constrain the resulting language to en-
sure that its evaluation complexity is appropriate. In this
section, we define the language DT-FOIL that takes into
consideration both criteria and is specifically tailored for de-
cision trees. We show that DT-FOIL is a natural language
to express explainability notions for decision trees, which,
however, lacks a general mechanism to express minimality
conditions. Based on these observations, we present in the
following section two extensions of DT-FOIL that are capa-
ble of expressing rich notions of explanation over decision
trees, and for which the evaluation problem can be solved
with a polynomial number of calls to an NP oracle.

4.1 The definition of DT-FOIL
FOIL cannot express properties such as minimum sufficient
reason that involve comparing cardinalities of sets of features.
As a first step, we solve this issue extending the vocabulary
of FOIL with a simple binary relation ⪯ defined as:

M |= e ⪯ e′ ⇐⇒ |e⊥| ≥ |e′⊥|.
As we will show later, the use of this predicate indeed al-
lows us to express many notions of explanations. However,
the inclusion of this predicate in FOIL can only add extra
complexity. Therefore, our second step is to define the logic
DT-FOIL, which is tailored for decision trees and can effi-
ciently make use of this new extra power.

Atomic formulas. Predicates ⊆ and ⪯, as well as predi-
cates FULL and SUF used in Section 2, can be called syntac-
tic in the sense that they refer to the values of the features of
partial instances, and they do not make reference to classifi-
cation models. It turns out that all the syntactic predicates
needed in our logical formalism can be expressed as first-
order queries over the predicates ⊆ and ⪯. Moreover, such
formulas can be evaluated in polynomial time:

Theorem 3. Let ϕ be a first-order formula defined over the
vocabulary {⊆,⪯}. Then EVAL(ϕ) is in P.

The atomic formulas of DT-FOIL are defined as the set
of FOIL formulas over the vocabulary {⊆,⪯}. Note that we
could not have simply taken one of these predicates when
defining atomic formulas, as we show in the supplementary
material that they cannot be defined in terms of each other.
The following is an example of a new atomic formula in
DT-FOIL: CONS(x, y) = ∃z (x ⊆ z ∧ y ⊆ z). This
relation checks whether two partial instances e and e′ are
consistent, in the sense that features that are defined in both
e and e′ have the same value. We use this formula in the rest
of this work.

The logic DT-FOIL. At this point, we depart from the
model-agnostic approach of FOIL and introduce the concept
of guarded quantification, which specifically applies to deci-
sion trees. This involves quantifying over the elements that
define a decision tree, namely its nodes and leaves.

Given a decision tree T and a node u of T , the instance
eu represented by u is defined as follows. If π = u1 · · ·uk is
the unique path that leads from the root of T to uk = u,
then: (i) for every i ∈ {1, . . . , k − 1}, if the label of
node ui is j ∈ {1, . . . , n}, then eu[j] is equal to the la-
bel of the edge in T from ui to ui+1; and (ii) for each
j ∈ {1, . . . , n}, eu[j] = ⊥ if the label of ui is differ-
ent from j for every i ∈ {1, . . . , k − 1}. For example,
for the decision tree T in Figure 2 and the nodes u, v
shown in this figure, it holds that eu = (⊥, 0,⊥,⊥) and
ev = (0, 1, 0, 0). Then we define predicates NODE(x) and
POSLEAF(x) as follows, given a decision tree T and a par-
tial instance e: (i) T |= NODE(e) if and only if e = eu
for some node u ∈ T ; (ii) T |= POSLEAF(e) if and only
if e = eu for some leaf u of T with label true. Then con-
sidering the vocabulary {⊆,⪯, NODE, POSLEAF}, the logic
DT-FOIL is recursively defined as follows: (i) Atomic for-
mulas are DT-FOIL formulas. (ii) DT-FOIL formulas are
closed under Boolean combinations. (iii) If ϕ is a DT-FOIL
formula, then ∃x(NODE(x) ∧ ϕ), ∀x(NODE(x) → ϕ),
∃x(POSLEAF(x) ∧ ϕ) and ∀x(POSLEAF(x) → ϕ) are
DT-FOIL formulas.

The logic DT-FOIL is termed guarded due to the fact that
every quantification is protected by a collection of nodes or
leaves in the decision tree. As the decision tree comprises a
linear number of nodes (in the size of the tree), and hence a
linear number of leaves, it follows from Theorem 3 that every
guarded formula can be evaluated within polynomial time.

Proposition 4. Let ϕ be a DT-FOIL formula. Then EVAL(ϕ)
is in P.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

64

4.2 On the expressiveness of DT-FOIL
The logic DT-FOIL allows to express in a simple way the
basic notions of explanation that we study in this paper. In
particular, the basic predicates that are needed to express such
notions can be easily expressed using guarded quantification,
considering the predicate CONS defined in Section 4.1:

LEAF(x) = NODE(x) ∧ ∀y
(
NODE(y) → (x ⊆ y → y ⊆ x)

)
ALLPOS(x) = ∀y

(
NODE(y) →

((LEAF(y) ∧ CONS(x, y)) → POSLEAF(y))
)

ALLNEG(x) = ∀y
(
NODE(y) →

((LEAF(y) ∧ CONS(x, y)) → NEGLEAF(y))
)

POS(x) = FULL(x) ∧ ALLPOS(x)

With these definitions, both predicates SR and DFS can
be expressed as DT-FOIL formulas. In fact, with the new
definitions of the predicates POS, ALLPOS and ALLNEG,
we have that the formula in Section 2.2 defining SR is a
DT-FOIL formula. For DFS the situation is a bit more
complex. Observe first that we cannot use the definition of
DFS(x) provided in Section 2.2, as such a formula involves
an unrestricted quantifier. Instead, we can use the following
DT-FOIL formula DFS(x):

∀y
[
NODE(y) → (ALLPOS(y) → (1)

∀z (NODE(z) → (ALLNEG(z) →
¬∃w (SUF(x,w) ∧ CONS(w, y) ∧ CONS(w, z)))))

]
.

Notice that this is a DT-FOIL formula since the formula
¬∃w (SUF(x,w) ∧ CONS(w, y) ∧ CONS(w, z)) is atomic
(that is, it is defined by using only the predicates ⊆ and ⪯).

The logic DT-FOIL does not have an explicit mechanism
to represent minimal notions of explanation. This can be
proved by showing that the notion of minimum sufficient
reason cannot be expressed in the logic, which is a simple
corollary of Proposition 4 and the fact that the problem of
verifying, given an instance e, a partial instance e′, and a
decision tree T , whether e′ is a minimum sufficient reason
for e over T is coNP-complete (Barceló et al., 2020).

Corollary 5. Assuming P ̸= NP, there is no for-
mula MINIMUMSR(x, y) in DT-FOIL such that, for
every decision tree T , instance e and partial in-
stance e′, it holds that T |= MINIMUMSR(e, e′) ⇔
e′ is a minimum SR for e over T .

This result motivates two extensions of DT-FOIL that will
finally meet our desiderata for an interpretability logic, which
are presented in the following section.

5 Making DT-FOIL Practical
As shown in the previous section, DT-FOIL can be evaluated
in polynomial time and can express some natural explain-
ability properties, but lacks the ability to express optimality
properties. To remedy this, in this section we propose two
extension of DT-FOIL. We start by proposing Q-DT-FOIL,
a logic that is defined by allowing quantification without al-
ternation over DT-FOIL. As we will show in this section,

Q-DT-FOIL meets all the criteria stated in the introduction,
except for the fact that the computation of an answer for
a Q-DT-FOIL formula cannot be done with a polynomial
number of calls to an NP oracle. Based on the findings, we
then propose OPT-DT-FOIL, a logic that is defined by in-
troducing a minimality operator over DT-FOIL. As we will
shown in this section, OPT-DT-FOIL meets all the criteria
for an appropriate interpretability logic.

5.1 The logic Q-DT-FOIL
The logic Q-DT-FOIL is recursively defined as follows: (i)
each formula in DT-FOIL is a Q-DT-FOIL formula; (ii)
Boolean combinations of Q-DT-FOIL formulas are Q-DT-
FOIL formulas; and (iii) if ϕ is a DT-FOIL formula, then
∃x1 · · · ∃xℓ ϕ and ∀x1 · · · ∀xℓ ϕ are Q-DT-FOIL formulas.
Both predicates SR and DFS can be expressed as Q-DT-
FOIL formulas, as we shown in the previous section that they
can be expressed as DT-FOIL formulas. More importantly,
the form of quantification allowed in Q-DT-FOIL is enough
to express optimality properties. As a first example of this,
consider the following simple definition of the explainability
queries studied in the paper, where z ≺ y is a shorthand for
z ⪯ y ∧ ¬(y ⪯ z):

MINIMALSR(x, y) = SR(x, y) ∧ ∀z
(
z ⊂ y → ¬SR(x, z)

)
MINIMUMSR(x, y) = SR(x, y) ∧ ∀z

(
z ≺ y → ¬SR(x, z)

)
MINIMALDFS(x) = DFS(x) ∧ ∀y

(
y ⊂ x → ¬DFS(y)

)
As a second example of the expressiveness of Q-DT-FOIL,
consider the notion of minimum change required (MCR)
mentioned in the introduction. Given an instance e and a
decision tree T , MCR aims to find another instance e′ such
that T (e) ̸= T (e′) and the number of features whose values
need to be flipped in order to change the output of the de-
cision tree is minimal, which is the same as saying that the
Hamming distance between e and e′ is minimal. It is possible
to express MCR in Q-DT-FOIL as follows. In the supple-
mentary material, we show that there exists a ternary atomic
DT-FOIL formula LEH such that for every decision tree T
of dimension n and every sequence of instances e1, e2, e3
of dimension n, it holds that: T |= LEH(e1, e2, e3) if and
only if the Hamming distance between e1 and e2 is less or
equal than the Hamming distance between e1 and e3. By
using LEH, we can express in Q-DT-FOIL the notion of
minimum change required:

MINIMUMCR(x, y) = FULL(x) ∧ FULL(y) ∧
¬(POS(x) ↔ POS(y)) ∧
∀z

[(
FULL(z) ∧ ¬(POS(x) ↔ POS(z))

)
→ LEH(x, y, z)

]
.

The next necessary step in the study of Q-DT-FOIL is to
establish the complexity of deciding whether a tuple of partial
instances is an answer to a Q-DT-FOIL formula, and the
complexity of computing such answers. To this aim, we first
consider the evaluation problem EVAL(ϕ) for a fixed Q-DT-
FOIL formula ϕ(x1, . . . , xm), which is defined exactly as in
Section 3.2 for the case of FOIL. Next we provide a precise
characterization of the complexity of the evaluation problem
for Q-DT-FOIL. More specifically, we establish that this

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

65

problem can always be solved in the Boolean Hierarchy over
NP (Wechsung, 1985; Cai et al., 1988), i.e., as a Boolean
combination of NP problems. In this theorem, a level of the
Boolean hierarchy is denoted as BHk (the definition of this
hierarchy can be found in the supplementary material).

Theorem 6. (i) For each Q-DT-FOIL formula ϕ, there is
k ≥ 1 such that EVAL(ϕ) is in BHk; (ii) For every k ≥ 1,
there is a Q-DT-FOIL formula ϕk such that EVAL(ϕk) is
BHk-hard.

This result tells us that Q-DT-FOIL meets one of the fun-
damental criteria for an interpretability logic, namely that it
can be verified whether a tuple is an answer to a Q-DT-FOIL
formula with a polynomial number of calls to an NP oracle.
Hence, the next step in the study of Q-DT-FOIL is to es-
tablish the complexity of computing such answers. For a
fixed formula ϕ(x1, . . . , xm) in Q-DT-FOIL, we define its
corresponding computation problem COMP(ϕ) as the prob-
lem of computing, given decision tree T of dimension n,
a sequence of partial instances e1, . . ., em of dimension n
such that T |= ϕ(e1, . . . , em) (and answering no if such a
sequence does not exist). Unfortunately, the following result
tells us that this problem cannot be solved with a polynomial
number of calls to an NP oracle, showing a limitation of
Q-DT-FOIL when computing answers.

Theorem 7. There exists a Q-DT-FOIL formula ϕ such
that if COMP(ϕ) can be solved in FPNP, then the polynomial
hierarchy collapses to its second level, Σp

2.

5.2 The logic OPT-DT-FOIL
Given what we have learned in the previous sections, our aim
is to construct the right extension of DT-FOIL that meets
all the criteria for an interpretability logic. This logic is
OPT-DT-FOIL, which is studied in this section by defin-
ing its components, studying its expressiveness, and finally
showing that the problem of computing an answer to an
OPT-DT-FOIL formula can be solved with a polynomial
number of calls to an NP oracle.

The definition of the logic. An atomic DT-FOIL formula
ρ(x, y, v1, . . . , vℓ) represents a strict partial order if for every
dimension n and assignment of partial instances of dimension
n for the variables v1, . . ., vℓ, the resulting binary relation
over the variables x and y is a strict partial order over the par-
tial instances of dimension n. Formally, ρ(x, y, v1, . . . , vℓ)
represents a strict partial order if for every decision tree T :

T |= ∀v1 · · · ∀vℓ
[
∀x¬ρ(x, x, v1, . . . , vℓ) ∧

∀x∀y∀z
(
(ρ(x, y, v1, . . . , vℓ) ∧ ρ(y, z, v1, . . . , vℓ))

→ ρ(x, z, v1, . . . , vℓ)
)]
.

Notice that variables v1, . . ., vℓ in the formula
ρ(x, y, v1, . . . , vℓ) are considered as parameters that define
a strict partial order. In fact, different assignments for these
variables can give rise to different orders. Hence, we use
notation ρ[v1, . . . , vℓ](x, y) to make explicit the distinction
between the parameters v1, . . ., vℓ that define the order and
the variables x, y that are instantiated with partial instances

to be compared. For example, the strict partial order de-
fined from the subsumption relation is defined by the formula
ρ1(x, y) = x ⊂ y. As a second example, consider the case
where a certain feature must be disregarded when defining an
order for partial instances. For instance, in many cases, it is
not desirable to use the feature gender when comparing par-
tial instances. Such an order can be defined as follows. With
the appropriate values for variables v1 and v2, the following
formula checks whether instance x has value ⊥ in the i-th fea-
ture: NF(x, v1, v2) = ¬(v1 ⊆ x)∧¬(v2 ⊆ x). For instance,
if we are considering partial instances of dimension 5 and
we need to check whether instance x has value ⊥ in the first
feature, then we can use the values c1 = (0,⊥,⊥,⊥,⊥) and
c2 = (1,⊥,⊥,⊥,⊥) for the variables v1 and v2, respectively.
Moreover, let PR(x, y) = x ⊂ y ∧ ¬∃z (x ⊂ z ∧ z ⊂ y)
be a formula that checks whether x is a predecessor of y
under the order ⊂. Then, with the appropriate values for the
parameters v1 and v2, the following formula defines a strict
partial order based on ⊂ but that disregards the i-th feature
when comparing partial instances:

ρ2[v1, v2](x, y) = ∃x′∃y′
[
(NF(x, v1, v2) → x = x′) ∧

(¬NF(x, v1, v2) → (PR(x′, x) ∧ NF(x′, v1, v2))) ∧
(¬NF(y, v1, v2) → (PR(y′, y) ∧ NF(y′, v1, v2))) ∧

(NF(y, v1, v2) → y = y′) ∧ x′ ⊂ y′
] (2)

For instance, ρ2[c1, c2](x, y), for the constants c1 and c2 men-
tioned above, defines a strict partial order that disregards the
first feature when comparing partial instances of dimension 5.

Atomic DT-FOIL formulas representing strict partial or-
ders will be used in the definition of OPT-DT-FOIL. Hence,
it is necessary to have an algorithm that verifies whether
this condition is satisfied in order to have a decidable syntax
for OPT-DT-FOIL. In what follows, we prove that such an
algorithm exists.

Proposition 8. The problem of verifying, given an
atomic DT-FOIL-formula ρ[v1, . . . , vℓ](x, y), whether
ρ[v1, . . . , vℓ](x, y) represents a strict partial order can be
solved in double exponential time.

Although the algorithm in Proposition 8 has high complex-
ity, we are convinced that it can be used in practice, as we
expect formulas representing strict partial orders to be small
and to have a simple structure.

We need one additional piece of notation to define the
syntax of OPT-DT-FOIL. Given a DT-FOIL-formula
φ(x, u1, . . . , uk), we use notation φ[u1, . . . , uk](x) to in-
dicate that x is a distinguished variable and u1, . . . , uk are
parameters that define the possible values for x. In general,
we use this syntax when x stores an explanation given an
assignment for the variables u1, . . ., uℓ. For example, we use
notation φ[u](x) = SR(u, x) to indicate that x is a sufficient
reason given an assignment for the variable u (that is, x is a
sufficient reason for u). We use this terminology to be con-
sistent with the notation used for the formulas that represent
strict partial orders, so that we have a consistent notation
when defining OPT-DT-FOIL. Formally, given a DT-FOIL-
formula φ[u1, . . . , uk](x) and an atomic DT-FOIL-formula
ρ[v1, . . . , vℓ](y, z) that represents a strict partial order, an

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

66

OPT-DT-FOIL-formula is an expression of the following
form:

Ψ[u1, . . . , uk,v1, . . . , vℓ](x) =

min[φ[u1, . . . , uk](x), ρ[v1, . . . , vℓ](y, z)].

Notice that x, u1, . . . , uk, v1, . . . , vℓ are the free variables of
this formula, while the variables y, z are quantified variables
in it. In particular, x is a variable used to store a minimal
explanation, u1, . . . , uk are the parameters that define the
notion of explanation, and v1, . . . , vℓ are the parameters that
define the strict partial order over which we are minimizing.
The semantics of Ψ[u1, . . . , uk, v1, . . . , vℓ](x) is defined by
considering the following Q-DT-FOIL-formula:

θmin(x, u1, . . . , uk, v1, . . . , vℓ) = φ(x, u1, . . . , uk) ∧
∀y

(
φ(y, u1, . . . , uk) → ¬ρ(y, x, v1, . . . , vℓ)

)
More precisely, given a decision tree T of dimension n and
partial instances e, e′1, . . . , e

′
k, e′′1 , . . . , e

′′
ℓ of dimension n,

we have that T |= Ψ[e′1, . . . , e
′
k, e

′′
1 , . . . , e

′′
ℓ](e) if and only

if T |= θmin(e, e
′
1, . . . , e

′
k, e

′′
1 , . . . , e

′′
ℓ).

On the expressiveness of OPT-DT-FOIL. As is custom-
ary, a logic L1 is contained in a logic L2 if for every formula
in L1, there exists an equivalent formula in L2. Moreover, L1

is properly contained in L2 if L1 is contained in L2 and L2

is not contained in L1. The following proposition shows that
the expressive power of OPT-DT-FOIL lies between that of
DT-FOIL and Q-DT-FOIL.
Proposition 9. Assuming that the polynomial hierarchy
does not collapse, DT-FOIL is strictly contained in
OPT-DT-FOIL, and OPT-DT-FOIL is strictly contained in
Q-DT-FOIL.

The logic OPT-DT-FOIL allows to express in a simple
way all notions of explanation that we study in this paper.
For example, assuming that φ[u](x) = SR(u, x), the follow-
ing minimal OPT-DT-FOIL-formulas encode the notions of
minimal and minimum sufficient reason:

MINIMALSR[u](x) = min[φ[u](x), y ⊂ z],

MINIMUMSR[u](x) = min[φ[u](x), y ⪯ z ∧ ¬(z ⪯ y)],

while the minimal DT-FOIL-formula min[φ[u](x), ρ2(y, z)]
encodes the notion of minimal sufficient reason for the order
ρ2(y, z) defined in eq. (2) that disregards a feature. As a
second example, consider the notion of minimum change
required and the predicate LEH defined in Section 5.1. Then
letting φ[u](x) = FULL(u) ∧ FULL(x) ∧ ¬(POS(u) ↔
POS(x)) and ρ3[u](y, z) = LEH(u, y, z) ∧ ¬LEH(u, z, y),
we can express the notion of minimum change required in
OPT-DT-FOIL as follows:

MINIMUMCR[u](x) = min[φ[u](x), ρ3[u](y, z)].

The logic OPT-DT-FOIL can also be used to express notions
of explanation that involve maximality conditions, just by
reversing the order being considered. For example, consider
the explainability query maximum change allowed (Alfano et
al., 2024) that asks for the maximum number of changes that

can be made to an instance without changing the output of
the classification model. Considering φ[u](x) = FULL(u) ∧
FULL(x) ∧ (POS(u) ↔ POS(x)), and defining the reverse
order ρ4[u](y, z) = ρ3[u](z, y), we can express the notion of
maximum change allowed in OPT-DT-FOIL as follows:

MAXIMUMCA[u](x) = min[φ[u](x), ρ4[u](y, z)].

An important feature of OPT-DT-FOIL is that it allows
for the combination of notions of explanation. For exam-
ple, given two instances u1 and u2, let CSR[u1, u2](x) =
SR(u1, x) ∧ SR(u2, x), so that this formula checks whether
x is a common sufficient reason for the instances u1 and u2.
Then it is possible to prove that the following OPT-DT-FOIL-
formula computes a common minimal sufficient reason for
two instances (if such a minimal sufficient reason exists):

Ψ1[u1, u2](x) = min[CSR[u1, u2](x), y ⊂ z].

Finally, another important feature of OPT-DT-FOIL is that
it allows for the exploration of the space of explanations
for a given classification. For example, assume that we al-
ready have a minimal sufficient reason x1 for an instance u,
which can be computed using the OPT-DT-FOIL-formula
MINIMALSR[u](x). Then we can compute a second mini-
mal sufficient reason x2 for u as follows. Let

NSR[u, x1](x) = SR(u, x) ∧ SR(u, x1) ∧ ¬(x1 ⊆ x),

so this formula checks whether x is a sufficient reason for
u which does not subsume sufficient reason x1. Then a
minimal sufficient reason for the instance u that is different
from the minimal sufficient reason x1 can be computed using
the following OPT-DT-FOIL formula:

Ψ1[u, x1](x) = min[NSR[u, x1](x), y ⊂ z].

We can apply the same idea to other notions of explanation,
such as the MINIMUMCR explainability query, in order to
compute multiple explanations for the output of a classifica-
tion model.

The computation problem. The computation problem
for OPT-DT-FOIL has to be defined considering the dif-
ferent roles of the variables in an OPT-DT-FOIL formula
Ψ[u1, . . . , uk, v1, . . . , vℓ](x). In particular, the parameters
u1, . . . , uk, v1, . . . , vℓ should be given as input, while the
value of x is the explanation to be computed. The following
definition takes these considerations into account.

PROBLEM: COMP(Ψ)
INPUT: A decision tree T of dimension n and

partial instances e′1, . . ., e′k, e′′1 , . . ., e′′ℓ
of dimension n

OUTPUT: Partial instance e of dimension n such
that T |= Ψ[e′1, . . . , e

′
k, e

′′
1 , . . . , e

′′
ℓ](e),

and NO if no such a partial instance ex-
ists

We show that OPT-DT-FOIL meets our desiderata by prov-
ing that the computation problem for OPT-DT-FOIL can be
solved with a polynomial number of calls to an NP oracle,
Theorem 10. For every formula Ψ in OPT-DT-FOIL, the
problem COMP(Ψ) is in FPNP.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

67

1000 2000 3000 4000

0

1

2

3

Number of nodes

R
un

tim
e

[s
]

Minimal Sufficient Reason

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

0

0.5

1

1.5

2

2.5

Number of nodes

R
un

tim
e

[s
]

Maximum Change Allowed

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

0

1

2

3

4

5

Number of nodes

R
un

tim
e

[s
]

Minimum DFS

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

0

5

10

15

Number of nodes

R
un

tim
e

[s
]

Minimum Sufficient Reason

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

0

10

20

30

Number of nodes

R
un

tim
e

[s
]

Minimum Change Required

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

Figure 3: Empirical evaluation of the runtime for different OPT-DT-FOIL queries over random synthetic data.

1000 2000 3000 4000
10

20

30

40

50

Number of nodes

#
SA

T
ca

lls

Minimal Sufficient Reason

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

3.2

3.4

3.6

3.8

4

Number of nodes

#
SA

T
ca

lls

Maximum Change Allowed

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

1.8

2

2.2

2.4

Number of nodes

#
SA

T
ca

lls

Minimum DFS

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

10

12

14

16

18

20

22

Number of nodes

#
SA

T
ca

lls

Minimum Sufficient Reason

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

1000 2000 3000 4000

20

30

40

Number of nodes

#
SA

T
ca

lls

Minimum Change Required

d = 50
d = 100
d = 150
d = 200
d = 250
d = 300

Figure 4: Empirical evaluation of the number of SAT calls for different OPT-DT-FOIL queries over random synthetic data.

6 Implementation and Challenges
Our implementation consists of three main components: (i)
a prototype simplifier for Q-DT-FOIL/OPT-DT-FOIL for-
mulas, (ii) an encoder translating DT-FOIL formulas into
CNF formulas, and (iii) the algorithms to either compute
answers for OPT-DT-FOIL queries, or decide the truth value
of Q-DT-FOIL formulas. We will give a high-level explana-
tion and also present some key experiments–the supplemen-
tary material contains additional details.

Simplifier. Logical connectives can significantly increase
the size of our resulting CNF formulas; consider for exam-
ple the formula: φ(y) = ∃x [¬(¬(¬(¬(¬(x ⊆ y))))) ∨
(1, 0,⊥) ⊆ (1, 1, 1)]. It is clear that double-negations can
be safely eliminated, and also that sub-expressions involving
only constants can be pre-processed and also eliminated, thus
resulting in the simplified formula φ(y) = ∃x¬(x ⊆ y).

Encoder. We use standard encoding techniques for SAT-
solving, for which we refer the reader to the Handbook of
Satisfiability (Biere et al., 2009, 2021). The basic variables of
our propositional encoding are of the form vx,i,s, indicating
that the DT-FOIL variable x has value s in its i-th feature,
with i ∈ {1, . . . , dim(T)}, for an input decision tree T ,
and s ∈ {0, 1,⊥}. Then, the clauses (and further auxiliary
variables) are mainly built on two layers of abstraction: a
circuit layer, and a first-order layer. The circuit layer consists
of individual ad-hoc encodings for each of the predicates
and shorthands that appear frequently in queries, such as ⊆,
⪯, LEH, DFS, CONS, FULL, ALLPOS and ALLNEG. The
first-order layer consists of encoding the logical connectives
(¬,∨,∧) as well as the quantifiers (with the corresponding
NODE and POSLEAF guards when appropriate).

For two interesting examples of encoding the circuits, let
us consider ⪯ and ALLPOS. For ALLPOS, we use a reacha-
bility encoding, in which we create variables rx,u to represent

that a node u of T is reachable by a partial instance y sub-
suming x. We start by enforcing that rx,root(T) is set to true,
to then propagate the reachability from every node u to its
children u → 0 and u → 1 depending on the value of x[a]
with a the label of u. Finally, by adding unit clauses stating
that (¬rx,ℓ) for every false leaf ℓ, we have encoded that
no instance y subsuming x reaches a false leaf, and thus
is a positive instance. For the case of ⪯, we can see it as
a pseudo-Boolean constraint and implement it by leverag-
ing the counting variables of the sequential encoder of Sinz
(2005) (cf. (Biere et al., 2021)), thus amounting to a total of
O(dim(T)2) auxiliary variables and clauses.

For the first-order layer, we implement the Tseitin trans-
formation (Tseitin, 1968) to more efficiently handle ¬ and ∨,
while treating the guarded-∀ as a conjunction over the O(|T |)
partial instances for which either NODE(·) or POSLEAF(·)
holds, which can be pre-computed from T . An interest-
ing problem that arises when handling negations or dis-
junctions is that of consistency constraints, e.g., for each
i ∈ {1, . . . , dim(T)}, the clause (vx,i,⊥ ∨ vx,i,0 ∨ vx,i,1)
should be true. To address this, we partition the clauses
of our encoding into two sets: CONSISTENCYCLS (consis-
tency clauses) and SEMANTICCLS (semantic clauses), so
that logical connectives operate only over SEMANTICCLS,
preserving the internal consistency of our variables, both the
original and auxiliary ones.

Algorithms for OPT-DT-FOIL and Q-DT-FOIL. In a
nutshell, to compute the answer for an OPT-DT-FOIL query

Ψ(x) = min[φ[e′1, . . . , e
′
k](x), ρ[e

′′
1 , . . . , e

′′
ℓ](y, z)],

we first find, through a single SAT call, a partial instance
e that satisfies φ[e′1, . . . , e

′
k](e). Letting e(0) := e be the

obtained partial instance, we will iteratively search for a
smaller (according to ρ) partial instance e(i) that satisfies
φ[e′1, . . . , e

′
k](e

(i)) ∧ ρ[e′′1 , . . . , e
′′
ℓ](e

(i), e(i−1)). Whenever
such a partial instance e(i) is not found, we conclude that

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

68

e(i−1) is the answer. The proof of Theorem 10 ensures the
number of iterations of this process is polynomial in dim(T).

In the case of a Q-DT-FOIL query, which can be in turn
a Boolean combination of smaller Q-DT-FOIL formulas,
we recursively evaluate each of the sub-formulas and then
combine the results according to the logical connectives. The
base case of the recursion corresponds to DT-FOIL formulas,
potentially with a single kind of quantifier, whose truth value
requires solving a single CNF formula.

Results, challenges, and next steps. Our implementation
can handle all queries considered in this paper and provides
an elegant way to specify further queries. We have tested our
implementation on a variety of decision trees and found that
it scales up to thousands of nodes and hundreds of features,
as shown in Figure 3. The difference in scaling behaviors
across the different queries match theoretical expectations;
for example, for minimal sufficient reasons, each SAT call
is refining the answer by removing 1 additional feature, thus
leading to a large number of calls, each of which is very
cheap. In contrast, for computing minimum DFSs, those
tend to have almost all features in the dataset, meaning that
generally at most 1 feature can be ignored, which is always
detected in 2 SAT calls. Similarly, for the maximum change
allowed query, the initial solution changes many features,
and that is iteratively reduced until the minimum is found
using dozens of calls, whereas for the maximum change al-
lowed, the initial solution usually changes a single feature of
the input instance, and this is iteratively increased. Both of
these cases are consistent with the theoretical expectation of
low “robustness” on a decision tree trained on random data,
where the classification of instances can change by chang-
ing a small number of features, and cannot be maintained
by changing a large number of them. All experiments were
run on a personal computer: AMD Ryzen 7 7800X3D CPU
with 32GB of RAM, running on a Debian distribution. We
have used the award-winning solver Kissat (Biere et al.,
2020). Moreover, a comprehensive suite of tests validates
our implementation, with over 2600 unit and integration
tests. Nonetheless, our implementation cannot be consid-
ered complete for OPT-DT-FOIL or Q-DT-FOIL; a main
challenge is that, even though atomic DT-FOIL queries can
be evaluated in polynomial time (cf. Theorem 3), we do not
know of an efficient propositional encoding for them, as the
algorithm provided by the proof of Theorem 3 is only of
theoretical interest. Naturally, some concrete atomic DT-
FOIL queries can be encoded efficiently, as we have done
for, e.g., LEH, CONS.

In terms of future work, two roads could make our imple-
mentation more suitable for practice: (i) extending our logic
to handle multi-class trees with numerical features, and (ii)
using incremental SAT-solving techniques (Nadel, Ryvchin,
and Strichman, 2014) to speed up the minimization algorithm
for OPT-DT-FOIL.

Acknowledgements
Bustamante is funded by ANID - Subdirección de Capital
Humano (Magíster Nacional, 2023, folio 22231282). Arenas

is funded by ANID - Millennium Science Initiative Program
- Code ICN17002. Barceló is funded by ANID - Millennium
Science Initiative Program - Code ICN17002 and by the
National Center for Artificial Intelligence CENIA FB210017,
Basal ANID. Part of this work was done when Arenas and
Barceló were visiting the Simons Institute for the Theory of
Computing. Subercaseaux is supported by the U.S. National
Science Foundation under grant CCF-2229099.

References
Alfano, G.; Greco, S.; Mandaglio, D.; Parisi, F.; Shahbazian,
R.; and Trubitsyna, I. 2024. Even-if explanations: Formal
foundations, priorities and complexity.
Arenas, M.; Baez, D.; Barceló, P.; Pérez, J.; and Suber-
caseaux, B. 2021. Foundations of symbolic languages for
model interpretability. In NeurIPS 2021, 11690–11701.
Arenas, M.; Barceló, P.; Romero Orth, M.; and Subercaseaux,
B. 2022. On computing probabilistic explanations for de-
cision trees. In Koyejo, S.; Mohamed, S.; Agarwal, A.;
Belgrave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 28695–28707.
Curran Associates, Inc.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.-M.; and Marquis, P. 2022a. On preferred abductive ex-
planations for decision trees and random forests. In Raedt,
L. D., ed., IJCAI, 643–650.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.-M.; and Marquis, P. 2022b. On the explanatory power of
Boolean decision trees. Data Knowl. Eng. 142(C).
Barceló, P.; Monet, M.; Pérez, J.; and Subercaseaux, B. 2020.
Model interpretability through the lens of computational com-
plexity. In Advances in Neural Information Processing Sys-
tems, volume 33, 15487–15498.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T. 2009.
Handbook of Satisfiability: Volume 185 Frontiers in Artificial
Intelligence and Applications. NLD: IOS Press.
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
Cadical, kissat, paracooba, plingeling and treengeling enter-
ing the SAT competition 2020. In Balyo, T.; Froleyks, N.;
Heule, M.; Iser, M.; Järvisalo, M.; and Suda, M., eds., Proc.
of SAT Competition 2020 – Solver and Benchmark Descrip-
tions, volume B-2020-1 of Department of Computer Science
Report Series B, 51–53. University of Helsinki.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications.
IOS Press.
Cabodi, G.; Camurati, P. E.; Marques-Silva, J.; Palena, M.;
and Pasini, P. 2024. Optimizing binary decision diagrams for
interpretable machine learning classification. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 1–1.
Cai, J.; Gundermann, T.; Hartmanis, J.; Hemachandra, L. A.;
Sewelson, V.; Wagner, K. W.; and Wechsung, G. 1988. The
Boolean hierarchy I: structural properties. SIAM J. Comput.
17(6):1232–1252.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

69

Camburu, O.; Giunchiglia, E.; Foerster, J. N.; Lukasiewicz,
T.; and Blunsom, P. 2019. Can I trust the explainer? Verifying
post-hoc explanatory methods. CoRR abs/1910.02065.
Darwiche, A., and Hirth, A. 2020. On the reasons behind
decisions. In ECAI, 712–720.
Darwiche, A. 2023. Logic for explainable AI.
Deng, L. 2012. The MNIST database of handwritten digit im-
ages for machine learning research. IEEE Signal Processing
Magazine 29(6):141–142.
Doshi-Velez, F., and Kim, B. 2017. Towards a rigorous
science of interpretable machine learning.
Gomes Mantovani, R.; Horváth, T.; Rossi, A. L. D.; Cerri,
R.; Barbon Junior, S.; Vanschoren, J.; and de Carvalho, A.
C. P. L. F. 2024. Better trees: An empirical study on hy-
perparameter tuning of classification decision tree induction
algorithms. Data Mining and Knowledge Discovery.
Gunning, D., and Aha, D. 2019. DARPA’s Explainable
Artificial Intelligence (XAI) Program. AI Magazine 40(2):44–
58.
Huang, X., and Marques-Silva, J. 2023. The inadequacy of
shapley values for explainability.
Huang, X.; Cooper, M. C.; Morgado, A.; Planes, J.; and
Marques-Silva, J. 2023. Feature necessity & relevancy in
ML classifier explanations. In ETAPS, 167–186.
Ignatiev, A., and Silva, J. P. M. 2021. SAT-based rigorous
explanations for decision lists. In Li, C., and Manyà, F., eds.,
SAT, volume 12831 of LNCS, 251–269. Springer.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-based explanations for machine learning models.
In AAAI, 1511–1519. AAAI Press.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On validating, repairing and refining heuristic ML explana-
tions. CoRR abs/1907.02509.
Ignatiev, A. 2020. Towards trustable explainable AI. In
Bessiere, C., ed., IJCAI, 5154–5158. ijcai.org.
Izza, Y., and Marques-Silva, J. 2021. On explaining ran-
dom forests with SAT. In Zhou, Z., ed., IJCAI, 2584–2591.
ijcai.org.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On
explaining decision trees. CoRR abs/2010.11034.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2022. On
tackling explanation redundancy in decision trees. J. Artif.
Intell. Res. 75:261–321.
Kumar, I. E.; Venkatasubramanian, S.; Scheidegger, C.; and
Friedler, S. A. 2020. Problems with shapley-value-based
explanations as feature importance measures. In ICML, 5491–
5500.
Libkin, L. 2004. Elements of Finite Model Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer.
Lin, A. W.; Schrader, M.; Künnemann, M.; and Jaipuriyar,
P. 2024. Complexity of formal explainability for sequential
models.
Lipton, Z. C. 2016. The mythos of model interpretability.
CoRR abs/1606.03490.
Marques-Silva, J., and Ignatiev, A. 2022. Delivering trust-
worthy AI through formal XAI. In AAAI.

Marques-Silva, J., and Ignatiev, A. 2023. No silver bullet:
interpretable ML models must be explained. Frontiers in
Artificial Intelligence 6:1128212.
Marques-Silva, J. 2022. Logic-based explainability in ma-
chine learning. CoRR abs/2211.00541.
Marques-Silva, J. 2023. Logic-based explainability in ma-
chine learning.
Molnar, C. 2022. Interpretable Machine Learning. 2 edition.
Nadel, A.; Ryvchin, V.; and Strichman, O. 2014. Ultimately
Incremental SAT. In Sinz, C., and Egly, U., eds., Theory and
Applications of Satisfiability Testing – SAT 2014, 206–218.
Cham: Springer International Publishing.
Shahaf Bassan, Guy Amir, G. K. 2023. Local vs. global in-
terpretability: A computational perspective. openreview.net.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A symbolic
approach to explaining bayesian network classifiers. arXiv
preprint arXiv:1805.03364.
Sinz, C. 2005. Towards an optimal CNF encoding of Boolean
cardinality constraints. In van Beek, P., ed., Principles and
Practice of Constraint Programming - CP 2005, 827–831.
Berlin, Heidelberg: Springer Berlin Heidelberg.
Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. Fooling LIME and SHAP: adversarial attacks on post
hoc explanation methods. In Markham, A. N.; Powles, J.;
Walsh, T.; and Washington, A. L., eds., AIES, 180–186.
Su, J.; Vargas, D. V.; and Sakurai, K. 2019. One pixel attack
for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation 23(5):828–841.
Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Studies in Mathematics and Math-
ematical Logic 2, 115–125.
Wäldchen, S.; MacDonald, J.; Hauch, S.; and Kutyniok, G.
2021. The computational complexity of understanding binary
classifier decisions. J. Artif. Intell. Res. 70:351–387.
Wechsung, G. 1985. On the Boolean closure of NP. In
Fundamentals of Computation Theory, FCT ’85, volume 199
of Lecture Notes in Computer Science, 485–493.
Yu, J.; Ignatiev, A.; Stuckey, P. J.; and Bodic, P. L. 2020.
Computing optimal decision sets with SAT. In Simonis, H.,
ed., CP, volume 12333 of LNCS, 952–970. Springer.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

70

	Introduction
	Background
	First Order Interpretability Logic (FOIL)
	Expressing interpretability queries in FOIL

	Limitations of FOIL
	Limited expressiveness
	High complexity

	A Better Logic to Explain Decision Trees
	The definition of DT-FOIL
	On the expressiveness of DT-FOIL

	Making DT-FOIL Practical
	The logic Q-DT-FOIL
	The logic Opt-DT-FOIL

	Implementation and Challenges

