
The Sticky Path to Expressive Querying:
Decidability of Navigational Queries under Existential Rules

Piotr Ostropolski-Nalewaja1,2 , Sebastian Rudolph1,3

1TU Dresden
2University of Wrocław

3Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig
postropolski@cs.uni.wroc.pl, sebastian.rudolph@tu-dresden.de

Abstract

Extensive research in the field of ontology-based query an-
swering has led to the identification of numerous fragments
of existential rules (also known as tuple-generating depen-
dencies) that exhibit decidable answering of atomic and con-
junctive queries. Motivated by the increased theoretical and
practical interest in navigational queries, this paper consid-
ers the question for which of these fragments decidability of
querying extends to regular path queries (RPQs). In fact,
decidability of RPQs has recently been shown to generally
hold for the comprehensive family of all fragments that come
with the guarantee of universal models being reasonably well-
shaped (that is, being of finite cliquewidth). Yet, for the sec-
ond major family of fragments, known as finite unification
sets (short: fus), which are based on first-order-rewritability,
corresponding results have been largely elusive so far. We
complete the picture by showing that RPQ answering over
arbitrary fus rulesets is undecidable. On the positive side, we
establish that the problem is decidable for the prominent fus
subclass of sticky rulesets, with the caveat that a very mild ex-
tension of the RPQ formalism turns the problem undecidable
again.

1 Introduction
Existential rules, also known under the names tuple-
generating dependencies (TGD) (Abiteboul, Hull, and
Vianu 1995), Datalog+ (Gottlob 2009), or ∀∃-rules (Baget
et al. 2011) have become a very popular formalism in knowl-
edge representation and database theory, with a plethora of
applications in ontology-based data access, data exchange,
and many more. One of the fundamental tasks in the context
of existential rules is ontological query answering, where
a query, expressing some information need, is executed
over some given data(base) taking into account background
knowledge (the ontology), which is expressed via a set of
existential rules.

The standard query language classically considered in this
setting are conjunctive queries (CQs) (Chandra and Merlin
1977), corresponding to the select-project-join fragment of
SQL. As answering1 of CQs using unconstrained existential

1As query answering and query entailment, seen as decision
problems, are logspace-interreducible, we will use the two terms
interchangeably in this paper, sometimes also simply referring to it
as querying.

rules is undecidable (Chandra, Lewis, and Makowsky 1981),
much research has been devoted to identifying syntactic and
semantic restrictions that would warrant decidability of that
task. Most investigations in that respect have been along two
major lines of research, which can roughly be summarized
as forward-chaining-based (iteratively applying the rules to
the data to see if a query instance is eventually produced) on
one side, and backward-chaining-based (iteratively apply-
ing rules “backwards” to the query to see if it is ultimately
substantiated by the data) on the other (Rudolph 2014).

The advent of NoSQL and graph databases has led
to an renewed interest in query languages that overcome
some expressivity limitations of plain CQs by accomodat-
ing certain forms of recursion (Rudolph and Krötzsch 2013).
Among the mildest such extensions are so-called naviga-
tional queries, which are able to express the existence of
size-unbounded structural patterns in the data. Among the
most popular such query languages are regular path queries
(RPQs) and their conjunctive version (CRPQs) as well as
their respective 2-way variants (2RPQs, C2RPQs) (Florescu,
Levy, and Suciu 1998; Calvanese et al. 2003). In this con-
text, the natural question arises for which of the known
classes of rulesets the decidability of CQ entailment gen-
eralizes to navigational queries. As it turns out, the situation
differs significantly between the forward- and the backward-
chaining approaches.

Forward-chaining approaches are based on well-shaped
universal models (Deutsch, Nash, and Remmel 2008), usu-
ally obtained via a construction called the chase (Beeri and
Vardi 1984). If one can guarantee the existence of univer-
sal models with certain properties (such as being finite or
having finite treewidth or – subsuming the two former cases
– being of finite cliquewidth), CQ entailment is known to
be decidable. Fortunately, this generic result was shown to
generalize to all query languages which are simultaneously
expressible in universal second-order logic and in monadic
second-order logic (Feller et al. 2023), subsuming the all
navigational queries considered in this paper.
Corollary 1 (following from Feller et al., 2023). Let R be a
ruleset such that for every database D, there exists a univer-
sal model of D,R having finite cliquewidth. Then C2RPQ
answering wrt. R is decidable.

This very general result establishes in a uniform way de-
cidability of C2RPQ (thus also CRPQ, 2RPQ, and RPQ)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

574

answering for all finite cliquewidth sets (fcs) of existen-
tial rules, subsuming various classes based on acyclicity
(Grau et al. 2013) as well as the guarded family – includ-
ing (weakly/jointly/glut-) guarded and (weakly/jointly/glut-)
frontier-guarded rulesets (Baget et al. 2011; Calı̀, Gottlob,
and Kifer 2013; Krötzsch and Rudolph 2011). For various of
these subfragments, decidability of C2RPQ answering had
been shown before, partially with tight complexities (Baget
et al. 2017).

The situation is much less clear (and as of yet essentially
unexplored) for backward-chaining-based decidability no-
tions. Rulesets falling into that category are also known as
first-order-rewritable or finite unification sets (fus). Some
types of fus rulesets simultaneously fall under the forward-
chaining case (e.g., linear rules or binary single-head fus,
which are subsumed by fcs (Feller et al. 2023)) and admit
decidable CRPQ entailment on those grounds. Yet, for fus
rulesets and its popular syntactically defined subclasses such
as sticky rulesets (Calı̀, Gottlob, and Pieris 2010), decidabil-
ity of path queries has been wide open until now.

In this paper we establish the following results:

• Entailment of Boolean RPQs over fus rulesets is unde-
cidable (shown by a reduction from the halting problem
of Minsky-type two-counter machines).

• However, the same problem over sticky rulesets is de-
cidable, as will be proven by an elaborate reduction to
a finitely RPQ-controllable setting.

• Yet, if we slightly extend Boolean RPQs admitting higher-
arity predicates in paths, decidability is lost even for
sticky rulesets.

2 Preliminaries
Structures and homomorphisms. Let F be a countably in-
finite set of function symbols, each with an associated ar-
ity. We define the set of terms T as a minimal set contain-
ing three mutually disjoint, countably infinite sets of con-
stants C, variables V, and nulls N that satisfies: f(t̄) ∈ T
for each tuple t̄ of its elements and each symbol f ∈ F of
matching arity. A signature S is a finite set of predicates.
We denote the arity of a predicate P with ar(P). An atom is
an expression of the form P(t̄) where P is a predicate and t̄ is
an ar(P)-tuple of terms. Atoms of binary arity will also be
referred to as edges. Facts are atoms containing only con-
stants. An instance is a countable (possibly infinite) set of
atoms. Moreover, we treat conjunctions of atoms as sets. A
database is a finite set of facts. The active domain of an in-
stance I, denoted adom(I), is the set of terms appearing in
the atoms of I. We recall that instances naturally represent
first-order (FO) interpretations.

A homomorphism from instance I to instance I ′ is a func-
tion h : adom(I) → adom(I ′) such that (1) for each atom
P(t̄) of I we have P(h(t̄)) ∈ I ′, and (2) for each constant
c ∈ C we have h(c) = c. Given a finite instance I, a core
of I is a minimal subset I ′ such that I homomorphically
maps to it. It is well known that all cores of a finite structure
are isomorphic, allowing us to speak of “the core” – denoted
core(I).

Queries. A conjunctive query (CQ) is an FO formula of the
form: ∃x̄.ϕ(x̄, ȳ) where ϕ is a conjunction of atoms over
disjoint tuples of variables x̄, ȳ. The tuple ȳ denotes the free
variables of ϕ. A query with no free variables is Boolean.
A union of conjunctive queries (UCQ) is a disjunction of
conjunctive queries having the same tuples of free variables.
Seeing ϕ as a set of atoms, the definition of homomorphism
naturally extends to functions from CQs to instances.

A regular path query (RPQ) is an expression ∃z̄.A(x, y)
where x and y are distinct variables, z̄ ⊆ {x, y }, and A
is a regular expression over binary predicates from some
signature. Given an instance I and two of its terms s and
t, we write I |= A(s, t) to indicate that there exists a di-
rected path P from s to t in I whose subsequent edge labels
form a word w such that w belongs to the language of A.
Given a signature S, we define S− as the set {σ− | σ ∈ S}.
Given an instance I over signature S, we define an instance
ud(I ′) as I ∪{ P−(y, x) | P(x, y) ∈ I }. A two-way regular
path query (2RPQ) is defined as A(x, y) where x and y are
variables and A is a regular expression over predicates from
S∪S− for signature S. We define C(2)RPQ as a conjunction
of (2)RPQs with an existential quantifier prefix.
Deterministic Finite Automaton. A deterministic finite au-
tomaton (DFA) A is a tuple ⟨Q,Σ, δ, q0, qfin ⟩ consisting of
a set Q of states, a finite set Σ of symbols called an alphabet,
a transition function δ : Q×Σ → Q, a starting state q0 ∈ Q,
and an accepting state qfin ∈ Q. Let δ∗ : Q × Σ∗ → Q be
defined as follows: δ∗(q, ε) = q if ε is the empty word, and
δ∗(q, aw) = δ∗(δ(q, a), w) if a ∈ Σ. A accepts a word
w ∈ Σ∗ iff δ∗(q0, w) = qfin. The language of A is the set
of words it accepts. Note that for any DFA, one can con-
struct a regular expression representing the same language,
and vice versa.

2.1 The Chase and Existential Rules
An FO formula ρ of the form ∀x̄ȳ.α(x̄, ȳ) → ∃z̄.β(ȳ, z̄)
is called an existential rule (short: rule), where x̄, ȳ and z̄
are tuples of variables, α is a conjunction of atoms, and β
is an atom. We call α(x̄, ȳ) the body of ρ and β(ȳ, z̄) its
head, while ȳ is called the frontier. CQs ∃x̄.α(x̄, ȳ) and
∃z̄.β(ȳ, z̄) will be called the body query and the head query
of ρ, respectively. A rule is Datalog if z̄ is empty. A finite set
of rules is simply called a ruleset. We may drop the universal
quantifier in rules for visual clarity. Satisfaction of a rule ρ (a
ruleset R) by an instance I is defined as usual and is written
I |= ρ (I |= R). Given a database D and a ruleset R,
we define an instance I to be a model of D and R, written
I |= (D,R), iff D ⊆ I and I |= R.
Querying under existential rules. Given a query Q(x̄), a
set of rules R, and a database D along with a tuple ā of
constants, we say that Q(ā) is entailed by D,R iff every
model of D and R satisfies Q(ā). In such a case we write
D,R |= Q(ā) or D,R, ā |= Q(x̄). We then also call the
tuple ā a certain answer for the query Q(x̄) with respect
to D,R. Due to the computational similarity and easy in-
terreducibility of the two tasks, we will not distinguish query
entailment from query answering and use the two terms syn-
onymously in this paper.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

575

Next, we recap a specialized version of the Skolem chase
(Ostropolski-Nalewaja et al. 2022). While more involved
than the “mainstream” Skolem chase, we need to employ
this variant to establish the required results regarding the
various ruleset-transformations presented in the paper. In
short, it enforces that the Skolem naming depends only on
the shape of the rule head.
Isomorphism types. Two CQs have the same isomorphism
type if one can be obtained from the other by a bijective
renaming of its variables (including existentially quantified
ones). We denote the isomorphism type of a CQ Φ as τ(Φ).
For a CQ ϕ(ȳ) of isomorphism type τ and any existentially
quantified variable z of ϕ(ȳ), we introduce a |ȳ|-ary function
symbol fτz .
Skolemization. Let z̄ be a tuple ⟨ z1, . . . zk ⟩ of variables.
For a CQ ϕ = ∃z̄.ψ(ȳ, z̄) and a mapping h from ȳ to a set
of terms, we define the Skolemization sh(ϕ) of ϕ through h
as the instance ψ(h(ȳ), ⟨ z′1, . . . z′k ⟩) where z′i = fτzi(h(ȳ))
and τ is the isomorphism type of ∃z̄.ψ(h(ȳ), z̄) with h(ȳ)
treated as free variables. We call h(ȳ) the frontier terms of
ψ(h(ȳ), z̄′).
Skolem Chase. Given a ruleset R and an instance I we call
a pair π = ⟨ ρ, h ⟩ , where h is a homomorphism from the
body of the rule ρ ∈ R to I, an R-trigger in I. We define
the application appl(π, I) of the trigger π to the instance I
as I ∪ γ where γ is the Skolemization of the head query of
ρ through h . Let Π(I,R) denote the set of R-triggers in
I. Given a database D and a set of rules R we define the
Skolem chase Ch(D,R) as:

Ch0(D,R) = D

Chi+1(D,R) =
⋃

π∈Π(Chi(D,R),R)
appl(π,Chi(D,R))

Ch(D,R) =
⋃

i∈N
Chi(D,R).

Ch(D,R) is a universal model for R and D, i.e., a model
that homomorphically maps into any model (Ostropolski-
Nalewaja et al. 2022). Thus for any database D, a tuple of its
constants ā, rule set R, and a homomorphism-closed query2

ϕ(x̄) we have: Ch(D,R) |= ϕ(ā) ⇐⇒ D,R |= ϕ(ā).
In words: ϕ(ā) is entailed by D,R iff it is satisfied by the
particular instance Ch(D,R).
For an atom α ∈ Ch(D,R), we define its frontier terms as
the terms of α introduced during the chase earlier than α.
The birth atom of a term t of Ch(D,R) is the atom intro-
duced along t during the chase. A join variable of a rule is a
variable appearing more than once in its body. We will find
it useful to extend the above chase definition in the natural
way to not just start from databases, but from arbitrary in-
stance resulting from prior chases – including infinite ones.

2.2 Query Rewritability
Definition 2. Given a ruleset R and a UCQ Q(x̄) we say
that a UCQ Q′(x̄) is a rewriting of Q(x̄) (under R) if and

2That is, a query whose answers are preserved under homomor-
phisms between instances. Both UCQs and (2)RPQs are known to
be homomorphism-closed. We refer to Deutsch, Nash, and Rem-
mel (2008) for a brief discussion.

only if, for every database D and tuple ā of its constants, we
have:

Ch(D,R) |= Q(ā) ⇔ D |= Q′(ā).

Finite Unification Sets A rule set R is a finite unification
set (fus) iff every UCQ has a UCQ rewriting under R.
Bounded Derivation Depth Property We say a ruleset R
admits the bounded derivation depth property (is bdd) iff for
every UCQ Q(x̄) there exists a natural number k such that
for every instance I and every tuple of its terms ā we have:

Ch(I,R) |= Q(ā) ⇐⇒ Chk(I,R) |= Q(ā).

It turns out that fus and bdd classes are equivalent (Calı̀,
Gottlob, and Lukasiewicz 2009):

Lemma 3. A ruleset R is fus if and only if it is bdd.

Rewritings of UCQs can be obtained in a number of ways.
For the purpose of this paper, we will rely on the algorithm
provided by König et al. (2015). We denote the rewriting of
a UCQ Q against a bdd ruleset R obtained through the al-
gorithm presented therein by rew(Q,R), or rew(Q) in case
R is known from the context.

2.3 Sticky Rulesets
Definition 4 (Sticky). Following Calı̀, Gottlob, and Pieris
(2010), a ruleset R over signature S is sticky iff there exists a
marking ⋗ of S assigning to each P ∈ S a subset of [1, ar(P)]
called marked positions such that, for every ρ ∈ R,

• if x is a join variable in ρ then x appears at a marked
position in the head-atom of ρ, and

• if x appears in a body-atom of ρ at a marked position then
x appears at a marked position in the head-atom of ρ.

Observation 5. Let I be an instance, R a sticky ruleset, and
t a term from Ch(I,R) with birth atom α. If some t′ is on
a marked position in α, then each atom β containing t must
also contain t′ on a marked position.

Proof. We prove this by contradiction. Let i be the small-
est natural number such that there exists an atom β ∈
Chi(I,R) containing t but not t′. Take the rule ρ that cre-
ated β and pick some atom γ ∈ Chi−1(I,R) containing t
to which one of ρ’s body atoms was mapped. Then by as-
sumption γ contains t′ in a marked position. However, since
R is sticky, t′ must appear in a marked position in β, leading
to a contradiction.

Definition 6. Following Gogacz and Marcinkowski (2017):
A ruleset is joinless iff none of its rule bodies contains re-
peated variables. Clearly, every joinless ruleset is sticky and
therefore is fus.

2.4 On the Single-Head Assumption
Note that, throughout this paper, we assume that all rulesets
are “single-head”, meaning that we disallow conjunctions of
multiple atoms in the heads of rules. This is without loss of
generality, due to the following transformation presented by
Calı̀, Gottlob, and Kifer (2013): Given a multi-head ruleset

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

576

Rmulti over a signature S, one can define the ruleset Rsingle

as follows: take a rule ρ of Rmulti

β(x̄, ȳ) → ∃z̄. α1(ȳ, z̄), . . . αn(ȳ, z̄)

and replace it by the following collection of rules:

{β(x̄, ȳ) → ∃z̄. Pρ(ȳ, z̄) }
∪ { Pρ(ȳ, z̄) → αi(ȳ, z̄) | i ∈ [n] }

where Pρ is a fresh symbol, unique for each rule ρ.
One can note that the chases of both rulesets (over any in-

stance) coincide when restricted to S, which means the trans-
formation preserves fusness when restricted to queries over
S. It is also straightforward to note that stickiness is pre-
served as well – the marking of positions of fresh Pρ sym-
bols can be trivially reconstructed from the markings of the
position of the αi.

Therefore, all results presented in the remainder of the
paper hold for multi-head rules as well.

3 Undecidability of RPQs over FUS
Theorem 7. Boolean RPQ entailment under fus rulesets is
undecidable.

We shall prove the above theorem by a reduction from
the halting problem for the following kinds of two-counter
automata.

Two-counter automaton. A two-counter automaton (TCA)
consists of a finite set of states Q, two positive integer
counters called Cx and Cy, and an instruction instr(q) =
⟨ C, d, qt, qf ⟩ for each state q ∈ Q which is executed as fol-
lows:

1: if C == 0 then
2: C := C + 1, move from q to qt
3: else
4: C := C + d, move from q to qf

where C ∈ { Cx, Cy } and d ∈ {−1, 1 }. In each step, the au-
tomaton executes the instruction assigned to its current state
and moves to the next. We also distinguish a starting state
q0 ∈ Q and a halting state qhalt ∈ Q. The TCA halting
problem asks whether a given TCA M can reach the halting
state starting from q0 with both counters set to zero. For a
state q ∈ Q and numbers x and y representing the states of
counters Cx and Cy respectively, we call the tuple ⟨ q, x, y ⟩ a
configuration of M. Note that our TCAs are deterministic.

The above TCA is a standard variation of one presented
by Minsky (1967, Chapter 14). The original automaton ex-
hibits two types of instructions: 1) Add unity to counter C
and go to the next instruction, and 2) If counter C is not zero,
then subtract one and jump to the n-th instruction, otherwise
go to the next instruction. It is straightforward to implement
Minsky’s automata by means of our TCAs. Thus, we inherit
undecidability of the corresponding Halting problem.

In order to prove Theorem 7, we use the following reduc-
tion. Given a TCA M we construct a database Dgrid, ruleset
Rgrid and a RPQ QM such that M halts starting from con-
figuration ⟨ q0, 0, 0 ⟩ if and only if Dgrid,Rgrid |= QM.

3.1 Database Dgrid and Ruleset Rgrid

Both the database and the ruleset are independent of the spe-
cific TCA M considered – thus they are fixed. The idea
behind the construction is that Ch(Dgrid,Rgrid) represents
an infinite grid. The database Dgrid consists of just the two
atoms Succ(a, b) and Zero(a).

Before stating Rgrid, it is convenient to define two abbre-
viations. Let φright(x, x

′, y, z, z′) denote the CQ

XCoord(z, x) ∧ YCoord(z, y) ∧
XCoord(z′, x′) ∧ YCoord(z′, y) ∧ Succ(x, x′)

with the intuitive meaning that node z′ is one to the
right from node z on the grid. In a similar vein, we let
φup(x, y, y

′, z, z′) denote the CQ

XCoord(z, x) ∧ YCoord(z, y) ∧
XCoord(z′, x) ∧ YCoord(z′, y′) ∧ Succ(y, y′)

meaning that node z′ is one above node z on the grid.

Definition 8. We define the grid-building ruleset Rgrid as
the following collection of rules:

Succ(x, x′) → ∃x′′. Succ(x′, x′′)
Succ(x, x′) ∧ Succ(y, y′) → ∃z. GridPoint(x, y, z)

GridPoint(x, y, z) → XCoord(z, x)

GridPoint(x, y, z) → YCoord(z, y)

φright(x, x
′, y, z, z′) → IncX(z, z′)

φup(x, y, y
′, z, z′) → IncY(z, z′)

IncX(z, z′) → DecX(z′, z)

IncY(z, z′) → DecY(z′, z)

XCoord(z, x) ∧ Zero(x) → XZero(z, z)

YCoord(z, y) ∧ Zero(y) → YZero(z, z)

Observation 9. Ruleset R is fus

Proof. Let R1 denote the set of the first four rules and let R2

denote the rest. Note that: 1) R1 is sticky (see Definition 4),
and thus fus; 2) R2 terminates after a fixed number of chase
steps thus is trivially bdd (and from Lemma 3 it is fus);
and 3) Ch(D,R) = Ch(Ch(D,R1),R2). Then, from the
definition of fus, if R1 is fus and R2 is fus then R is fus
– thanks to the “stratification” of the two parts of R, one can
obtain the required rewritings by rewriting first against R2

and then rewriting the resulting UCQ against R1.

Without going into detail, we note that the observation of
R being fus, can also be readily argued using the generic
framework for static analysis of rulesets by Baget et al.
(2011, Section 7), according to which R falls into the class
“sticky ▷ aGRD” where a ruleset with an acyclic graph of
rule depenndencies (in our case: R2) is layered “on top of”
a sticky ruleset (in our case: R1). Since both aGRD and
sticky are fus, so is their stratified combination.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

577

DecX

DecY

XZero

YZero

IncX

IncY

(0, 0) (1, 0) (2, 0) (3, 0)

(1, 0) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 1: Depiction of Ch(Dgrid,Rgrid) restricted to predicates
IncX, DecX, IncY, DecY, XZero, YZero, henceforth denoted G.

3.2 Grid G
Figure 1 visualizes Ch(Dgrid,Rgrid) restricted to the atoms
using IncX, DecX, IncY, DecY, XZero, and YZero. As
the soon to be defined RPQ QM only uses these bi-
nary predicates, it is sufficient to consider this part of
Ch(Dgrid,Rgrid), which we denote by G.

As G resembles a grid, we find it convenient to introduce
a few notions. First, we identify any term of G with a pair
of natural numbers called coordinates. As usual, the first
element of a coordinate pair is called X-coordinate, while
the second is called Y -coordinate.

3.3 RPQ QM
We shall define the Boolean regular path query QM by
means of a deterministic finite automaton AM. To sim-
plify its definition, we will allow ourselves to write some
expressions which evaluate to binary symbols from S. We
let the function Σ(·) assign predicates from Σ to operations
and tests on the two counters:

Σ(Cx := Cx + 1) = IncX, Σ(Cy := Cy + 1) = IncY,

Σ(Cx := Cx - 1) = DecX, Σ(Cy := Cy - 1) = DecY,

Σ(Cx== 0) = XZero, Σ(Cy== 0) = YZero.

Definition of the automaton AM. The DFA AM is a
tuple ⟨QA,ΣA, δA, q0, qfin ⟩ consisting of the set of states
QA, the alphabet ΣA, the transition function δA, the start-
ing state q0, and the accepting state qfin.
States. The set QA of states of AM is Q∪Qaux where Qaux

is a set of auxiliary states consisting of four states qthen1 ,
qthen2 , qelse1 , and qelse2 for every state q ∈ Q. The starting
(accepting) state of AM is the starting (halting) state of M.
Alphabet. The alphabet ΣA of AM consists of IncX, IncY,
DecX, DecY, XZero, and YZero.
Transition function. The transition function δA of AM is
a subset of QA × ΣA × QA. First, we shall explain the
transitions of AM in a graphical manner. Given a state q ∈
Q recall the instruction of M assigned to that state.

1: if C == 0 then
2: C := C + 1, move from q to qt
3: else
4: C := C + d, move from q to qf

Now, we take that instruction and with it we define the
following transitions as depicted in the figure below:

q

Σ(C == 0)

Σ(C := C - 1) Σ(C := C + 1)

Σ(C := C + 1)

Σ(C := C + d)

qt

qf

Σ(C == 0)
qthen2

qelse2qelse1

qthen1

Figure 2: States other than q, qf, and qt are part of Qaux and are
marked with diamonds in the figure. Label Σ(C==0) evaluates to
XZero or YZero depending whether C is Cx or Cy; other labels eval-
uate to IncX, IncY, DecX, or DecY. The top branch of the figure
corresponds to the “then” branch of the instruction assigned to the
state q of M. Note that Σ(C==0) appears twice on the top branch.
This redundancy is added to ensure an equal number of states on
each branch toward establishing Observation 11; it is by no means
critical to the proof.

The above figure encodes six triples from the set QA ×
ΣA ×QA (for example, ⟨ q, Σ(C == 0), qthen1 ⟩ is one of
them). To obtain the transition function δA of AM, we take
the union of the above-defined triples over the instruction set
of M.

Definition of the query QM. Let A be any regular ex-
pression that defines the same regular language as AM, and
let B be the regular expression resulting from concatenat-
ing XZero, YZero, and A. Then the Boolean RPQ QM is
expressed as ∃x, y.B(x, y).

3.4 Correspondence between QM and M
In this section we shall show the following lemma:
Lemma 10. Ch(Dgrid,Rgrid) |= QM if and only if M
halts starting from ⟨ 0, 0, q0 ⟩.

To this end, we shall imagine a B-path corresponding to
a match of QM to G. Its two first steps have to be over sym-
bols XZero and YZero which is possible only at the ⟨ 0, 0 ⟩
coordinates of the grid G. After this point, the query uses the
automaton AM to define its behavior. Therefore, we will be
discussing states and transitions of AM in the context of M.
Imagine the automaton AM starting at coordinates ⟨ 0, 0 ⟩
and “walking” over G and “reading” its binary predicates.
We say that the automaton AM at coordinates ⟨x, y ⟩ and in
state q is in configuration ⟨x, y, q ⟩. To prove Lemma 10,
and thus Theorem 7, it is enough to inductively use the fol-
lowing observation:
Observation 11. For all natural numbers x, x′, y, and y′
and every pair of states q, q′ ∈ Q the following two are
equivalent:
• Automaton AM transitions from configuration ⟨x, y, q ⟩

to ⟨x′, y′, q′ ⟩ in three steps.
• TCA M transitions from ⟨x, y, q ⟩ to ⟨x′, y′, q′ ⟩ in one

step.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

578

Proof. We shall inspect the case when the instruction from
Fig. 3 is assigned in M to the state q.

1: if Cy == 0 then
2: Cy := Cy + 1, move from q to q1
3: else
4: Cy := Cy - 1, move from q to q2

Figure 3: Instruction assigned to state q of TCA M.

Then the part of AM responsible for transitioning out of
q has the following form:

q

YZero
qthen2 q1

q2qelse2qelse1

qthen1
YZero IncY

DecY IncY DecY

Assume y = 0. Then M transitions to ⟨ q1, x, 1 ⟩. We
argue that the automaton AM follows in three steps to the
same configuration. First, note that the automaton cannot
transition through the bottom branch of Fig. 3 as it cannot
follow a DecY-edge in G while being at zero Y-coordinate.
However, AM can move through the top branch, transition-
ing to ⟨ q1, x, 1 ⟩.

Assume y ̸= 0. Then M transitions to ⟨ q2, x, y+1 ⟩.
Note that AM cannot follow the top branch (there is no
YZero outgoing edge at ⟨x, y ⟩ in G, as y > 0). It can, how-
ever, follow the bottom one transitioning to ⟨ q2, x, y − 1 ⟩.
The other cases follow analogously.

4 Deciding RPQs over Sticky Rulesets
This section is dedicated to the following theorem:
Theorem 12. RPQ entailment from sticky rulesets is decid-
able.

To simplify the intricate proof of the above, we restrict
the query language to plain RPQs. However, it is straight-
forward to obtain the following as a consequence:
Corollary 13. 2RPQ entailment from sticky rulesets is de-
cidable.

One can obtain Corollary 13 by a simple reduction. Take
a sticky ruleset R over signature S, a database D and a 2RPQ
Q. Keep D intact, add a single rule E(x, y) → E′(y, x) to
R for every binary predicate E ∈ S, and replace every oc-
curence of the inverted symbol E− by E′ in the regular ex-
pression of Q. It should be clear that entailment for the orig-
inal problem coincides with that of the transformed problem.
Finally, note that the transformation preserves stickiness of
the ruleset.

The rest of the section is dedicated to the proof of Theo-
rem 12. Until the end of this section, we fix a database D,
and a sticky ruleset R. We show decidability through two
semi-decision procedures.
Caveat: no repeated variables in RPQs. We emphasize
that under our definition, RPQs of the form A(x, x) and

∃x.A(x, x) are not allowed, which is crucial for our proof.
Queries with ”variable joining” would require distinct tech-
niques and would, arguably, better fit into the category of
conjunctive (2)RPQs.

4.1 Recursive Enumerability
This part exploits an easy reduction of RPQ entailment to a
first-order entailment problem.

Observation 14. Given a Boolean RPQ Q = ∃x, y.A(x, y)
one can write a Datalog ruleset RQ with one distinguished
nullary predicate GOAL, such that:

D, R |= Q ⇐⇒ D, R ∪ RQ |= GOAL.

Proof. See supplementary material, ??, in the full version
(Ostropolski-Nalewaja and Rudolph 2024).

As D ∧ R ∧ RQ is an FO theory, we can invoke com-
pleteness of FOL to recursively enumerate consequences of
D,R∪RQ and therefore semi-decide D,R∪RQ |= GOAL.
Thus, we can semi-decide D,R |= Q as well.

4.2 Co-Recursive Enumerability
This part presents a greater challenge and necessitates a
novel approach. We leverage the fact that, following a
specific pre-processing of D and R, the non-entailment of
RPQs is witnessed by a finite instance

Definition 15. Given a query language L and a ruleset R
we say that R is finitely L-controllable iff for every Q ∈ L
and for every database D such that D,R ̸|= Q there exists a
finite model M of D and R s.t. M ̸|= Q.

Lemma 16. One can compute a database D+ and a rule-
set R+ such that R+ is finitely RPQ-controllable and such
that for every Boolean RPQ Q we have D,R |= Q ⇐⇒
D+,R+ |= Q.

In view of this lemma, we can “co-semidecide” D,R |=
Q (that is, semi-decide D,R ̸|= Q) by recursively enu-
merating all finite instances and terminating whenever a Q-
countermodel of D+,R+ is found.

4.3 Overview of the Proof of Lemma 16
Before we begin discussing the proof, let us introduce a spe-
cific class of rulesets:

Stellar rules. A stellar rule is a rule with at most one join
variable, which also must be a frontier variable. A ruleset
comprising only stellar rules is stellar.

The ultimate goal is to construct R+ as a stellar ruleset.
The reason behind this is as follows:

Lemma 17. Any ruleset consisting of stellar rules is finitely
RPQ-controllable.

We will first prove the above lemma, then we will show the
construction of R+ and D+.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

579

4.4 Finite RPQ-Controllability
Assume S is a stellar ruleset. To prove its finite RPQ-
controllability, we present, given some database and a non-
entailed RPQ, a construction of a finite countermodel. This
involves two key parts: the ”finite model” and the ”counter”
parts. We start with the first.

For any instance I and two of its terms t, t′ we let
I[t, t′ 7→ t′′] denote the structure obtained from I by re-
placing each occurrence of t or t′ by the fresh null t′′.

Preservation of modelhood under this kind of “term merg-
ing” is trivial for rules without join variables:

Observation 18. Let I be an instance with terms s, t and ρ
a joinless rule.Then I |= ρ implies I[s, t 7→u] |= ρ.

Proof. Note, as ρ is joinless, identification of terms cannot
create new active triggers.

For stellar rules with a join variable, we define a kind of
1-type that indicates which terms are similar enough so they
can be “merged” while preserving modelhood.
Stellar types. A stellar query (SQ) is a CQ S(y) such that
y is the only join variable of S and each atom of S has at
most one occurrence of y. Given a term t of some instance
I the stellar type ⋆(t) of t is the (up to equivalence) most
specific3 SQ S(y) such that I |= S(t).

Observation 19. Let I be an instance with terms s, t satis-
fying ⋆(s) = ⋆(t) and ρ a stellar rule with a single join
variable. Then I |= ρ implies I[s, t 7→ u] |= ρ.

Proof. Observe ⋆(s) = ⋆(t) = ⋆(u) and that the stellar
types of other terms remain unchanged after identification
(♡). Let α(x̄) be a head of ρ, with x̄ a tuple of its frontier
variables. Note that as ρ is stellar, x̄ contains its join-variable
denoted by x. Let Hv be the set of homomorphisms from a
body of ρ to I such that x is always mapped to v. Note, it can
be determined whether every trigger in the set ⟨ ρ, h ⟩ | h ∈
Hv is satisfied based only on the stellar type of v. Therefore,
from (♡), the satisfaction of α(x̄) is preserved.

Corollary 20. Let I be an instance with terms s, t satisfying
⋆(s) = ⋆(t), and let S be a stellar ruleset. Then I |= S
implies I[s, t 7→ u] |= S .

Proof. From Observation 18 and Observation 19.

We now begin the “counter” part of the finite counter-
model construction. Note its independence from R.
Regular types. Given a DFA A = ⟨Q,Σ, δ, q0, qfin ⟩, an
instance I, and one of its terms t, we define the regular
type of t, denoted ↑A(t) as the set containing all expres-
sions q⇝q′ for which t has an outgoing w-path for some w
with δ∗(q, w) = q′.

Lemma 21. Let Q be a Boolean RPQ and A the DFA A
defining it. Let I be an instance and t, t′ two of its terms
satisfying ↑A(t) =↑A(t). Then:

I |= Q ⇐⇒ I[t, t′ 7→ t′′] |= Q.
3that is: minimal under CQ containment

Proof. We note that the regular types present in both I and
I[t, t′ 7→ t′′] are the same. On the other hand, for any in-
stance J we have J |= Q iff there exists a term s of J
satisfying q0⇝qfin ∈ ↑A(s).

We are now ready to show that S is finitely RPQ-
controllable. Let D′ be a database andQ be a Boolean RPQ.
Suppose Ch(D′,S) ̸|= Q. Let I be an instance obtained
from Ch(D′,S) by identifying all nulls that share the same
regular and stellar types. With the support of Corollary 20
and Lemma 21, given that there are only finitely many stellar
and regular types forQ, we conclude that I is finite, acts as a
model of D′ and S , and does not entail Q. Thus, Lemma 17
is established.

4.5 Construction of D+ and R+

In this section, we construct D+ and R+ satisfying the two
following lemmas. These, together with Lemma 17, estab-
lish Lemma 16.
Lemma 22. The ruleset R+ is stellar.
Lemma 23. For every Boolean query Q it holds:

Ch(D,R) |= Q ⇐⇒ Ch(D+,R+) |= Q.

In order to ensure the first of the two lemmas, we perform
a couple of transformations on the initially fixed sticky rule-
set R. As we progress, we maintain intermediate variants of
the second lemma.

Rewriting-away non-stellar rules For this step, we heav-
ily rely on the stickiness (and thus fusness) of R. The below
relies on the idea that for fus rulesets, rewriting can be also
applied to bodies of rules – yielding a new equivalent ruleset.
This transformation preserves stickiness of the input ruleset
and, importantly, it preserves Boolean RPQ entailment.
Definition 24. Given an existential rule ρ ∈ R of the
form: α(x̄, ȳ) → ∃z̄. β(ȳ, z̄) let rew(ρ,R) be the ruleset:{

γ(x̄′, ȳ) → ∃z̄. β(ȳ, z̄)
∣∣∣

∃x̄′.γ(x̄′, ȳ) ∈ rew(∃x̄.α(x̄, ȳ),R)
}
.

Finally, let rew(R) = R∪
⋃

ρ∈R rew(ρ,R).

Lemma 25. The ruleset rew(R) is sticky.

Proof. See supplementary material, ??, in the full version
(Ostropolski-Nalewaja and Rudolph 2024).

Lemma 26. For every Boolean RPQ Q we have:

Ch(D,R) |= Q ⇐⇒ Ch(D, rew(R)) |= Q.

Proof. See supplementary material, ??, in the full version
(Ostropolski-Nalewaja and Rudolph 2024).

We are now prepared to introduce the primary tool of the
construction. The conceptual basis of this tool can be traced
back to Ostropolski-Nalewaja et al. (2022).
Definition 27. A ruleset R′ is quick iff for every instance
I and every atom β of Ch(I,R′) if all frontier terms of β
appear in adom(I) then β ∈ Ch1(I,R′).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

580

The technique of “quickening” fus rulesets is quite ver-
satile, allowing for the simplification of rulesets and the gen-
eral streamlining of proof-related reasoning.

Lemma 28. For any fus ruleset R, rew(R) is quick.

Proof. Suppose β(t̄, s̄) ∈ Ch(I, rew(R)), where t̄ repre-
sents the frontier terms of β. Assume that t̄ appears in
I, but β does not. Let ρ be the rule that created β dur-
ing the chase and let it be of the following, general form:
α(x̄, ȳ) → ∃z̄. β(ȳ, z̄). From the above, note that
I, rew(R) |= ∃x̄.α(x̄, t̄).

If ρ ∈ R then there exists γ(x̄′, ȳ) such that:
(∃x̄′.γ(x̄′, ȳ)) ∈ rew(∃x̄.α(x̄, ȳ),R) and I |= ∃x̄′.γ(x̄′, t̄).
Therefore, from definition of rew(R), there exists a rule
ρ′ ∈ rew(R) (with γ begin its body) such that ρ′ derives
β in Ch1(I,R′).

If ρ ̸∈ R then let ρ′ be such that ρ ∈ rew(ρ′,R) and
ρ′ ∈ R. As ρ ∈ rew(ρ′,R) we know that ρ′ can be used
as well during the chase to obtain β. Thus, we can use the
above reasoning for ρ′ instead of ρ to complete the proof of
the lemma.

Taking cores of rules. The ruleset we have (rew(R))
is almost sufficient for constructing R+. Given our focus
on sticky rulesets, we are particularly interested in variable
joins appearing in rules. The rationale behind the following
transformation step can be explained using the simple con-
junctive query Φ(x) = ∃y, y′.E(x, y), E(x, y′). The variable
join on x is unnecessary to express Φ as it is equivalent to
its core Φ′(x) = ∃y.E(x, y). This motivates the following:

Definition 29. Given an existential rule ρ of the form
α(x̄, ȳ) → ∃z̄.β(ȳ, z̄), we define core(ρ) as the existential
rule α′(x̄′, ȳ) → ∃z̄.β(ȳ, z̄) where α′ is a core of α with
variables ȳ treated as constants.

Definition 30. Let cr(R) be { core(ρ) | ρ ∈ rew(R) }.

As taking cores of bodies of rules produces an equivalent
ruleset we have:

Observation 31. Ch(D, cr(R)) = Ch(D, rew(R)), and
cr(R) is both sticky and quick.

Introducing redundant stellar rules. We are one step
away from defining R+. Let cr+(R) be the ruleset ob-
tained from cr(R) by augmenting it with a set of additional
rules as follows: For every non-stellar rule ρ in cr(R), let
cr+(R) also contain the rule derived from ρ by substituting
all its join variables by one and the same fresh variable. The
following is straightforward:

Observation 32. Ch(D, cr+(R)) = Ch(D, rew(R)), and
cr+(R) is sticky and quick.

Proof. The first holds, as anytime a rule of cr+(R)\cr(R)
is used to derive an atom, the original rule of cr(R) can be
used instead. This argument also ensures the quickness of
cr+(R). Finally, cr+(R) is sticky because the marking of
variables for new rules of cr+(R) can be directly inherited
from cr(R).

Now we are ready to introduce R+.

Definition 33. Let R+ be obtained from cr+(R) by remov-
ing all rules with two or more join variables.

The following lemma shows, that, as far as the derivation
of binary atoms is concerned, R+ almost perfectly mimics
cr+(R). The only limitation is that R+ might not be able
to derive all binary atoms over database constants.

Lemma 34. Ch(D,R+) and Ch(D, cr+(R)) when re-
stricted to the binary atoms containing at least one non-
constant term are equal.

Proof. Consider Ch(D, cr+(R)). From the definition of
cr+(R) we know that, whenever a rule containing more
than one join variable produces an atom having exactly one
and the same term on all its marked positions, then a rule
from cr+(R) \ cr(R) can be used to produce exactly the
same atom. Note this is also thanks to the specific version
of the Skolem chase we use. Therefore, we will assume that
rules of cr+(R) \ cr(R) are used whenever possible.

Consider all atoms in the chaseCh(D, cr+(R)) that were
necessarily generated by a rule having at least two distinct
join variables – that is, they couldn’t have been created by
any rule from cr+(R)\cr(R). Denote this set with S. Note
that due to stickiness of cr+(R) (Observation 32) atoms in
S have two distinct frontier terms on cr+(R)-marked posi-
tions. Therefore, every atom that requires for its derivation
an atom β from S has to contain both such terms from β
(♣).

Let us categorize all binary atoms ofCh(D, cr+(R)) into
three distinct groups:

1. Atoms created by non-Datalog rules.
2. Atoms created by Datalog rules and containing at least

one term that is not a constant.
3. Atoms containing two constants.

To prove the lemma, it suffices to show that atoms of
the first and second kind are neither contained in S (♡) nor
does their derivation depend on atoms from S (♢).

Atoms of the first kind trivially satisfy (♡): as cr+(R)
is sticky, its non-Datalog rules can have at most one join
variable. They also satisfy (♢) since binary atoms created
by non-Datalog rules cannot contain their birth term and two
distinct frontier terms.

For the second category of atoms, the argument is more
involved. Let α(s, t) be an atom of the second kind and
let ρ be the rule that created α(s, t) in the chase. Let h be
the homomorphism witnessing this. Assume w.l.o.g. that
s is created in the chase no later than t and that t is not a
constant.

We shall argue (♢) for α as follows. Assume that t was
created during the (i−1)th step of the chase, and let γ(ū, t)
be the birth atom of t. Note that γ(ū, t) is the only atom con-
taining t in Chi−1(D, cr+(R)), and as cr+(R) is quick,
α(s, t) appears in Chi(D, cr+(R)). Assume, towards a
contradiction, that (♢) does not hold for α(s, t). Therefore,
there exist two distinct terms u, v in Chi−1(D, cr+(R))
that are contained in α(s, t), and these two terms are fron-
tier terms of some atoms in Chi−1(D, cr+(R)) (from ♣),

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

581

therefore both could not be t. As α(s, t) is a binary atom,
we have a contradiction.

Let us argue that (♡) holds for α(s, t). From above,
we know that ρ contains a γ(x̄, y) atom in its body with
h(y) = t, where y is a frontier variable. Assume towards
contradiction that ρ has two distinct join variables. Denote
them with z and w. Note, as α(s, t) is binary, z and w
map to s and t through h. Without loss of generality as-
sume h(z) = s and h(w) = t. However, ρ cannot have
three distinct frontier variables – each join variable should
be a frontier variable from stickiness of cr+(R). Therefore
w = y. We shall argue that y cannot be a join variable. As ρ
is not stellar – we assumed it has two distinct join variables
y and z – it is in cr(R). We shall show a contradiction with
the fact that the body of ρ is a core. Assume that γ(ū, t) is as
in the argument above – specifically it is the only atom con-
taining t just before creation of α(s, t). From this and the
fact that y is a join variable we note that γ(x̄′, y) is an atom
of the body of ρ and that x̄ ̸= x̄′. Note that the following
cannot occur at the same time: 1) the body of ρ contains both
γ(x̄, y) and γ(x̄′, y); 2) the body of ρ has exactly two join
variables; 3) the body of ρ is a core. From this contradiction
we get (♡) for α.

Note that in the above, the only binary atoms that are
missing are those which cr+(R) derives over database con-
stants. This can be easily rectified:

Definition 35. Let D+ = Ch(D, cr+(R))|adom(D)

Lemma 16 requires that D+ is computable. Yet, as
cr+(R) is sticky and therefore fus, this is the case.

Observation 36. D+ is computable.

Proof. As cr+(R) is fus, we rewrite every atomic query
and ask if it holds for any tuple of constants of D.

Corollary 37. For every Boolean RPQ Q
Ch(D, cr+(R)) |= Q ⇐⇒ Ch(D+,R+) |= Q.

Proof. Directly from Lemma 34, the fact that R+ ⊆
cr+(R), and Ch(D+, cr+(R)) = Ch(D, cr+(R)).

From the above, Lemma 26 and Observation 32 we get:

Ch(D,R) |= Q ⇐⇒ Ch(D+,R+) |= Q

and therefore Lemma 23. Moreover, by the definition of
R+ we get that R+ is stellar and thus we ensure Lemma 22,
concluding our overall argument.

5 Undecidability and Stickiness
In this section we show two seemingly harmless generaliza-
tions of the (decidable) case studied in the previous section.
Importantly, both lead to undecidability and, given that both
generalizations are rather slight, they highlight that the iden-
tified decidability result is not very robust.

5.1 Generalizing RPQs
Rather than having RPQs restricted to only use binary pred-
icates, we may include higher-arity predicates, with the as-
sumption that only the first two positions matter for form-
ing paths. We refer to RPQs that permit such slightly
extended regular expressions as higher-arity regular path
queries (HRPQs). We obtain the following:
Theorem 38. Boolean HRPQ entailment under sticky rule-
sets is undecidable.

In order to prove the theorem, one can use the proof of
Theorem 7 with a small tweak. Consider the ruleset from
Definition 8 with the last six rules tweaked:

Succ(x, x′) → ∃x′′. Succ(x′, x′′)
Succ(x, x′) ∧ Succ(y, y′) → ∃z. GridPoint(x, y, z)

GridPoint(x, y, z) → XCoord(z, x)

GridPoint(x, y, z) → YCoord(z, y)

φright(x, x
′, y, z, z′) → IncX(z, z′, x, x′, y)

φup(x, y, y
′, z, z′) → IncY(z, z′, x, y, y′)

IncX(z, z′, u, v, t) → DecX(z′, z, u, v, t)

IncY(z, z′, u, v, t) → DecY(z′, z, u, v, t)

XCoord(z, x) ∧ Zero(x) → XZero(z, z, x)

YCoord(z, y) ∧ Zero(y) → YZero(z, z, y)

and note that it is sticky – there exists a trivial mark-
ing of positions for it. The rest of the proof of Theo-
rem 7 remains unchanged, observing that when we project
IncX, IncY, DecX, DecY, XZero, and YZero to the first two
positions, we obtain the previous ruleset.

5.2 Generalizing stickiness
Alternatively, instead of generalizing RPQs, one can con-
sider “slightly non-sticky” rulesets. Consider an extension
of the above ruleset with the following projections.

IncX(z, z′, u, v, t) → IncXBin(z, z′)

DecX(z, z′, u, v, t) → DecXBin(z, z′)

IncY(z, z′, u, v, t) → IncYBin(z, z′)

DecY(z, z′, u, v, t) → DecYBin(z, z′)

XZero(z, z, x) → XZeroBin(z, z)

YZero(z, z, y) → YZeroBin(z, z)

Note that such expanded ruleset would as well admit unde-
cidable RPQ entailment, and that the projections are not al-
lowing for further recursion. Therefore the above ruleset can
be viewed as essentially sticky, just followed by one single
projection step.

6 Conclusion
In this paper, we reviewed established existential rules frag-
ments with decidable CQ answering, asking if the decid-
ability carries over to RPQs. We recalled that for the very
comprehensive fcs class of rulesets, the decidability for
RPQs and even much more expressive query languages fol-
lows from recent results. Thus focusing on the fus class of

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

582

rulesets, we established that they do not allow for decidable
RPQ answering in general, due to the insight that – unlike
fcs rulesets – fus rulesets allow for the creation of grid-like
universal models, which then can be used as a “two-counter
state space”, in which accepting runs of two-counter ma-
chines take the shape of regular paths. On the other hand, we
showed that 2RPQ answering over sticky rulesets is decid-
able thanks to the reducibility to a finitely RPQ-controllable
querying problem. This decidability result is rather brit-
tle and crucially depends on (1) the restriction of path ex-
pressions to binary predicates and (2) the inability to freely
project away variables in sticky rulesets. For this reason, a
setting where RPQs are slightly liberalized leads to undecid-
ability again.

There are several obvious questions left for future work:

• What is the precise complexity of 2RPQ answering over
sticky rulesets? Recall that, as our decidability argument
is based on finite controllability, the generic decision al-
gorithm ensuing from that does not come with any imme-
diate upper complexity bound.

• Does the problem remain decidable for sticky rulesets
when progressing to CRPQs or C2RPQs? We do not be-
lieve that a minor extension of our current proof would be
sufficient to positively settle this question, as we are cur-
rently lacking methods of coping with variable joins in
C(2)RPQs (under such circumstances, establishing finite
controllability via stellar types fails). However, we think
that some of the tools we used in this paper might come
in handy when tackling that extended case.

• What is the decidability status for other (non-fcs) syntac-
tically defined fus fragments, such as sticky-join rulesets
(Calı̀, Gottlob, and Pieris 2012)?

• Is it possible and/or reasonable to establish a new class
of rulesets, based on the rewritability of (C2)RPQs rather
than CQs?

Acknowledgements
Work supported by the European Research Council (ERC)
Consolidator Grant 771779 (DeciGUT).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artificial Intelligence 175(9):1620–1654.
Baget, J.-F.; Bienvenu, M.; Mugnier, M.-L.; and Thomazo,
M. 2017. Answering conjunctive regular path queries over
guarded existential rules. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2017), 793–799. ijcai.org.
Beeri, C., and Vardi, M. Y. 1984. A proof procedure for data
dependencies. Journal of the ACM 31(4):718–741.

Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming
the infinite chase: Query answering under expressive rela-
tional constraints. Journal of Artificial Intelligence Research
48:115–174.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. Datalog±:
a unified approach to ontologies and integrity constraints.
In Proceedings of the 12th International Conference on
Database Theory (ICDT 2009), volume 361, 14–30. ACM.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010. Advanced pro-
cessing for ontological queries. Proceedings of the VLDB
Endowment 3(1–2):554–565.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artificial Intelligence 193:87–128.
Calvanese, D.; Giacomo, G. D.; Lenzerini, M.; and Vardi,
M. Y. 2003. Reasoning on regular path queries. SIGMOD
Record 32(4):83–92.
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases. In
Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC 1977), 77–90. ACM.
Chandra, A. K.; Lewis, H. R.; and Makowsky, J. A. 1981.
Embedded implicational dependencies and their inference
problem. In Proceedings of the 13th Annual ACM Sym-
posium on Theory of Computing (STOC 1981), 342–354.
ACM.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisited. In Proceedings of the 27th Symposium on Princi-
ples of Database Systems (PODS 2008), 149–158. ACM.
Feller, T.; Lyon, T. S.; Ostropolski-Nalewaja, P.; and
Rudolph, S. 2023. Finite-cliquewidth sets of existential
rules: Toward a general criterion for decidable yet highly ex-
pressive querying. In Proceedings of the 26th International
Conference on Database Theory (ICDT 2023), volume 255
of LIPIcs, 18:1–18:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.
Florescu, D.; Levy, A. Y.; and Suciu, D. 1998. Query
containment for conjunctive queries with regular expres-
sions. In Proceedings of the 17th Symposium on Principles
of Database Systems (PODS 1998), 139–148. ACM.
Gogacz, T., and Marcinkowski, J. 2017. Converging to the
chase – a tool for finite controllability. Journal of Computer
and System Sciences 83(1):180–206.
Gottlob, G. 2009. Datalog+/-: A unified approach to ontolo-
gies and integrity constraints. In Proceedings of the 17th
Italian Symposium on Advanced Database Systems (SEBD
2009), 5–6. Edizioni Seneca.
Grau, B. C.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka,
D.; Motik, B.; and Wang, Z. 2013. Acyclicity notions
for existential rules and their application to query answer-
ing in ontologies. Journal of Artificial Intelligence Research
47:741–808.
Krötzsch, M., and Rudolph, S. 2011. Extending decidable
existential rules by joining acyclicity and guardedness. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), 963–968. IJCAI/AAAI.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

583

König, M.; Leclère, M.; Mugnier, M. L.; and Thomazo, M.
2015. Sound, complete and minimal UCQ-rewriting for ex-
istential rules. Semantic Web 6(5):451–475.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-
chines. USA: Prentice-Hall, Inc.
Ostropolski-Nalewaja, P., and Rudolph, S. 2024. The sticky
path to expressive querying: Decidability of navigational
queries under existential rules. CoRR abs/2407.14384.
Ostropolski-Nalewaja, P.; Marcinkowski, J.; Carral, D.; and
Rudolph, S. 2022. A journey to the frontiers of query
rewritability. In Proceedings of the 41st Symposium on Prin-
ciples of Database Systems (PODS 2022), 359–367. ACM.
Rudolph, S., and Krötzsch, M. 2013. Flag & check: data
access with monadically defined queries. In Proceedings
of the 32nd Symposium on Principles of Database Systems
(PODS 2013), 151–162. ACM.
Rudolph, S. 2014. The two views on ontological query an-
swering. In Proceedings of the 8th Alberto Mendelzon Work-
shop on Foundations of Data Management, volume 1189 of
CEUR Workshop Proceedings. CEUR-WS.org.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

584

