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Abstract

This paper presents a comprehensive theoretical investigation
into the parameterized complexity of explanation problems
in various machine learning (ML) models. Contrary to the
prevalent black-box perception, our study focuses on mod-
els with transparent internal mechanisms. We address two
principal types of explanation problems: abductive and con-
trastive, both in their local and global variants. Our analysis
encompasses diverse ML models, including Decision Trees,
Decision Sets, Decision Lists, Ordered Binary Decision Dia-
grams, Random Forests, and Boolean Circuits, and ensembles
thereof, each offering unique explanatory challenges. This re-
search fills a significant gap in explainable AI (XAI) by pro-
viding a foundational understanding of the complexities of
generating explanations for these models. This work provides
insights vital for further research in the domain of XAI, con-
tributing to the broader discourse on the necessity of trans-
parency and accountability in AI systems.

1 Introduction
As machine learning (ML) models increasingly permeate es-
sential domains, understanding their decision-making mech-
anisms has become central. This paper delves into the field
of explainable AI (XAI) by examining the parameterized
complexity of explanation problems in various ML models.
We focus on models with accessible internal mechanisms,
shifting away from the traditional black-box paradigm. Our
motivation is rooted in establishing a comprehensive theo-
retical framework that illuminates the complexity of gen-
erating explanations for these models, a task becoming in-
creasingly relevant in light of recent regulatory guidelines
that emphasize the importance of transparent and explain-
able AI (Commission 2020; OECD 2023).

The need for transparency and accountability in auto-
mated decision-making drives the imperative for explain-
ability in AI systems, especially in high-risk sectors. ML
models, while powerful, must be demystified to gain trust
and comply with ethical and regulatory standards. For-
mal explanations serve this purpose, providing a structured
means to interpret model decisions (Marques-Silva 2023;
Guidotti et al. 2019; Carvalho, Pereira, and Cardoso 2019).

Our exploration focuses on two types of explanation prob-
lems, abductive and contrastive, in local and global con-
texts (Marques-Silva 2023). Abductive explanations (Ig-

natiev, Narodytska, and Marques-Silva 2019), correspond-
ing to prime-implicant explanations (Shih, Choi, and Dar-
wiche 2018) and sufficient reason explanations (Darwiche
and Ji 2022), clarify specific decision-making instances,
while contrastive explanations (Miller 2019; Ignatiev et al.
2020), corresponding to necessary reason explanations (Dar-
wiche and Ji 2022), make explicit the reasons behind the
non-selection of alternatives. The study of contrastive expla-
nations goes back to the Lipton’s work in 1990. Conversely,
global explanations (Ribeiro, Singh, and Guestrin 2016;
Ignatiev, Narodytska, and Marques-Silva 2019) aim to un-
ravel models’ decision patterns across various inputs. This
bifurcated approach enables a comprehensive understanding
of model behavior, aligning with the recent emphasis on in-
terpretable ML (Lisboa et al. 2023).

In contrast to a recent study by Ordyniak, Paesani, and
Szeider (2023), who consider the parameterized complex-
ity of finding explanations based on samples classified by
a black-box ML model, we focus on the setting where the
model together with its inner workings is available as an in-
put for computing explanations. This perspective, initiated
by Barceló et al. (2020), is particularly appealing, as it lets
us quantify the explainability of various model types based
on the computational complexity of the corresponding ex-
planation problems.

Challenging the notion of inherent opacity in ML mod-
els, our study includes Decision Trees (DTs), Decision
Sets (DSs), Decision Lists (DLs), and Ordered Binary Deci-
sion Diagrams (OBDDs). Whereas DTs, DSs, and DLs are
classical ML models, OBDDs can be used to represent the
decision, functions of naive Bayes classifiers (Chan and Dar-
wiche 2003). We also consider ensembles of all the above
ML models; where an ensemble classifies an example by
taking the majority classification over its elements. For in-
stance, Random Forests (RFs) are ensembles of DTs.

Each model presents distinct features affecting explana-
tion generation. For example, the transparent structure of
DTs and RFs facilitates rule extraction, as opposed to the
complex architectures of Neural Networks (NNs) (Ribeiro,
Singh, and Guestrin 2016; Lipton 2018).
Contribution This paper fills a crucial gap in XAI research
by analyzing the complexity of generating explanations
across different models. Prior research has often centred on
practical explainability approaches, but a theoretical under-
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standing still needs to be developed (Holzinger et al. 2020;
Molnar 2023). Our study is aligned with the increasing call
for theoretical rigor in AI (Commission 2019). By dissect-
ing the parameterized complexity of these explanation prob-
lems, we lay the groundwork for future research and algo-
rithm development, ultimately contributing to more efficient
explanation methods in AI.

Since most of the considered explanation problems are
NP-hard, we use the paradigm of fixed-parameter tractabil-
ity (FPT), which involves identifying specific parameters of
the problem (e.g., explanation size, number of terms/rules,
size/height of a DT, width of a BDD) and proving that the
problem is fixed-parameter tractable concerning these pa-
rameters. By focusing on these parameters, the complexity
of the problem is confined, making it more manageable and
often solvable in uniform polynomial time for fixed values of
the parameters. A significant part of our positive results are
based on reducing various model types to Boolean circuits
(BCs). This reduction is crucial for the uniform treatment
of several model types as it allows the application of known
algorithmic results and techniques from the Boolean circuits
domain to the studied models. It simplifies the problems and
brings them into a well-understood theoretical framework.
For ensembles, we consider Boolean circuits with majority
gates. In turn, we obtain the fixed-parameter tractability of
problems on Boolean circuits via results on Monadic Sec-
ond Order (MSO). We use extended MSO (Bergougnoux,
Dreier, and Jaffke 2023) to handle majority gates, which al-
lows us to obtain efficient algorithmic solutions, particularly
useful for handling complex structures.

Overall, the approach in the manuscript is characterized
by a mix of theoretical computer science techniques, includ-
ing parameterization, reduction to well-known problems,
and the development of specialized algorithms that exploit
the structural properties of the models under consideration.
This combination enables the manuscript to effectively ad-
dress the challenge of finding tractable solutions to explana-
tion problems in various machine learning models.

For some of the problems, we develop entirely new cus-
tomized algorithms. We complement the algorithmic re-
sults with hardness results to get a complete picture of the
tractability landscape for all possible combinations of the
considered parameters (an overview of our results are pro-
vided in Tables 2, 3, 4).

In summary, our research marks a significant advance-
ment in the theoretical understanding of explainability in
AI. By offering a detailed complexity analysis for various
ML models, this work enriches academic discourse and re-
sponds to the growing practical and regulatory demand for
transparent, interpretable, and trustworthy AI systems.
A full version of the paper can be found on ArXiv (Ordyniak
et al. 2024).

2 Preliminaries
Parameterized Complexity. A problem with input size n
and parameter k is fixed-parameter tractable (fp-tractable)
if it can be solved in time f(k)nc for a constant c inde-
pendent of k, and a computable function f ; the problem is

xp-tractable if it can be solved in time nf(k) (Downey and
Fellows 2013). FPT and XP are the classes of fp-tractable
and xp-tractable decision problems, respectively. There is
a hierarchy of parameterized complexity classes that repre-
sent various levels of intractability: P ⊆ FPT ⊆ W[1] ⊆
W[2] ⊆ · · · ⊆ XP ∩ paraNP ⊆ paraNP. All inclusions
are believed to be proper. If a problem is W[i]-hard un-
der fpt-reductions (W[i]-h, for short) then it is unlikely to
be in FPT. The class of co-C denotes the complexity class
containing all problems from C with yes-instances and no-
instances swapped.

Examples and Models Let F be a set of binary features. An
example e : F → {0, 1} over F is a {0, 1}-assignment of the
features in F . An example is a partial example (assignment)
over F if it is an example over some subset F ′ of F . We de-
note by E(F ) the set of all possible examples over F . A
(binary classification) model M : E(F ) → {0, 1} is a spe-
cific representation of a Boolean function over E(F ). We
denote by F (M) the set of features considered by M , i.e.,
F (M) = F . We say that an example e is a 0-example or
negative example (1-example or positive example) w.r.t. the
model M if M(e) = 0 (M(e) = 1). For convenience, we
restrict our setting to the classification into two classes. We
note however that all our hardness results easily carry over to
the classification into any (in)finite set of classes. The same
applies to our algorithmic results for non-ensemble models
since one can easily reduce to the case with two classes by
renaming the class of interest for the particular explanation
problem to 1 and all other classes to 0. We leave it open
whether the same holds for our algorithmic results for en-
semble models.

Decision Trees. A decision tree (DT) T is a pair (T, λ) such
that T is a rooted binary tree and λ : V (T ) → F ∪{0, 1} is a
function that assigns a feature in F to every inner node of T
and either 0 or 1 to every leaf node of T . Every inner node
of T has exactly 2 children, one left child (or 0-child) and
one right-child (or 1-child). The classification function T :
E(F ) → {0, 1} of a DT is defined as follows for an example
e ∈ E(F ). Starting at the root of T one does the following
at every inner node t of T . If e(λ(t)) = 0 one continues
with the 0-child of t and if e(λ(t)) = 1 one continues with
the 1-child of t until one eventually ends up at a leaf node
l at which e is classified as λ(l). For every node t of T ,
we denote by αt

T the partial assignment of F defined by the
path from the root of T to t in T , i.e., for a feature f , we
set αt

T (f) to 0 (1) if and only if the path from the root of T
to t contains an inner node t′ with λ(t′) = f together with
its 0-child (1-child). We denote by L(T ) the set of leaves of
T and we set Lb(T ) = { l ∈ L(T ) | λ(l) = b } for every
b ∈ {0, 1}. Moreover, we denote by ∥T ∥ (h(T )) the size
(height) of a DT, which is equal to the number of leaves of
T (the length of a longest root-to-leaf path in T ). Finally, we
let MNL(T ) = min{|L0|, |L1|}.

Decision Sets. A term t over F is a set of literals with each
literal being of the form (f = z) where f ∈ F and z ∈
{0, 1}. A rule r is a pair (t, c) where t is a term and c ∈
{0, 1}. We say that a rule (t, c) is a c-rule. We say that a
term t (or rule (t, c)) applies to (or agrees with) an example
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e if e(f) = z for every element (f = z) of t. Note that the
empty rule applies to any example.

A decision set (DS) S is a pair (T, b), where T is a set of
terms and b ∈ {0, 1} is the classification of the default rule
(or the default classification). We denote by ∥S∥ the size of
S which is equal to (

∑
t∈T |t|)+ 1; the +1 is for the default

rule. The classification function S : E(F ) → {0, 1} of a DS
S = (T, b) is defined by setting S(e) = b for every example
e ∈ E(F ) such that no term in T applies to e and otherwise
we set S(e) = 1− b.

Decision Lists. A decision list (DL) L is a non-empty se-
quence of rules (r1 = (t1, c1), . . . , rℓ = (tℓ, cℓ)), for some
ℓ ≥ 0. The size of a DL L, denoted by ∥L∥, is equal to∑ℓ

i=1(|ti| + 1). The classification function L : E(F ) →
{0, 1} of a DL L is defined by setting L(e) = b if the first
rule in L that applies to e is a b-rule. To ensure that every ex-
ample obtains some classification, we assume that the term
of the last rule is empty and therefore applies to all exam-
ples.

Binary Decision Diagrams. A binary decision diagram
(BDD) B is a pair (D, ρ) where D is a directed acyclic graph
with three special vertices s, t0, t1 such that:

• s is a source vertex that can (but does not have to) be equal
to t0 or t1,

• t0 and t1 are the only sink vertices of D,

• every non-sink vertex has exactly two outgoing neighbors,
which we call the 0-neighbor and the 1-neighbor, and

• ρ : V (D)\{t0, t1} → F is a function that associates with
every non-sink node of D a feature in F .

For an example e ∈ E, we denote by PB(e) (or P (e) if
B is clear from the context), the unique path from s to either
t0 or t1 followed by e in B. That is starting at s and ending
at either t0 or t1, P (e) is iteratively defined as follows. Ini-
tially, we set P (e) = (s), moreover, if P (e) ends in a vertex
v other than t0 or t1, then we extend P (e) by the e(ρ(v))-
neighbor of v in D. Let B be a BDD and e ∈ E(F ) be an
example. The classification function B : E(F ) → {0, 1} of
B is given by setting B(e) = b if PB(e) ends in tb. We de-
note by ∥B∥ the size of B, which is equal to |V (D)|. We say
that B is an OBDD if every path in B contains features in
the same order. Moreover, B is a complete OBDD if every
maximal path contains the same set of features. It is known
that every OBDD can be transformed in polynomial-time
into an equivalent complete OBDD (Mengel and Slivovsky
2021, Observation 1). All OBDDs considered in the paper
are complete.

Ensembles. An M-ensemble, also denoted by MMAJ,
E is a set of models of type M, where M ∈
{DT,DS,DL,OBDD}. We say that E classifies an exam-
ple e ∈ E(F ) as b if so do the majority of models in E ,
i.e., if there are at least ⌊|E|/2⌋+1 models in E that classify
e as b. We denote by ∥E∥ the size of E , which is equal to∑

M∈E ∥M∥. We additionally consider an ordered OBDD-
ensemble, denoted by OBDD<

MAJ, where all OBDDs in the
ensemble respect the same ordering of the features.

r1 : IF (x = 1 ∧ y = 1) THEN 0
r2 : ELSE IF (x = 0 ∧ z = 0) THEN 1
r3 : ELSE IF (y = 0 ∧ z = 1) THEN 0
r4 : ELSE THEN 1

Figure 1: Let L be the DL given in the figure and let e be the ex-
ample given by e(x) = 0, e(y) = 0 and e(z) = 1. Note that
L(e) = 0. It is easy to verify that {y, z} is the only local abduc-
tive explanation for e in L of size at most 2. Moreover, both {y}
and {z} are minimal local contrastive explanations for e in L. Let
τ1 = {x 7→ 1, y 7→ 1} and τ2 = {x 7→ 0, z 7→ 0} be a partial
assignments. Note that τ1 and τ2 are minimal global abductive and
global contrastive explanations for class 0 w.r.t. L, respectively.

3 Considered Problems and Parameters
We consider the following types of explanations
(see Marques-Silva’s survey (2023)). Let M be a
model, e an example over F (M), and let c ∈ {0, 1} be a
classification (class). We consider the following types of
explanations for which an example is illustrated in Figure 1.
• A (local) abductive explanation (LAXP) for e w.r.t. M is

a subset A ⊆ F (M) of features such that M(e) = M(e′)
for every example e′ that agrees with e on A.

• A (local) contrastive explanation (LCXP) for e w.r.t. M
is a set A of features such that there is an example e′ such
that M(e′) ̸= M(e) and e′ differ from e only on the fea-
tures in A.

• A global abductive explanation (GAXP) for c w.r.t. M is a
partial example τ : F → {0, 1}, where F ⊆ F (M), such
that M(e) = c for every example e that agrees with τ .

• A global contrastive explanation (GCXP) for c w.r.t. M
is a partial example τ : F → {0, 1}, where F ⊆ F (M),
such that M(e) ̸= c for every example that agrees with τ .
For each of the above explanation types, each of the con-

sidered model types M, and depending on whether or not
one wants to find a subset minimal or cardinality-wise min-
imum explanation, one can now define the corresponding
computational problem. For instance:

M-SUBSET-MINIMAL LOCAL ABDUCTIVE EXPLANA-
TION (LAXP⊆)
INSTANCE: A model M ∈ M and an example e.
QUESTION: Find a subset minimal local abductive ex-

planation for e w.r.t. M .

M-CARDINALITY-MINIMAL LOCAL ABDUCTIVE EX-
PLANATION (LAXP )
INSTANCE: A model M ∈ M, an example e, and an

integer k.
QUESTION: Is there a local explanation for e w.r.t. M of

size at most k?

The problems M-X⊆ and M-X for X ∈ {GAXP, LCXP,
GCXP} are defined analogously.

Finally, for these problems, we will consider natural pa-
rameters listed in Table 1; not all parameters apply to all
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considered problems. We denote a problem X parameter-
ized by parameters p, q, r by X(p+ q + r).

4 Overview of Results
As we consider several problems, each with several variants
and parameters, there are hundreds of combinations to con-
sider. We therefore provide a condensed summary of our
results in Tables 2, 3, 4.

The first column in each table indicates whether a result
applies to the cardinality-minimal or subset-minimal variant
of the explanation problem (i.e., to X⊆ or X , respectively).
The next 4 columns in Tables 2, 3, 4 indicate the parame-
terization, the parameters are explained in Table 1. A “p”
indicates that this parameter is part of the parameterization,
a “−” indicates that it isn’t. A “c” means the parameter is
set to a constant, “1” means the constant is 1.

By default, each row in the tables applies to all four prob-
lems LAXP, GAXP, GCXP, and LCXP. However, if a result
only applies to LCXP, it is stated in parenthesis. So, for in-
stance, the first row of Table 2 indicates that DT-LAXP⊆,
DT-GAXP⊆, DT-GCXP⊆, and DT-LCXP⊆, where the en-
semble consists of a single DT, can be solved in polynomial
time.

The penultimate row of Table 2 indicates that
DTMAJ-LAXP , DTMAJ-GAXP and DTMAJ-GCXP
are co-NP-hard even if mnl size + size elem + xp size is
constant, and DTMAJ-LCXP is W[1]-hard parameterized
by xp size even if mnl size+ size elem is constant. Finally,
the ⋆ indicates a minor distinction in the complexity
between DT-LAXP and the two problems DT-GAXP and
DT-GCXP . That is, if the cell contains NP-h⋆ or pNP-h⋆,
then DT-LAXP is NP-hard or pNP-hard, respectively,
and neither DT-GAXP nor DT-GCXP are in P unless
FPT = W[1].

We only state in the tables those results that are not im-
plied by others. Tractability results propagate in the fol-
lowing list from left to right, and hardness results propagate
from right to left.

-minimality ⇒ ⊆-minimality
set A of parameters ⇒ set B ⊇ A of parameters
ensemble of models ⇒ single model

unordered OBDD ensemble ⇒ ordered OBDD ensemble

For instance, the tractability of X implies the tractability of
X⊆, and the hardness of X⊆ implies the hardness of X .

parameter definition

ens size number of elements of the ensemble
mnl size largest number of MNL over all ensemble elem.
terms elem largest number of terms per ensemble elem.
term size size of a largest term over all ensemble elem.
width elem largest width over all ensemble elements
size elem size of largest ensemble element
xp size size of the explanation

Table 1: Main parameters considered. Note that some parameters
(such as width elem) only apply to specific model types.

minimality

ens size
mnl size

size elem

xp size
complex

ity

result

⊆ 1 − − − P Thm 5
1 − − − NP-h⋆(P) Thms 5, 20, 21
1 − − p W[1]-h(P) Thms 5, 20, 21
1 − − p XP (P) Thms 5, 6

⊆ p − − − co-W[1]-h(W[1]-h) Thm 23
⊆ p − − − XP Thm 7

p − − − pNP-h⋆(XP) Thms 7, 20, 21
p p − − FPT Thm 3
p − p − FPT Thm 3
p − − c(p) co-W[1]-h(W[1]-h) Thm 23

⊆ − c c − co-NP-h(NP-h) Thm 24
− c c c(p) co-NP-h(W[1]-h) Thm 24
− − − p co-pNP-h(XP) Thms 1, 24

Table 2: Explanation complexity when the model is a DT or an
ensemble of DTs. See Section 4 for how to read the table.

minimality

ens size
terms elem

term
size

xp size
complex

ity

result

⊆ 1 − c − co-NP-h(NP-h) Thm 25
1 − − p co-pNP-h(W[1]-h) Thms 25, 26
c − p p co-pNP-h(FPT) Thms 11, 25
p p − − FPT Cor 8
p − c p co-pNP-h(W[1]-h) Thms 25, 27

⊆ − c c − co-NP-h(NP-h) Thm 28
− c c c(p) co-NP-h(W[1]-h) Thm 28
− − − p co-pNP-h(XP) Thms 1, 25

Table 3: Explanation complexity when the model is a DS, a DL, or
an ensemble thereof. See Section 4 for how to read the table.

5 Algorithmic Results
In this section, we will present our algorithmic results. We
start with some general observations that are independent of
a particular model type.

Theorem 1. Let M be any model type such that M(e) can
be computed in polynomial-time for M ∈ M. M-LCXP
parameterized by xp size is in XP.

Proof. Let (M, e, k) be the given instance of M-LCXP
and suppose that A ⊆ F (M) is a cardinality-wise mini-
mal local contrastive explanation for e w.r.t. M . Because
A is cardinality-wise minimal, it holds the example eA ob-
tained from e by setting eA(f) = 1− e(f) for every f ∈ A
and eA(f) = e(f) otherwise, is classified differently from
e, i.e., M(e) ̸= M(eA). Therefore, a set A ⊆ F (M)
is a cardinality-wise minimal local contrastive explanation
for e w.r.t. M if and only if M(e) ̸= M(eA) and there
is no cardinality-wise smaller set A′ for which this is the
case. This now allows us to obtain an XP algorithm for
M-LCXP as follows. We first enumerate all possible sub-
sets A ⊆ F (M) of size at most k in time O(|F (M)|k)
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minimality

ordered/unordered

ens size
width elem

size elem

xp size
complex

ity

result

⊆ u 1 − − − P Thm 14
o 1 − − − NP-h(P) Thms 14, 30
o 1 − − p W[2]-h(P) Thms 14, 30

⊆ u c c − − co-NP-h(NP-h) Thm 29
u c c − c(p) co-NP-h(W[1]-h) Thm 29

⊆ o p − − − co-W[1]-h(W[1]-h) Thm 32
⊆ o p − − − XP Thm 15

o p − − − pNP-h(XP) Thms 15, 30
o p p − − FPT Cor 12
u p − p − FPT Cor 13
o p − − c(p) co-W[1]-h(W[1]-h) Thm 32

⊆ o − c c − co-NP-h(NP-h) Thm 31
o − c c c(p) co-NP-h(W[1]-h) Thm 31
u − − − p co-pNP-h(XP) Thms 1, 29

Table 4: Explanation complexity when the model is an OBDD or an
ensemble thereof. For an ensemble, column “ordered/unordered”
indicates whether all the OBDDs in the ensemble have the same
variable-order. See Section 4 for how to read the table.

and for each such subset A we test in polynomial-time if
M(eA) ̸= M(e). If so, we output that (M, e, k) is a yes-
instance and if this is not the case for any of the enumer-
ated subsets, we output correctly that (M, e, k) is a no-
instance.

The remainder of the section is organized as follows.
First in Section 5.1, we provide a very general result about
Boolean circuits, which will allow us to show a variety of
algorithmic results for our models. We then provide our al-
gorithms for the considered models in Subsections 5.2 to 5.4

5.1 A Meta-Theorem for Boolean Circuits
Here, we present our algorithmic result for Boolean circuits
that are allowed to employ majority circuits. In particu-
lar, we will show that all considered explanation problems
are fixed-parameter tractable parameterized by the so-called
rankwidth of the Boolean circuit as long as the Boolean
circuit uses only a constant number of majority gates; see,
e.g., (Oum and Seymour 2006) for a definition of rankwidth.
Since our considered models can be naturally translated into
Boolean circuits, which require majority gates in the case
of ensembles, we will obtain a rather large number of algo-
rithmic consequences from this result by providing suitable
reductions of our models to Boolean circuits in the following
subsections.

To show our algorithmic result for Boolean circuits given
below, we make use of an only recently developed meta-
theorem (Bergougnoux, Dreier, and Jaffke 2023, Theorem
1.2) involving an extension of Monadic second order logic
that allows us to easily model majority gates of Boolean cir-
cuits.

Theorem 2. c-BC-LAXP , c-BC-GAXP , c-BC-LCXP , c-
BC-GCXP are fixed-parameter tractable parameterized by
the rankwidth of the circuit.

5.2 DTs and their Ensembles
Here, we present our algorithms for DTs and their ensem-
bles. With the help of our meta-theorem (Theorem 2) to-
gether with natural translations of DTs and DTMAJs into
BCs and 1-BCs, respectively, we obtain the following two
theorems, showing that all problems are fixed-parameter
tractable parameterized by ens size plus mnl size .
Theorem 3. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
DTMAJ-P (ens size + mnl size) and therefore also DTMAJ-
P (ens size + size elem) is FPT.

The following auxiliary lemma provides polynomial-time
algorithms for testing whether a given subset of features A
is a local abductive, global abductive, or global contrastive
explanation.
Lemma 4. Let T be a DT, let e be an example and let c
be a class. There are polynomial-time algorithms for the
following problems:
(1) Decide whether a given subset A ⊆ F (T ) of features is

a local abductive explanation for e w.r.t. T .
(2) Decide whether a given partial example e′ is a global

abductive/contrastive explanation for c w.r.t. T .

Proof Sketch. Let T be a DT, let e be an example and let c
be a class. Note that we assume here that T does not have
any contradictory path.

We start by showing (1). A subset A ⊆ F (T ) of fea-
tures is a local abductive explanation for e w.r.t. T if and
only if the DT T|e|A does only contain T (e)-leaves, which
can clearly be decided in polynomial-time. Here, e|A is the
partial example equal to the restriction of e to A. Moreover,
T|e′ for a partial example e′ is the DT obtained from T after
removing every 1 − e′(f)-child from every node t of T as-
signed to a feature f for which e′ is defined. The proof for
(2) is similar.

Using dedicated algorithms for the inclusion-wise min-
imal variants of LAXP, GAXP, GCXP and using the
polynomial-time algorithm for the cardinality-wise minimal
version of LCXP given in (Barceló et al. 2020, Lemma 14),
we obtain the following result.
Theorem 5. Let P ∈ {LAXP, LCXP, GAXP, GCXP}. DT-
P⊆ and DT-LCXP can be solved in polynomial-time.

Proof Sketch. Note that the statement of the theorem for
DT-LCXP⊆ follows immediately from (Barceló et al. 2020,
Lemma 14). Therefore, it suffices to show the statement of
the theorem for the remaining 3 problems.

The polynomial-time algorithm for an instance (T , c) of
DT-GAXP⊆ works as follows. Let l be a c-leaf of T ; if no
such c-leaf exists, then we can correctly output that there is
no global abductive explanation for c w.r.t. T . Then, αl

T is
a global abductive explanation for c w.r.t. T . To obtain an
inclusion-wise minimal solution, we do the following. Let
F = F (αl

T ) be the set of features on which αl
T is defined.
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We now test for every feature f ∈ F whether the restric-
tion αl

T [F \ {f}] of αl
T to F \ {f} is a global abductive

explanation for c w.r.t. T . This can clearly be achieved
in polynomial-time with the help of Lemma 4. If this is
true for any feature f ∈ F , then we repeat the process for
αl
T [F \ {f}], otherwise we output αl

T . Very similar algo-
rithms now also work for DT-GCXP⊆ and DT-LAXP⊆.

The following theorem uses an exhaustive enumeration
of all possible explanations together with Lemma 4 to check
whether a set of features or a partial example is an explana-
tion.

Theorem 6. Let P ∈ {LAXP, GAXP, GCXP}. DT-
P (xp size) is in XP.

Proof. We start by showing the statement of the theorem for
DT-LAXP . Let (T , e, k) be an instance of DT-LAXP . We
first enumerate all subsets A ⊆ F (T ) of size at most k in
time O(|F (T )|k). For every such subset A, we then test
whether A is a local abductive explanation for e w.r.t. T in
polynomial-time with the help of Lemma 4. If so, we output
A as the solution. Otherwise, i.e., if no such subset is a local
abductive explanation for e w.r.t. T , we output correctly that
(T , e, k) has no solution.

Let (T , c, k) be an instance of DT-GAXP . We first enu-
merate all subsets A ⊆ F (T ) of size at most k in time
O(|F (T )|k). For every such subset A, we then enumerate
all of the at most 2|A| ≤ 2k partial examples (assignments)
τ : A → {0, 1} in time O(2k). For every such partial ex-
ample τ , we then use Lemma 4 to test whether τ is a global
abductive explanation for c w.r.t. T in polynomial-time. If
so, we output e as the solution. Otherwise, i.e., if no such
partial example is a global abductive explanation for c w.r.t.
T , we output correctly that (T , c, k) has no solution. The
total runtime of the algorithm is at most 2k|F (T )|k|T |O(1).

The algorithm for DT-GCXP is now very similar to the
above algorithm for DT-GAXP .

The next theorem uses our result that the considered prob-
lems are in polynomial-time for DTs (Theorem 5) together
with an XP-algorithm that transforms any DTMAJ into an
equivalent DT.

Theorem 7. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
DTMAJ-P⊆(ens size) and DTMAJ-LCXP (ens size) are in
XP.

5.3 DSs, DLs and their Ensembles
This subsection is devoted to our algorithmic results for DS,
DLs and their ensembles. Our first algorithmic result is
again based on our meta-theorem (Theorem 2) and a suitable
translation from DSMAJ and DLMAJ to a Boolean circuit.

Corollary 8. Let M ∈ {DSMAJ,DLMAJ} and let
P ∈ {LAXP, LCXP, GAXP, GCXP}. M-P (ens size +
terms elem) is FPT.

Unlike, DTs, where DT-LCXP is solvable in
polynomial-time, this is not the case for DS-LCXP .
Nevertheless, we are able to provide the following result,
which shows that DS-LCXP (and even DL-LCXP ) is

fixed-parameter tractable parameterized by term size and
xp size . The algorithm is based on a novel characterization
of local contrastive explanations for DLs.
Lemma 9. Let M ∈ {DS,DL}. M-LCXP for M ∈ M
and integer k can be solved in time O(ak∥M∥2), where a is
equal to term size.

Proof Sketch. Since any DS can be easily translated into a
DL without increasing the size of any term, it suffices to
show the lemma for DLs. Let (L, e, k) be an instance of
DL-LCXP , where L = (r1 = (t1, c1), . . . , rℓ = (tℓ, cℓ)) is
a DL, and let ri be the rule that classifies e, i.e., the first rule
that applies to e.

Let R be the set of all rules rj of L with cj ̸= ci. For a
rule r ∈ R, let A ⊆ F (L) such that the example eA, i.e., the
example obtained from e after setting eA(f) = 1− e(f) for
every f ∈ A and eA(f) = e(f) otherwise, is classified by
rule r. We claim that:

(1) For every r ∈ R and every set A ⊆ F (T ) such that eA
is classified by r, it holds that A is a local contrastive
explanation for e w.r.t. L.

(2) Every local contrastive explanation A for e w.r.t. L con-
tains a subset A′ ⊆ A for which there is a rule r ∈ R
such that eA′ is classified by r.

Because of (1) and (2), it holds that a set A ⊆ F (T ) is a
local contrastive explanation if and only if there is a rule r ∈
R such that eA is classified by r. Therefore, it is sufficient
to be able to compute a minimum set of features A such that
eA is classified by r for every rule r ∈ R, which can be
achieved via a bounded-depth branching algorithm.

The following lemma is now a natural extension of
Lemma 9 for ensembles of DLs.
Lemma 10. Let M ∈ {DSMAJ,DLMAJ}. M-LCXP
for M ∈ M and integer k can be solved in time
O(msak∥M∥2), where m is terms elem, s is ens size, and
a is term size.

The following theorem now follows immediately from
Lemma 10.
Theorem 11. Let M ∈ {DS,DL}. M-
LCXP (terms elem + xp size) is FPT, when ens size
is constant.

5.4 OBDDs and their Ensembles
In this subsection, we will present our algorithmic results
for OBDDs and their ensembles OBDD<

MAJ and OBDDMAJ.
Interestingly, while seemingly more powerful OBDDs and
OBDD<

MAJs behave very similar to DTs and DTMAJs if one
replaces mnl size with width elem . On the other hand, al-
lowing different orderings for every ensemble OBDD makes
OBDDMAJs much more powerful and harder to explain (see
Section 6.3 for an explanation of this phenomenon).

The following two corollaries follow from our meta-
theorem Theorem 2 using suitable translations of OBDDs,
OBDDMAJs, and OBDD<

MAJs into Boolean circuits. While
it is sufficient to use width elem as a parameter for
OBDD<

MAJs; this is no longer the case for OBDDMAJs, where
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one needs to bound the size (instead of the width) of every
element in the ensemble.

Corollary 12. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
OBDD<

MAJ-P (ens size + width elem) is FPT.

Corollary 13. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
OBDDMAJ-P (ens size + size elem) is FPT.

The proof of the following theorem is very similar to the
corresponding result for DTs (Theorem 5).

Theorem 14. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
OBDD-P⊆ and OBDD-LCXP can be solved in
polynomial-time.

The next theorem uses our result that the considered prob-
lems are in polynomial-time for OBDDs (Theorem 14) to-
gether with an XP-algorithm that transforms any OBDD<

MAJ
into an equivalent OBDD.

Theorem 15. Let P ∈ {LAXP, LCXP, GAXP, GCXP}.
OBDD<

MAJ-P⊆(ens size) and OBDD<
MAJ-LCXP (ens size)

are in XP.

6 Hardness Results
In this section, we provide our algorithmic lower bounds.
We start by showing a close connection between the com-
plexity of all of our explanation problems to the following
two problems. As we will see the hardness of finding expla-
nations comes from the hardness of deciding whether or not
a given model classifies all examples in the same manner.
More specifically, from the HOM problem defined below,
which asks whether a given model has an example that is
classified differently from the all-zero example, i.e., the ex-
ample being 0 on every feature. We also need the P-HOM
problem, which is a parameterized version of HOM that we
use to show parameterized hardness results for deciding the
existence of local contrastive explanations.

In the following, let M be a model type.

M-HOMOGENEOUS (HOM)
INSTANCE: A model M ∈ M.
QUESTION: Is there an example e such that M(e) ̸=

M(e0), where e0 is the all-zero example?

M-P-HOMOGENEOUS (P-HOM)
INSTANCE: A model M ∈ M and integer k.
QUESTION: Is there an example e that sets at most k fea-

tures to 1 such that M(e) ̸= M(e0), where
e0 is the all-zero example?

The following lemma now shows the connection between
HOM and the considered explanation problems.

Lemma 16. Let M ∈ M be a model, e0 be the all-zero
example, and let c = M(e0). The following problems are
equivalent:

(1) M is a no-instance of M-HOM.
(2) The empty set is a solution for the instance (M, e0) of

M-LAXP⊆.
(3) (M, e0) is a no-instance of M-LCXP⊆.

(4) The empty set is a solution for the instance (M, c) of
M-GAXP⊆.

(5) The empty set is a solution for the instance (M, 1 − c)
of M-GCXP⊆.

(6) (M, e0, 0) is a yes-instance of M-LAXP .
(7) (M, e0) is a no-instance of M-LCXP .
(8) (M, c, 0) is a yes-instance of M-GAXP .
(9) (M, 1− c, 0) is a yes-instance of M-GCXP .

Proof. It is easy to verify that all of the statements (1)–
(9) are equivalent to the following statement (and therefore
equivalent to each other): M(e) = M(e0) = c for every
example e.

While Lemma 16 is sufficient for most of our hardness
results, we also need the following lemma to show certain
parameterized hardness results for deciding the existence of
local contrastive explanations.
Lemma 17. Let M ∈ M be a model and let e0 be the all-
zero example. The following problems are equivalent:
(1) (M,k) is a yes-instance of M-P-HOM.
(2) (M, e0, k) is a yes-instance of M-LCXP .

We will often reduce from the following problem, which
is well-known to be NP-hard and also W[1]-hard parameter-
ized by k.

MULTICOLORED CLIQUE (MCC)
INSTANCE: A graph G with a proper k-coloring of

V (G).
QUESTION: Is there a clique of size k in G?

The following lemma provides a unified way to show
hardness results for ensembles for practically all of our
model types in the case that we allow arbitrarily many
(constant-size) ensemble elements, i.e., we use it to show
Theorems 24, 28, 31.
Lemma 18. Let M be a class of models such that there are
models M0 ∈ M, M1

f ∈ M and M2
f1,f2

∈ M for features
f , f1, and f2 of size at most d such that:
• M0 classifies every example negatively.
• M1

f classifies an example e positively iff e(f) = 1.

• M2
f1,f2

classifies an example e positively iff e(f1) = 0 or
e(f2) = 0.

MMAJ-P-HOM is W[1]-hard parameterized by k even if the
size of each ensemble element is at most d and MMAJ-HOM
is NP-hard even if the size of each ensemble element is at
most d.

Proof Sketch. We provide a parameterized reduction from
the MULTICOLORED CLIQUE (MCC) problem, which is
also a polynomial-time reduction. Given an instance (G, k)
of the MCC problem with k-partition (V1, . . . , Vk) of V (G),
we will construct an equivalent instance (E , k) of MMAJ-P-
HOM in polynomial-time as follows. E uses one binary fea-
ture fv for every v ∈ V (G). Let <V be an arbitrary ordering
of V (G). We denote by n and m the number of vertices and
edges of the graph G, respectively.
E contains the following ensemble elements:
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• For every non-edge uv /∈ E(G) with u <V v, we add the
model M2

fu,fv
to E .

• For every vertex v ∈ V (G), we add the model M1
fv

to E .

• We add (
(
n
2

)
−m)− n+ 2k − 1 models M0 to E .

Clearly, the reduction works in polynomial-time and pre-
serves the parameter and it only remains to show that G
has a k-clique if and only if there is an example e such that
E(e) ̸= E(e0) that sets at most k features to 1.

6.1 DTs and their Ensembles
Here, we provide our algorithmic lower bounds for DTs and
their ensembles. We say that a DT T is ordered if there is
an ordering < of the features in F (T ) such that the ordering
of the features on every root-to-leaf path of T agrees with
<. We need the following auxiliary lemma to simplify the
descriptions of our reductions.

Lemma 19. Let E ⊆ E(F ) be a set of examples defined on
features in F . An ordered DT TE of size at most 2|E||F |+1
such that TE(e) = 1 if and only if e ∈ E can be constructed
in time O(|E||F |).

Proof. Let < = (f1, . . . , fn) be an arbitrary order of the
features in F . First, we construct a simple ordered DT
Te = (Te, λe) that classifies only example e as 1 and all
other examples as 0. Te has one inner node tei for every
i ∈ [n] with λe(t

e
i ) = fi. Moreover, for i < n, tei has tei+1

as its e(fi)-child and a new 0-leaf as its other child. Finally,
ten has a new 1-leaf as its e(fn)-child and a 0-leaf as its other
child. Clearly, Te can be constructed in time O(|F |).

We now construct TE iteratively starting from T∅ and
adding one example from E at a time (in an arbitrary order).
We set T∅ to be the DT that only consists of a 0-leaf. Now to
obtain TE′∪{e} from TE′ for some E′ ⊆ E and e ∈ E \ E′,
we do the following. Let l be the 0-leaf of TE′ that classi-
fies e and let fi be the feature assigned to the parent of l.
Moreover, let T ′

e be the sub-DT of Te rooted at tei+1 or if
i = n let T ′

e be the DT consisting only of a 1-leaf. Then,
TE′∪{e} is obtained from the disjoint union of TE′ and T ′

e

after identifying the root of T ′
e with l. Clearly, TE is an or-

dered DT that can be constructed in time O(|E||F |) has size
at most 2|E||F | + 1 and satisfies TE(e) = 1 if and only if
e ∈ E.

We note that the following theorem also follows from a
result in (Barceló et al. 2020, Proposition 5) for FBDDs,
i.e., BDDs without contradicting paths. However, we re-
quire a different version of the proof that generalizes easily
to OBDDs, i.e., we need to show hardness for ordered DTs.

Theorem 20. DT-LAXP is NP-hard and DT-
LAXP (xp size) is W[2]-hard even if for ordered DTs.

The following theorem is an analogue of Theorem 20 for
global abductive and global contrastive explanations. It is
interesting to note that while it was not necessary to dis-
tinguish between local abductive explanations on one side
and global abductive and global contrastive explanations on
the other side in the setting of algorithms, this is no longer

the case when it comes to algorithmic lower bounds. More-
over, while the following result establishes W[1]-hardness
for DT-GAXP (xp size) and DT-GCXP (xp size), this is
achieved via fpt-reductions that are not polynomial-time re-
ductions, which is a behavior that is very rarely seen in nat-
ural parameterized problems. While it is therefore not clear
whether the problems are NP-hard, the result still shows
that the problems are not solvable in polynomial-time un-
less FPT = W[1], which is considered unlikely (Downey
and Fellows 2013).

Theorem 21. DT-GAXP (xp size) and DT-
GCXP (xp size) are W[1]-hard. Moreover, there is
no polynomial time algorithm for solving DT-GAXP and
DT-GCXP , unless FPT = W[1].

Proof Sketch. We provide a parameterized reduction from
the MULTICOLORED CLIQUE (MCC) problem, which is
well-known to be W[1]-hard parameterized by the size of
the solution. Given an instance (G, k) of the MCC problem
with k-partition (V1, . . . , Vk) of V (G), we will construct an
equivalent instance (T , c, k) of GAXP in fpt-time. Note
that since a partial example e′ is a global abductive expla-
nation for c w.r.t. T if and only if e′ is a global contrastive
explanation for 1 − c w.r.t. T , this then also implies the
statement of the theorem for GCXP . T uses one binary
feature fv for every v ∈ V (G).

We start by constructing the DT Ti,j for every i, j ∈ [k]
with i ̸= j satisfying the following: (*) Ti,j(e) = 1 for
an example e if and only if either e(fv) = 0 for every
v ∈ Vi or there exists v ∈ Vi such that e(fv) = 1 and
e(fv′) = 0 for every v′ ∈ (Vi \ {v}) ∪ (NG(v) ∩ Vj).
Let Ti be the DT obtained using Lemma 19 for the set of
examples {e0} ∪ { ev | v ∈ Vi } defined on the features in
Fi = { fv | v ∈ Vi }. Here, e0 is the all-zero example and
for every v ∈ Vi, ev is the example that is 1 only at the fea-
ture fv and 0 otherwise. Moreover, for every v ∈ Vi, let T v

j
be the DT obtained using Lemma 19 for the set of examples
containing only the all-zero example defined on the features
in { fv′ | v′ ∈ NG(v) ∩ Vj }. Then, Ti,j is obtained from Ti
after replacing the 1-leaf that classifies ev with T v

j for every
v ∈ Vi. Clearly, Ti,j satisfies (*) and since Ti has at most
|Vi|2 inner nodes and T v

j has at most |Vj | inner nodes, we
obtain that Ti,j has at most O(|V (G)|2) nodes.

For an integer ℓ, we denote by DT(ℓ) the complete DT
of height ℓ, where every inner node is assigned to a fresh
auxiliary feature and every of the exactly 2ℓ leaves is a 0-
leaf. Let T∆ be the DT obtained from the disjoint union of
TU = DL(k) and 2k copies T 1

D, . . . , T 2k

D of DT (⌈log(k(k−
1))⌉) by identifying the i-th leaf of TU with the root of T i

D

for every i with 1 ≤ i ≤ 2k; each copy is equipped with its
own set of fresh features.

Then, T is obtained from T∆ after doing the following
with T ℓ

D for every ℓ ∈ [2k]. For every i, j ∈ [k] with i ̸= j,
we replace a private leaf of T ℓ

D with the DT Ti,j ; note that
this is possible because T ℓ

D has at least k(k−1) leaves. Also
note that T has size at most O(|T∆||V (G)|2). This com-
pletes the construction of T and we set c = 0. Clearly, T
can be constructed from G in fpt-time w.r.t. k. It remains
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to show that G has a k-clique if and only if there is a global
abductive explanation of size at most k for c w.r.t. T .

Lemma 22. DTMAJ-HOM is NP-hard and both DTMAJ-
HOM(ens size) and DTMAJ-P-HOM(ens size) are
W[1]-hard.

Proof Sketch. We give a parameterized reduction from
MCC that is also a polynomial-time reduction. That
is, given an instance (G, k) of MCC with k-partition
V1, . . . , Vk, we will construct a DTMAJ E with |E| = 2(k +(
k
2

)
) − 1 such that G has a k-clique if and only if E classi-

fies at least one example positively. This will already suf-
fice to show the stated results for DTMAJ-HOM. Moreover,
to show the results for DTMAJ-P-HOM we additional show
that G has a k-clique if and only if E classifies an example
positively that sets at most k features to 1.

E will use the set of features
⋃

i∈[k] Fi, where Fi =

{ fv | v ∈ Vi }. For each v ∈ Vi and u ∈ Vj , let ev,u be
an example defined on set of features Fi ∪ Fj that is 1 only
at the features fv and fv , and otherwise 0. For every i ∈ [k],
E will have a DT Ti obtained using Lemma 19 for the set
of examples { ev,v | v ∈ Vi } defined on the features in Fi.
Also, for every i and j with 1 ≤ i < j ≤ k, E contains a
DT Ti,j obtained using Lemma 19 for the set of examples
{ ev,u | v ∈ Vi ∧ u ∈ Vj ∧ vu ∈ E(G) } defined on the
features in Fi ∪ Fj . Finally, E contains k +

(
k
2

)
− 1 DTs

that classify every example negatively, i.e., those DTs con-
sists only of one 0-leaf. The correctness of the reduction is
provided in the long version of the paper.

The final two theorems of this section provide all the
remaining hardness results for DTMAJs and follow from
Lemma 22 and Lemma 18, respectively, together with Lem-
mas 16, 17.

Theorem 23. Let P ∈ {LAXP, GAXP, GCXP}. DTMAJ-
P⊆(ens size) is co-W[1]-hard; DTMAJ-LCXP⊆(ens size) is
W[1]-hard; DTMAJ-P (ens size) is co-W[1]-hard even if
xp size is constant; DTMAJ-LCXP (ens size + xp size) is
W[1]-hard.

Theorem 24. Let P ∈ {LAXP, GAXP, GCXP}. DTMAJ-
P⊆ is co-NP-hard even if mnl size + size elem is constant;
DTMAJ-LCXP⊆ is NP-hard even if mnl size + size elem
is constant; DTMAJ-P is co-NP-hard even if mnl size +
size elem + xp size is constant; DTMAJ-LCXP (xp size) is
W[1]-hard even if mnl size + size elem is constant.

6.2 DSs, DLs and their Ensembles
Here, we establish our hardness results for DS, DLs, and
their ensembles. It is interesting to note that there is no real
distinction between DS and DLs when it comes to explain-
ability and that both are considerably harder to explain than
DTs and OBDDs.

Theorem 25. Let M ∈ {DS,DL} and let P ∈
{LAXP, GAXP, GCXP}. M-P⊆ is co-NP-hard even
if term size is constant; M-LCXP⊆ is NP-hard even
if term size is constant; M-P is co-NP-hard even if
term size + xp size is constant.

Theorem 26. Let M ∈ {DS,DL}. M-LCXP (xp size) is
W[1]-hard.

Theorem 27. Let M ∈ {DSMAJ,DLMAJ}. M-
LCXP (ens size + xp size) is W[1]-hard even if term size
is constant.

Theorem 28. Let M ∈ {DSMAJ,DLMAJ} and let P ∈
{LAXP, GAXP, GCXP}. M-P⊆ is co-NP-hard even if
terms elem+ term size is constant; M-LCXP⊆ is NP-hard
even if terms elem + term size is constant; M-P is
co-NP-hard even if terms elem + term size + xp size
is constant; M-LCXP (xp size) is W[1]-hard even if
terms elem + term size is constant.

6.3 OBDDs and their Ensembles

We are now ready to provide our hardness results for
OBDDs and their ensembles OBDD<

MAJs and OBDDMAJs.
While the proofs for OBDDs and OBDD<

MAJs follow along
very similar lines as the corresponding proofs for DTs, the
main novelty and challenge of this subsection are the much
stronger hardness results for OBDDMAJs. Informally, we
show that the satisfiability of any CNF formula ϕ can be
modelled in terms of an ensemble of two OBDDs O1 and O2

each using a different ordering of the variables. In particu-
lar, it holds that both OBDDs classify an example positively
if and only if the corresponding assignment satisfies ϕ. The
main idea behind the construction of O1 and O2 is to make
copies for every occurrence of a variable in ϕ and then use
O1 to verify that the assignment satisfies ϕ and O2 to ver-
ify that all copies of every variable are assigned to the same
value.

Theorem 29. Let P ∈ {LAXP, GAXP, GCXP}.
OBDDMAJ-P⊆ is co-NP-hard even if ens size+width elem
is constant; OBDDMAJ-LCXP⊆ is NP-hard even if
ens size + width elem is constant; OBDDMAJ-P is
co-NP-hard even if ens size + width elem + xp size is
constant; OBDDMAJ-LCXP (ens size) is W[1]-hard even if
ens size + width elem is constant.

A special case of the following theorem, the NP-hardness
of LAXP for FBDDs, i.e., “free” BDDs, was shown by Bar-
celó et al. (2020).

Theorem 30. Let P ∈ {LAXP, GAXP, GCXP}. OBDD-P
is NP-hard and OBDD-P (xp size) is W[2]-hard.

Theorem 31. Let P ∈ {LAXP, GAXP, GCXP}.
OBDD<

MAJ-P⊆ is co-NP-hard even if width elem +
size elem is constant; OBDD<

MAJ-LCXP⊆ is NP-hard even
if width elem + size elem is constant; OBDD<

MAJ-P is
co-NP-hard even if width elem + size elem + xp size is
constant; OBDD<

MAJ-LCXP (xp size) is W[1]-hard even if
width elem + size elem is constant;

Theorem 32. Let P ∈ {LAXP, GAXP, GCXP}.
OBDD<

MAJ-P⊆(ens size) is co-W[1]-hard; OBDD<
MAJ-

LCXP⊆(ens size) is W[1]-hard; OBDD<
MAJ-P (ens size)

is co-W[1]-hard even if xp size is constant; OBDD<
MAJ-

LCXP (ens size + xp size) is W[1]-hard.
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7 Conclusion
We have developed an in-depth exploration of the parame-
terized complexity of explanation problems in various ma-
chine learning (ML) models, focusing on models with trans-
parent internal mechanisms. By analyzing different mod-
els and their ensembles, we have provided a comprehensive
overview of the complexity of finding explanations in these
systems. These insights are crucial for understanding the
inherent complexity of different ML models and their impli-
cations for explainability.

Among our findings, some results stand out as particularly
unexpected. For instance, while DTMAJ and OBDD<

MAJs
are seemingly different model types, our results show that
they behave similarly w.r.t. tractability for explanation prob-
lems. On the other hand, it seems surprising that many of
the tractability results that hold for DTs and OBDDs do
not carry over to seemingly simpler models such as DSs
and DLs. For instance, while all variants of LCXP are
polynomial-time for DTs and OBDDs, this is not the case
for DSs or DLs. Nevertheless, we obtain interesting FPT-
algorithms for DL-LCXP (Theorem 11). OBDDMAJ stands
out as the hardest model for computing explanations by
far, which holds even for models with only two ensemble
elements. From a complexity point of view, DT-GAXP
provides the rare scenario where a problem is known as
W[1]-hard but not confirmed to be NP-hard (Theorem 21).

Looking ahead, there are several promising directions for
future research. First, we aim to extend our complexity clas-
sification to Sequential Decision Diagrams (Darwiche 2011)
or even FBDDs, which offer a more succinct representa-
tion than OBDDs (Bova 2016). This extension could pro-
vide further insights into the complexity of explanations in
more compact ML models. Secondly, we propose to explore
other problem variations, such as counting different types of
explanations or finding explanations that meet specific con-
straints beyond just the minimum ones (Barceló et al. 2020).
Lastly, the concept of weighted ensembles presents an in-
triguing avenue for research. While the hardness results we
established likely still apply, the tractability in the context of
weighted ensembles needs to be clarified and warrants fur-
ther investigation. It would be interesting to see how our
results hold up when considering polynomial-sized weights.
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