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Abstract

The field of formal argumentation is driven by situations
where conflicting information need to be balanced out argu-
mentatively. However, if the given knowledge base does not
induce any reasonable viewpoint, these methods are stretched
to their limits. In this paper, we address this issue in the con-
text of assumption-based argumentation (ABA). More specif-
ically, we study repairing notions for knowledge bases where
no assumption can be accepted. We develop genuine repair-
ing techniques for ABA, based on the modification of the
building blocks of ABA frameworks, i.e., rules and assump-
tions. Thereby, we start from basic operators towards more
and more fine-grained approaches. We compare their behav-
ior to each other and demonstrate their compliance with suit-
able repairing desiderata.

1 Introduction
Reasoning with inconsistent and conflicting knowledge is
one of the core competences of knowledge representation
and reasoning formalisms (van Harmelen, Lifschitz, and
Porter 2008). Providing transparent and reliable ways to
manage and resolve inconsistencies is becoming increas-
ingly important; particularly given the potential for invalid
and unreliable inferences generated by back-box models
and AI-driven products (Huang et al. 2023). Argumentative
conflict resolution encompasses non-monotonic and conflict
sensitive reasoning which renders formal models of argu-
mentation ideally suited to address these challenges (Bench-
Capon and Dunne 2007; Vassiliades, Bassiliades, and Patkos
2021; Rago et al. 2023). Argumentative models have been
extensively studied (Gabbay et al. 2021). One of the most
prominent formalisms is assumption-based argumentation
(ABA) (Čyras et al. 2018), a versatile modeling approach that
supports applications in, e.g., healthcare (Craven et al. 2012;
Cyras et al. 2021), law (Dung, Thang, and Hung 2010) and
robotics (Fan et al. 2016), and can be suitably deployed
in multi-agent settings to support dialogues (Fan and Toni
2014). The building blocks of ABA frameworks (ABAFs)
are assumptions and inference rules; the former are the de-
feasible elements of the formalism that enable reasoning
even in the face of inconsistencies in the knowledge base.

Despite their beneficial and well-explored abilities to
handle conflicts, argumentative methods reach their limits
when confronted with entirely inconsistent knowledge bases

where it is impossible to derive any conclusion. Let us con-
sider the following illustrative example.

Example 1.1. Our agent, let us call her Alice, plans her
summer holiday. Ideally, she would like to spend her hol-
iday at Paradise island; however, it is likely that the hotel
prices exceed her budget as she was told that they are quite
high. After a bit of research, she comes across a website
with disastrous reviews for the island’s hotels. Alice is un-
sure whether she should trust the reviews; an island with
such a good reputation will certainly be a decent place to
stay. However, given the devastating reviews, Alice starts
doubting that the hotel prices are really as expensive as she
was told. Taking all information into account, our agent
finds herself incapable of reaching a decision.

We can model the situation in ABA as follows. We con-
sider three assumptions: paradise island, expensive hotels
and bad reviews; arrows indicate asymmetric conflicts (at-
tacks) between our assumptions.

paradise islandexpensive hotels

bad reviews

A fundamental acceptance criterion in argumentation is ad-
missibility which requires conflict-freeness and the ability to
counter-attack each attacker. In Alice’s knowledge base, no
assumption set is admissible. Consequently, the knowledge
base is inconsistent.

Our agent in the example is unable to draw any plausi-
ble conclusion; thereby preventing her from reaching a de-
cision. In practice, there are several reasons that can lead to
inconsistent knowledge bases such as modeling errors or the
merging of different knowledge bases; rendering the given
knowledge base inapplicable for further use. To overcome
such issues, researchers have invested considerable effort
into exploring methods for repairing knowledge bases. In
his seminal work (Reiter 1987), Reiter introduced diagnos-
tic reasoning to identify inconsistencies and ensure (min-
imal) change in restoring consistency. Subsequently, ex-
tensive research in repairing knowledge bases across vari-
ous knowledge representation and reasoning formalisms has
been conducted, including argumentation (Baumann and Ul-
bricht 2019; Lehtonen, Niskanen, and Järvisalo 2018; Am-
goud and Vesic 2009), description logic (Lembo et al. 2010;
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Baader et al. 2018), logic programs (Merhej, Schockaert,
and Cock 2017; Gebser et al. 2010; Sakama and Inoue
2003), probabilistic conditional logic (Potyka and Thimm
2014), as well as general non-monotonic logics (Brewka,
Thimm, and Ulbricht 2019).

A common approach to restore coherence involves re-
tracting parts of the knowledge base. In the context of our
ABA example, this could be achieved in several ways.
Example 1.2. Taking a closer look at our running example
reveals several plausible modifications.
• A possible repair for the ABAF would be the removal of an

assumption. One could argue that the website where Alice
found the bad reviews was not very trustworthy; thereby
justifying the removal of bad reviews. As a result, Alice
has no doubt to believe that the hotels are expensive.

• Alternatively, we could remove an inference rule to repair
the ABAF. Rather than ignoring the reviews, the modeling
issue could be due to an overestimation of market effects.
A more nuanced way to repair the ABAF would be the re-
traction of the inference “bad reviews lead to price drop”.
Alice can now conclude that the hotels are expensive.

• One might, however, argue that there is some truth behind
supply and demand mechanisms. A more fine-grained re-
pair operator is therefore to render rules defeasible in-
stead of deleting them entirely. This can be achieved by
the addition of certain conditions that indicate when or
when not a rule is applicable. In this particular situation,
the bad reviews might not have shown effect yet, maybe
because they are relatively new. Since Alice wants to go
on vacation quite soon, she can expect high hotel prices.
In the field of formal argumentation, research on repair-

ing predominantly focused on abstract argumentation (Dung
1995), where arguments are considered atomic entities. In
this paper, we address this issue in the context of ABA. We
introduce different repairing notions for knowledge bases
where no assumption can be accepted. We identify funda-
mental properties a repairing operator should satisfy and in-
vestigate them w.r.t. our proposed repairing approaches.

In more detail, our main contributions are as follows.
• We discuss how to approach repairing in structured argu-

mentation formalisms and develop desiderata for the be-
havior of suitable operators. Section 3

• We discuss how to repair by modifying the assumptions of
the given ABAF. To this end we propose an operator that
removes certain assumptions which cause the semantical
collapse within the knowledge base. We show that our
operator behaves well w.r.t. our desiderata. Section 4

• We then study repairing in terms of the underlying rules.
We propose an operator that renders a given rule set in-
applicable. As it turns out, this is a more fine-grained ap-
proach compared to our assumption-based operator which
also satisfies most of our desiderata. Section 5

• Finally, we consider an operator that renders rules defea-
sible instead of entirely inapplicable. We formally show
that this approach is more flexible. Section 6

• For all our operators we study the computational com-
plexity of verifying minimality of a diagnosis.

2 Background
We recall assumption-based argumentation (ABA) (Čyras et
al. 2018). We assume a deductive system (L,R), where L
is a formal language, i.e., a set of sentences, and R a set of
inference rules over L. A rule r ∈ R has the form a0 ←
a1, . . . , an with ai ∈ L; head(r) = a0 is the head and
body(r) = {a1, . . . , an} the (possibly empty) body of r.
Definition 2.1. An ABA framework (ABAF) is a tuple
(L,R,A, ) s.t. (L,R) is a deductive system, A ⊆ L a set
of assumptions, and : A → L a partial contrary function.

Notice that we deviate from the original ABAF definition
by allowing the contrary function to be partial in this work.
Assumption 2.2. In this work, we focus on flat and finite
ABAFs, i.e., head(r) /∈ A for each r ∈ R (no assumption
can be derived), and L,R,A are finite; moreover, each rule
is stated explicitly (given as input); and L is a set of atoms.

An atom p ∈ L is tree-derivable from assumptions S ⊆
A and rules R ⊆ R, denoted S `R p, if p can be derived
from the set S of assumptions and the rules inR; i.e.,there is
a finite rooted labeled tree t such that the root is labeled with
p, the set of labels for the leaves of t is equal to S or S∪{>},
and for every inner node v of t there is a rule r ∈ R such
that v is labelled with head(r), the number of successors
of v is |body(r)| and every successor of v is labelled with a
distinct a ∈ body(r) or > if body(r) = ∅.
Definition 2.3. Each tree-derivation S `R p is an ABA
argument; S `R p is a rule-induced argument iff R 6= ∅ and
an assumption argument iff R = ∅.

We drop the subscript R whenever it does not cause con-
fusion. By ThD(S) = {p ∈ L | ∃S′ ⊆ S : S′ ` p} we
denote the set of all conclusions derivable from a set S in
an ABAF D. Note that S ⊆ ThD(S) since, by definition,
{a} `∅ a for each assumption a. We let S = {a | a ∈ S}.
Example 2.4. We model Example 1.1 via D = (L,R,A, )
withA = {paradise island, expensive hotels, bad reviews},
their contraries not paradise island, cheap hotels, and
good reviews, resp., L = A ∪A, and with rulesR:

not paradise island← expensive hotels
good reviews← paradise island
cheap hotels← bad reviews

A set S ⊆ A attacks a set T ⊆ A if for some a ∈ T
we have a ∈ ThD(S); moreover, S defends T iff S attacks
each attacker U of T . A set S is conflict-free (S ∈ cf (D))
if it does not attack itself; S is admissible (S ∈ ad(D)) if
it is conflict-free and defends itself. With a little notational
abuse we say S attacks a if S attacks the singleton {a}.

We next recall grounded, complete, preferred, and stable
ABA semantics (abbr. gr , co, pr , stb).
Definition 2.5. Let D be an ABAF and let S ∈ ad(D).
• S ∈ co(D) iff S contains every assumption set it defends;
• S ∈ gr(D) iff S is ⊆-minimal in co(D);
• S ∈ pr(D) iff S is ⊆-maximal in co(D);
• S ∈ stb(D) iff S attacks each {x} ⊆ A \ S.
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An assumption a is credulously accepted wrt. semantics
σ in an ABAF D iff a ∈

⋃
σ(D); we write a ∈ Credσ(D).

Example 2.6. Let us again consider our introductory Exam-
ple 1.1. As already observed in the introduction, no assump-
tion can be accepted under any of the considered semantics,
i.e., σ(D) = {∅} for σ ∈ {ad , co, pr} and stb(D) = ∅. It
follows that no assumption is credulously accepted in D.

Graphical Representations We recall two graphical rep-
resentations of ABAFs that we will use in the present paper.

ABAFs are closely related to Dung’s abstract argumen-
tation frameworks (AFs) (Dung 1995). In brief, an AF is a
pair (A,R) consisting of a set of arguments A and an attack
relation R ⊆ A×A. We can instantiate an ABAF as AF by
setting A = {S ` p | S ⊆ A, p ∈ L} be the set of all ABA
arguments and R is the induced attack relation: S ` p at-
tacks T ` q if p ∈ T . Semantics for AFs are defined similar
in spirit to ABAFs. It is well-known that the extensions of
an ABAF can be computed by evaluating the corresponding
AF and computing the extensions; a similar observation can
be made for the other direction as well (Čyras et al. 2018).

AFs are well suited to depict the ABA arguments and their
relations. AFs with collective attacks (SETAFs) (Nielsen and
Parsons 2006), on the other hand, are ideally suited to depict
the attack structure between the assumptions, as recently
outlined (König, Rapberger, and Ulbricht 2022).
Example 2.7. Consider an ABAF with assumptions a, b, c,
their contraries a = s, b = p, c = q, and rules (p ← a, c)
and (s← c). We obtain the following arguments:

{a}`a {b}`b {c} ` c u = {a, c} ` p v = {c} ` s
Here, u and v are rule-induced arguments. We can represent
the ABAF as AF (left) and SETAF (right) as follows:

b u v a c
a b

c

The AF (left) contains all arguments, depicted as black cir-
cles with gray background, and the attacks between them
(the assumption arguments are called a, b, c, respectively).

The SETAF (right) depicts the attack structure between
the assumptions: a and c collectively attack b as {a, c}` p,
depicted as joint arc; and c attacks a since {c} ` s.

3 Repairing in Structured Argumentation
In this section, we introduce fundamental concepts for re-
pairing in ABA. In a similar spirit to the research in the AF
literature (Baumann and Ulbricht 2019), we consider the fol-
lowing notion of semantical collapse for ABAFs:
• there is no accepted assumption, i.e., Credσ(D) = ∅.
Note that for stable semantics, this notion amounts to
stb(D) = ∅ while for the remaining semantics under con-
sideration, this means that only the empty set is an exten-
sion. An ABAF can be considered consistent (w.r.t. a given
semantics) if some assumption can be accepted.
Definition 3.1. Let σ be any semantics. An ABAF D =
(L,R,A, ) is called consistent iff Credσ(D) 6= ∅; D is
called inconsistent iff Credσ(D) = ∅.

Repairing and Abstract Argumentation Research on re-
pairing AFs mainly focuses on removing arguments or at-
tacks in order to restore consistency (Baumann and Ulbricht
2019; Niskanen and Järvisalo 2020). In this context, many
convenient theoretical properties hold, but unfortunately this
approach is not applicable to structured argumentation.

Example 3.2. Consider an ABAF with assumptions a, b, c;
contraries a = c, b = p and c = q; and rules r1 = p← a, q
and r2 = q ← b. It can be checked that the ABAF is incon-
sistent w.r.t. any considered semantics. The corresponding
AF with u = {a, b} ` p and v = {b} ` q is depicted below.

u v c ab

A possible repair of the AF would be to remove the attack
(u, v); then {v, a} is acceptable w.r.t. admissible semantics.
What is the corresponding modification in the knowledge
base? In order to remove the attack from u to v, it is neces-
sary to remove b from the set of assumptions in u. This can
only be achieved by modifying the rule r2 or by removing b
entirely which causes further severe modifications of the AF.

It turns out that the abstraction level of AFs is simply too
high to apply AF repairing methods. We will thus develop
genuine repairing notions for ABA in this work.

Repairing Desiderata An ABA knowledge base consists
of multiple parts (literals, assumptions, their contraries, and
rules). Consequently, there are multiple conceivable ways
to repair a given ABAF. In order to proceed in a structured
way, let us formalize desiderata for the behavior of repairing
operators first. We assume we are given an arbitrary but
fixed repairing operator rep which can turn a given ABAF
D into different ABAFs img(rep(D)).
Example 3.3. Consider, for instance, a simple repairing
operator repc which, given ABAF D and a set S of as-
sumptions, removes the contraries of S from the partial con-
trary function in D, i.e., given D = (L,R,A, ), we have
repc(D, S) = (L,R,A, |A\S). Then img(repc(D)) is the
set of all ABAFs we can attain by applying repc to different
S ⊆ A, i.e., img(repc(D)) = {repc(D, S) | S ⊆ A}.

In general, not each attainable ABAF D′ ∈ img(rep(D))
will be consistent. In fact, even our drastic repc does not
have this property. However, a repairing operator should be
effective in the sense that at least some repair always exists.

(E) Effectiveness: For any ABAF D, there should be some
repair, i.e., at least one D′ ∈ img(rep(D)) is consistent.

Example 3.4. Given any ABAF D = (L,R,A, ), we can
consider repc(D,A), i.e., we remove any contrary occur-
ring in D. Clearly, the resulting ABAF is consistent (each
assumption is acceptable). Consequently, repc satisfies (E).

Moreover, repairing should be efficient in the sense that
the “repaired” ABAD′ can be computed in polynomial time.

(T) Tractable: Given D, any particular D′ ∈ img(rep(D))
can be computed in polynomial time.

For instance, our artificial operator repc satisfies (T) since
altering the contrary function can be done efficiently.
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Intuitively, a repairing operator should never introduce
novel conflicts into the knowledge base. This is, however,
hard to formalize because argumentation is driven by con-
flicting viewpoints. We can still capture the following notion
of self-controversial assumptions we seek to avoid.
Definition 3.5. Let σ be any semantics and D =
(L,R,A, ) be an ABAF. An assumption a ∈ A is called
self-controversial if a ∈ ThD(a). The ABAF D is called
self-controversial if each a ∈ A is.

A repairing operator should push D towards consistency
and one might argue that for this, it is never beneficial to
introduce self-controversial assumptions.
(SC) Self-Controversial: If a is self-controversial in D′ ∈
img(rep(D)), then it is already self-controversial in D.

Example 3.6. Suppose we are given an ABAF D with
some rule a ← a for some assumption a ∈ A. Then, a
is clearly self-controversial. While repc can remove self-
controversial assumptions (because in repc(D, {a}), a is
not self-controversial anymore), no novel self-controversial
assumption can arise. Thus, repc satisfies (SC).
Ideally, a repair operator should preserve every conclusion
that can be derived. We consider the following desideratum.
(DP) Derivation Persistence: If S ` p in D, then the same

is true in each D′ ∈ img(rep(D)).
On the other hand, we do not want to introduce new deriva-
tions when repairing an ABAF. Ideally, the modification
should not alter the underlying logic of our knowledge base.
(CM) Conclusion Monotonicity: If S ` p in some D′ ∈
img(rep(D)), then S ` p in D.

Example 3.7. The operator repc satisfies (CM) because no
new rules are introduced. It also satisfies (DP) because it
does not alter the existing derivations.
Our last desideratum highlights that our auxiliary repc is
too drastic as it undermines intrinsic properties of the given
atoms, instead of fixing modeling errors.
(CP) Contrary Persistence: If p = a in D, then the same is

true in each D′ ∈ img(rep(D)).
To see this, let us head back to our introductory example.
Example 3.8. A possible repair in Example 2.4 is to simply
forget that cheap hotels is the contrary of expensive hotels.
Then bad reviews does not attack expensive hotels anymore;
despite the presence of cheap hotels ← bad reviews. Now,
our repaired ABAF no longer aligns well with our intuition.

Outline In the subsequent sections, we will examine mod-
ifications of the acceptability status of assumptions and
rules. Starting with the most basic idea, we will modify
the ABAF in a way that certain assumptions are rendered
“false” and remove them from the knowledge base entirely.
This, in turn, frees other assumptions to become acceptable
(Section 4). As it will turn out, a more fine-grained approach
is removing rules instead (Section 5). We will show that, un-
der mild conditions, rendering assumptions false can be cap-
tured by removing rules, thus the latter approach is a faithful
generalization of the former. Finally, we discuss techniques
to make rules defeasible instead of removing them entirely.

4 Assumption-Based Repairing
In this section we manipulate the assumptions in D in order
to restore consistency. To this end let us introduce the notion
of an assumption-based repairing operator.
Definition 4.1. An assumption-based repairing operator is
a mapping (D, S) 7→ rep(D, S) that takes as an input an
ABAF D = (L,R,A, ) and a set S ⊆ A and returns a
modified ABAF rep(D, S).

That is, we can specify a set S of assumptions that are
supposed to be modified by the operator rep.
Definition 4.2. Let σ be any semantics. Let D =
(L,R,A, ) be an inconsistent ABAF and S ⊆ A. We call
S a (minimal) assumption-based diagnosis forD w.r.t rep iff
(it is ⊆-minimal s.t.) rep(D, S) is consistent.

If no assumption can be accepted, a natural strategy to re-
pair D is to take a set S of assumptions and set S to “false”
manually. This can be done as follows: remove S from the
set A of assumptions (and from the set of literals) and re-
move each rule making use of S (since these rules are not
applicable). The following operator implements this idea.
Definition 4.3. Let D = (L,R,A, ) be an ABAF and
S ⊆ A a set of assumptions. We let rma(D, S) =
(L′,R′,A′, ′) be the ABAF with L′ = L \ S, A′ = A \ S,
′ = |A′ , andR′ = {r ∈ R | body(r) ∩ S = ∅}
Let us head back to our introductory example. This oper-

ator indeed captures the approach to disregard the reviews.
Example 4.4. Recall our introductory Example 2.4 where
no assumption can be accepted. As already suggested in
the introduction, the website where Alice found the reviews
may not have been very trustworthy. We therefore simply
remove the assumption; we apply rma to D in order to get
rid of bad reviews. The resulting ABAF D′ has assumptions
A′ = {paradise island, expensive hotels}, and rulesR′:

not paradise island← expensive hotels
good reviews← paradise island

The attack structure of D′ looks as follows.

paradise islandexpensive hotels

We accept S = {expensive hotels} (under any semantics).
As a result, Alice believes the hotels at the island are expen-
sive, giving her a reason to reconsider her vacation choices.

4.1 Basic Properties
We establish that rma is capable of repairing almost any
ABAF. To this end our first observation is that rma does not
alter whether or not some assumption is self-controversial.
Lemma 4.5 (Self-Controversial Assumptions). Any a ∈ A
is self-controversial in rma(D, S) iff a /∈ S and a is self-
controversial in D.

This means, however, that rma cannot always repair a
given ABAF: if each assumption is self-controversial in D,
then the same will always be true in rma(D, S). On the
other hand, if a ∈ A is not self-controversial, then S = A \
{a} trivially repairs D. Consequently, a repair exists under
mild conditions. In the context of our repairing desiderata,
this means Effectiveness (E) is satisfied in most cases.
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Proposition 4.6 (Effectiveness). Let σ be any semantics.
There is a diagnosis S w.r.t. rma for D iff D is not self-
controversial.

We next observe that rma(D, S) preserves all tree-
derivations that do not make use of any assumption in S
(and does not add any novel derivations). In this sense, it
adheres to both Derivation Persistence (DP) and Conclusion
Monotonicity (CM) as formalized in Section 3.
Proposition 4.7. For any ABAFD and set S of assumptions,
there is a tree-derivation T ` p in rma(D, S) iff T ` p is a
tree-derivation in D and T ∩ S = ∅.
Example 4.8. Recall Example 3.2 before and after applying
rma to S = {a}. In D′ = rma(D, S) we can derive {b} `
b, {c} ` c, and {b} ` q which are exactly the derivations in
D that do not rely on the assumption a.

Furthermore, rma does not change the contrary function,
so Contrary Persistence (CP) holds under mild conditions.
Fact 4.9. Let D = (L,R,A, ) be an ABAF and S ⊆ A. If
p = a and a /∈ S, then the same is true in rma(D, S).

Moreover, rma represents a simple syntactical modifica-
tion of D which can be performed easily. Consequently, the
tractability (T) requirement is also satisfied.
Fact 4.10 (Tractability). For any ABAF D and set S of as-
sumptions, the ABAF rma(D, S) can be computed in P.

In summary, the assumption-based operator rma satisfies
most of the desiderata under consideration.
Summary 4.11. The operator rma satisfies (SC), (CM),
and (T); a version of (DP); moreover, (E) and (CP) are sat-
isfied under mild conditions.

4.2 Minimal Repairs
As the previous fact states, we can compute rma efficiently.
Moreover, the reason for Proposition 4.6 to hold is that
A \ {a} is always a diagnosis for D as long as a is no
self-attacker. However, this is a rather drastic and unnat-
ural way to repair D. Consequently, let us now examine
minimal modifications to a given ABAF D. The bad news
is that in general, this is a hard problem for most semantics.
The reason for this is twofold: First, the underlying decision
problem (“Is S a diagnosis for D?”) is as hard as reasoning
in an ABAF (because the special case S = ∅ amounts to
checking whether any assumption is acceptable).
Fact 4.12. Deciding whether a set S of assumptions is a
diagnosis w.r.t. rma for an ABAF D is i) NP-complete for
σ ∈ {ad , co, pr , stb} and ii) in P for gr .

Second, suppose we are given a diagnosis S and want to
test it for minimality. In case of gr semantics this is still
tractable; the reason is the following underlying characteri-
zation for consistency w.r.t. grounded semantics.
Lemma 4.13. An ABAFD=(L,R,A, ) is consistent w.r.t.
gr semantics iff there is some a ∈ A s.t. ∅ defends a in D.

For the other semantics, however, testing minimality is a
hard problem. The reason for this is the non-monotonic be-
havior of this operator. We end up with the following com-
plexity for testing minimality.

Theorem 4.14. Deciding whether a set S of assumptions
is a minimal diagnosis w.r.t. rma for an ABAF D is i) DP-
complete for σ ∈ {ad , co, pr , stb} and ii) in P for gr .

We can benefit from the positive result for gr as follows.
Due to finiteness of A, it is clear that each diagnosis S can
be reduced to a minimal one. This helps reducing the search
space when striving for a minimal diagnosis.
Proposition 4.15. Let D = (L,R,A, ) be an inconsistent
ABAF and S be a gr diagnosis. There is some S′ ⊆ S s.t.
S′ is a minimal diagnosis w.r.t. rma for σ ∈ {ad , co, pr}.
Example 4.16. ConsiderD having assumptions a, b, c; con-
traries a = ac, b = bc, and c = c; and rulesR:
r1 = a← b r2 = b← a r3 = a← c r4 = b← c

Take S = {b, c} leaving us with an unattacked assumption
a. Clearly, {a} ∈ gr(rma(D, S)) proving that S is a gr -
diagnosis. Consequently, S is also a co-diagnosis. However,
it is not minimal as removing b was not necessary. We can
therefore enhance our diagnosis to S′ = {c}.

5 Rule-Based Repairing
In the previous section, we considered an operator which
renders assumptions false. As a side effect, certain rules
(determined by the set S of assumptions) are rendered in-
applicable as well. In this section, we consider a more fine-
grained approach by specifying the rules in question directly.
Definition 5.1. A rule-based repairing operator is a mapping
(D, R) 7→ rep(D, R) that takes an ABAF D = (L,R,A, )
and a set R ⊆ R and returns a modified ABAF rep(D, R).

Analogous to an assumption-based operator, we can spec-
ify a set R of rules supposed to be modified by rep.
Definition 5.2. Let σ be any semantics. Let D =
(L,R,A, ) be an inconsistent ABAF and R ⊆ R. We call
R a (minimal) rule-based diagnosis for D w.r.t rep iff (it is
⊆-minimal s.t.) rep(D, R) is consistent.

We consider the following rule-based repairing operator.
Definition 5.3. Let D = (L,R,A, ) be an ABAF and let
R ⊆ R be a set of rules. We define

rmr(D, R) = (L,R \R,A, ).

Example 5.4. In Example 4.4, we fixed the ABAF from Ex-
ample 2.4 by applying rma to remove bad reviews. Ar-
guably, it is a somewhat drastic step to disregard the re-
views of the website as a whole. Maybe, the issue lies in
the overestimation of market effects. A more nuanced way
to repair the ABAF is to reconsider the validity of the rule
cheap hotels ← bad reviews by applying rmr to get rid of
the rule. The resulting ABAF D′′ still has all assumptions,
but again only the rules R′ from the ABAF D′ from Exam-
ple 4.4, yielding the following attack structure:

paradise islandexpensive hotels

bad reviews

As a result, we accept S = {expensive hotels, bad reviews}.
Now, our agent can conclude that the hotel prices at the
island are expensive although they are rated poorly; Alice
might now conclude that the trip is too expensive for her.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

612



5.1 Rule-Based Repairing and Assumption
Attacks

Let us now delve deeper into the behavior of our repair op-
erator. First, we observe that rmr does not alter the con-
traries of the assumptions, therefore satisfying Contrary Per-
sistence (CP). In contrast to our assumption-based repairing
operator, we obtain that the contraries of the assumptions are
preserved since the assumptions are left untouched.

Fact 5.5 (Contrary Persistence). For each assumption a, it
holds that p = a in D iff p = a in rmr(D, R).

We furthermore note that rmr satisfies (SC) since it does
not introduce self-controversial assumptions.

Lemma 5.6 (Self-Controversial Assumptions). If an as-
sumption a ∈ A is self-controversial in rmr(D, R) then a
is self-controversial in D.

The other direction, however, is not always true. The re-
moval of a rule can make a controversial assumption uncon-
troversial. In contrast to our assumption-based repair oper-
ator, self-controversiality is no longer the limiting factor for
repairing an ABAF—as long as the assumptions are not their
own contrary (i.e., as long as a 6= a). This leads to a cru-
cial observation: the removal of rules cannot break an attack
cycle which is caused by the contrary function.

Example 5.7. Consider an ABAF D with assumptions a, b,
and c with contraries a = b, b = c, and c = a. In an intu-
itive sense which we will formalize below, the assumptions
form an odd cycle. Since D is flat, the assumptions are not
attacked by any other set of assumptions (there is no rule
with head a because a = b is an assumption). Therefore,
none of the assumptions can be accepted in D. Removing
any rule from D does not influence their acceptability.

The repairability of an ABAF D w.r.t. rmr is closely
tied to the attack structure imposed by the contrary func-
tion. Striving to formalize this, let us define the so-called
assumption attack graph of an ABAF D.

Definition 5.8. For an ABAFD = (L,A,R, ) the assump-
tion attack graph is a directed graph AGD = (V,E) where
V = A and (a, b) ∈ E iff b = a.

Intuitively, AGD is a graphical depiction of the relation
among the contraries of the assumptions in D.

Example 5.9. Let D = (L,A,R, ) be the ABAF where
A = {a, b, c, d, e, f} and a = c, b = a, c = b, d = b,
e = c, f = p, for some atom p which is no assumption.
Independent of the rule setR, AGD is given as follows:

a bc d feAGD :

We can make several observations about the whole ABAF:

• Consider e.g. a. Since D is flat no rule entails a = c; i.e,
the only way to attack a is via the assumption c. Conse-
quently, there is no argument S ` a in D except {c} ` c.

• Every a ∈ A has at most one in-coming attack in AGD.

• We do not know how many tree derivations entail p = f .

a b c

attack path

x

y

z
odd
cycle

u v

even cycle

rule-induced args

assumption args

Figure 1: Exemplified attack structures between assumptions

Let us formalize the possible attack configurations be-
tween assumptions in an ABAF. We identify three main con-
figurations: even cycles, odd cycles, and proper paths.
Definition 5.10. Let D = (L,A,R, ) be an ABAF. A se-
quence a1, . . . , an of assumptions with ai+1 = ai for all
i < n and ak 6= aj for all k, j ≤ n is called an attack path.
It is called
• odd attack cycle iff a1 = an and n is odd;
• even attack cycle iff a1 = an and n is even;
• rooted attack path iff a1 /∈ A.

Note that the assumption a1 in a rooted attack path is ei-
ther attacked by a literal p ∈ L \ A or unattacked (since the
contrary function is partial).

Figure 1 gives examples of the three attack configurations.
The dashed line separates rule-induced arguments from as-
sumption arguments. Note that in Figure 1, only c receives
attacks from rule-induced arguments. Similar as in Exam-
ple 5.9, we note that the remaining assumption arguments in
the figure receive no further attacks since their contrary is an
assumption itself. Now, since every assumption has at most
one contrary, we make the following observation.
Fact 5.11. Each assumption a in an ABAF D receives only
one incoming attack in AGD.

It follows that cycles in AGD have no further incoming
attacks. Hence, the existence of an even attack cycle guar-
antees the existence of an admissible extension.
Corollary 5.12. Let σ ∈ {ad , co, pr}. Each ABAF s.t.
AGD contains an even cycle is consistent w.r.t. σ.

In the same vein, if AGD contains an odd cycle, then it
cannot be broken apart anymore. This causes stable seman-
tics to collapse.
Corollary 5.13. No ABAF s.t. AGD contains an odd cycle
has a stable extension.

On the other hand, an assumption argument ({a} ` a)
can have several outgoing attacks in case a is the contrary of
several assumptions. Overall, each assumption can either be
traced back to an even cycle, an odd cycle, or a rooted attack
path. The next lemma summarizes this observation.
Lemma 5.14. For each assumption a in an ABAF D, pre-
cisely one of the following options is satisfied.

1. AGD contains an odd cycle with an attack path to a;
2. AGD contains an even cycle with an attack path to a;
3. AGD contains a rooted attack path containing a.

As was already hinted at by Corollary 5.13, we need to be
aware of the odd cycles inAGD. We introduce the notion of
contradictory ABAFs motivated by this observation.
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Definition 5.15. An ABAF D = (L,A,R, ) is contradic-
tory iff for each a ∈ A there is an odd attack cycle with an
attack path to a.
Example 5.16. The ABAF in Example 5.9 is not contradic-
tory, but only due to f . If f was not present, then any as-
sumption would be attacked by the odd cycle a, b, c.

The presence of a certain attack structure determines the
repairability of an ABAF. The following proposition charac-
terizes the existence of a diagnosis under a given semantics.
In terms of our desiderata, this means that rmr satisfies Ef-
fectiveness (E) under the specified conditions.
Proposition 5.17 (Effectiveness). Let D be an ABAF.
• Let σ ∈ {ad , co, pr}, then D has a diagnosis R ⊆ R

w.r.t. rmr iff D is not contradictory.
• Let σ = gr , then D has a diagnosis R ⊆ R w.r.t. rmr iff
D contains a rooted attack path.

• Let σ = stb, then D has a diagnosis R ⊆ R w.r.t. rmr iff
D contains no odd attack cycle.
Regarding the remaining desiderata, rmr does not satisfy

Derivation Persistence (DP) as it removes rules.
Example 5.18. LetD be an ABAF with assumptions a, b and
rule r = (p← a, b). In D, we have {a, b} ` p; however, we
cannot construct the argument in rmr(D, {r}) anymore.

Conclusion Monotonicity (CM), on the other hand, is sat-
isfied. When applying our rmr operator, we do not intro-
duce new derivations in the knowledge base.
Proposition 5.19 (Conclusion Monotonicity). Let D =
(L,A,R, ) be an ABAF and let R ⊆ R denote a set of
rules. For any S ⊆ A and p ∈ L, if S ` p in rmr(D, r)
then S ` p in D.

The operator rmr satisfies Tractability (T) since the re-
moval of rules is a simple syntactical modification.
Fact 5.20 (Tractability). For any ABAFD and setR of rules,
the ABAF rmr(D, R) can be computed in polynomial time.

In summary, our rule-based repair operator satisfies most
of the desiderata under consideration except (DP). The fol-
lowing theorem summarizes our findings of this section.
Summary 5.21. The operator rmr satisfies (CP), (SC),
(CM), and (T); (E) is satisfied under mild conditions.

5.2 Minimal Repairs
Similar as in the case of assumption-based repairs, we are in-
terested in minimizing the number of rules we remove. This
will, however, turn out to be a hard problem again. First of
all, the remark pertaining to verifying some repair of course
persists, as it is based on the complexity of ABA reasoning.
Fact 5.22. Deciding whether a set R of rules is a diagnosis
w.r.t. rmr for D is i) NP-complete for σ ∈ {ad , co, pr , stb}
and ii) in P for gr .

The complexity of verifying a minimal rule-based diag-
nosis is as hard as in the assumption-based case with one
noteworthy exception: the gr case is not tractable anymore,
but coNP-complete. This confirms the intuition that rmr is
more fine-grained compared to rma and thus, the additional
possibilities cause the gr case to become harder.

Theorem 5.23. Deciding whether a set R of rules is a min-
imal diagnosis w.r.t. rmr for an ABAF D is i) DP-complete
for σ ∈ {ad , co, pr , stb} and ii) coNP-complete for gr .

However, similar to Section 4, we can use gr -diagnoses
to reduce the search space for minimal σ-diagnoses for σ ∈
{ad , co, pr}. The theoretical underpinning is the following
observation, similar to the previous setting.
Fact 5.24. Let (L,R,A, ) be an ABAF and R be a rule-
based gr diagnosis w.r.t. rmr. There is some R′ ⊆ R s.t. R′

is a minimal rule-based diagnosis for σ ∈ {ad , co, pr}.
This is especially interesting in view of the following ob-

servation: while verifying minimality of a given diagnosis is
hard for gr , we can compute certain particular minimal ones
efficiently. This way, we can make efficient use of Fact 5.24.
Proposition 5.25. There is a polynomial algorithm that,
on input an ABAF D, returns a minimal rule-based gr -
diagnosis or detects if none such exists.

5.3 Connection to Assumption-based Repair
The conditions for repairs to exist differ for rma and rmr.
As noted in Proposition 4.6, rma is capable of repairing
any ABAF that is not self-controversial, whereas rmr relies
on more involved characterizations (cf. Proposition 5.17).
On the other hand, as evident when comparing Exam-
ples 4.4 and 5.4, it becomes apparent that our assumption-
based operator rma in some sense makes use of rmr as it
removes rules. It turns out that in the fragment of ABAFs
with separated contraries in which each ABAF (L,A,R, )
satisfiesA∩A = ∅ (Rapberger and Ulbricht 2023), we have
indeed a strong connection: here, a diagnosis S w.r.t. rma
induces a diagnosis R′ = {r ∈ R | body(r) ∩ S 6= ∅}
w.r.t. rmr for a given ABAFD under the semantics-specific
restrictions we identified in Proposition 5.17.
Proposition 5.26. Let D = (L,A,R, ) be an ABAF with
separated contraries and σ be any semantics. If S ⊆ A is a
diagnosis w.r.t. rma for D, then R = {r ∈ R | body(r) ∩
S 6= ∅} is a diagnosis w.r.t. rmr for D.

An ABAF with separated contraries is characterized by
AGD = (V,E) being a directed graph with E = ∅. Due to
this, according to Proposition 5.17, such ABAFs can always
be repaired w.r.t rmr, but not necessarily w.r.t. rma.

In the general case, the correspondence stated in Proposi-
tion 5.26 cannot be obtained, as we illustrate below.
Example 5.27. Let D be an ABAF with assumptions A =
{a, b, c, d}; the assumptions a, b and c are in an odd attack
cycle, i.e., a = b, b = c and c = a. The ABAF contains
the rule r = (d ← d), that is, d is self-controversial. We
note that D has a diagnosis w.r.t. both rma and rmr under
most considered semantics (D cannot be repaired w.r.t. rmr
under stable semantics by Proposition 5.17). Any diagnosis
S ⊆ A w.r.t. rma is a subset of {a, b, c} while the unique
diagnosis w.r.t. rmr is {r}.

For stable semantics, letD′ be an ABAF with assumptions
A = {a, b, c, d} with a = b and b = c, and rules r1 = (d←
d) (d is self-controversial) and r2 = (d ← b). A diagnosis
forD w.r.t. rma is {c}; however, the corresponding induced
rule set R = ∅ does not repair D′ w.r.t. rmr.
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Although rma includes the rule removal operation, we
cannot infer a diagnosis w.r.t. rmr in general as the exam-
ples above demonstrate.

6 Defeasibility-based Repairing
In the previous section, we considered a repair notion which
operates on the rules of the ABAF. However, the operation is
rather coarse; it removes the rules in the diagnosis entirely,
thus preventing it from further use.

In this section, we discuss a more fine-grained notion
which preserves the rule but makes it defeasible. In contrast
to other rule-based formalisms, each rule in (standard) ABA
is strict. Defeasibilty of rules can be modeled by adding an
assumption to the body of the rule which serves as potential
weak point of it. By attacking this dedicated assumption the
rule can be refuted/prevented from taking effect.
Definition 6.1. A defeasible repairing operator is a mapping
(D, R) 7→ rep(D, (R, f)) that takes as an input an ABAF
D = (L,R,A, ), a set R ⊆ R and a function f : R → L
and returns a modified ABAF rep(D, (R, f)).

A diagnosis is a tuple (R, f) with rules R and function f .
Definition 6.2. Let D = (L,R,A, ) be an inconsistent
ABAF, σ be any semantics, R ⊆ R, and f : R→ L. We call
(R, f) a (minimal) rule-defeasibility diagnosis for D w.r.t
rep iff (R is ⊆-minimal s.t.) rep(D, (R, f)) is consistent.

We define a repair operator that takes a set of rules to-
gether with a function that is intuitively understood as the
contrary function of the rules. For each rule, we introduce a
fresh assumption and add it to the body.
Definition 6.3. Let D = (L,R,A, ) be an ABAF, R ⊆ R,
and f : R → L be a function. We let def (D, (R, f)) =
(L′,R′,A′, ′) be the ABAF where

L′ =L ∪ {dr | r ∈ R}
A′ =A ∪ {dr | r ∈ R}

′ = ∪ {(dr, f(r)) | r ∈ R}
R′ =(R \R) ∪ {head(r)← body(r) ∪ {dr} | r ∈ R}

Example 6.4. In Example 5.4, we used rmr ot delete the
rule cheap hotels← bad reviews due to our doubts in mar-
ket effects. Nevertheless, one might argue that there is some
truth behind supply and demand mechanisms. It could be
reasonable to make the rule defeasible instead of deleting
it. In this particular situation, the reviews might not have
shown effect yet, maybe because they are relatively new;
however, we can expect that the hotel prices will drop when
enough time has passed. We use the operator def :

cheap hotels← bad reviews, dr
The new assumption dr can capture, for instance, that the
rule applies only in the future (dr = time has passed). A
suitable contrary for dr would be a fact (present ←). As-
suming this rule is contained in our knowledge base, we ob-
tain the following attack structure:

paradise islandexpensive hotels

bad reviewsdr

Now, S = {expensive hotels, bad reviews} can be ac-
cepted; dr is attacked by a fact and dr and bad reviews
jointly attack expensive hotels.

Alternatively, also the assumption expensive hotels can
be considered as reasonable contrary of dr; since it shows
that not enough time has passed for the market mechanisms
to come into effect; yielding the following attack structure.

paradise islandexpensive hotels

bad reviewsdr

Again, we can accept S = {expensive hotels, bad reviews}.
In the above example, we exemplified different ways to

utilize def for repairing the knowledge base, yielding the ac-
cepted set of assumptions {expensive hotels, bad reviews}.
The choice of the contrary of the newly introduced seman-
tics is however not uniquely determined. Now, we might
end up in the undesired situation that the repair operator re-
turns a consistent ABAF by accepting the newly introduced
assumptions only.
Example 6.5. Let us again consider our running exam-
ple. Now, let dr = p for some p /∈ ThD(A). Then dr is
unattacked in the modified framework and {dr} is the only
accepted set of the ABAF.

While we do not want to disregard our newly introduced
assumptions entirely, we would preferably be able to accept
assumptions from the original ABAF as well. We therefore
stipulate that a successful repair is required to enable some
of the original assumptions to become acceptable.
Definition 6.6. Let D = (L,A,R, ) be an ABAF and let
σ be a semantics. A diagnosis (R, f) w.r.t. def is successful
iff there is E ∈ σ(def (D, (R, f))) such that E ∩ A 6= ∅.

6.1 Basic Properties
Let us study fundamental properties of our new repair oper-
ator. First note that def satisfies Contrary Persistence (CP).
Fact 6.7 (Contrary Persistence). Let D = (L,A,R, ) be
an ABAF. For each assumption a ∈ A, it holds that p = a in
D iff p = a in rmr(D, R).

Moreover, changing the defeasibility of the rules does not
introduce new self-controversial assumptions. As it was the
case for rmr, the other direction does not necessarily hold.
Lemma 6.8 (Self-Controversial Assumptions). If a ∈
A is self-controversial in def (D, (R, f)) then a is self-
controversial in D.

Turning now to the Effectiveness (E) of our new opera-
tor, we observe many similarities to rmr. In the case of
grounded semantics, however, we additionally require that
an inconsistent ABAF D contains an atom p ∈ ThD(∅)
which can be used to defend some assumption.
Proposition 6.9 (Effectiveness). Let D be an ABAF.
• For σ∈{ad , co, pr},D has a successful diagnosis (R, f),
R ⊆ R, f : R→ L, w.r.t. def iff D is not contradictory.

• For σ = gr ,D has a successful diagnosis (R, f),R ⊆ R,
f : R → L, w.r.t. def iff D is consistent or there is p ∈
ThD(∅) and a rooted attack path with root a s.t. p 6= a.
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• For σ = stb,D has a successful diagnosis (R, f), R⊆R,
f : R→ L, w.r.t. def iff D contains no odd attack cycle.

In contrast to our rule-based operator rmr, a weaker form
of derivation persistence can be established for def .

Example 6.10. Consider our ABAF D from Example 5.18
with assumptions a, b and rule r = (p ← a, b), yielding the
tree-based argument {a, b} ` p. In rmr(D, {r}), we cannot
construct the argument anymore. If we make r defeasible
instead of deleting it, by adding the new assumption dr, we
still can derive p as long as we extend the original set with
dr; i.e., we have {a, b, dr} ` p in def (D, ({r}, f)) (this
holds for an arbitrary contrary function f ).

We extend this idea to the general case and obtain the fol-
lowing result, showing that a form of Derivation Persistence
(DP) and Conclusion Monotonicity (CM) hold for def .

Proposition 6.11 (Weak DP and CM). For an ABAF D =
(L,R,A, ), R ⊆ R, and f : R→ L. it holds that

T `Up in D iff T∪{dr | r ∈ U∩R} `U ′ p in def (D, R, f),

U ′ = (U \R)∪{head(r)← body(r)∪{dr} | r ∈ U ∩R}.
Moreover, the operator def satisfies Tractability (T) since

it is a simple syntactical modification.

Fact 6.12 (Tractability). For any ABAF D = (L,A,R, ),
set R ⊆ R of rules, and function f : R → L, the ABAF
def (D, (R, f)) can be computed in polynomial time.

Overall, the following desiderata are satisfied by def .

Summary 6.13. The operator def satisfies (CP), (SC), and
(T); also, def satisfies weak versions of (DP) and (CM);
moreover, (E) is satisfied under mild conditions.

6.2 Minimal Repairs
We turn to the investigation of minimal repairs. In a nutshell,
we obtain similar results for def as in Section 5.

Theorem 6.14. Deciding whether R ⊆ R is a minimal
successful diagnosis w.r.t. def is i) DP-complete for σ ∈
{ad , co, pr , stb} and ii) coNP-complete for gr .

However, we can again compute a minimal gr -diagnosis
efficiently; thus overall the situations are comparable.

Proposition 6.15. There is a polynomial algorithm that,
on input an ABAF D, returns a minimal successful rule-
defeasibility gr -diagnosis (R, f) or detects if no such exists.

Let us note that in this setting there are various conceiv-
able notions as to how to define a “minimal” diagnosis, apart
from minimality w.r.t. the set of rules. We leave a thorough
investigation of other minimality notions for future work.

6.3 On the Relation of Defeasibility and Deletion
We study the relation between rmr and def . As it turns
out, both repairing notions are closely related. We show that
each diagnosis w.r.t. rmr can be used to obtain a diagnosis
w.r.t. def (for grounded semantics, we additionally require
the existence of some factual atom p in D and rmr(D, R)).
Proposition 6.16. Let D = (L,R,A, ) be an ABAF.

• Let σ ∈ {ad , co, pr , stb}. If R is a diagnosis for D w.r.t.
rmr then there is f : R → L s.t. (R, f) is a successful
diagnosis w.r.t. def .

• Let σ = gr . If R is a diagnosis for D w.r.t. rmr and there
is p ∈ ThD(∅) ∩ Thrmr(D,R)(∅) then there is f :R → L
s.t. (R, f) is a successful diagnosis w.r.t. def .

7 Discussion
In this paper we studied the problem of repairing a seman-
tical collapse in ABA, one of the most prominent struc-
tured argumentation formalisms. After noting that known
results on repairing in AFs are not suitable for our setting,
we developed genuine ABA repairing notions. We inves-
tigated approaches based on i) removing assumptions from
the knowledge base, ii) deleting rules, and iii) making rules
defeasible. To formalize how an intuitive repairing operator
should behave, we developed several desiderata for our set-
ting. We investigated the compliance of our operators with
these desiderata, as well as further theoretical and computa-
tional properties. Moreover, we showed that all of them are
capable of repairing any knowledge base under mild con-
ditions. A noteworthy observation is that finding minimal
diagnosis is computationally hard in all cases; but we iden-
tified gr repairs as a suitable starting point to reduce the
search space for the other semantics.

7.1 Related Work
Reparing inconsistent knowledge bases has been consid-
ered in many non-monotonic reasoning formalisms. The ap-
proach which is most closely related to the present work is
research on repairing in abstract argumentation (Baumann
and Ulbricht 2019). Although AFs and ABA are closely
related, this approach cannot be utilized as we discussed
in Section 3. Moreover, the paper (Baumann and Ulbricht
2019) does not consider any desiderata and only the simple
setting of removing arguments or attacks. Due the structural
simplicity of AFs, however, the authors obtain stronger re-
sults compared to our study in the context of ABA. Their
work also considers structural properties like hitting sets
or splittings (Baumann 2011) which would be worthwhile
studying in ABA as well.

The connection of ABAFs and logic programs (LPs) has
been thoroughly studied (Caminada and Schulz 2017); in
brief, each LP can be seen as instance of ABA where the
default negated literals are the assumptions. Among other
techniques, researchers proposed the removal of rules to re-
pair inconsistent programs (Janota and Marques-Silva 2017;
Sakama and Inoue 2003), similar in spirit to our rule-based
repair operator rmr. Investigating repair operators for LPs
inspired by our assumption- and defeasibility-based tech-
niques could yield valuable insights.

Repairing inconsistent knowledge bases is closely linked
to dynamics in argumentation; specifically, to enforce-
ment (Baumann and Brewka 2010; Baumann 2012; Rap-
berger and Ulbricht 2023) where frameworks are manipu-
lated to enforce acceptance of a given argument. In con-
trast to the present work, enforcement typically focuses on
expanding knowledge bases, as e.g., studied by Cayrol, de
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Saint-Cyr, and Lagasquie-Schiex (2010) and by Oikarinen
and Woltran (2011) in the context of strong equivalence.
Furthermore of relevance in this context is research on for-
getting (Baumann and Berthold 2022; Berthold, Rapberger,
and Ulbricht 2023) where framework modifications are used
to remove information from a given knowledge base.

An orthogonal approach to repairing inconsistent in-
stances in several knowledge representation and reasoning
domains is to weakening semantics, if the considered seman-
tics turns out to be too demanding. Historically, the motiva-
tion for exploring weaker versions of semantics has been,
and continues to be, to enable reasoning when traditional
evaluation methods fail. Prominent examples include the—
by now—classical three-valued semantics (Dung 1995);
more recent approaches are, e.g., semi-stable (Caminada
2006) or weakly admissible semantics (Baumann, Brewka,
and Ulbricht 2022). The primary difference to repairing
knowledge bases through modifications lies in identifying
the issue within the specific instance itself, e.g., caused by
a modeling error. Hence, repairing becomes crucial when
traditional argumentation mechanisms fail.

7.2 Future Work
Our study lays theoretical foundations for repairing in ABA,
with numerous conceivable future work directions. First
of all, the development of further operators and desiderata
would broaden our study. Also, exploring combined opera-
tors can provide greater flexibility. An inconsistent instance
has usually several possible repairs; a crucial question is how
to select the most appropriate one.

In order to ensure applicability, especially with regard to
large ABA instances, efficient algorithms are important. In
the context of ABA, a rich literature on efficient algorithms
is already available (Lehtonen, Wallner, and Järvisalo 2021;
Lehtonen, Wallner, and Järvisalo 2022; Lehtonen et al.
2023), so we are convinced that repairs can also be com-
puted with (modifications of) the available techniques.

A crucial next step is to study repairs for more expressive
fragments of ABA to be able to apply our repairing opera-
tors to non-flat ABA instances or when preferences are taken
into account. Moreover, we believe that our approach can
be extended to further structured argumentation formalisms
like ASPIC+ (Modgil and Prakken 2014), logic-based ar-
gumentation (Besnard and Hunter 2001; Amgoud 2014), or
defeasible logic programming (Garcı́a and Simari 2004).

Reparing with semi-abstract representations Our ob-
servation that results on AF repairing are not applicable is
not very surprising, since this is often the case in dynamic
argumentation scenarios (Rapberger and Ulbricht 2023;
Prakken 2023). Several techniques have been studied to
overcome these issues by extending the AF in a suitable
way (Baumann, Rapberger, and Ulbricht 2023; Rapberger
and Ulbricht 2023; Prakken 2023; Dvorák, Rapberger, and
Woltran 2023; Rocha and Cozman 2022; Bernreiter et al.
2023). These semi-abstract formalisms have the advantage
that they better connect the knowledge base and its corre-
sponding abstract representation. An interesting future work

direction would be to study whether such techniques are also
applicable to our setting. For instance in (Rapberger and Ul-
bricht 2023) each argument is augmented with its claim and
its vulnerabilites which, in the context of ABA, directly cor-
respond to the conclusion resp. the assumption set which is
necessary to entail the conclusion. It would thus be interest-
ing to see whether such techniques might help us in applying
AF research to repairing ABAFs.

Acknowledgements
This work was supported by the German Federal Ministry of
Education and Research (BMBF, 01/S18026A-F) by fund-
ing the competence center for Big Data and AI “ScaDS.AI”
Dresden/Leipzig.

References
Amgoud, L., and Vesic, S. 2009. Repairing preference-
based argumentation frameworks. In Boutilier, C., ed., IJ-
CAI 2009, Proceedings, 665–670.
Amgoud, L. 2014. Postulates for logic-based argumentation
systems. Int. J. Approx. Reason. 55(9):2028–2048.
Baader, F.; Kriegel, F.; Nuradiansyah, A.; and Peñaloza, R.
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