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Abstract
Reasoning with defeasible and conflicting knowledge in an
argumentative form is a key research field in computational
argumentation. Reasoning under various forms of uncertainty
is both a key feature and a challenging barrier for automated
argumentative reasoning. It was shown that argumentative
reasoning using probabilities faces in general high computa-
tional complexity, in particular for the so-called constellation
approach. In this paper, we develop an algorithmic approach
to overcome this obstacle. We refine existing complexity re-
sults and show that two main reasoning tasks, that of comput-
ing the probability of a given set being an extension and an ar-
gument being acceptable, diverge in their complexity: the for-
mer is #P-complete and the latter is # · NP-complete when
considering their underlying counting problems. We present
an algorithm for the complex task of computing the probabil-
ity of a set of arguments being a complete extension by using
dynamic programming operating on tree-decompositions. An
experimental evaluation shows promise of our approach.

1 Introduction
The field of computational argumentation is nowadays a cor-
nerstone of approaches to automated and rational argumen-
tative reasoning within Artificial Intelligence (AI) (Baroni
et al. 2018; Gabbay et al. 2021). Application avenues for
this field include legal reasoning (Prakken and Sartor 2015),
medical applications (Cyras et al. 2021; Fox et al. 2007), and
multi-agent systems (Fan et al. 2014), see, e.g., the overview
given by Atkinson et al. (2017).

Central to computational argumentation are formal ap-
proaches that define how reasoning is carried out. Com-
mon to many forms of argumentative reasoning is the uti-
lization of argumentation frameworks (AFs) (Dung 1995),
in which arguments are represented as vertices, and directed
edges among arguments represent a directed conflict, or at-
tack, relation. Importantly, it oftentimes suffices to abstract
the internal structure of arguments, in order to find accept-
able (sets of) arguments (Besnard et al. 2014).

Argumentation semantics specify which arguments can be
deemed acceptable, and several such semantics exist for dif-
ferent purposes (Baroni, Caminada, and Giacomin 2011). A
prominent property of such semantics is that of admissibil-
ity. A set of arguments is admissible if there are no attacks
between two arguments in the set (i.e., they are conflict-
free), and for each attack from outside the set onto the set

there is a counter-attack from within, defending each argu-
ment in the set. An admissible set containing all arguments
that are defended is called a complete extension.

Towards offering advanced forms of argumentative
reasoning, AFs have been extended in several direc-
tions (Brewka, Polberg, and Woltran 2014). Recently, ap-
proaches that incorporate forms of uncertainty gained trac-
tion in research, e.g., by incorporating weights (Dunne et al.
2011) or allowing for forms of incompleteness (Baumeister
et al. 2018). In probabilistic argumentation (Hunter et al.
2021; Hunter and Thimm 2017), uncertainty is captured by
probabilities of, e.g., arguments and attacks, making them
uncertain. Two main approaches to formalizing probabili-
ties in AFs are the epistemic approach (Hunter 2013) and
the constellation approach (Li, Oren, and Norman 2011).

In the constellation approach, subframeworks of a given
AF constitute possible scenarios, thereby including only a
part of the given AF. Each such subframework is associated
with a probability, stating how probable this particular sub-
framework (argumentative scenario) is. Two main reason-
ing tasks are then to compute the probability that a set is an
extension under a specified semantics, such as complete se-
mantics, and (credulous) acceptability of an argument. The
former is defined as the sum of probabilities of subframe-
works where the set is an extension, and the latter as the
sum of probabilities of subframeworks where there is an ex-
tension containing the specified argument.

Complexity of probabilistic reasoning under the constel-
lation approach was analyzed in-depth (Fazzinga, Flesca,
and Parisi 2015; Fazzinga, Flesca, and Furfaro 2018; Fazz-
inga, Flesca, and Furfaro 2019; Alfano et al. 2023). The
above two problems are FP#P-complete, e.g., for the com-
plete semantics and when the probabilities are compactly
represented as marginal probabilities of arguments and at-
tacks with independence assumptions. Intuitively, the com-
plexity results indicate that it is very challenging to compute
the results: #P (or FP#P) hard problems are presumed to be
very difficult problems to solve. For instance, the archetyp-
ical #P-complete problem is that of counting satisfying
truth-value assignments of a Boolean formula (Gomes, Sab-
harwal, and Selman 2021). Counting and probabilities are
indeed connected, e.g., if each subframework has the same
probability, the reasoning tasks above amount to counting
the subframeworks satisfying the chosen criteria.
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The high computational complexity was likely so far a
major barrier for development of algorithmic approaches
and systems for solving tasks in probabilistic argumentation.
To the best of our knowledge, there are not many algorithms
and systems for the constellation approach for AFs for the
computationally hard tasks. As an exception, Fazzinga et
al. (2019) provide algorithms for bipolar frameworks (Am-
goud et al. 2008), yet for probabilistic AFs their results do
not apply to FP#P-complete reasoning tasks. Moreover, Al-
fano et al. (2023) present an approximation algorithm for a
variant of acceptability of an argument. In this paper we
take up this challenge and develop an exact algorithmic ap-
proach to probabilistic argumentation frameworks under the
constellation approach.

Our main contributions are as follows.
• We first refine existing complexity results stating that

computing the probability of a set being an extension
and acceptability share the same complexity. We show,
using counting complexity classes, that their underlying
counting problems differ in their complexity: the former
problem is #P-complete, for the complete semantics, and
the latter is # · NP-complete for admissible, complete,
and stable semantics, indicating a jump in the counting
complexity hierarchy. Moreover, even when restricting to
acyclic attack structures, the latter problem remains #P-
complete.

• Next we look into algorithms to solve these tasks. To-
wards efficient reasoning, we give results in preprocessing
probabilistic AFs to simplify given instances.

• Inspired by their capability of solving #P-hard problems,
we develop a dynamic programming algorithm for prob-
abilistic AFs utilizing tree-decompositions (Bodlaender
1993). Our algorithm is capable of solving the FP#P-
complete problem of computing the probability of a set
being a complete extension.

• We experimentally evaluate a prototype of our algorithm,
which is publicly available under an open license, and
show promise of our approach that solves PAFs up to 750
arguments, depending on the attack-structure.

• Finally, we discuss extensions of our approach, e.g., to
incorporate dependencies among arguments, relaxing in-
dependence assumptions.

2 Background
We recall main definitions of argumentation frameworks
(AFs) (Dung 1995) and probabilistic argumentation (Hunter
et al. 2021; Hunter and Thimm 2017) under the constellation
approach (Li, Oren, and Norman 2011). Moreover, we recap
the notion of tree-width and tree-decompositions (Bodlaen-
der 1993) required for our work.
Definition 1. An argumentation framework (AF) is a pair
(A,R) where A is a finite set of arguments and R ⊆ A×A
is an attack relation.

For a given AF F = (A,R), if (a, b) ∈ R, then a attacks
b (in F ). Similarly, a set S ⊆ A attacks b ∈ A if there is an
a ∈ S that attacks b (in F ).

For specifying possible AFs, we make use of the notion
of subframeworks. A subframework of an AF F = (A,R)
is an AF F ′ = (A′, R′) with A′ ⊆ A and R′ ⊆ R.
Note that F ′ is an AF, thus R′ ⊆ A′ × A′ holds. The
set of all subframeworks is denoted by F(F ) = {F ′ |
F ′ a subframework of F}.

Argumentation semantics (Dung 1995; Baroni, Cami-
nada, and Giacomin 2011) on AFs are defined via functions
σ(F ), for a given AF F = (A,R), that assign subsets of the
arguments as σ-extensions, i.e., σ(F ) ⊆ 2A. Central to AF
semantics is the notion of defense.

Definition 2. Let F = (A,R) be an AF. A set of arguments
S ⊆ A defends an argument a ∈ A if it holds that whenever
(b, a) ∈ R there is a c ∈ S with (c, b) ∈ R.

We next define main semantics on AFs.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is
conflict-free (in F ), if there are no a, b ∈ S, s.t. (a, b) ∈ R.
We denote the collection of conflict-free sets of F by cf (F ).
For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ stb(F ) iff S attacks each a ∈ A \ S;
• S ∈ adm(F ) iff S defends each a ∈ S;
• S ∈ com(F ) iff S ∈ adm(F ) and whenever a ∈ A is

defended by S, then a ∈ S; and
• S ∈ grd(F ) iff S ∈ com(F ) and there is no T ∈ com(F )

with T ⊊ S.

We refer to subsets of arguments that are in σ(F ) as σ-
extensions and also as an extension under a semantics σ, for
σ ∈ {stb, adm, com, grd}.

For developing our algorithms later on it will be useful to
also consider the labeling-based definitions of the argumen-
tation semantics (Caminada and Gabbay 2009).

Definition 4. Let F = (A,R) be an AF. A labeling L :
A → {I,O, U} in F is a function assigning a label to each
argument in F .

Intuitively, I (“in”) signals accepting the argument in a
labeling, O (“out”) is interpreted as attacked by accepted
arguments, and U (“undecided”) takes neither stance. We
sometimes use partial labelings, which are labelings where
L is partial. To distinguish extensions and labelings under
a semantics, we use σ and σLab, respectively, unless clear
from the context. We sometimes view labelings as triples,
arguments assigned I , O, and U , respectively.

Definition 5. Let F = (A,R) be an AF. For a labeling L in
F it holds that

• L ∈ admLab(F ) iff for each a ∈ A we find that
– L(a) = I implies that L(b) = O if (b, a) ∈ R and
– L(a) = O implies ∃(b, a) ∈ R with L(b) = I ,

• L ∈ comLab(F ) iff L ∈ admLab(F ) and for a ∈ A
L(a) = U implies ∃(b, a) ∈ R with L(b) = U and
∄(b, a) ∈ R with L(b) = I , and

• L ∈ stbLab(F ) iff for all a ∈ A it holds that L(a) ̸= U
and L ∈ admLab(F ).

There is a direct correspondence between the extension-
based and labeling-based view. For a given AF F = (A,R)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

586



and S ∈ cf (F ), the corresponding labeling LS is defined
for a ∈ A by LS(a) = I if a ∈ S, LS(a) = O if ∃(b, a) ∈
R with b ∈ S, and LS(a) = U if a /∈ S and ∄(b, a) ∈
R s.t. b ∈ S. Conversely, for a given labeling L in F , the
corresponding extension SL is defined as {a | L(a) = I}.
We recall the main correspondence results (Caminada and
Gabbay 2009, Theorem 9 and Theorem 10).
Proposition 1. Let F = (A,R) be an AF and σ ∈
{com, stb}.
• If S ∈ σ(F ) then LS ∈ σLab(F ) and
• if L ∈ σLab(F ) then SL ∈ σ(F ).
Example 1. Consider an AF F = (A,R) with A = {a,
b, c, d, e} and attacks R = {(a, b), (a, d), (b, a), (b, c),
(c, b), (c, d), (d, c), (d, a), (d, e), (e, d)}, see also Figure 1
(we explain the difference between solid and dashed compo-
nents later). In this AF, the complete extensions are given
by com(F ) = {∅, {e}, {b}, {b, e}, {b, d}, {a, c, e}}. For in-
stance, set E = {a, c, e} is complete since there are no at-
tacks among these arguments (conflict-freeness), all attacks
outside are countered (admissibility) and all defended argu-
ments are included. A corresponding complete labeling is
LE = {a 7→ I, b 7→ O, c 7→ I, d 7→ O, e 7→ I} which is
also a stable labeling.

We move on to probabilistic argumentation frameworks
under the constellation approach (Li, Oren, and Norman
2011). A probability distribution function (pdf) for an AF F
is a function P : F(F ) → [0, 1] s.t.

∑
F ′∈F(F ) P (F ) = 1.

Definition 6. A probabilistic argumentation framework
(PAF) is a triple (A,R, P ) where (A,R) is an AF and P
is a pdf over F(F ).

For the main part of the paper, we follow the approach
dubbed “IND”, where P is defined via the marginal prob-
abilities of arguments and attacks, by assuming indepen-
dence, as defined by (Li, Oren, and Norman 2011; Hunter
2013; Fazzinga, Flesca, and Furfaro 2019). We discuss ex-
tensions in Section 7. That is, given a PAF F = (A,R, P ),
P : A ∪ R → [0, 1] assigns probabilities to arguments and
attacks. For each F ′ = (A′, R′) ∈ F(F ) the probability of
the subframework F ′ is P (F ′) defined as∏
a∈A′

P (a) ·
∏

a∈A\A′

1− P (a) ·
∏
r∈R′

P (r) ·
∏

r∈D\R′

1− P (r)

with D = R ∩ (A′ ×A′) the set of all attacks in R between
arguments in A′. That is, the probability of F ′ is the product
of P (a) if a ∈ A′ is present, 1 − P (a) whenever a was
“removed” from A (is in A \ A′), and for each attack r, we
use P (r) if the attack is present in F ′ and use 1−P (r) only
if the attack was removed, but could be present (i.e., both
endpoints are in A′).

By definition, P (x) = 0 indicates that subframeworks
with x (either argument or attack) have 0 probability.
W.l.o.g., we assume that all arguments and attacks with zero
probability are removed from a given PAF F . For arguments
and attacks that are certain (i.e., P assigns probability one),
we can restrict our focus to only those subframeworks that
contain a certain argument and a certain attack if both end-
points of the attack are present. Towards this, we extend

a

b c

d e

Figure 1: A PAF with certain (solid lines) and uncertain (dashed
lines) arguments and attacks.

the notion of subframeworks via FP (F ) = {(A′, R′) ∈
F(F ) | ∀a ∈ A,P (a) = 1 implies a ∈ A′ and ∀(a, b) ∈
R, {a, b} ⊆ A′, P ((a, b)) = 1 implies(a, b) ∈ R′}. That is,
all subframeworks in FP (F ) agree on the certain part (for
attacks if both endpoints are there).
Example 2. Let us continue Example 1 and include prob-
abilities to the AF F = (A,R) (Figure 1). Let F ′ =
(A,R, P ) be a PAF, with P (a) = 0.8, P (c) = 0.9,
P ((a, b)) = 0.7, P ((d, e)) = 0.5, P ((e, d)) = 0.3, and all
other probabilities equal to 1 (solid lines in the figure). This
PAF gives rise to 24 subframeworks in FP (F

′). We list all
subframeworks in the supplement. Consider the subframe-
work F ′′ = ({b, c, d, e}, {(b, c), (c, b), (d, c), (c, d), (e, d)}.
We have P (F ′′) = P (b) · P (c) · P (d) · P (e) · (1− P (a)) ·
P ((b, c)) · P ((c, b)) · P ((d, c)) · P ((c, d)) · P ((e, d)) · (1−
P ((d, e)) = 1 · 0.9 · 1 · 0.2 · 1 · 1 · 1 · 1 · 0.3 · 0.5 = 0.027.

The reasoning tasks we focus on are computing the prob-
ability of a set of arguments being an extension (P -Ext) and
the probability of an argument being credulously accepted
(P -Acc) (Fazzinga, Flesca, and Furfaro 2019). For concise-
ness, we shorten the latter and simply say “accepted”.
Definition 7. Let F = (A,R, P ) be a PAF, σ ∈ {adm , com ,
stb} a semantics, and a ∈ A an argument. The probability
that S ⊆ A is a σ-extension (in F ) is

P ext
σ (S) =

∑
F ′∈F(F ),S∈σ(F ′)

P (F ′)

and the probability of accepting a under σ (in F ) is

P acc
σ (a) =

∑
F ′∈F(F ),∃S∈σ(F ′),a∈S

P (F ′).

In words, the probability of a set of arguments being a σ-
extension is defined as the sum of probabilities of subframe-
works for which it holds that they have S as a σ-extension.
Similarly, the probability that a is accepted under σ in F is
the sum of probabilities of subframeworks where there is a
σ-extension containing the argument.
Example 3. Continuing Example 2, let S = {a, c, e}, and
the query argument be e. We obtain P ext

com({a, c, e}) = 0.72
by summing the probabilities of all subframeworks in which
S is a complete extension. Similarly we have P acc

com(e) =
0.98 by summing the probabilities of all subframeworks in
which there exists a complete extension with argument e.

We recall main complexity results. For background on
complexity, we refer the reader to standard textbooks on
complexity (Papadimitriou 2007). Important for proba-
bilistic reasoning are counting complexity classes. A ma-
jor complexity class for counting is #P that contains all
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functions that count the number of accepting paths of a
non-deterministic polynomial-time Turing machine (Valiant
1979). It was shown (Fazzinga, Flesca, and Parisi 2015;
Fazzinga, Flesca, and Furfaro 2018) that it is FP#P-
complete to compute the probability of a set of arguments
being a complete extension and the problem of computing
the probability of an argument being accepted under admis-
sibility, complete and stable semantics, has the same com-
plexity. The probability of a set of arguments being admis-
sible or stable, on the other hand, can be computed in poly-
nomial time.

Tree-Decompositions and Tree-Width Intuitively, tree-
width measures a distance of an undirected graph G =
(V,E) to being a tree. A tree-decomposition of a graph G
can be, on the one hand, used for measuring tree-width and,
on the other hand, is a useful data structure for computation.
For a given PAF F = (A,R, P ), we associate an undirected
graph FG = (V,E) with F in a direct way: V = A and
E = R, but we interpret E as undirected edges.

For a given tree T = (V,E), we define the shorthand
TN = V for the nodes in T . A tree-decomposition of an
undirected graph G = (V,E) is a pair (T, (Bt)t∈TN

), with
T being a rooted tree and each Bt ⊆ V such that the fol-
lowing properties are satisfied. A Bt is also called a “bag”
(containing vertices of G). Every vertex x ∈ V is part of a
bag Bt, i.e., x ∈ Bt for some t ∈ TN . For every (x, y) ∈ E
there is a bag Bt, t ∈ TN , such that {x, y} ⊆ Bt. The set
{t | x ∈ Bt} induces a subtree of T , for each x ∈ V . In
brief terms, a tree-decomposition is a tree such that its nodes
(the bags) are connected and all vertices of the original graph
G are contained in some bag. The second condition ensures
that each edge is present in at least one bag. The third condi-
tion, often referred to as the connectedness condition, states
that whenever two bags Bt and Bt′ contain a vertex x, then
on the path between those two bags, we encounter x in all
the bags.

The width of a tree-decomposition (T, (Bt)t∈TN
) is the

maximum number of vertices in bags minus one, i.e.,
max{|Bt| | t ∈ TN} − 1. The tree-width of an undi-
rected graph G = (V,E) is the minimum width of all
tree-decompositions of G. We give illustrations of tree-
decompositions in Section 5.

3 Complexity Results for Probabilistic AFs
We investigate the complexity of probabilistic reasoning. In
particular, we present novel results for counting variants of
probabilistic reasoning.

We refine existing results, and show that the complexity of
problems of computing the probability of a set of arguments
and acceptability of an argument diverges on their underly-
ing counting problems. Towards our result, we also consider
the counting complexity classes # · P and # · NP. These
“dot” classes are from a hierarchy of counting complexity
classes (Hemaspaandra and Vollmer 1995), and are defined
as follows. A counting problem is defined via a witness
function w : Σ∗ → P<ω(Γ∗) that assigns, given a string
from alphabet Σ a collection of (finite) subsets from alpha-

bet Γ. The task is to count |w(x)|, given x. Additionally, we
require that each witness y ∈ w(x) is polynomially bounded
by x. A counting problem is in # · C, for a class of decision
problems C, if given x and y the problem to decide whether
y ∈ w(x) is in C. For illustration, the archetypical # · P-
complete (as for #P) is #SAT, with the witness function
assigning satisfying truth-value assignments to a formula. It
holds that #P = # · P, i.e., we can interchangeably use
these two classes.

Let us consider the following counting problems, for a
given PAF F = (A,R, P ) and semantics σ:

• given a set of arguments S ⊆ A, count the number of
subframeworks F ′ ∈ FP (F ) for which we find that S is
a σ-extension in F ′, and

• given an argument a ∈ A, in how many subframeworks
F ′ ∈ FP (F ) is it the case that there is an S ∈ σ(F ′) with
a ∈ S?

Example 4. Let F = (A,R, P ) be a PAF with all at-
tacks being certain and all arguments having probability
0.5. By definition, for any F ′ ∈ F(F ) it holds that P (F ′) =∏

a∈A′ 0.5 ·
∏

a∈A\A′(1 − 0.5) = 0.5|A|. If there are n

many subframeworks for which a specific S ⊆ A is a σ-
extension, then the probability of S being a σ-extension in
F is n · 0.5|A|, which is fully determined by n.

As the example suggests, counting the number of sub-
frameworks satisfying the above criteria acts as special case
of computing probabilities of a set being an extension or of
the acceptability of an argument. In the general case, as
recently studied in more detail (Fazzinga et al. 2024), the
counting variants and the probabilistic problems are not in
a very direct relation to each other, from a computational
viewpoint.

We start with the problem of counting the number of sub-
frameworks where a given set is an extension. While we
will show #P-completeness (# · P-completeness), we first
argue that this problem is not #P-hard under parsimonious
reductions. The type of reductions are important for count-
ing complexity classes, since closure of counting classes un-
der some types of reductions is not immediate (Durand, Her-
mann, and Kolaitis 2005). A reduction is parsimonious if
a counting problem is transformed to another in polynomial
time and the number of solutions (cardinality of their respec-
tive witness sets) is preserved exactly.

By a result of Fazzinga, Flesca, and Furfaro, Theorem
2 (2020), it holds that one can check in polynomial time
whether some subframework has a queried set as a com-
plete extension. This directly prevents existence of a par-
simonious reduction in our case, under complexity theoretic
assumptions. If there were a parsimonious reduction from
#SAT to this problem, one could solve SAT in polynomial
time: one can reduce a Boolean formula to the current prob-
lem and in polynomial time find one suitable subframework,
which in turn implies that there is a satisfying truth value
assignment of the formula. This gives rise to the following
result.

Proposition 2. Unless P = NP, there is no parsimonious
reduction from #SAT to counting the number of subframe-
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works of a given PAF that have a given set of arguments as
a complete extension.

Nevertheless, we show hardness for a more relaxed no-
tion, Turing reductions, in which a counting problem A is
reduced to B by A being solvable in polynomial time, given
that we can use B as an oracle. We remark that, as dis-
cussed by Durand, Hermann, and Kolaitis (2005), for #P
it is unclear whether closure under Turing reductions holds.
We conjecture that other suitable types of reductions where
closure was proven (like subtractive reductions proposed
by Durand, Hermann, and Kolaitis, 2005) can be applied
here. In any case, membership in #P shows the result for
diverging complexity we aim for.
Theorem 3. It is #P-complete, under Turing reductions,
to count the number of subframeworks where a given set of
arguments is a complete extension in probabilistic AFs.

For the problem of counting the number of subframe-
works where a given argument is accepted, under a seman-
tics, we show # ·NP-completeness, under parsimonious re-
ductions, for the main semantics considered in this work.
Theorem 4. It is # · NP-complete, under parsimonious re-
ductions, to count the number of subframeworks where a
given argument is accepted in probabilistic AFs under sta-
ble, complete, and admissible semantics.

In our reduction one part of the constructed PAF is, in fact,
acyclic, i.e., the directed graph (A,R) in the PAF is acyclic.
This leads to the following result.
Theorem 5. It is # · P-complete, under parsimonious re-
ductions, to count the number of subframeworks where a
given argument is accepted in probabilistic acyclic AFs un-
der grounded, stable, complete, and admissible semantics.

That is, even when restricted to an acyclic attack structure,
#P-hardness persists, which is in stark contrast to other ab-
stract argumentation formalisms (Dvořák and Dunne 2018).

We next delve into positive complexity results. We show
“fixed-parameter tractability”, under the parameter tree-
width.

An algorithm is a fixed-parameter algorithm (Downey and
Fellows 1999) w.r.t. parameter k for a given problem, if the
algorithm solves a problem in time O(f(k) · nc), with n the
size of an instance, c a constant, k a non-negative integer k,
and f a computable function. Intuitively, the running time
may depend exponentially on the parameter k and polyno-
mially on the instance size. Our algorithm to be presented
in Section 5 witnesses fixed-parameter tractability, under the
parameter tree-width. In particular, the data structures gen-
erated are bounded by the size of bags (i.e., tree-width).
Theorem 6. There is a fixed-parameter algorithm, w.r.t.
the parameter tree-width, for the problem of computing the
probability of a set of arguments being a complete extension.

4 Preprocessing Probabilistic AFs
Here we look at preprocessing for PAFs. In general, prepro-
cessing is seen as a vital component for solving hard prob-
lems, e.g., in SAT solving (Biere, Järvisalo, and Kiesl 2021)
to simplify instances.

a
I

b

c
O

d
I

e

Figure 2: Preprocessing a PAF

Example 5. Consider the PAF shown in Figure 2 with solid
components certain and dashed ones uncertain. Since ar-
gument a is unattacked and certain, all subframeworks in
FP (F ) contain a and in each complete labeling a is labeled
“in”. Argument b is labeled uncertain even if attacked by
a certain, unattacked argument, since the attack itself is un-
certain. That is, there is the possibility of having a sub-
framework with b labeled I in a complete labeling (those
without the attack (a, b)). On the other hand, argument c
can safely by labeled “out”, whenever c is in a subframe-
work: then also a is present and both attacker and attack
are present. Argument d is uncertain, but can safely be la-
beled I in each subframework: in case there is the attacker
c and attack (c, d), then c will be labeled O. Finally, argu-
ment e is attacked by d, if d is present, and d is I , however,
d might not be there at all. Thus there is no fixed stance
towards e.

Formally, let us define A(F ), for a given PAF F =
(A,R, P ) and a given partial labeling L, that returns a par-
tial labeling L′ as follows. L′(a) is I if for all attacks of
(b, a) in F it holds that L(b) = O. L′(a) is O if there is
an attack (b, a) in F such that P (b) = 1, P (b, a) = 1 and
L(b) = I . We have to label an argument “in” if the argument
is present in a subframework and for all attacks (if existing)
it is clear that they are “defeated”. An argument is “out”
if a certain argument labeled I and attack designate it to be
out. Let L be the least-fixed point of this function. It holds
that for P -Ext and a given set S, the probability is 0 if S
contains an argument labeled “out” in L. Moreover, if an
argument a /∈ S is labeled “in” by L, then (i) if a is certain,
the probability is 0 and (ii) if a is uncertain only subframe-
works without a can have S as a complete extension. For
P -Acc an argument a labeled “out” in L has 0 probability.

5 Tree-Decomposition-based Algorithm
In this section we develop our algorithm for computing the
probabilities of a given set being an extension (P -Ext). We
illustrate our algorithms mainly on the complete semantics,
yet our algorithms can be utilized also for admissible sets
and stable semantics. Nevertheless, under complete seman-
tics the considered problem is FP#P-complete.

Our algorithm operates on tree-decompositions, more
specifically so-called nice tree-decompositions (Bodlaender
and Koster 2008), for a given PAF F = (A,R, P ). A nice
tree-decomposition is a tree-decomposition where, addition-
ally, we find that each node is one of the following types:
• the root node or a leaf node with empty bags,
• a join node, which is a node t with exactly two children,
t1 and t2, such that Bt = Bt1 = Bt2 ,

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

589



∅

{d}

{c, d}

{a, c, d}

{a, c, d}

{a, c}

{a, b, c}

{a, b}

{a}

∅

{a, c, d}

{a, d }

{d}

{d, e}

{d}

∅0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

F : ({a, c, d}, {ad, cd, da, dc}),
L : ({a, c}, {d}, ∅), lw : ({d}, ∅), p : 0.504

. . .

1

2

τ12

F : ({a}, ∅), L : ({a}, ∅, ∅), lw : (∅, ∅), p : 0.81

τ1

F : ({c, d}, {cd, dc}), L : ({c}, {d}, ∅), lw : ({d}, ∅), p :0.72

τ13

F : ({a, c, d}, {ad, da, cd, dc}),
L : ({a, c}, {d}, ∅), lw : ({d}, ∅), p : 0.72

. . .

1

τ5

F : ({a, c, d}, {ad, cd, da, dc}),
L : ({a, c}, {d}, ∅), lw : ({d}, ∅), p : 0.504
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Figure 3: Nice tree decomposition of the PAF of Exam-
ple 2 and corresponding tables (partial) for the computation of
P ext
com({a, c, e}).

• an introduction node, which is a node t with exactly one
child t′ such that Bt = Bt′ ∪ {x} and x ∈ A, or

• a forget node, which is a node t with exactly one child t′

such that Bt = Bt′ \ {x} and x ∈ A.

The first condition (empty bags for the root and leaf nodes)
is not in the original definition of nice tree-decompositions,
but can be imposed directly and is useful for developing our
algorithm. A join node has two children and all share the
same bag, introduction and forget nodes each have one child
and either introduce exactly one or forget exactly one argu-
ment. Given a (not nice) tree-decomposition, a nice tree-
decomposition can be obtained in linear time (Kloks 1994).

Example 6. The PAF from Example 2 can be represented by
the nice tree-decomposition as shown in Figure 3. Here each
node has a unique identifier, e.g., the root has the identifier
15. Node 1 introduces argument a, node 4 forgets argument
b, and node 12 is a join node.

For a constant k, there is a linear-time algorithm
that checks whether a given undirected graph has tree-
width k, and if reporting positively, also can return a
tree-decomposition of minimum width (Bodlaender 1996).
Practically, we employ a library (Abseher, Musliu, and
Woltran 2017) using heuristics for the generation of a tree-
decomposition.

The algorithm we develop performs a bottom-up com-
putation on a nice tree-decomposition. Starting from the
leaves, for each bag a table of rows is computed. Each row
can be seen as a partial solution, applicable to the part of the
PAF that was visited so far.

Algorithm 1 is the main algorithm, which calls sub algo-
rithms depending on the type of the current node. In Line 1
we construct a nice tree-decomposition of the given PAF and
initialize an empty table (set) for each bag in Line 2. We go

over all bags in post-order in the loop in Line 3. After the
case distinction for each type of nodes, we return the proba-
bility given in (∅, ∅, p) in the root of the tree-decomposition.
There is only one such row in each computation.

For a given (input) PAF F = (A,R, P ), we make use of
some auxiliary definitions and shorthands. The main datas-
tructure of our algorithms is a row (s, w, p) in a table, which
is composed of a structure s, a witness w, and a probability
p ∈ [0, 1]. A structure s = (F ′, L′) is a pair of a subframe-
work F ′ of FP (F ) and a labeling L′ in F ′. What we call a
witness w contains a labeling-witness lw, which is a partial
labeling in F ′.

Intuitively, if a row (s, w, p) is computed in a table τt for
node t and bag Bt, this means that the sum of probabilities
of all “completions” of s to arguments in B≤t that respect
the witness w is equal to p. With B≤t =

⋃
t′∈T ′ Bt′ we

define the union of all bags in the subtree T ′ with root t.
For instance, B≤4 of Figure 3 is {a, b, c}. A completion of a
structure s to B≤t (all arguments “seen”) are all completions
of the current subframework to subframeworks containing
arguments and attacks in B≤t (and taking certain parts into
account), as well as all labelings that extend the one in s up
to B≤t. These labelings have to satisfy that those arguments
in S that are in B≤t (i.e., S ∩B≤t) are labeled I , and for all
arguments already seen but not in the current bag (Bt \B≤t)
the conditions of being complete are satisfied. For the ar-
guments inside the bag, whenever the label-witness assigns
“out” or “undecided” to an argument, there must be a reason.

This means, if one extends the structure s in all possible
ways up to B≤t that still adhere to the conditions of sub-
frameworks of PAFs and complete labelings for those argu-
ments outside the bag, all these structures are “valid” sub-
frameworks to sum. Since, by construction, the root node
has an empty bag, and all arguments have been traversed
before, all subframeworks have been considered and their
labelings where S is complete (there is exactly one such la-
beling in each subframework), the result in the root node is
the probability of S being a complete extension.

A witness w is used to “remember” facts that decide
whether the row can be associated to a complete labeling.

We next make the above intuition more formal. Let
r = (s, w, p) be a row in τt for node t with s = (F ′, L′)
and w = lw, for a given PAF F = (A,R, P ). De-
fine that F ′′ = (A′′, R′′) is an expansion of F ′ and Bt if
A′ ⊆ A′′, R′ ⊆ R′′, (Bt \ A′) ∩ A′′ = ∅, and no at-
tacks possible via arguments in Bt that are not in R′ are

Algorithm 1 P-Ext(F = (A,R, P ), σ, S)

1: Compute nice TD (T, (Bt)t∈TN
) of (A,R)

2: Let τt := ∅ for each t ∈ TN

3: for t ∈ TN in post-order
4: if t is a leaf set τt := {(∅, ∅, 1)}
5: if t of type x ∈ {Intro,Forget} with child t′

6: τt := x(τt′ , Bt, S)
7: if t of type Join with children t1, t2
8: τt := Join(τt1 , τt2 , Bt, S)
9: return p with (∅, ∅, p) ∈ τt with t the root
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in R′′. Let F≤t = (A≤t, R≤t) ∈ FP (F ) be the sub-
framework s.t. A≤t = B≤t and R≤t = R ∩ A≤t. Then
F≤t

P (F ) = {F ′′ ∈ FP (F≤t) | F ′′ expands F ′ and Bt} is
the set of all subframeworks with contents restricted to B≤t

expanding F ′.
For L′, its completion to A′′ ⊇ A′ is a labeling that as-

signs the same labels to those in A′ as L′ and some label-
ing to those in A′′ \ A′. A labeling L′′ on a subframework
F ′′ is said to be partially complete w.r.t. bag Bt, set S, and
labeling-witness lw if for each argument a in F ′′ the fol-
lowing holds. If a ∈ B≤t \ Bt then L(a) = I implies all
attackers in F ′′ are O, L(a) = O implies there is an at-
tacker in F ′′ that is I , and L(a) = U implies no attacker
is I and there is a U attacker. For arguments a ∈ Bt, we
require that L(a) = I implies that all adjacent arguments
are O, lw(a) = O iff there is an attacker that is I in F ′′,
and lw(a) = U iff there is a U attacker and no attacker is
I . Finally each argument in S must be assigned “in”. That
is, the conditions for complete labelings is satisfied for ar-
guments already “seen” but forgotten, and for arguments in
the current bag, we only require (i) conflict-freeness and (ii)
if the labeling-witness specifies an argument to be “out” or
“undecided”, there is a justification.

Let Xr be the set of pairs (F ′′, L′′) such that F ′′ ∈
F≤t

P (F ) and L′′ is partially complete in F ′′ w.r.t. bag Bt,
set S and lw. It holds that p is the sum of all subframe-
works in Xr (restricted to components in B≤t). Intuitively,
Xr contains all “compatible” subframeworks that respect the
witness, the current labeling, and the queried set S, but re-
laxing the conditions for the arguments inside the bag, since
adjacent arguments might not be traversed yet.

Introduction Nodes Algorithm 2 presents our approach to
introduction nodes t. The child node of t is t′ and τ ′ con-
tains the rows for t′. Intuitively, for each row r′ = (s, w, p)
from t′ we compute new rows r, by either adding the intro-
duced argument a or not to the subframework in s (Line 2
and Line 5). If the argument was added, then for each possi-
ble way of labeling the new argument (Line 3) we compute
new labelings and update witnesses.

Given a PAF F = (A,R, P ), as a shorthand, we define
Ss+a(F ), for a structure s = (F ′, L′) with F ′ = (A′, R′),
an argument a, to be all structures that may extend s with a
new argument a. We define the set of AFs extending F ′ by
adding a and possibly incident attacks.

F ′
+a = {F ′′ = (A′′, R′′) ∈ FP (F ) | A′′ = A′ ∪ {a},

R′ ⊆ R′′ ⊆ R′ ∪ ({(a, x), (x, a) | x ∈ A′′} ∩R)}

Then Ss+a(F ) is equal to {(F ′′, L′′) | F ′′ ∈
F ′
+a, L

′′ completion to F ′′}. That is, Ss+a contains all pairs
with an AF F ′′ and labeling L′′ such that F ′′ additionally
contains a, all arguments and attacks from F ′, and may add
attacks of a (restricted to those originally in R).

When adding an argument a, the probability is updated by
multiplying with P (a) and considering the factors for each
added attack in the structure (Add(s, a)) and attack from R

not added (Rem(s, a)).

UpP(s, a, p) = p · P (a) ·Atts(s, a)

Atts(s, a) =
∏

r∈Add(s,a)

P (r) ·
∏

r∈Rem(s,a)

(1− P (r))

The witnesses are updated as follows: UpW(s, w) = w ∪
{x 7→ O | (y, x) ∈ R,L(y) = I} ∪ {x 7→ U | (y, x) ∈
R,L(y) = U}. In brief, we store whenever an argument can
be assigned to “out” or “undecided”: if there is an attacked
argument that is “undecided” then its attacker must also be
“undecided”, as required for the complete semantics. An
“in” attacker is taken care of by requiring in introduction
nodes all adjacent arguments to be “out”, as specified in the
following.

The condition σintro(s) ensures that the labelings in s are
conflict-free, i.e., not adjacent arguments are labeled “in”
and arguments adjacent to ones labeled I are labeled O. For
a resulting set of rows τ , the function checkAcceptance(τ)
filters those rows where S is not labeled I . In practice, this
filter can be applied earlier (during row construction). For
the sake of readability, we opted to show this filter here.

Example 7. Consider introduction node 1 from Example 6
(Figure 3), and its table τ1. The unique r′ ∈ τ0 is the special
case (∅, ∅, 1). There are two possibilities in terms of sub-
frameworks: adding a or not. Since a ∈ S, the latter is fil-
tered out. When adding a, we consider new labelings to con-
struct. In this instance, only labeling a to be “in” is permit-
ted, since a ∈ S. The probability is then p = 1 · 0.8 = 0.8.
Finally, the labeling-witness stays empty.

Consider a row r = (s, w, p) created in an introduction
node. Then there was previously a row r′ = (s′, w′, p′) from
which r was constructed. If r′ satisfies that p′ is the sum of
probabilities of subframeworks in Xr′ (as defined above),
then also p in r satisfies the same property: either a was
not added (then it is direct that subframeworks in Xr are the
same as in Xr′ and we multiply with (1 − P (a)) and in the
other case, we created a subframework with a, some incident
attacks, and a labeling that satisfies conflict-freeness. In the
latter case, since the bag only increased, the arguments in
the bag are not yet fully checked for being complete.

Forget Nodes Let us move to forget nodes (Algorithm 3).
The main idea here is that an argument a is “forgotten” in a
bag (compared to the bag of the unique child in the nice tree-
decomposition). This is the point in the algorithm where we
can verify that the label assigned to a does not violate the
conditions for being complete, since all adjacent arguments

Algorithm 2 Introduction(τ ′, Bt, S)

1: for (s, w, p) ∈ τ ′

2: if P (a) ̸= 1 then τ := τ ∪ {(s, w, p · (1− P (a)))}
3: for s′ ∈ Ss+a(F )
4: if σintro(s

′) then
5: τ := τ ∪ {(s′, UpW(s′, w), UpP(s′, a, p))}
6: return checkAcceptance(τ, S)
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were traversed already. The witness-label lw for a enables
us to check conditions for a.

Say we are in node t with child node t′. Consider a row
from t′ as r′ = (s′, w′, p′) with s′ = (F ′, L′). If we assume
that p′ is the sum of probabilities of subframeworks in Xr′ ,
then to compute a new row r = (s, w, p), based on r′, we
need to make sure that for all subframeworks and labels as-
sociated with Xr we get that (i) the now forgotten argument
satisfies the complete conditions and (ii) that we capture all
subframeworks with the new row.

To check the conditions for partial completeness, if
L′(a) = I , then all attackers in subframeworks in Xr′ are la-
beled “out”, by assumption of correctness of the child node.
If L′(a) = O, we need to make sure that there is an “in”
attacker. This is the case for all subframeworks in Xr′ if
lw(a) = O. Analogously, we verify the partial complete-
ness condition for L′(a) = U . If one of the checks fails, the
row r′ is discarded, which we denoted by σforget(s, w, a).
By s−a and w−a we denote the removal of a from structure
(and incident attacks) and witness.

Finally, after forgetting an argument in rows r′, multi-
ple rows can coincide on their (s, w) part: these need to be
summed (they “collapse” into a single row).

Example 8. Let us consider node 13 which forgets a. Here,
Algorithm 3 first filters out rows r′ ∈ τ ′ for which the la-
beling in s′ disagrees with lw′ on a. A row r′ is invalid for
further consideration if it labeled a by O, while lw′ has not
witnessed a being attacked by an argument labeled I . Anal-
ogously for rows where a was labeled undecided.

Join Nodes The idea of join nodes t is to “merge” ta-
bles from two children nodes t1, t2, with different B≤t1
and B≤t2 . The basic principle is that if there is a row
r1 = (s1, w1, p1) and a row r2 = (s2, w2, p2) from the two
children, then if each row represents the sum of probabilities
of Xr1 and Xr2 , respectively, then we can merge these two
whenever s1 = s2 (the subframeworks in Xr1 and Xr2 are
compatible) and (i) compute w = w1∪w2 (we find witnesses
for an argument being out or undecided from the respective
subframeworks in at least one branch) and (ii) construct p by
comp(p1, p1, s), with s containing F = (A,R, P ). Define

common(s) =
∏
a∈A

P (a) ·
∏

a∈Bt\A

(1− P (a))·

∏
r∈R

P (r) ·
∏

(a,b)∈D\R

(1− P (r))

comp(p1, p2, s) =
p1 · p2

common(s)

Algorithm 3 Forget(τ ′, B, S)

1: τ ′′ := ((s− a,w − a, p) ∈ τ ′ | σforget (s, w, a) is true)
2: for (s, w) ∈ {(s′, w′) | (s′, w′, p′) ∈ τ ′′}
3: p =

∑
(s,w,p′)∈τ ′′ p′

4: τ := τ ∪ {(s, w, p)}
5: return τ

Algorithm 4 Join(τ1, τ2, B)

1: τ := {(s, w1 ∪ w2, comp(p1, p2, s)) | (s, w1, p1) ∈
τ1, (s, w2, p2) ∈ τ2}

2: τ := Merge(τ)
3: return τ

with D being the set of all possible attacks incident to the
current bag. That is, p is computed by the product of p1 and
p2, but we have to discount the common part (otherwise the
part of F that is the current bag would be counted twice). In
case two rows with same s and w are created, merge merges
these into one with summed probabilities.

6 Experimental Evaluation
We evaluate our algorithm for P -Ext , focusing on the
FP#P-complete variant for complete semantics.

Implementations We implemented our algorithm in a
Python (3.9.7) prototype.1 As suggested by Dewoprabowo
et al. (2022), we partially make use of database tools: the
most expensive operations (join and forget) make use of a
Python library Pandas (version 2.2.2) for database manage-
ment.

Due to operations on small numbers, we implemented
two variants, one using floating-point numbers dubbed
TD-Ext-f, and one using rational numbers, called
TD-Ext-r. For computing nice tree-decompositions, we
used the htd library (Abseher, Musliu, and Woltran 2017).

To the best of our knowledge, there are no competing
systems available that are tailored towards performance.
For a baseline comparison, we implemented two more sys-
tems: (i) a naive brute-force algorithm enumerating pairs of
subframeworks and extensions in Python and (ii) and an-
swer set programming (ASP) (Gelfond and Lifschitz 1988;
Niemelä 1999) based implementation ASP-#Ext for count-
ing subframeworks where S is complete. Note that this im-
plementation does not solve the same problem, but a simpler
one, and is intended mainly as a basis for comparison.

Instances There is currently no standard benchmark set
for PAFs. We constructed PAFs with a controlled tree-width
and focused on instances not solved via preprocessing, i.e.,
do not contain many certain arguments and attacks. We con-
structed PAFs based on grids (k, n) with possible attacks
(bidirectional, one-directional, or no attack) for each hori-
zontal or vertical neighbour. The direction or absence of
each attack was chosen with uniform probability. Argument
and attack probabilities are picked from {0.1, 0.2, ..., 1},
with probabilities 10

91 for uncertain and 1
91 for 1. We let

k ∈ {3, 4, 5, 6, 7} and n ∈ {5, 10, 20, 50, 75, 100, 150}.
Tree-width of such grid-graphs is bounded by min(k, n).
For each (k, n) we generated 4 PAFs and a set S to be
checked by selecting a ∈ A with probability 0.04. In to-
tal, there are 140 generated PAF instances, 28 for each k.

1Available at https://gitlab.tugraz.at/krr/paf-td.
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k TD-Ext-f TD-Ext-r ASP-#Ext
3 10.72 (0) 10.43 (0) 0.01 (21)
4 20.32 (0) 20.14 (0) 0.20 (22)
5 68.26 (0) 66.54 (0) 0.37 (23)
6 12.76 (9) 17.51 (8) 9.61 (25)
7 32.54 (10) 31.36 (8) 1.33 (24)

Table 1: Median running times in seconds (timeouts) for complete.

The number of arguments in a PAF instance is equal to the
corresponding grid size. The minimum and maximum num-
ber of attacks created for instances of a given k were (23,
760) for k = 3, (26, 1045) for k = 4, (35, 1366) for k = 5,
(44, 1686) for k = 6, and (50, 1979) for k = 7.

Setup and Results The experiments were carried out on
a Linux machine (64-bit), with an 8-core i5 Intel CPU and
16 GB of memory. We enforced a runtime of maximum 300
seconds and a memory limit of 8192 MB per run.

In Table 1 we show the median running times and number
of timeouts of solved instances. In the results, our approach
scales with tree-width: no timeouts were reported with in-
stances having a tree-width of at most 5. Note that PAFs
with k = 5 include ones with n = 150 and |A| = 750.
For a baseline comparison, ASP-#Ext showed significantly
more timeouts. We speculate this is due to the high num-
ber of subframeworks, e.g., one instance reported more than
6 · 107 subframeworks. We opted not to include the naive
(enumerating all subframeworks and extensions) approach
in Table 1, as it did not terminate on the generated instances.

Regarding precision, using floats the results, in fact, differ
to fractions: in four instances the former reported 0, while
the result is higher than 0 (although low). Moreover, in one
PAF TD-Ext-f reported 9.6 · 10−15 and TD-Ext-r re-
turned 7 · 10−15. While the absolute difference is low, the
percentage the former approach is off is roughly one-third.
On the other hand, in many runs the results reported were
close. We speculate that this is due to having many opera-
tions summing or multiplying in the dynamic programming
algorithms. Due to similar performance of TD-Ext-f and
TD-Ext-r, it does appear to give TD-Ext-r an edge.

7 Extensions
Our algorithm presented in Section 5 can be extended, and
we discuss here possible extensions.

First, in addition to enforcing arguments to be “in” (as in
the P -Ext problem), we can also directly enforce arguments
to be O or U .

This is direct in the algorithm: in introduction nodes we
can restrict generation of rows to exactly those fitting the
chosen criteria. For instance, only constructing labelings
with a chosen argument assigned “out” or “undecided”.

Second, as discussed by Fazzinga, Flesca, and Fur-
faro (2019), we can introduce dependencies between argu-
ments. For instance, consider the case that whenever a sub-
framework contains an argument a then such a subframe-
work also must contain an argument b. Then, as discussed
by Fazzinga, Flesca, and Furfaro, one can specify marginal

probabilities of the three different cases: containing neither
argument, containing only b and containing both.

This can be achieved, by considering, in the tree-
decomposition generation, an additional edge between a and
b, representing an additional dependency. This additional
edge ensures that a or b can only be forgotten if the other
argument was already seen.

Then computation of probabilities must be deferred until
both arguments a and b are in a bag (only then can we com-
pute the marginal probability of this case). As discussed ear-
lier (Wallner 2020), implication dependencies such as these
can be important for representing internal structure of argu-
ments, while at the same time, as discussed by Fazzinga,
Flesca, and Furfaro, allowing for compact representation of
probabilities by marginal probabilities. For instance, if an
argument a is a sub-argument of b, when considering the
internal structure of these arguments, then having b but not
a might be unwarranted. Or, for instance, if the contents
of arguments a and b together imply existence of an argu-
ment c, then dependency edges between all can be added,
and marginal probabilities of the different cases considered.

Finally, to adapt Algorithm 1 to admissible sets or sta-
ble extensions, the condition for semantics can be directly
adapted: for admissibility the checks for undecidedness can
be omitted, while for stable semantics, introduction nodes
are not allowed to assign arguments to undecided. We
remark that computing the probability of a set of argu-
ments being admissible or stable is not FP#P-hard (Fazz-
inga, Flesca, and Parisi 2015).

8 Discussion
In this work we revisited computationally complex prob-
lems in probabilistic argumentation under the constellation
approach. We refined earlier complexity results, showing
a divergence between complexities of two main reasoning
tasks under their counting variants. For the problem of com-
puting the probability of a set of arguments being complete,
we developed a dynamic programming algorithm. Our ex-
perimental evaluation shows promise of the approach, e.g.,
PAFs with up to 750 arguments were solved by our proto-
type, depending on the attack-structure and tree-width.

Algorithmic approaches utilizing tree-decompositions
were investigated before for formal argumentation (Dunne
2007; Dvořák et al. 2022; Dvořák et al. 2011; Dvořák, Pich-
ler, and Woltran 2012; Dvořák, Szeider, and Woltran 2012;
Fichte et al. 2021; Lampis, Mengel, and Mitsou 2018;
Popescu and Wallner 2023), also for counting extensions
containing queried arguments in AFs (Fichte, Hecher, and
Meier 2019), and, e.g., for model counting in Boolean
logic (Samer and Szeider 2010) and weighted model count-
ing (Fichte et al. 2018). In contrast, we present a novel dy-
namic programming algorithm for probabilistic argumenta-
tion under the constellation approach.

For future work, an interesting avenue is to extend our
work for acceptability of arguments in PAFs, under the con-
stellation approach. We think that our Algorithm 1 provides
a useful basis for computing acceptability. The main barrier
is to avoid over-computation, or over-summation. For in-
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stance, by slightly relaxing our algorithm to have a queried
argument to be assigned “in”, and allowing also other argu-
ments to be “in” we can extend the algorithm to consider
also other extensions that contain a queried argument. How-
ever, directly counting all pairs of subframeworks and la-
belings assigning a queried argument to be “in” over-counts,
since there might be many such labelings in a particular sub-
framework.

We think that this way of over-counting can be ad-
dressed in a dynamic programming way operating on tree-
decompositions, but requires more work for a detailed in-
vestigation. We remark that Theorem 5 (hardness of acyclic
PAFs) does not prevent existence of algorithms for accept-
ability using tree-decompositions: acyclic PAFs may have
a tree-width higher than one. Nevertheless, our complexity
results suggest that acceptability is more challenging.

In addition, computing the probability of a set of argu-
ments being a preferred extension, i.e., a subset maximal
complete extension, faces a different challenge: here we
need to ensure that only subset maximal complete (admis-
sible) extensions are considered. Subset maximality has
been considered for dynamic programming algorithms op-
erating on tree-decompositions, e.g., in the D-FLAT frame-
work (Bliem et al. 2016). We think it is an interesting direc-
tion to incorporate such findings for tackling the preferred
semantics.

Similarly, we think that considering further variants of ac-
ceptability of an argument, e.g., including skeptical accep-
tance (an argument must be in all extensions of a chosen se-
mantics) and allowing for probabilities to be attached to ex-
tensions (Alfano et al. 2023), presents intriguing challenges
for dynamic programming approaches.

As a more general direction, we think that future work,
to advance complex reasoning in probabilistic argumenta-
tion further, should include also different forms of optimiza-
tions. For instance, an (NP-hard) preprocessing might be
beneficial for dynamic programming algorithms that can re-
strict the number of rows in tables, e.g, by pre-computing
impossible combinations (e.g., argument a is never “in” in
any subframework). While these problems can be complex
themselves, we think that they can overall be used to opti-
mize tree-decomposition-based algorithms.
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