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Abstract

Voting on arguments in a debate is a natural approach for
reaching a consensual decision. Despite this, there are few
formal methods of abstract argumentation dealing with the
use of votes in the process of selecting accepted arguments.
We introduce the Opinion Based Argumentation (OBA)
framework, where individuals can vote (or abstain) for or
against arguments in a Dung argumentation framework. Our
research aims to determine the most appropriate collective de-
cisions within this framework. We propose a new semantics
for this framework, called Collective Satisfaction Semantics
(CSS), to evaluate the acceptability of arguments and study
their properties. Additionally, we compare these semantics
against alternative methods adapted from related literature to
provide insights into their relative effectiveness.

1 Introduction
Argumentation stands as a powerful tool for e-democracy,
facilitating the exchange of arguments and attacks among
citizens when grappling with pivotal issues. However, for a
true democratic outcome, the arguments (and attacks) alone
are not enough to make a collective decision. It is imperative
to gauge the level of agreement among the citizens and con-
sider their collective sentiment. Several online platforms1

exist that allow the collective creation of an argumentation
graph, with some offering participants the ability to vote for
or against the arguments. But these platforms serve as a
visualization of the debate’s current state, lacking a reason-
ing tool to analyze the arguments and evaluate the collective
outcome of the debate. The simplest way for formally rep-
resenting arguments and their interaction is Dung’s (1995)
abstract argumentation framework (AF) which can be seen
as a directed graph where the arguments are the nodes and
the attacks are the edges. In this work, this AF is assumed to
be complete, i.e., that all the related arguments and attacks to
the current debate are considered in the graph2. In particular,
we suppose that invalid arguments and attacks have been re-
moved from the argumentation graph. The completeness of
the AF implies that it thoroughly addresses all pertinent is-
sues. Classical semantics for reasoning with an AF are based

1DebateGraph, Kialo, idebate, DebateArt, Arguman, etc.
2In practice, it should be possible to construct the graph con-

jointly with the voting on the arguments, but we consider those as
two separate steps in this work.

on the notion of extensions, representing sets of arguments
that can be jointly accepted and encode every possible deci-
sion within the AF (see (Baroni, Caminada, and Giacomin
2011) for an overview).

In this work, we introduce Opinion Based Argumentation
Framework (OBAF) which extends Dung’s AFs by allowing
every individual to vote for or against each argument, but
she can also abstain. We consider these extensions as en-
coding the constraints on the outcome of the voting process
over the arguments. Then, the question is, given an OBAF,
what are the optimal outcome(s)? To address this problem,
we introduce a new family of semantics, called Collective
Satisfaction Semantics, that we compare axiomatically with
existing work dealing with a similar problem. These ex-
isting works include the work on judgment aggregation for
argumentation by Caminada and Pigozzi (2011), where the
AF is also complete and the agents can provide a labelling
(Caminada 2006) on the set of arguments in the AF. The
problem is to define a satisfactory collective labelling. Al-
though the input in that work is different from ours, we show
how to transform votes into labellings in order to compare
approaches. Another method is provided by Bernreiter et
al. (2024) exploring Approval-Based Social AFs (ABSAF).
The approach begins with a predefined AF, a fixed set of
agents, and approval ballots. Two operators are used to as-
sign a score to each extension based on these ballots, subse-
quently selecting the “best” extension(s) according to a pre-
defined semantics. This approach shares some similarities
with our approach, but we highlight in Section 2.3 several
important distinctions. Notably, ABSAF lacks neutral votes
in its model, leading to information loss and potentially im-
pacting the final outcome.

The different ways of representing votes on arguments in
existing approaches led us to define a unified and complete
framework called Opinion Based Argumentation (OBA) in
addition to a unified semantics, Collective Opinion Seman-
tics (COS). In Section 4, we show that the labelling ag-
gregation approach (Caminada and Pigozzi 2011) and the
approval ballots approach (Bernreiter et al. 2024) can be
defined as COS. In the same section, we also define two
new approaches: i) the first one is based on a combination
of vote aggregation inspired by (Leite and Martins 2011)
and the elimination of attacks used in preference-based
argumentation frameworks (Amgoud and Cayrol 2002);
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and ii) the second one is a family of methods, called
Collective Satisfaction Semantics (CSS), based on the ag-
gregation of the votes focusing on three different metrics
(satisfaction, dissatisfaction, and utility) with utilitarian and
egalitarian aggregation functions. In Section 5, we introduce
a list of ten properties for COS used to perform an axiomatic
analysis in Section 6, and show in particular that only CSS
satisfies all essential properties we put forward.

2 Background Notions
In this section, we establish key definitions and concepts
from existing literature to provide a foundation for our dis-
cussion and analysis.

2.1 Abstract Argumentation
An abstract argumentation framework (AF) (Dung 1995)
serves as a fundamental structure, containing a set of argu-
ments and a binary relation representing their attacks.
Definition 1 (AF). An AF is a pair F = ⟨Ar, att⟩ where
Ar is a finite set of arguments and att is a binary relation
on Ar, i.e. att ⊆ Ar ×Ar, called the attack relation. A set
of arguments S ⊆ Ar attacks an argument y ∈ Ar if there
exists x ∈ S such that (x, y) ∈ att.

Dung also defines several extension-based semantics to
select sets of arguments, called extensions, which can be col-
lectively accepted based on chosen semantics’ criteria for a
given argumentation framework.
Definition 2 (Dung’s Extensions). Let F = ⟨Ar, att⟩ be
an AF and E ⊆ Ar be a set of arguments. An argument
x is said acceptable w.r.t. E if for every argument y such
that (y, x) ∈ att, there exists some argument z ∈ E such
that (z, y) ∈ att. A set of arguments E is said admissible
if each x ∈ E is acceptable w.r.t. E and is conflict-free, i.e.,
the attack relation does not hold for any pair of arguments
belonging to E. Then we say that E is:
• a complete extension, if it is an admissible set and every

argument which is acceptable w.r.t. E, belongs to E;
• a preferred extension if it is any maximally (w.r.t. set in-

clusion) admissible set of F ;
• a stable extension if it is conflict-free and attacks every

argument not belonging to E.
We represent the set of extensions for a semantics σ ∈

{co,pr,stb} as Eσ(F).
An alternative representation of admissibility and Dung’s

semantics involves a labelling-based approach (Caminada
2006). In this approach, each argument is assigned one of
three labels: in (accepted), out (rejected), or undec (un-
decided). The notion of reinstatement labelling ensures that
the mapping takes the attack relation into account.
Definition 3 (Labellings). Let F = ⟨Ar, att⟩ be an AF.
L is a labelling of F iff L is a mapping from Ar to
{in,out,undec}. We denote in(L) as {x ∈ Ar |
L(x) = in}, out(L) as {x ∈ Ar | L(x) = out} and
undec(L) as {x ∈ Ar | L(x) = undec}. A labelling L
is a reinstatement labelling of F iff ∀x ∈ Ar

1. L(x) = in iff ∀y ∈ Ar, (y, x) ∈ att, L(y) = out;

2. L(x) = out iff ∃y ∈ Ar, (y, x) ∈ att s.t. L(y) = in;
3. L(x) = undec iff ∄y ∈ Ar, (y, x) ∈ att s.t. L(y) = in

and ∃z ∈ Ar, (z, x) ∈ att s.t. L(z) = undec.

A formal correspondence exists between extensions and
labelling semantics (see (Caminada 2006; Baroni, Cami-
nada, and Giacomin 2011) for an overview). For exam-
ple, a complete labelling is exactly a reinstatement labelling
whereas an admissible labelling is a labelling that satisfies
only conditions 1 and 2 of Definition 3.

Example 1. Let us consider the AF F represented in Fig-
ure 1 (left). The set of extensions of F with the extension-
based semantics σ ∈ {co,pr,stb} is:
Epr(F) = Estb(F) = {{a, b}, {b, c}, {c, d}, {a, e}, {c, e}}
Eco(F) = Epr(F) ∪ {∅, {b}, {c}, {e}}
L = {(a,out), (b,out), (c,in), (d,undec), (e,in)} is a
labelling of F . In the remainder of this paper, we will also
use the simplified notation L = ({c, e}, {a, b}, {d}) where
the first set represents arguments with the label in, the sec-
ond set contains arguments with the label out and the third
set represents arguments with the label undec.

Caminada and Pigozzi (2011) introduced down-
admissible and up-complete labellings. These concepts
retrieve the closest admissible (resp. complete) labelling
to a given labelling, as formally defined by Gabbay and
Rodrigues (2014).

Definition 4. (Down-admissible) Let L be a labelling of the
AF F = ⟨Ar, att⟩. The down-admissible labelling of L is
the biggest element L′ of the set of all admissible labellings
s.t. in(L′) ⊆ in(L) and out(L′) ⊆ out(L).
Definition 5. (Up-complete) Let L be an admissible la-
belling of the AF F = ⟨Ar, att⟩. The up-complete labelling
of L is the smallest element L′ of the set of all complete
labellings s.t. in(L′) ⊇ in(L) and out(L′) ⊇ out(L).

Following the previous definitions, the largest and small-
est labelling are defined in terms of the inclusion of argu-
ments in the “in” and “out” sets. According to (Caminada
and Pigozzi 2011), a labelling L1 is smaller or equal to a
labelling L2 iff in(L1) is included or equal to in(L2) and
out(L1) is included or equal to out(L2). This comparison
allows them to establish a partial order on a set of labellings
and select the biggest or smallest from this set. The unique-
ness and well-definition of these elements are established
(Caminada and Pigozzi 2011, Theorems 5 and 11).

2.2 Labellings Aggregation Operators
Caminada and Pigozzi (2011) focus on the challenge of
combining individual views into a coherent group decision.
The general idea is to aggregate a set of labellings (each la-
belling can be seen as an agent’s point of view regarding
the acceptability of arguments in an AF) to obtain a collec-
tive labelling. The result of this aggregation can be obtained
using a labelling aggregation operator which is a function
LAF : 2Labellings −{∅} → Labellings where Labellings
is the set of all labellings of an AF F . They define three la-
belling aggregation operators: skeptical, credulous, and su-
per credulous.
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Skeptical Aggregation Operator The skeptical aggrega-
tion operator requires the unanimous agreement among all
labellings for an argument to be initially accepted or re-
jected. All other arguments are left undec. A second phase
is carried out to determine the down-admissible labelling of
the result, as it may not always be admissible.
Definition 6 (Skeptical Operator). The skeptical initial ag-
gregation operator is a function sioF : 2Labellings−{∅} →
Labellings such that sioF ({L1, ...,Lm}) =
{(a,in) | ∀i ∈ [1, ...,m] : Li(a) = in}∪
{(a,out) | ∀i ∈ [1, ...,m] : Li(a) = out}∪
{(a,undec) | ∃i ∈ [1, ...,m] : Li(a) ̸= in ∧ ∃i ∈
[1, ...,m] : Li(a) ̸= out}.
The skeptical aggregation operator soF ({L1, ...,Lm}) is
the down-admissible labelling of sioF ({L1, ...,Lm}).
Example 2. Let us consider the argumentation framework
F represented in Figure 1 and the set of labellings Labs =
{L1,L2,L3} such that L1 = ({c, e}, {a, b}, {d}), L2 =
({e}, {a}, {b, c, d}}), and L3 = ({b, c}, {a, e}, {d}).
We have sioF (Labs) = (∅, {a}, {b, c, d, e}). The result is
not an admissible labelling of F , so we need to determine
its down-admissible labelling, which gives soF (Labs) =
(∅, ∅, {a, b, c, d, e}) where all arguments are undec.

Credulous Aggregation Operator The credulous aggre-
gation operator serves as a more lenient counterpart of the
skeptical aggregation operator. The idea is to initially accept
(resp. reject) an argument if it is accepted (resp. rejected) in
at least one labelling and there is no labelling going against
this decision. All other arguments are left undec. Similarly
to the skeptical operator, in the second phase, we consider
the down-admissible labelling of the initial result.
Definition 7 (Credulous Operator). The credulous initial
aggregation operator is a function cioF : 2Labelling −
{∅} → Labelling such that cioF ({L1, ...,Lm}) =
{(a,in)|∃i ∈ [1, ...,m] : Li(a) = in ∧ ∄i ∈ [1, ...,m] :
Li(a) = out}∪
{(a,out)|∃i ∈ [1, ...,m] : Li(a) = out ∧ ∄i ∈ [1, ...,m] :
Li(a) = in}∪
{(a,undec)|∀i ∈ [1, ...,m] : Li(a) = undec ∨ (∃i ∈
[1, ...,m] : Li(a) = in ∧ ∃i ∈ [1, ...,m] : Li(a) = out)}.
The credulous aggregation operator coF ({L1, . . . ,Lm}) is
the down-admissible labelling of cioF ({L1, ...,Lm}).
Example 2 (cont.). Let us consider the set of labellings
Labs = {L1,L2,L3} such that L1 = ({c, e}, {a, b}, {d}),
L2 = ({e}, {a}, {b, c, d}}), and L3 = ({b, c}, {a, e}, {d}).
We have cioF (Labs) = ({c}, {a}, {b, d, e}). The result
of cio is an admissible labelling of F , so coF (Labs) =
cioF (Labs).
Super Credulous Aggregation Operator The super
credulous aggregation operator expands the credulous ag-
gregation operator using the up-complete labelling. Thus,
arguments considered as undec by the credulous operator
co can be accepted (resp. rejected) if all their direct attackers
are rejected (resp. at least one of these attackers is accepted).
Definition 8 (Super Creduous Operator). The super cred-
ulous aggregation operator scoF ({L1, ...,Lm}) is the up-
complete labellings of coF ({L1, ...,Lm}).

Example 2 (cont.). Let us consider the set of labellings
Labs = {L1,L2,L3} such that L1 = ({c, e}, {b, a}, {d}),
L2 = ({e}, {a}, {c, b, d}}), and L3 = ({b, c}, {a, e}, {d}).
We have coF (Labs) = ({c}, {a}, {b, d, e}) which is a com-
plete labelling of F , so scoF (Labs) = coF (Labs).

2.3 Approval-Based Social AFs (ABSAF)
Bernreiter et al. (2024) focus on the challenge of com-
bining approval ballots and an AF. To this end, they in-
troduce Approval-Based Social Argumentation Frameworks
(ABSAFs) which depict discussions where agents endorse
arguments they find persuasive.

Definition 9. (ABSAF) An ABSAF Ab = (F , N, Ā) consists
of an AF F = ⟨Ar, att⟩, a finite set of voters N and a vector
Ā = (A(i))i∈N of approval ballots where ∀i ∈ N , A(i) ⊆
Ar with A(i) ̸= ∅ is the set of arguments approved by i.

From Definition 9, this framework defines votes as non-
empty sets of arguments. The outcome Ω of an ABSAF
Ab = (F , N, Ā) is a set of extensions w.r.t. an extension-
based semantics σ, i.e., Ω ⊆ Eσ(F). This implies that vot-
ers can only express their approval, leaving other arguments
ambiguous as voters can either disagree or remain neutral
towards them. This design likely stems from the definition
of the operator that will follow, which solely considers the
positive votes.

Representation operator The primary focus of this oper-
ator is identifying an outcome that represents a broad spec-
trum of voters. This operator defines the degree to which an
extension represents a voter.

Definition 10. (Representation operator) Let Ab =
(F , N, Ā) be an ABSAF and σ be an extension-based se-
mantics. The score of an extension E ∈ Eσ(F) w.r.t. a voter
i ∈ N is repi(E) = |E∩A(i)|

|A(i)| .
The score of an outcome Ω ⊆ Eσ(F) takes the maximum
score among its extensions: repi(Ω) = maxE∈Ω repi(E).

Core representation operator As the set of arguments
approved by a voter i (i.e., A(i)) does not necessarily cor-
respond to an existing extension, Bernreiter et al. propose a
variant of the representation operator to ensure that at least
one extension obtains the maximum score of 1 even if it does
not correspond perfectly to any A(i).

Definition 11. (Core representation operator) Let Ab =
(F , N, Ā) be an ABSAF and σ be an extension-based se-
mantics. For i ∈ N let µ(i) = maxE∈Eσ(F)|E ∩ A(i)|.
If µ(i) = 0 the core-score of an extension E ∈ Eσ(F) is
repci (E) = 1, otherwise it is repci (E) =

|E∩A(i)|
µ(i) .

To denote these two operators interchangeably we use
op ∈ {rep, repc}. If op = rep then opi(E) = repi(E).

Approval ballot aggregation In order to optimally rep-
resent the voters in an ABSAF with a fixed number of ex-
tensions, Bernreiter et al. use a family of rules based on
Ordered Weighted Averaging (OWA) vectors.

Definition 12. (OWA) Let Ab = (F , N, Ā) be an AB-
SAF with |N | = n, σ be an extension-based semantics
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and k ∈ {1, . . . , n}. Given an outcome Ω ⊆ Eσ(F),
let s⃗(Ω) be the vector sorted in non-decreasing order
s⃗(Ω) = (op1(Ω), . . . , opn(Ω)) with op ∈ {rep, repc}.
For a non-increasing vector of non-negative weights w⃗ =
(w1, . . . , wn), where w1 > 0, the corresponding OWA rule
is defined as follows:

OWAw⃗,op
σ (Ab) ∈ argmax

Ω⊆Eσ(F):|Ω|≤k

w⃗ · s⃗(Ω)

Tthe egalitarian, utilitarian, and harmonic rules are de-
noted respectively by e, u, and h. By adjusting the vec-
tor w⃗ in the previous definition, the egalitarian rule is
given by w⃗e = (1, 0, . . . , 0), the utilitarian rule is given
by w⃗u = (1, . . . , 1), and the harmonic rule is given by
w⃗h = (1, 1/2, . . . , 1/n).

Another method consists in selecting the set of extensions
Ω which maximize the number of voters whose set of argu-
ments approved by these agents obtains a score of 1.
Definition 13. (MaxCov) Let Ab = (F , N, Ā) be an AB-
SAF with |N | = n, σ be an extension-based semantics
and k ∈ {1, . . . , n}. Given an outcome Ω ⊆ σ(F) and
op ∈ {rep, repc}. The max cover rule is defined as follows:

MaxCovopσ (Ab) ∈ argmax
Ω⊆Eσ(F):|Ω|≤k

|{i ∈ N : opi(Ω) = 1}|

The MaxCov rule is denoted as mc.
Example 3. Consider an ABSAF Ab = (F , N, Ā) where
F is the AF represented in Figure 1, with voters N =
{1, 2, 3} and Ā = ({c, e}, {e}, {b, c}). Let us recall that
Epr(F) = {{a, b}, {b, c}, {c, d}, {a, e}, {c, e}}. For ex-
ample, for {b, c}, we obtain s⃗({b, c}) = (0, 1

2 , 1) because
rep1({b, c}) = 1

2 , rep2({b, c}) = 0, and rep3({b, c}) = 1.
Thus, using the utilitarian rule, we obtain w⃗u · s⃗({b, c}) =
(1, 1, 1) · (0, 1

2 , 1) =
3
2 . Applying the same reasoning to the

other extensions, we obtain OWAw⃗u,rep
pr (Ab) = {{c, e}}.

Before describing our contributions in the following sec-
tions, we would like to clarify several points in relation to
the approaches defined in (Bernreiter et al. 2024). First,
Definitions 12 and 13 specify that k denotes the number of
required extensions in the final set. In Definition 12, for
k > 1, any set of extensions containing the highest-scoring
extension(s) will obtain that score (because rep(Ω) uses the
function max). Similarly, Definition 13 specifies that any set
of arguments containing the 1-scoring extension(s) will ob-
tain the highest score. Consequently, we adopt k = 1 for the
remainder of this paper to evaluate the score of each exten-
sion individually. Extensions with the highest score will all
be included in the outcome if there is a tie. A second impor-
tant remark is that, in (Bernreiter et al. 2024), the OWA and
MaxCov rules are only defined for the preferred semantics.
However, we generalize their definitions to other extension-
based semantics, enabling a more comprehensive study of
the properties associated with these methods. Finally, as de-
tailed in Section 4.2, the status of arguments outside the ap-
proval ballot is unclear (rejection or abstention). Adapting
approval ballots to our voting framework required a modifi-
cation to address this issue.

3 Opinion Based Argumentation
After establishing the foundational concepts in the previ-
ous section, we now shift our focus to our first contribution,
Opinion Based Argumentation (OBA). In introducing OBA,
our focus lies in representing the collective opinions of vot-
ers regarding a set of arguments. OBA frameworks (OBAF)
serve as a structure containing an AF alongside a tuple of
votes, enabling the representation of diverse perspectives
within a given context. This framework facilitates the as-
sessment and evaluation of collective opinions expressed by
voters through their stances on arguments. In OBAFs, voters
express their preferences for each argument by assigning a
value: 1 indicates acceptance, 0 indicates abstention, and -1
indicates rejection.
Definition 14 (Votes). Let F = ⟨Ar, att⟩ be an AF. Votes
on Ar, denoted as VAr = ⟨v1, . . . , vn⟩, represents the sys-
tem’s votes. Each vote vi ∈ VAr is a function vi : Ar →
{−1, 0, 1} which assigns value for each argument in F , in-
dicating the voters’ stance. Given x ∈ Ar, we note v+(x) =
{vi ∈ VAr | vi(x) = 1}, vo(x) = {vi ∈ VAr | vi(x) = 0}
and v−(x) = {vi ∈ VAr | vi(x) = −1} the set of votes
assigning 1, 0 or -1 respectively to x.

In practice, various kinds of votes could be used for vot-
ing, such as a larger scale than the 3-level scale (-1,0,1). We
deliberately adhere to the (-1, 0, 1) scale (Jacoby and Matell
1971), since in our framework we assume that the votes of
the participants represent their beliefs (So, by voting, they
answer the question ”do you believe that this argument is
true or not”). Beliefs inherently entail binary states of accep-
tance or rejection, parallel to logic, where a formula is either
entailed or not (binary evolution). This results in three possi-
ble states: the formula is implied, its negation is implied, or
neither is implied. Thus, the three-level scale is particularly
suitable for accurately capturing belief states. Unlike prefer-
ence frameworks, where degrees of preference can exist, be-
lief systems are typically dichotomous. We believe adding
the neutral vote (abstaining from voting with 0) is crucial.
Allowing voters to abstain from expressing a belief prevents
undue influence on the voting outcome, thereby fostering a
more democratic decision-making process. Nonetheless, it
is worth noting that our OBA framework can be seamlessly
adapted into a preference framework by extending the vot-
ing scale to include additional values representing varying
degrees of preference. We leave this idea for future work.

Let us now formally introduce OBAFs.
Definition 15 (OBAF). An Opinion Based Argumentation
Framework (OBAF) is a pair O = ⟨F ,VAr⟩ where F =
⟨Ar, att⟩ is an AF and VAr are the votes on Ar.
Example 4. Figure 1 represents an OBAF O = ⟨F ,VAr⟩
where F is the AF (left) and VAr = {v1, v2, . . . , v6} (right).

We will only require one rationality constraint for the
votes, that is that a voter can not vote (i.e., assign the positive
value 1) to two arguments involved in an attack. As we sup-
pose that the AF is known by all voters, and that they adhere
to the basic property of conflict-freeness of argumentation.
Definition 16 (Votes consistency). Let O =
⟨⟨Ar, att⟩,VAr⟩ be an OBAF. VAr is consistent iff
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a

c

d

b e

VAr a b c d e

v1 1 −1 0 −1 1

v2 1 0 0 −1 1

v3 1 −1 0 −1 1

v4 −1 0 1 0 1

v5 1 0 0 −1 −1

v6 1 1 0 −1 −1

Figure 1: An Opinion Based Argumentation framework O

∄v ∈ VAr s.t. v(x) = v(y) = 1 and (x, y) ∈ att.

4 Collective Opinion Semantics
In order to evaluate the arguments of an OBAF, we intro-
duce a new family of semantics called Collective Opinion
Semantics (COS) which can be seen as a general representa-
tion of a semantics that allows opinion aggregation and will
be used in our comparative study. In this section, we start
by defining the COS, followed, in Sections 4.1 and 4.2, by
the adaptation of existing works to align with COS. Then we
propose two new semantics in Sections 4.3 and 4.4.
Definition 17 (COS). Let O = ⟨⟨Ar, att⟩,VAr⟩ be an
OBAF. A Collective Opinion Semantics is a function COS :

O → 22
Ar

.

4.1 Caminada and Pigozzi’s Approach
Although the Caminada and Pigozzi’s approach defined in
Section 2.2 is not explicitly a COS, it is possible to adapt
this approach to match the definition of COS. The idea is to
transform each vote in VAr into a labelling, then apply one
of the operators defined in Section 2.2 to obtain the collec-
tive labelling, which will then be transformed back into an
extension.
Definition 18 (Vote2Lab). Let VAr be the votes on Ar and
v ∈ VAr. The function V ote2Lab(v) : {−1, 0, 1}Ar →
Labellings transforms a vote v into its corresponding la-
bel as follows: V ote2Lab(v) = {(x,in) | v(x) = 1} ∪
{(x,out) | v(x) = −1} ∪ {(x,undec) | v(x) = 0}.
Example 5. In Figure 1, V ote2Lab(v1) = ({a, e}, {b, d},
{c}) and V ote2Lab(v6) = ({a, b}, {d, e}, {c}).

To switch from a labelling L to an extension in a given
AF F , we use the function Lab2ExtF (L) = {a ∈ Ar |
(a,in) ∈ L} (Caminada 2006).
Definition 19 (COSLA ). Let O = ⟨F ,VAr⟩ be an OBAF
with VAr = ⟨v1, . . . , vn⟩. The COS based on labellings
aggregation operator LA ∈ {so, co, sco} is:

COSLA(O) ={Lab2ExtF (ℓ) | ℓ ∈ LAF (

{V ote2Lab(v1), . . . , V ote2Lab(vn)})}

Example 5 (cont.). We obtain COSso(O) = {∅},
COSco(O) = {{c}}, COSsco(O) = {{c}}.

4.2 Bernreiter et al.’s Approach
In an ABSAF, voters can only indicate their approval, leav-
ing the status of other arguments uncertain, as voters may

either disagree with them or remain neutral. To address this
ambiguity and enable a fair comparison with our method,
we introduce a definition to convert our votes into approval
ballots. While there are several ways to achieve this, the sim-
plest method involves considering only the positive votes in
the approval ballot.
Definition 20 (Vote2Bal). Let VAr be the votes on Ar and
v ∈ VAr. The function V ote2Bal(v) : {−1, 0, 1}Ar → 2Ar

transforms a vote v into its corresponding approval ballot as
follows: V ote2Bal(v) = {x | v(x) = 1}.

This transformation facilitates the conversion of an OBAF
into an ABSAF, allowing for the adaptation of Bernreiter et
al. (2024)’s operator within our COS framework.
Definition 21 (COSAB,op

σ ). Let O = ⟨F ,VAr⟩ be an
OBAF with VAr = ⟨v1, . . . , vn⟩ and σ be an extension-
based semantics. An ABSAF is defined as Ab =
(F , {1, . . . , n}, ⟨V ote2Bal(v)|v ∈ VAr⟩). The COS based
on the representation operators op ∈ {rep, repc} is:

COSAB,op
σ (O) =

{
OWAw⃗,op

σ (Ab) for AB ∈ {u, e, h}
MaxCovopσ (Ab) for AB ∈ {mc}

Example 6. We obtain COSu,oppr (O) = {{c, e}} for op ∈
{rep, repc}.

4.3 Semantics based on Attack Removal
In this subsection, we define a new approach based on a
combination of vote aggregation inspired by (Leite and Mar-
tins 2011) and the elimination of attacks used in preference-
based argumentation frameworks (Amgoud and Cayrol
2002). The idea is to give strong priority to the ”most ac-
cepted” arguments with respect to the votes. To this end,
the method associates with each argument a value computed
from its votes and then removes attacks on the AF where
the attacking argument has a higher value than the attacked
argument. This could be interpreted as a drastic change to
the AF based on existing votes. However, this can present a
practical benefit, especially in the context of online debates,
where our attack removal method becomes particularly valu-
able. For instance, if there are arguments that are widely
perceived as incorrect or disruptive (”troll arguments”), and
most users have voted against them, removing the attacks
associated with these arguments mitigates their impact on
the final result without making an even more drastic change
to the AF (i.e., removing the argument itself). This solution
can lead to a substantial improvement in the quality and co-
herence of the debate.
The evaluation of this score for an argument is carried out by
a general opinion aggregation function based on the number
of votes at 1, 0, and -1 for this argument.
Definition 22 (Opinion aggregation function). Let O =
⟨⟨Ar, att⟩,VAr⟩ be an OBAF. An opinion aggregation func-
tion τ : N×N×N → R produces a score of an argument
based on its votes. With abuse of notation, given x ∈ Ar,
we note τ(x) = τ(|v+(x)|, |vo(x)|, |v−(x)|).

There are many possible instances of opinion aggregation
functions, we use the function proposed by Leite and Mar-
tins (2011) because of its simplicity. This function can be
easily adjusted to adapt to other scenarios.
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Definition 23 (τϵ). Let O = ⟨⟨Ar, att⟩,VAr⟩ be an OBAF
and x ∈ Ar. τϵ is an opinion aggregation function such that
ϵ ≥ 0

τϵ(x) =

{
0 |v+(x)| = |v−(x)| = 0

|v+(x)|
|v+(x)|+|v−(x)|+ϵ otherwise

Our approach to eliminating attacks is based on
preference-based argumentation frameworks proposed by
Amgoud and Cayrol (2002). They redefine the attack re-
lation as follows: an argument x defeats an argument y only
if there exists an attack (x, y) and y is not preferred to x
according to the preference relation. In our case, instead of
a preference relation, we employ the ranking of arguments
based on the scores in τ.
Definition 24 (Oτ ). Let O = ⟨⟨Ar, att⟩,VAr⟩ be an OBAF
and τ be an opinion aggregation function.
An Oτ is a triplet ⟨⟨Ar, att∗⟩,VAr,⪰τ

O⟩ where:
• att∗ = {(x, y) | (x, y) ∈ att and x ⪰τ

O y};
• ⪰τ

O is the total preorder on Ar such that x ⪰τ
O y iff

τ(x) ≥ τ(y).
We note Fτ = ⟨Ar, att∗⟩ as the AF associated to Oτ .

It is now possible to define a COS that builds Oτ from an
OBAF and returns the sets of arguments which are the result
of an extension-based semantics applied to Fτ .
Definition 25 (COSAR). Let O = ⟨F ,VAr⟩ be an OBAF.
Let σ be an extension-based semantics and τ be an opinion
aggregation function. The COS based on attack removal is
COSARσ,τ(O) = Eσ(Fτ).
Example 7. Let us first apply the opinion aggregation
function τϵ on each argument with ϵ = 0.1. We obtain
τϵ(a) = 0.82, τϵ(b) = 0.32, τϵ(c) = 0.91, τϵ(d) =
0 and τϵ(e) = 0.66. This gives us the following to-
tal preorder: c ⪰τϵ

O a ⪰τϵ
O e ⪰τϵ

O b ⪰τϵ
O d. It is

now possible to define Oτ = ⟨⟨Ar, att∗⟩,VAr,⪰τϵ
O ⟩ with

att∗ = {(c, a), (b, d), (e, b), (e, d)}. Therefore, we obtain
COSARpr,τϵ(O) = {{c, e}}.

4.4 Collective Satisfaction Semantics (CSS)
In this section, we introduce our second contribution, which
defines measures of satisfaction, dissatisfaction, and utility
to aggregate voters’ opinions. The idea is to use these mea-
sures to select the extension(s) within the OBAF’s associated
AF that closely align with the expressed voter opinions.

In order to facilitate the comparison between votes and
extensions, an extension can be seen as a vector of val-
ues where the arguments belonging to this extension are as-
signed 1 and the remaining arguments -1.
Definition 26 (V ec). Let F = ⟨Ar, att⟩ be an AF. Let σ
be an extension-based semantics. For a given extension E ∈
Eσ(F), the function V ecE : Ar → {−1, 1} is defined s.t.
∀x ∈ Ar:

V ecE(x) =

{
1 if x ∈ E
−1 if x /∈ E

With abuse of notation, V ec(E) represents the (vector of)
votes corresponding to the extension E.

Let us now formally define the three measures used to
compare a vote and an extension. The satisfaction measure
counts the number of arguments for which the function V ec
returns the same value as the vote (i.e. arguments being in
the extension and getting 1 in the vote as well as arguments
not being in the extension and getting -1 in the vote). The
dissatisfaction measure, on the other hand, counts the num-
ber of arguments that did not have the same values. Finally,
the utility measure is the sum of the previous two measures.
Definition 27 ((Dis)satisfaction,utility). Let O = ⟨F ,VAr⟩
be an OBAF with F = ⟨Ar, att⟩. Let σ be an extension-
based semantics. For a given extension E ∈ Eσ(F), the
satisfaction Sv , dissatisfaction Dv and utility Uv of E w.r.t.
a vote v ∈ VAr are defined as follows:
• Sv(E) = |{x ∈ Ar | v(x) = V ecE(x)}|
• Dv(E) = −|{x ∈ Ar | v(x) = −V ecE(x)}|
• Uv(E) = Sv(E) +Dv(E)

While dissatisfaction and satisfaction may appear com-
plementary, in fact, they measure distinct aspects of a vote’s
correspondence to an extension. For example, complemen-
tary operator to dissatisfaction would account for both ab-
stentions (v(x) = 0) and mismatches between the vector
and the extension (v(x) = −V ecE(x))

We now aim to determine the distance between an exten-
sion and the set of votes VAr. This distance measure in-
dicates how closely the extension aligns with the profile of
votes. Given that our aggregations are sum, min, and lex-
imin3, maximizing this distance is desirable.
Definition 28 (Distance). Let O = ⟨F ,VAr⟩ be an OBAF
with F = ⟨Ar, att⟩. Let σ be an extension-based semantics.
For a given extension E ∈ Eσ(F), the distance of E w.r.t.
VAr is defined as follows:

d⊗VAr
(E) = ⊗v∈VAr

Mv(E)

with ⊗ ∈ {Σ,min, leximin} and M ∈ {D,S,U}.
Thus, the extensions that maximize the distance from the

set of votes will be considered as the result of the CSS.
Definition 29 (CSS). Let O = ⟨F ,VAr⟩ be an OBAF with
F = ⟨Ar, att⟩. Let σ be an extension-based semantics, ⊗ ∈
{Σ,min, leximin} and M ∈ {D,S,U}. The collective
satisfaction semantics is

CSSM,⊗
σ (O) = argmax

E∈Eσ(F)

(d⊗VAr
(E))

Example 8. Here are the calculations to obtain
CSSU,Σ

pr (O). As a reminder, we have Epr(F) =
{{a, b}, {b, c}, {c, d}, {a, e}, {c, e}}. First, we need
to convert each of these extensions into a vector of
votes. For instance, V ec({a, b}) = ⟨1, 1,−1,−1,−1⟩.
Second, we compute the utility measure between each
couple (extension, vote). Table 1 shows an example
with {a, b}. Following the same reasoning, for Uv ,

3When applied to a vector of n real numbers, the leximin func-
tion gives the list of those numbers sorted in a increasing way. Such
lists are compared with respect to the lexicographic ordering in-
duced by the standard ordering on real numbers.
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v1 v2 v3 v4 v5 v6 dΣVAr
({a, b})

Sv({a, b}) 2 2 2 0 3 4 13
Dv({a, b}) -2 -1 -2 -3 0 0 -8
Uv({a, b}) 0 1 0 -3 3 4 5

Table 1: Values for the satisfaction, dissatisfaction and utility mea-
sure between the preferred extension {a, b} and all votes from VAr

in the OBAF represented in Figure 1.

we have dΣVAr
({b, c}) = −1, dΣVAr

({c, d}) = −9,
dΣVAr

({a, e}) = 11, and dΣVAr
({c, e}) = 5. Finally, by

applying the formula given in Definition 29, we obtain
CSSU,Σ

pr (O) = {{a, e}}. Using the other two aggregation
functions, we obtain CSSU,min

pr (O) = {{a, e}, {c, e}} and
CSSU,leximin

pr (O) = {{a, e}}.

4.5 Observations
Here, we discuss the results obtained when applying the se-
mantics we defined in the previous section on different ex-
amples. Let us start by examining the related work with
Figure 1. First, we observe that COSso yields an empty set as
a result. That is because there is no unanimity in the votes
(negative or positive) for any of the arguments. This con-
stitutes a significant limitation of the method, particularly
in contexts such as public debates where achieving una-
nimity in votes is improbable. Effective semantics should
be capable of discerning feasible solutions in such scenar-
ios. For COSco and COSsco , the result is also the empty set.
That is because with cio we have in = {c} and out =
{d}, when applying down-admissibility on this labelling we
get the empty set for in and out, because even though
{c} is an admissible extension, the labelling is not in the
set of admissible labellings: out(({c}, {d}, {a, b, e})) ⊈
out(({c}, {a}, {b, d, e})). Hence, the up-complete la-
belling of COSco is the empty set as well. This is a notable
downfall of the method as even with OBAFs where a deci-
sion seems natural, with an overly cautious approach, it is
often unable to make a decision. Under the approval bal-
lot semantic, we obtain COSAB,op

pr (O) = {{a, e}}, where
AB ∈ {u, e, h,mc} and op ∈ {rep, repc}, representing the
desirable extension. However, using other semantics, such
as complete semantics where extensions can be subsets of
each other, this method does not always yield the best so-
lution. This is discussed further in Section 6. When con-
sidering COSAR, c is the argument with the highest score, re-
sulting in the removal of the attack (a, c). Similarly, as e is
considered to be better than b and d w.r.t. ⪰τϵ

O , it becomes
unattacked. Then COSARpr,τϵ(O) = {{c, e}}.

Finally, let us consider our CSS. The desired exten-
sion {a, e} achieves the maximum score for satisfaction S,
dissatisfaction D, and utility U for ⊗ ∈ {Σ, leximin},
CSSM,⊗

pr (O) = {{a, e}}. However, there are differences
in this example when ⊗ = min. Indeed, only S yields
a truly egalitarian solution, resulting in CSSS,min

pr (O) =

CSS
M,{Σ,leximin}
pr (O) ∪ {{b, c}, {e, c}}, because three of

the six voters (i.e., v4, v5 and v6) would not be entirely satis-

be

cd

a

Votes a b c d e

v1 1 −1 1 −1 −1

v2 1 −1 −1 −1 1

v3 1 −1 −1 1 −1

Figure 2: An OBAF showing the limitations of COSLA .

fied with {a, e}. In contrast, D diverges from this outcome,
as the dissatisfaction with {a, e} is lower than with all other
extensions. Conversely, U aligns with D, as overall dissatis-
faction in the system outweighs satisfaction. We obtain We
obtain CSS

{D,U},min
pr (O) = {{a, e}}. This exemplifies how

our operators and aggregation methods allow for nuanced
final results.

Note that all voters except one voted for argument a and
against argument d, with argument e also receiving four
votes. Therefore, a, e appears to be the most desirable exten-
sion in this AF with respect to the votes. Consequently, both
our method and ABSAF are the only approaches that arrive
at what can be considered the most reasonable outcome.

As previously discussed, the COS based on labelling
judgment aggregation approaches exhibit a tendency to fa-
vor arguments with no negative votes, even if such argu-
ments hold a weaker position in the public’s opinion due to
abstentions. However, this is not the only limitation of these
methods. Consider the OBAF illustrated in Figure 2, for any
extension-based semantics, COSAR , COSAB and CSSM return
{{a, c, d, e}}. This is not the case for COSLA which fails
to find a non-empty solution, even with unanimity on argu-
ment a (because {a} /∈ Eadm(F)). This is a limitation of
the labelling judgment aggregation operators in cases where
unanimity on a particular argument does not guarantee its
inclusion in an admissible set of the argumentation frame-
work.

Finally, let us consider the OBAF O = ⟨F ,VAr⟩
with F = ⟨{a, b, c}, {(a, b), (a, c), (c, a)}⟩ and VAr =
⟨(1,−1,−1)2, (−1, 1,−1)3, (−1,−1, 1)⟩. Thus, we obtain
COSARpr,τϵ(O) = {{a, b}}. However, these drastic changes in
the initial AF can no longer guarantee the conflict-freeness
of the result w.r.t. the initial AF. In some real-world sce-
narios, such a result could be deemed unacceptable. We
contend that either ∅ or {a} could be “acceptable” results
in this case. With our method, we obtain CSSM,⊗

σ (O) =
{{a}} with σ = pr, ⊗ ∈ {Σ,min, leximin}, and M ∈
{D,S,U}. This flexibility in selecting the baseline seman-
tics offers a significant advantage, enabling the adaptation of
the method to the individual needs of the group.

5 Properties for Collective Opinion
Semantics

This section focuses on identifying properties specific to
COS. We adapt established properties from related fields
to the context of opinion aggregation. We showcase how
our approach aligns with identified properties while dis-
cussing why certain properties remain unverified—an aspect
we elaborate on in the following section to demonstrate the
advantages of this approach. We use these properties to con-
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duct an axiomatic study of our approach against the other
identified methods. Furthermore, we classify these proper-
ties into two categories: essential and additional. This cate-
gorization helps prioritize the key aspects that every method
should adhere to, whereas the supplementary factors are
considered to enhance the overall understanding and robust-
ness of COS in specific scenarios.

5.1 Essential Properties
Vote Anonymity, inspired by (Dunne, Marquis, and
Wooldrige 2012), states that the COS should disregard the
identities of the voters.
Vote Anonymity (VA). Let Π(VAr) denote all permuta-
tions of the votes in VAr in O = ⟨F ,VAr⟩. A COS satisfies
Vote Anonymity iff ∀V ′

Ar ∈ Π(VAr), COS(O) = COS(O′)
with O′ = ⟨F ,V ′

Ar⟩.
Neutrality, inspired by (Amgoud and Beuselinck 2021),

states that a COS should not depend on the names of the
arguments and the votes.
Definition 30 (Isomorphism). Let O = ⟨⟨Ar, att⟩,VAr⟩
and O′ = ⟨⟨Ar′, att′⟩,V ′

Ar′⟩ be two OBAFs. An isomor-
phism from O to O′ is a bijective function f from Ar to Ar′

s.t. ∀ a, b ∈ Ar, (a, b) ∈ att iff (f(a), f(b)) ∈ att′ and
a bijective function from VAr to V ′

Ar′ s.t. ∀a ∈ Ar, and
∀vi ∈ V, vi(a) = v′i(f(a)).
Neutrality (N). A COS satisfies Neutrality iff for any two
OBAFs O = ⟨F ,V⟩, O′ = ⟨F ′,V ′⟩ and an isomorphism f
from O to O′, it holds that COS(O) = COS(f(O)).

Monotony, inspired by (Amgoud and Beuselinck 2021),
states that adding a vote to VAr which corresponds to one
of the sets of arguments belonging to COS(O), should not
change the fact that this set always belongs to the result.
Monotony (M). A COS satisfies Monotony iff for any OBAF
O = ⟨⟨Ar, att⟩,V⟩, ∀a, b ∈ Ar, and E ∈ COS(O) it holds
that E ⊆ COS(⟨⟨Ar, att⟩,V ∪ v⟩) with v = V ec(E).

Non-triviality, inspired by (Dunne, Marquis, and
Wooldrige 2012), states that the result of a COS should con-
tain at least one non-empty set of arguments if there exists at
least one extension in F w.r.t. an extension-based semantics.
Non-triviality (NT). Let σ be an extension-based seman-
tics. A COS satisfies Non-triviality iff for any O = ⟨F ,VAr⟩
s.t. |Eσ(F)| ≥ 1 and ∅ /∈ Eσ(F), it holds that |COS(O)| ≥ 1
and COS(O) ̸= {∅}.

We denote FNT,σ as the set of all non trivial OBAFs for
the extension-based semantics σ.

Extension Unanimity, inspired by (Dunne, Marquis, and
Wooldrige 2012), states that if all the votes refer to the same
extension, then this extension should be the result of the
COS.
Extension Unanimity (EU). Let σ be an extension-based
semantics. A COS satisfies Extension Unanimity iff for any
O = ⟨F ,VAr⟩ s.t. E ∈ Eσ(F) and ∀v ∈ VAr, v = V ec(E),
it holds that COS(O) = {E}.

Conflict-freeness ensures a consistent result with respect
to the underlying argumentation framework. This property
is adapted from (Kaci et al. 2021) to accept votes.

Conflict-freeness (CF). A COS satisfies Conflict-freeness
iff for any O = ⟨F ,VAr⟩, ∀E ∈ COS(O), E is conflict-free
w.r.t. F .

5.2 Additional Properties
Argument Unanimity, inspired by (Dunne, Marquis, and
Wooldrige 2012), states that if all the votes are for the ac-
ceptance of an argument, then it should belong to all the sets
of arguments in the result.

Argument Unanimity (AU). A COS satisfies Argument
Unanimity iff for any O = ⟨F ,VAr⟩ s.t. ∃x ∈ Ar, v(x) = 1
for all v ∈ VAr, it holds that ∀E ∈ COS(O), x ∈ E.

Extension Majority, inspired by (Dunne, Marquis, and
Wooldrige 2012), states that if a strict majority of votes
refers to the same extension, then this extension should be
in the result of the COS.

Extension Majority (EM). Let σ be an extension-based
semantics. A COS satisfies Extension Majority iff for any
O = ⟨F ,VAr⟩ s.t. E ∈ Eσ(F) and |{v ∈ VAr | v =

V ec(E)}| > |VAr|
2 , it holds that COS(O) = {E}.

Separability, inspired by (d’Aspremont and Gevers 2002),
asserts that if two sets of votes yield distinct extension sets,
and these extensions overlap, the common sets should be
included in the final outcome.

Separability (S). A COS satisfies Separability iff for any
three OBAFs O1 = ⟨F ,V1

Ar⟩, O2 = ⟨F ,V2
Ar⟩ and O3 =

⟨F ,V1
Ar ∪V2

Ar⟩ if COS(O1)∩COS(O2) ̸= ∅ then COS(O1)∩
COS(O2) ⊆ COS(O3).

Continuity, inspired by (Dunne, Marquis, and Wooldrige
2012), states that it is possible that the result is exactly an
extension by adding a certain number of times the same vote
representing this extension. To do this, we will use the nota-
tion ⟨x⟩k = ⟨x, x, x, . . . , x⟩︸ ︷︷ ︸

k times

which represents a vector con-

taining k times the element x.

Continuity (Cn). Let σ be an extension-based semantics.
A COS satisfies Continuity iff for any O = ⟨F ,VAr⟩ s.t.
E ∈ Eσ(F) and E /∈ COS(O), ∃k ∈ N s.t. COS(⟨F ,VAr ∪
⟨V ec(E)⟩k⟩) = {E}.

6 Results and Discussion
In Section 4.5, we showed that, unlike existing techniques
in the literature, CSS effectively addresses dissatisfaction is-
sues while enhancing overall voter satisfaction. Moreover,
our semantics demonstrate superior decisiveness compared
to other approaches, leading us to explore essential proper-
ties for effective opinion aggregation. In that sense, let us
prove which properties introduced in Section 5 are satisfied
by the COS listed in Section 4.

Throughout this study, we adopt three established
extension-based semantics: preferred, complete, and stable
semantics. These provide us control over the resulting ex-
tensions, as well as catering to diverse needs and scenarios.

Proposition 1. Let LA ∈ {so, co, sco}. COSLA satisfies
VA, N, M, EU, CF and S.
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Essential Properties Additional Properties

Semantics VA N M NT EU CF S AU EM Cn

COSso ✓ ✓ ✓ × ✓ ✓ ✓ × × ×
COSco ✓ ✓ ✓ × ✓ ✓ ✓ × × ×
COSsco ✓ ✓ ✓ × ✓ ✓ ✓ × × ×

COS{u,h},rep ✓ ✓ ✓ ✓ ×co ✓ ✓ × × ×co

COSe,rep ✓ ✓ ✓ ✓ ×co ✓ ✓ × × ×
COSmc,rep ✓ ✓ ✓ ✓ ×co ✓ ✓ × ×co ×co

COS{u,h},rep
c

✓ ✓ ✓ ✓ × ✓ ✓ × × ×
COSe,rep

c

✓ ✓ ✓ ✓ × ✓ ✓ × × ×
COSmc,repc

✓ ✓ ✓ ✓ × ✓ ✓ × × ×
COSARσ,τϵ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓

CSSM,Σ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓
CSSM,min ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ×
CSSM,leximin ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ×

Table 2: Properties satisfied by the COS studied in this work. The
symbol ✓(resp. ×) means that the property is satisfied (resp. vio-
lated) by the semantics for σ ∈ {co,pr,stb}. The symbol ×co

means that the property is not satisfied when σ = co but is satis-
fied when σ ∈ {pr,stb}.

Proposition 2. Let σ ∈ {co,pr,stb}. COSARσ,τϵ satisfies
VA, N, M, NT, EU, S, AU and Cn.

Proposition 3. Let M ∈ {D,S,U} and σ ∈
{co,pr,stb}. CSSM,Σ

σ satisfies VA, N, M, NT, EU, CF,
S, EM and Cn.

Proposition 4. Let M ∈ {D,S,U} and σ ∈
{co,pr,stb}. CSSM,min

σ and CSSM,leximin
σ satisfy VA,

N, M, NT, EU, CF and S.

Proposition 5. Let AB ∈ {u, e, h,mc} and σ =
{co,pr,stb}. COSAB,repc

σ and COSAB,rep
co satisfy VA, N,

M, NT, CF and S.

Proposition 6. Let AB ∈ {u, h} and σ ∈ {pr,stb}.
COSAB,rep

σ satisfies VA, N, M, NT, EU, CF, S and Cn.

Proposition 7. Let σ ∈ {pr,stb}. COSe,repσ satisfies VA,
N, M, NT, EU, CF, and S.

Proposition 8. Let σ ∈ {pr,stb}. COSmc,rep
σ satisfies VA,

N, M, NT, EU, CF, S, EM and Cn.

Several observations can be made regarding the results re-
ported in Table 2.

First, CSS stands out as being among the only approaches
(along with COSAB,rep

σ for σ ∈ {pr,stb}) to adhere to all
essential properties, with a particular emphasis on CF, NT,
and EU. These properties are crucial as the Non-triviality
property (NT) ensures decisiveness, i.e., the system is al-
ways able to arrive at some solutions. The conflict-freeness
property (CF) ensures alignment with the underlying argu-
mentation framework with respect to an extension-based se-
mantics (i.e., the outcome is compatible with the chosen
semantics). Additionally, it ensures that the framework’s
constraints are respected, thereby allowing for the selection
of acceptable extensions that conform to the defined rules
and expectations. Finally, the Extension Unanimity prop-
erty (EU) is also a crucial property proving the semantics
is robust and reflects true consensus. Another advantage lies
in the clarity of distinction between our egalitarian (leximin)

and utilitarian (sum) approaches, which is evident in the ad-
ditional properties. Specifically, for an egalitarian method,
EM and Cn are not desirable, while they are favorable in util-
itarian methods. This adaptability proves valuable, catering
to different voting scenarios. Remarkably, these properties
remain consistent across all three semantics.

From the propositions, COSAB,rep
σ for σ ∈ {pr,stb} is

the only other approach to satisfy all essential properties.
However, two significant distinctions from CSS become ap-
parent. Firstly, the results seem to depend on the extensions-
based semantics used. Indeed, we can see that the EU, EM
and Cn properties are no longer satisfied when the complete
semantics is used. This is due to how this approach han-
dles extensions of different lengths. The discrepancy ap-
pears from the fact that the normalization of the operators
depends on the length of the vote rather than the length of
the extension (see Definition 10). For instance, consider an
AF F with Eco(F) = {{a}, {a, d}}. In this case, both ex-
tensions would obtain the same score if the approval ballot
were {a}. While this characteristic is not inherently disad-
vantageous, it may lead to unexpected behavior in certain se-
mantics, such as the complete semantics, where extensions
can be subsets of one another. Secondly, the differentiation
between the utilitarian and egalitarian approaches is not as
pronounced as in CSS, where EM and Cn serve as clear in-
dicators.

We caution against unconditional satisfaction of Argu-
ment Unanimity. Indeed, this property provides a better un-
derstanding of how votes are used to select the set(s) of ar-
guments corresponding to the result of a COS. For example,
COSAR assumes that votes predominate over the attack rela-
tion, so an argument with all votes for acceptance will nec-
essarily be accepted. Conversely, for CSS, votes are used to
help select the extensions to the initial AF that most closely
match the votes. Thus, even if all the votes are for the accep-
tance of an argument that does not appear in any extension,
meaning that this argument is not compatible with the AF,
that argument will never be in the result.

7 Related Work
Some other works have explored various aspects of aggrega-
tion within argumentation frameworks, albeit from different
perspectives. While some works focus on value-based argu-
mentation and audience preferences (Bench-Capon, Doutre,
and Dunne 2007), others investigate rationalization of argu-
mentation frameworks without considering votes or evalu-
ations (Airiau et al. 2017). Additionally, (Croitoru 2014)
proposes methods for argumentative aggregation on abstract
debates, where there is no logical link bewteen the facts (i.e.
no attacks between the arguments). In the context of merg-
ing argumentation frameworks, our approach bears resem-
blance to the work of Delobelle et al. (2016). A conversion
could have been possible, where each voter corresponds to
an extension (in the case voters never abstain), and the re-
sult of the merging of these extensions would be the out-
come. However, we have tested this against our method,
and the results differ. Tohmé et al. (2008) focuses on ag-
gregating attack relations in Social Choice Theory, differing

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

639



from our emphasis on aggregating voters’ opinions. Coste-
Marquis et al. (2007) center their work on merging diverse
argumentation systems, which is not applicable to our study
as our voters share a common underlying AF. Additionally,
in (Dunne et al. 2011), the focus is on assigning weights to
attack relations. And Rago et al. (2017) use quantitative ar-
gumentation debate frameworks in addition to negative and
positive votes, and then score each argument is scored. This
approach is reminiscent of methods proposed by Leite et al.
(2011). However, we believe that aggregating votes into
a single value is suboptimal for voting scenarios because
it leads to the loss of crucial information about the degree
of agreement or disagreement from each individual regard-
ing potential solutions. Specifically, it forbids the pursuit of
any egalitarian solutions, where nuances in individual pref-
erences and degrees of support are crucial. We argue that re-
taining such information is essential for ensuring robust and
fair decision-making frameworks, which is a key motivation
behind our framework.

8 Conclusion
In this paper, we have conducted a comprehensive study
aimed at advancing democratic resolution through opin-
ion aggregation. To that end, we introduce a novel ar-
gumentation framework, called Opinion Based Argumen-
tation (OBAF), where voters express their preference for
the acceptability of each argument in the AF. This frame-
work is paired with a new class of semantics, called Col-
lective Opinion Semantics (COS), specifically tailored for
efficient opinion representation and aggregation. Further-
more, we establish a set of properties and demonstrate that
Collective Satisfaction Semantics consistently outperforms
existing approaches, providing more precise and robust re-
sults in the challenging realm of opinion aggregation.

Theoretically, our work provides a clear framework for
comparing different approaches in this field, thanks to
OBAF and the axioms we propose. Practically, it shows
promising results, offering a method applicable in online
debates to foster democratic solutions while preserving in-
dividual liberty. Methods like our egalitarian or utilitarian
approach ensure fairness and inclusivity in decision-making
processes. Other methodologies can be easily integrated
into our framework, as demonstrated in our paper, allowing
axiomatic comparisons between them. Our method consis-
tently shows promise, aligning with most proposed axioms
with different semantics. This showcases its potential for
widespread applications.

As we move forward, it is crucial to acknowledge poten-
tial limitations and chart the course for future work. This in-
cludes addressing nuanced scenarios and refining our frame-
work to adapt to evolving challenges in the rapidly changing
landscape of digital democracy.
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