
SHACL Validation under the Well-founded Semantics

Cem Okulmus1 , Mantas Šimkus1,2
1Department of Computing Science, Umeå University, Sweden

2Institute of Logic and Computation, TU Wien, Austria
okulmus@cs.umu.se, simkus@dbai.tuwien.ac.at

Abstract

W3C has recently introduced SHACL as a new standard for
integrity constraints on graph-structured data (specifically, on
RDF data). Unfortunately, the standard defines the semantics
of non-recursive constraints only, leaving the case of recur-
sive constraints open. This led to recent efforts into finding a
suitable, mathematically crisp semantics for constraints with
cyclic dependencies. In this paper, we argue that recursive
SHACL can be naturally equipped with a semantics inspired
in the well-founded semantics for recursive logic programs
with default negation. This semantics is not only intuitive, but
it is also computationally tractable, unlike the main previous
proposals. The semantics is tolerant to constraint violations
that are outside the realm of the so-called validation targets,
which is a quality that is highly relevant in practice. In addi-
tion to defining the well-founded semantics for SHACL us-
ing a notion of unfounded sets, we draw a connection to the
classic definition of the well-founded semantics in logic pro-
gramming: we provide a simple (yet inefficient) translation
of recursive SHACL under the well-founded semantics into
propositional logic programs under the well-founded seman-
tics. This provides a basis for an optimized validation engine
presented in the paper: our system performs graph validation
by producing an optimized logic program that can be evalu-
ated using a deductive database engine. The system has pay-
as-you-go behavior: for validation with non-recursive con-
straints, the system avoids using a deductive database and in-
stead only uses SPARQL queries over an RDF triplestore.

1 Introduction
Graph-structured data is becoming increasingly popular,
mainly because it does not require the development of rigid
database schemas. This is important in areas where data has
complex structure, is highly incomplete, or where its struc-
ture evolves over time. These features make the develop-
ment of a fixed database schema difficult, driving research
into topics like Knowledge Graphs (KGs), Property Graphs,
Graph Databases, and RDF graphs. Despite the spirit of
flexibility in graph-structured data, the quality and structural
integrity of data are still of key importance. In traditional re-
lational databases, the so-called integrity constraints provide
a means to enforce a strict structure and maintain quality of
stored information, and we would like to have similar tools
for graph-structure data. However, this is not easy: we need
to strike a good balance between the power to assert some

control over the structure of data, and being relaxed enough
to not negate the benefits of the graph-based data model.

To address the above issue, W3C has introduced SHACL
(Knublauch and Kontokostas 2017) as a new standard for
expressing constraints on RDF graphs (we refer the reader
to (Pareti and Konstantinidis 2021) for an excellent tutorial).
Constraints in SHACL are specified using validation rules,
which have features reminiscent of logic programming and
concept expressions in Description Logics (Baader et al.
2003; Bogaerts, Jakubowski, and Van den Bussche 2022b).
Unfortunately, the SHACL standard only defines the seman-
tics of non-recursive SHACL constraints. The case of cyclic
dependencies, or recursion, was intentionally left unspec-
ified: it is currently up to the developers of SHACL val-
idators to come up with ad-hoc solutions to handle recur-
sion. This has led to recent efforts into finding a suitable
semantics for recursive SHACL constraints: e.g, Corman et
al. have introduced a semantics that is related to the notion of
supported models known in logic programs (Corman, Reut-
ter, and Savkovic 2018), while Andreşel et al. have explored
a semantics based on stable models known in Answer Set
Programming (Andreşel et al. 2020).

The supported model semantics of Corman et al. has
two weaknesses: (a) the problem of deciding graph va-
lidity is intractable, and (b) it allows for unfounded (self-
supported) justifications of inferences. The latter may lead
to counter-intuitive validation results, as unfounded justifi-
cations may allow one to validate graphs where we expect
non-validation. The stable model semantics of Andreşel et
al. solves (b) but still has the problem (a): the intractability
(specifically, NP-hardness) of validation in the two seman-
tics is caused by the simultaneous presence of recursion and
negation in constraints. NP-hardness already applies when
the size of input constraints is assumed to be bounded by a
constant (i.e., in data complexity), which becomes a major
challenge for implementing validators for recursive SHACL
since data graphs in practice are often very big. Interest-
ingly, for the supported model semantics, NP-hardness holds
already for constraints with stratified negation.

An important aspect of SHACL is that validation is seen
as a goal-oriented process. In addition to the validation
rules, a SHACL document also describes validation targets,
whose purpose is to limit the scope of the validation process.
Specifically, validation is expected to not fail merely due to

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

553

a problem in the data that is not related to the validation tar-
gets. The basic supported model and stable model semantics
of Corman et al. and Andreşel et al. are 2-valued and thus do
not achieve the expected resilience to “outside” problems.
For this reason, Corman et al. introduced a 3-valued version
of the supported model semantics (via the so-called faith-
ful shape assignments), which however still suffers from un-
founded justifications and intractability. Andreşel et al. also
address this issue, suggesting a 3-valued stable model se-
mantics as a way to achieve tolerance to problems outside
the scope of validation targets. These authors also connect
what they call cautious validation under the 3-valued stable
model semantics for SHACL to the task of computing the
well-founded model of a logic program with default nega-
tion (Van Gelder, Ross, and Schlipf 1991). This connection
provided the first and clear hint that the main weaknesses
of the previous proposals could be overcome by equipping
SHACL with a semantics based on the well-founded seman-
tics of non-monotonic logic programs.

The main goal of this paper is to provide an explicit defi-
nition of a well-founded semantics for SHACL, which we do
using a suitable adaptation of the notion of unfounded sets.
We believe this semantics provides a strong alternative to
the previous semantics for recursive SHACL: it is intuitive,
it has solid basis in logic programming, it is computation-
ally tractable, and it can be efficiently implemented using
existing tools. Specifically, our contributions are as follows:
• We provide a detailed motivating example to illustrate

the basic ideas and the challenge addressed in this pa-
per. Specifically, we illustrate the syntax of SHACL con-
straints and discuss some of the key problems of the previ-
ously introduced supported model semantics and the sta-
ble model semantics.

• We present a well-founded semantics for SHACL, by pro-
viding a definition based on a notion of unfounded sets
(adapted from the notion used for logic programs). This
notion avoids unfounded justifications and is tractable (not
only in data complexity, but also in combined complex-
ity), which resolves the two main weaknesses of the se-
mantics in (Corman, Reutter, and Savkovic 2018). The
well-founded semantics is 3-valued, which allows it to el-
egantly ignore data and constraint inconsistencies that are
not relevant to the validation targets.

• We connect the introduced semantics for SHACL with the
well-founded semantics for logic programs. To this end,
we first observe that the latter can be seen as special case
of the former. On the other hand, we show how the former
can be encoded in a propositional logic program.

• We implemented a SHACL validator that is based on
an optimized encoding to propositional logic programs.
Our method—in a similar fashion to the production of
a SAT instance in (Corman et al. 2019)—uses SPARQL
queries to produce the desired logic program. The eval-
uation of this program is performed via the DLV sys-
tem (Leone et al. 2006). We present our prototype val-
idator called ShaWell and perform an experimental eval-
uation to compare it against other validators that support
recursive SHACL.

Alex

�햲�헍�헎�햽�햾�헇�헍
�헂�헌�햬�햾�헇�헍�허�헋�햮�햿�헁�햺�헌�햲�헎�헉�햾�헋�헂�허�헋

�햤�헆�헉�헅�허�헒�햾�햾

�헂�헌�햬�햾�헇�헍�허�헋�햮�햿 �헂�헌�햬�햾�헇�헍�허�헋�햮�햿

�헁�햺�헌�햲�헎�헉�햾�헋�헂�허�헋

Blake Cameron
Drew

(A) (B)

Alex
�햲�헍�헎�햽�햾�헇�헍

�헂�헌�햬�햾�헇�헍�허�헋�햮�햿�헁�햺�헌�햲�헎�헉�햾�헋�헂�허�헋
�햤�헆�헉�헅�허�헒�햾�햾

�헂�헌�햬�햾�헇�헍�허�헋�햮�햿 �헂�헌�햬�햾�헇�헍�허�헋�햮�햿

�헁�햺�헌�햲�헎�헉�햾�헋�헂�허�헋

Blake Cameron
Drew

(A) (B)

ProfShape ← EmplShape ∧ (∃isMentorOf.StudShape)

EmplShape ← Employee ∨ ∃hasSuperior.EmplShape

StudShape ← Student ∨ (EmplShape ∧ ¬ProfShape)

Figure 1: Example knowledge graph and SHACL constraints

2 Motivating Examples
In this section, we illustrate the main concepts related to val-
idation of SHACL constraints over graph-structured data. To
this end, we use two small knowledge graphs as follows.

Example 1 (Knowledge Graphs). See the example KG (A)
in Figure 1, containing some information about members of
an educational institution. The KG mentions four persons
called Alex, Blake, Cameron, and Drew, who correspond
to the four nodes of the KG. Alex is (explicitly) stated to be
an employee in this institution, which is indicated by their
membership in the class Employee. Cameron is a (regular)
student in this institution, which is indicated by their mem-
bership in the class Student. The properties isMentorOf
and hasSuperior connect some of the nodes in the graph,
carrying the obvious meaning. The KG (B) is obtained from
(A) by dropping the node Alex, i.e., deleting the class mem-
bership and property assertions that involve Alex.

The KGs in Figure 1 contain only raw facts, without
schema information or integrity constraints. To address this,
SHACL provides a language for describing nodes in a KG
and placing constraints on them. This is done using two
components: validation rules and validation targets.

Example 2 (Validation rules). Consider the three expres-
sions at the bottom of Figure 1, which correspond to three
validation rules to identify nodes of three types: nodes cor-
responding to professors, employees, and students, respec-
tively. Each of these three types has a name (i.e., ProfShape ,
EmplShape , and StudShape) that is associated to its def-
inition using a possibly complex expression (similar to a
concept expression in Description Logics). Specifically, the
first rule tells us that a person is considered to be a profes-
sor (has type ProfShape) if they are an employee (of type
EmplShape) and they mentor at least one student (an ob-
ject with type StudShape). According to the second rule,
a person is an employee (has type EmplShape) if that is
stated explicitly (via membership in the class Employee), or
the person has a superior that is in turn of type EmplShape .
The last rule tells us that an object is of type StudShape if
the object is explicitly stated to be an instance of the class
Student, or the object is of type EmplShape but not of type
ProfShape . Intuitively, in our example, the employees of the
institution that are not professors can be seen as students
who can, e.g., take courses.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

554

Note that in the view of logic programming and deductive
databases, the symbols ProfShape,EmplShape,StudShape
are monadic intensional predicates, whereas Employee and
Student are unary extensional predicates, while isMentorOf
and hasSuperior are binary extensional predicates.

SHACL documents contain not only validation rules but
also a specification of target nodes. In the basic case, we can
list pairs of concrete nodes and the expected types (shape
names). For our running example, we will use one such tar-
get specification with the obvious meaning:

T1 = {(Blake,ProfShape), (Cameron,StudShape)}

In practice, we may want more succinct representations of
targets. To this end, SHACL supports the so-called class
and property (domain and range) targets. E.g., with T =
{(Student,EmplShape)} we ask each instance of Student
to satisfy EmplShape (this requirement will clearly be vio-
lated in our KG).

Intuitively, our KG (A) with the three validation rules in
Figure 1 does validate the targets in T1. Indeed, Cameron
satisfies StudShape because they are explicitly stated as an
instance of Student. Since Blake has Alex as a superior and
Alex is explicitly stated to be an employee, Blake satisfies
EmplShape . Given that Blake mentors Cameron, we infer
that Blake satisfies ProfShape . Unsurprisingly, we can have
targets that we don’t expect to be validated by our KG and
the above validation rules (under a reasonable validation se-
mantics): this holds, e.g., for T = {(Blake,StudShape)}
and T = {(Cameron,ProfShape)}.

We next illustrate two drawbacks of the supported model
semantics; one of those also applies to the stable model se-
mantics. Those issues are addressed by the well-founded
semantics for SHACL that we discuss in the next sections.

The first example illustrates the need for a 3-valued se-
mantics, since the 2-valued supported model semantics has a
significant disadvantage: if we have some issue in the graph
that bars the existence of a total shape assignment, then the
validation fails for all target specifications, even those with-
out any connection to the problematic part of the KG.

Example 3. According to the 2-valued supported model
semantics, we must find an assignment of shape names to
nodes such that: (i) a node o is a assigned a shape name s iff
o satisfies the shape expression associated to s, and (ii) the
target specification is respected. Unfortunately, under this
semantics, the target T1 above cannot be validated by our
KG (A), which is unexpected. The problem here is that Alex
rules out the existence of any shape assignment as required
for validation. If we assign ProfShape to Alex, then Alex
must be a mentor of some object with StudShape . Since
Alex only mentors themselves, and StudShape is incompat-
ible with ProfShape , our candidate assignment fails. If we
decide to not assign ProfShape to Alex, then Alex must not
mentor any object with StudShape . However, Alex mentors
themselves and obviously satisfies StudShape . Thus again
the shape assignment has failed.

The 2-valued stable model semantics of Andreşel et
al. has the same problem as above. To overcome this issue,
3-valued versions of their semantics were proposed by Cor-

man et al. and Andreşel et al. , allowing to leave some shape
assignments as “undetermined”.

Next we show the issue of unfounded inferences, which
applies to both 2- and 3-valued supported model semantics.
Example 4. In the KG (B), a total shape assignment as
required in Example 3 is possible: simply assign StudShape
to Cameron, and assign both ProfShape and EmplShape
to Drew. This situation is questionable because (B) states
that Drew supervises themselves, which in turn causes an
unfounded inference: Drew is an employee because Drew
is an employee. Thus (B) validates the target specification
T = {(Drew,ProfShape)} despite the absence of evidence
that Drew is an employee in the organization.

3 Preliminaries
We define here some preliminary notions. We start with
property paths, which allow to express complex path nav-
igations in data graphs. These in turn are just finite directed
labeled graphs, enriched with built-in monadic predicates.
Finally, we recall the well-founded semantics for proposi-
tional logic programs with negation (Van Gelder, Ross, and
Schlipf 1991), which provides a basis for our approach.

Let NP, NC, NQ be countably infinite, disjoint sets of
property names, class names, and query names, respectively.
Property Paths. We let N±

P = NP ∪ {p− | p ∈ NP} and
call p− the inverse property of p ∈ NP. A property path is
an expression E built using the following grammar:

E ::= r | E ◦ E | E ∪ E | E∗

where r ∈ N±
P . I.e. a property path E is a regular expression

over the alphabet N±
P .

Data Graphs. Let N denote a countably infinite set of
nodes. A data graph is a pair G = (∆G , ·G), where ∆G ⊆ N
is a non-empty finite set and ·G is a function that assigns to
every property name p ∈ NP some binary relation pG ⊆
∆G × ∆G and to every class name A ∈ NP some subset
AG ⊆ ∆G . The function ·G is extended to all property paths
as follows (next, ◦ and ∗ applied on binary relations denote
composition and transitive closure, respectively):

(p−)G = {(o2, o1) | (o1, o2) ∈ pG}
(E1 ◦ E2)

G = EG
1 ◦ EG

2

(E1 ∪ E2)
G = (E1)

G ∪ (E2)
G

(E∗)G = (EG)∗

For any E and o ∈ ∆G , let EG(o) = {o′ | (o, o′) ∈ EG}.
We also assume the presence of built-in monadic predi-

cates (or, monadic queries) that select a subset of nodes in
a given data graph. For this, we assume that ·G maps each
q ∈ NQ to a set qG ⊆ ∆G in some predetermined way.
Well-founded Semantics of Logic Programs. Assume a
countably infinite set Npa of propositional atoms, also called
positive literals. A negative literal is an expression of the
form ¬a, where a ∈ Npa. A literal is either a positive or a
negative literal. A rule ρ is an expression of the form

h← L1, . . . , Ln (1)

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

555

where h ∈ Npa, and L1, . . . , Ln are literals. The atom h is
called the head of ρ, denoted head(ρ). We let body(ρ) =
{L1, . . . , Ln}. A program P is any finite set of rules.

A (3-valued) interpretation I is any set of literals such
that {a,¬a} ̸⊆ I for any a. Intuitively, if a is a propositional
atom such that a ∈ I , then a is true in I . If ¬a ∈ I , then a is
false in I . If neither a ∈ I nor ¬a ∈ I , then the truth value
of a is undefined in I .

A set U of propositional atoms is called an unfounded set
w.r.t. an interpretation I and a program P , if at least one of
the following holds for each rule ρ ∈ P with head(ρ) ∈ U :

(i) there is an atom b ∈ body(ρ) s.t. b ∈ U or ¬b ∈ I , or
(ii) there is a negative literal ¬b ∈ body(ρ) s.t. b ∈ I .

For any program P and interpretation I , there is a unique
⊆-maximal unfounded set w.r.t.P and I , which we denote
UP (I). This claim follows from the easy observation that
“unfoundedness” is preserved under union: if U1, U2 are
unfounded sets w.r.t.P and I , then U1 ∪ U2 is also an un-
founded set w.r.t.P and I .

For a program P , we define a pair TP and WP of opera-
tors that map interpretations to interpretations as follows:

TP (I) = {head(ρ) | body(ρ) ⊆ I, ρ ∈ P}

WP (I) = TP (I) ∪ {¬a | a ∈ UP (I)}

Intuitively, by applying the operator WP on an interpretation
I , we augment I with some new literals: (i) first we include
TP (I) that contains immediate consequences of the rules in
P and the literals in I , and then (ii) we add the negation of all
atoms that can be safely assumed false according to UP (I).
The operator WP is monotonic, i.e., WP (I1) ⊆ WP (I2)
holds whenever I1 ⊆ I2. Thus WP has the least fixpoint
lfp(WP). In the well-founded semantics for logic programs
above, precisely this set lfp(WP) is the intended meaning
of a program P and it is called the well-founded model of
P . We let WFS (P) = lfp(WP). In more detail, we can
compute WFS (P) by considering the sequence I0, I1, . . .
with I0 = ∅ and Ii = WP (Ii−1) for all i > 0. Due to
the monotonicity of WP , this sequence reaches a j such that
Ij+1 = Ij , i.e. it reaches a fixpoint. Then WFS (P) = Ij .
Example 5. Assume a program P with the following rules:

a← b, c b← a, d d← e c← ¬b e← ¬d

Let us compute WFS (P). We start with I0 = ∅. We have
TP (I0) = ∅ and UP (I0) = {a, b}. Thus I1 = WP (I0) =
{¬a,¬b}. To compute I2, first note that TP (I1) = {c} and
UP (I1) = {a, b}. Then I2 = WP (I1) = {c,¬a,¬b}. Ob-
serve that UP (I2) = {a, b} and TP (I2) = {c}, and thus
I3 = I2. Hence WFS (P) = {c,¬a,¬b}.

4 Well-founded Semantics for SHACL
In this section we present a well-founded semantics for
SHACL. This is done by adapting in a suitable way the no-
tion of unfounded sets and fixpoint computations that we
saw above in the context of logic programming.

We start with an (abstract) syntax of SHACL. It is largely
based on the original approach in (Corman, Reutter, and

Savkovic 2018); see also (Pareti, Konstantinidis, and Mo-
gavero 2022; Bogaerts, Jakubowski, and Van den Bussche
2022a). SHACL is a large specification that describes many
constructs. Fortunately, we can concentrate on a small core
language, since the majority of SHACL constructs are ex-
pressible as monadic SPARQL queries. Our formalization
exploits this fact and ‘hides’ those constructs using built-in
monadic predicates.
Syntax. Let NS be a countably infinite set of shape names,
disjoint from NP, NC, and NQ. A basic shape expression
(BSE) φ is an expression built using the following grammar:

φ ::= s | ¬s | A | q | s ∨ s′ | ∀E.s |≥n E.s

where s, s′ ∈ NS, A ∈ NC, q ∈ NQ, E is a property path,
and n > 0 is an integer. A validation rule (or, shape con-
straint)1 ρ is an expression of the form

s← φ1, . . . , φn (2)

where s ∈ NS and φ1, . . . , φn is a non-empty sequence of
BSEs. We let head(ρ) = s and body(ρ) = {φ1, . . . , φn}.
Next, when considering a set C of shape constraints, we al-
ways require that (a) head(ρ1) = head(ρ2) implies ρ1 = ρ2
for all ρ1, ρ2 ∈ C, and (b) for every shape name s that ap-
pears in C, there is ρ ∈ C such that s = head(ρ). The above
just says that every shape name that appears in C has exactly
one “definition”. Concretely, for such a constraint set C and
a shape name s that appears in C, we let C(s) = body(ρ),
where ρ is the unique constraint in C with head(ρ) = s. A
target is a pair (ℓ, s), where ℓ ∈ N∪NQ∪N±

P and s ∈ NS. A
SHACL document is a pair (C, T), where C is a set of shape
constraints and T is a set of targets.
Semantics. We are interested in checking if a data graph G
conforms to a SHACL document (C, T). Intuitively, this re-
quires checking if the nodes of G that are selected via targets
in T have the proper neighborhood in G. The latter is veri-
fied via the validation rules in C. E.g., if (o, s) ∈ T , then we
need to check that s can be derived at o via C(s) and possi-
bly other shape constraints in C. This all will be made more
formal using a well-founded semantics we define next. For
this, we first need our version of 3-valued interpretations.

A shape atom is an expression of the form s(a), where
s ∈ NS and a ∈ N. A negated shape atom is an expression
¬s(a), where s(a) is an atom. A (shape) literal is a pos-
sibly negated shape atom. A (3-valued) interpretation (for
SHACL constraints) is any set S of shape literals such that
there is no s(a) ∈ S with ¬s(a) ∈ S. Intuitively, an atom
s(a) ∈ S means that there is a justification that s holds at a,
a literal ¬s(a) ∈ S means that there is no reason for s to
hold at a, while {s(a),¬s(a)} ∩ S = ∅ corresponds to the
case where the satisfaction of s at a is undefined. For a set
K of shape atoms, let ¬.K = {¬s(a) | s(a) ∈ K}.

For a given graph G and an interpretation S, we define
two functions ⌊·⌋GS and ⌈·⌉GS that map every BSE φ to a set
of nodes in G. These functions are then extended to handle
bodies of constraints (i.e. sets of BSEs) in a natural way. The
functions are presented in Figure 2.

1We use both terms here, since the latter is used in the Semantic
Web yet the former is closer in spirit to logic programming.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

556

⌊s⌋GS = {a | s(a) ∈ S} ⌈s⌉GS = {a ∈ ∆G | ¬s(a) ̸∈ S}

⌊¬s⌋GS = {a | ¬s(a) ∈ S} ⌈¬s⌉GS = {a ∈ ∆G | s(a) ̸∈ S}

[q]GS = qG [A]GS = AG [s ∨ s′]GS = [s]GS ∪ [s′]GS [·] ∈ {⌊·⌋, ⌈·⌉
}

[∀E.s]GS =
{
a ∈ ∆G | ∀a′ ∈ ∆G : (a, a′) ∈ EG implies a′ ∈ [s]GS} [·] ∈ {⌊·⌋, ⌈·⌉

}
[≥n E.s]GS =

{
a ∈ ∆G | #{a′ | (a, a′) ∈ EG and a′ ∈ [s]GS} ≥ n} [·] ∈ {⌊·⌋, ⌈·⌉

}
[φ1, . . . , φn]

G
S = [φ1]

G
S ∩ . . . ∩ [φn]

G
S [·] ∈ {⌊·⌋, ⌈·⌉

}
Figure 2: Evaluating BSEs and constraint bodies: upper and lower bounds. Here #X denotes the cardinality of a set X .

Assume a data graph G and a constraint s ← φ. Suppose
we “believe” a set S of shape literals, i.e., we assume that
all literals in S are true. Then ⌊φ⌋GS and ⌈φ⌉GS return us the
nodes of G where φ is certainly true and where φ is possibly
true, respectively. Thus ⌊φ⌋GS can be used to infer positive
shape literals: if a ∈ ⌊φ⌋GS , then we can infer s(a). We can
use ⌈φ⌉GS to infer negative information: if a ̸∈ ⌈φ⌉GS , then
we can infer ¬s(a). These inferences are formalized next.

Definition 1. Assume a data graph G and a set C of con-
straints. We define an operator TG,C(·) that maps interpre-
tations into interpretations as follows:

TG,C(S)= {s(a) | s←φ1, . . . , φn ∈C, a∈ ⌊φ1, . . . , φn⌋GS}

We are now ready to define the notion of an unfounded
set of shape atoms.

Definition 2 (Unfounded set). Assume an interpretation S,
a data graph G, and a set C of constraints. A set U of shape
atoms is called an unfounded set w.r.t.S, G and C, if a ̸∈
⌈C(s)⌉GS∪¬.U for all s(a) ∈ U .

Assume a graph G, a set U of shape atoms, and assume the
shape literals in a set S are true. Intuitively, the atoms in U
form an unfounded set (and can thus be simultaneously set
to false) if none of the shape atoms s(a) ∈ U can possibly be
implied by the associated constraint, assuming the negation
of the atoms in U holds (in addition to S being true).

The following property follows from the fact that U1∪U2

is an unfounded set w.r.t.S, G and C whenever U1, U2 are
two unfounded sets w.r.t.S, G and C.

Proposition 1. Assume an interpretation S, a data graph G,
and a constraint set C. There exists a unique set U such that:

• U is an unfounded set w.r.t.S, G and C, and
• there is no U ′ ⊃ U that is unfounded set w.r.t.S, G and C.

The unique set U in the proposition above is called the
greatest unfounded set w.r.t.S, G and C. Assume a data
graph G and a set C of constraints. We let UG,C be the op-
erator that maps every interpretation S to the greatest un-
founded set w.r.t.S, G and C. Thus, UG,C(S) is the maxi-
mal set of shape atoms that we can safely set to false if we
assume that the literals in S are true. We can now finally
define a well-founded semantics for SHACL. We define an
operator WG,C that maps interpretations into interpretations

as follows: It combines the positive consequences based on
the TG,C operator and the negated atoms of the greatest un-
founded set produced by the UG,C operator. More formally,
we define:

WG,C(S) = TG,C(S) ∪ ¬.UG,C(S)

The above operator is monotone, i.e., WG,C(S1) ⊆
WG,C(S2) whenever S1, S2 are two interpretations with
S1 ⊆ S2. Thus WG,C has the least fixpoint, i.e., there ex-
ists S such that (i) WG,C(S) = S, and (ii) there is no S′ ⊂ S
with WG,C(S

′) = S′. We use WFS (G, C) to denote the least
fixpoint of WG,C , and call it the well-founded model of G and
C. WFS (G, C) can be obtained by constructing a sequence
S0, S1, S2, . . . such that S0 = ∅ and Si+1 = WG,C(Si) un-
til eventually an index j is reached were Sj = Sj+1. Then
WFS (G, C) = Sj .

We can now define validation as follows.
Definition 3. We say a data graph G is valid against a
SHACL document (C, T), if for all (ℓ, s) ∈ T we have:

• if ℓ∈N, then s(ℓ) ∈WFS (G, C);
• if ℓ∈NC ∪NQ, then s(a) ∈WFS (G, C) for all a ∈ ℓG;
• if ℓ∈N±

P , then s(a)∈WFS (G, C) for all a s.t. (a, b)∈ ℓG .

Example 6. Take the graph G corresponding to (A)
in Fig. 1 and a constraint set C with the three con-
straints of Fig. 1. One can see that WFS (G, C) includes
ProfShape(Blake),EmplShape(Blake),EmplShape(Alex),
StudShape(Cameron). Observe that ProfShape(Alex) ̸∈
WFS (G, C) and ¬ProfShape(Alex) ̸∈ WFS (G, C),
i.e., membership of Alex in ProfShape is undetermined,
which is intuitive as discussed in Example 1. For the
remaining shape atoms over the signature of G and C, we
have that WFS (G, C) contains their negation. Thus G
is valid against (C, {(Blake,ProfShape)}) but not valid
w.r.t. (C, {(Drew,ProfShape)}).

We remark here that performing validation as described
in Definition 3 is computationally tractable. Indeed, check-
ing whether G is valid against a SHACL document (C, T)
is a PTIME-complete problem. The argument for the upper
bound is essentially the same as for the complexity of com-
puting the well-founded model of a propositional logic pro-
gram (Van Gelder, Ross, and Schlipf 1991). Indeed, there
are only polynomially many shape literals over the signature

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

557

of C and the nodes in G. Applying the operator WG,C at any
stage towards reaching the least fix-point needs only polyno-
mial time in the size of G and C. For this, the main aspect to
observe is that computing ⌊φ⌋GS and ⌈φ⌉GS for a given φ,G, S
is feasible in polynomial time. The lower bound follows di-
rectly from the fact that our validation problem subsumes
the entailment problem for propositional Horn programs.

5 Connecting to Logic Programming
Our goal next is to connect the well-founded semantics for
SHACL introduced above to classic the well-founded se-
mantics of logic programs with default negation. This has
two purposes. First, we want to illustrate that the above
SHACL semantics is in fact based on a well-understood for-
malism in logic programming, opening the way to transfer
results from the latter area to an area of the Semantic Web
that is receiving significant attention nowadays. The sec-
ond purpose is to pave the way to an implementation of
SHACL validation that reuses existing engines for comput-
ing the well-founded semantics of logic programs.
From Logic Programs to SHACL Assume a logic pro-
gram P and an atom a. Suppose we want to check whether
a ∈WFS (P). We show how this can be done by a reduction
to validation in SHACL under the well-founded semantics.

We note first that using fresh propositional atoms, P can
be normalized into a program that has the following form:

• If P has more than one rule with an atom b in the head,
then P has exactly two rules with b in the head and those
rules have the form b ← b1 and b ← b2, for some b1, b2.
We say such b depends on two rules in P .

• If b occurs in P , then P has a rule with b in the head.

Note that this normalization can be achieved in polynomial
time. To construct a desired set C of shape constraints, for
every propositional atom p that appears in P , take a fresh
shape name sp. Moreover, for every fact p ← in P , let Ap

be a fresh class name. We build C by adding the following
constraints for each atom p that occurs in P , depending on
the kind of p:

• The atom p depends on two rules, i.e. some distinct p ←
p1 and p← p2 are in P . Then add sp ← sp1

∨ sp2
to C.

• A non-fact rule p← b1, . . . , bk,not bk+1 . . . , not bm be-
longs to P and it is the only rule with p in the head. Then
add sp ← sb1 , . . . , sbk ,not sbk+1

. . . , not sbm to C.

• The fact p← belongs to P . Then add sp ← Ap to C.

Since we want to check a ∈ WFS (P), we set the target as
T = {(o, sa)}. We define a data graph G that encodes the
facts of P as follows. We set ∆G = {o} and let AG

p = {o}
for all facts p← of P .

This completes the construction of C, T ,G from the pro-
gram P . The following can be seen from the definitions of
the well-founded semantics for SHACL and propositional
logic programs:

Proposition 2. Assume C, T ,G constructed from P as
shown above. For a SHACL interpretation S over the signa-
ture of C, let pa(S) = {p | sp(o) ∈ S}∪{¬p | ¬sp(o) ∈ S}.

Then WFS (P) = pa(WFS (G, C)). Thus a ∈ WFS (P) iff
G is valid against (C, T).

Proof (Sketch). Take the sequence I0 ⊆ I1 ⊆ . . . with
I0 = ∅ and Ii+1 = WP (Si). Recall that WFS (I) = Ij
for the smallest j with Ij = Ij+1. Further, take the se-
quence S0 ⊆ S1 ⊆ . . . with S0 = ∅ and Si+1 = WG,C(Si).
Similar to above, WFS (G, C) = Sk for the smallest k
with Sk = Sk+1. For the claim, it suffices to show that
Iℓ = pa(Sℓ) for all ℓ ≥ 0, which we can do by induction.
For ℓ = 0, I0 = pa(S0) since I0 = S0 = ∅. For the in-
ductive case, assume Iℓ = pa(Sℓ) for some ℓ ≥ 0. Then the
following can be verified. First, TP (Iℓ) = pa(TG,C(Sℓ)).
Second, UP (Iℓ) = pa(UG,C(Sℓ)). From this, it follows
that WP (Iℓ) = pa(WG,C(Sℓ)), and the claim follows since
WP (Iℓ) = Iℓ+1 and WG,C(Sℓ) = Sℓ+1.

From SHACL to Logic Programs. Next we turn to a
translation from SHACL to logic programs, which is the first
step towards an implementation of SHACL discussed in the
next section. Specifically, for a given data graph G and a
constraint set C we construct a logic program P such that
WFS (G, C) corresponds to WFS (P). In this way, valida-
tion over G reduces to query answering over P .

Assume a data graph G and a constraint set C. To con-
struct P , we use propositional atoms of the form us

o and uφ
o ,

where s and φ are a shape name and a basic shape expres-
sion that appear in C, respectively, and o ∈ ∆G . We start the
construction of P by adding the following rule

us
o ← uφ1

o , . . . , uφn
o

for all nodes o ∈ ∆G and all s← φ1, . . . , φn in C.
The rest of P deals with the remaining BSEs that appear

in C. For all nodes o ∈ ∆G , we add to P the following:

(1) If a query name q appears in C and o ∈ qG , we add

uq
o ←

(2) If a class name A appears in C and o ∈ AG , we add

uA
o ←

(3) For each ¬s in C, we add

u¬s
o ← ¬us

o

(4) For each s1 ∨ s2 in C, we add

us1∨s2
o ← us1

o

us1∨s2
o ← us2

o

(5) For each ∀E.s in C, we add

u∀E.s
o ← us

o1 , . . . , u
s
on

where {o1, . . . , on} = EG(o)

(6) For each ≥n E.s in C, we add

u≥nE.s
o ← us

o1 , . . . , u
s
on

for all sets {o1, . . . , on} ⊆ EG(o) of cardinality n.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

558

This completes the definition of P , and we can formulate a
correspondence result:

Proposition 3. Assume a program P built from a graph G
and a constraint set C as shown above. For a set Q of literals
in the signature of P , let sa(Q) = {s(o) | us

o ∈ Q} ∪
{¬s(o) | ¬us

o ∈ Q}. Then following holds:

WFS (G, C) = sa(WFS (P))

Proof (Sketch). For this claim, we slightly modify the def-
inition of the well-founded semantics of logic programs:
we define the operator WP as WP (I) = T ∗

P (I) ∪ {¬a |
a ∈ UP (I)}, where T ∗

P (I) denotes the interpretation J that
is obtained by applying TP on I exhaustively until a fix-
point is reached, i.e. formally, T ∗

P (I) is the least fixpoint
of the monotone operator TP,I(K) = I ∪ TP (K). Intu-
itively, at one iteration of applying WP we collect not only
the immediate positive consequences of rules in P but do
this exhaustively. One check that this change is harmless;
it preserves the original well-founded semantics of logic
programs. We perform a similar change to the definition
of the well-founded semantics of SHACL: we define WG,C
as WG,C(S) = T ∗

G,C(S) ∪ ¬.UG,C(S), where T ∗
G,C(S) de-

notes the interpretation S′ that is obtained by applying TG,C
on S exhaustively until a fixpoint is reached. Again, one
can check that this modification does not change the se-
mantics of SHACL in this paper. Due the way we rede-
fined the operators WP and WG,C , one can verify that (∗)
sa(WP (I)) = WG,C(sa(I)) holds for any consistent set I
of literals over the signature of P .

Take the sequence I0 ⊆ I1 ⊆ . . . with I0 = ∅ and Ii+1 =
WP (Si). Further, take the sequence S0 ⊆ S1 ⊆ . . . with
S0 = ∅ and Si+1 = WG,C(Si). For the claim, it suffices to
show by induction that Sℓ = sa(Iℓ) for all ℓ ≥ 0. The base
case is trivial: S0 = sa(I0) since S0 = I0 = ∅. Assume
Sℓ = sa(Iℓ) holds for some ℓ ≥ 0. By exploiting (∗), we get
that Sℓ+1 = WG,C(Sℓ) = WG,C(sa(Iℓ)) = sa(WP (Iℓ)) =
sa(Iℓ+1), as desired.

As a consequence of the above, given any target T , we can
check whether G validates against (C, T) by first building P
as above and then inspecting WFS (P). E.g., if T contains
some (o, s), then we must verify that us

o ∈ WFS (P); this
extends naturally to other kinds of statements in T .

The above reduction from SHACL validation to reason-
ing in a logic program provides a foundation but is not di-
rectly suitable for implementation. E.g., due to a possible
very large size of G in practice, the program P can easily
become too large for existing deductive database engines.
Furthermore, BSEs of the form ≥n E.s cause an exponen-
tial explosion in the value n (see point (6) above where we
traverse subsets of EG(o) of size n). Finally, the construc-
tion of P above does not take into account validation targets,
i.e.,P can be used for validating G against (C, T) for any
T . However, if we are only interested in validating using
a specific T , then P may contain a large amount of rules
are irrelevant. For this reason, our implementation employs
a powerful but simple method to compute a smaller mod-
ule of P that is sufficient to reason about T . We formulate

this optimization for general logic programs under the well-
founded semantics. We note that this is closely related to
the notion of splitting sets in logic programs under the sta-
ble model semantics (Lifschitz and Turner 1994).

Definition 4. Let P be a program and A a set of atoms. Let
mod(P,A) be the smallest set such that:

• mod(P,A) contains every rule from P whose head atom
belongs to A.

• if h ← L1, . . . , Ln ∈ mod(P,A), then mod(P,A) con-
tains all rules of P whose head atom appears in some
L1, . . . , Ln.

Proposition 4. Let P be a program and A a set of atoms.
We have that A ⊆WFS (P) iff A ⊆WFS (mod(P,A)).

Proof (Sketch). Let P0 = mod(P,A) and P1 = P \P0. The
proposition follows directly from the equality

WFS (P0) = WFS (P) ∩ {a,¬a | a appears in P0}.

Indeed, if A ⊆ WFS (P), then for each a ∈ A there
is a rule ρ ∈ P with a in its head. By definition of
mod(P,A), we have ρ ∈ P0 and thus that a appears in
P0. Then due the above equality we get a ∈ WFS (P0).
If A ⊆ WFS (P0), then A ⊆ WFS (P) trivially holds since
WFS (P0) ⊆WFS (P) due to the above equality.

To see the equality, observe that the rules in P1 are such
that their head atoms do not appear in P0. Intuitively,
this means that we can obtain WFS (P) by first comput-
ing WFS (P0) and then evaluating P1 on top of WFS (P0)
without deriving new positive or negative literals over the
atoms that appear in P0. I.e., WFS (P0) can be expanded to
WFS (P) without adding literals over the atom signature of
P0. Technically, consider the sequence H0, H1, . . . where
H0 = WFS (P0) and Hi = WP1(Hi−1) for all i > 0. Due
to monotonicity of WP1 , there is j such that Hi+1 = Hi.
Note that in this sequence no atoms over the signature of P0

are added. Using the basic properties of the consequence
operators, it can be verified that Hi = WFS (P).

6 Practical Validation of SHACL under WFS
In this section we present a formal algorithm to extract a
ground logic program from a given data graph to see if it is
valid under a given SHACL document. This logic program
will correspond exactly with the one given in Section 5.

In Section 5, the function mod is introduced, to produce a
subset of a program that is sufficient to derive a specified set
of atoms. For the purpose of validating a data graph G under
a SHACL document (C, T), these are exactly those atoms us

a
which “correspond” to some target (ℓ, s) ∈ T where a ∈ ℓG

(or resp. (a, b) ∈ ℓG if ℓ ∈ N±
P). In our implementation, we

realize this behavior of producing such a sufficient subset
via the notion of relevant targets.

Definition 5 (Relevant Targets of a Shape). Given a data
graph G, a SHACL document (C, T), and a given shape con-
straint s, the set of relevant targets of s, written as RT(s), is

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

559

Algorithm 1: Extract Logic Program
Input: G: a data graph, (C, T): a SHACL document
Output: P : a logic program

1 begin
2 P := ∅
3 foreach c = (s ← φ1 , . . . , φn) ∈ C do
4 possibleTargets := RT(s)
5 foreach q ∈ body(c) do
6 possibleTargets := qG ∩ possibleTargets
7 foreach a ∈ possibleTargets do
8 P := P ∪ (us

a ← {uφi
a | φi ̸= q})

9 foreach φi ∈ {φ1, . . . , φn} do
10 if φi = ∀E.s′ then
11 P := P ∪ {u∀E.s′

a ← {us′
b | b ∈ EG(a)}}

12 else if φi = ≥nE.s′ then
13 P := P ∪

⋃
{(u≥nE.s′

a ← {us′
b | b ∈ U}) | U ∈

(
EG(a)

n

)
}

14 else if φi = ¬s′ then
15 P := P ∪ {u¬s′

a ← ¬us′
a }

16 else if φi = s′ ∨ s′′ then
17 P := P ∪ {us′∨s′′

a ← us′
a } ∪ {us′∨s′′

a ← us′′
a }

18 return P

defined as follows:

RT(s) = {a ∈ N | (a, s) ∈ T } ∪ {a | (ϕ, s) ∈ T , a ∈ ϕG}
∪ {b | (∀E.s) ∈ C(s′), a ∈ RT(s′), (a, b) ∈ EG}
∪ {b | (≥nE.s) ∈ C(s′), a ∈ RT(s′), (a, b) ∈ EG}
∪ {a | (¬s) ∈ C(s′), a ∈ RT(s′)}
∪ {a | (s ∨ s′′) ∈ C(s′), a ∈ RT(s′)}

where ϕ is either a class, a query or a property.

Description of Algorithm 1. In Algorithm 1 we can see the
procedure to extract a logic program from a given SHACL
document (C, T) and data graph G. The program iterates
over all shape constraints in C in a loop running between
lines 3 and 17. We first collect all the relevant targets of a
shape at line 4. Next, in the loop running between lines 5
and 6 we filter out any nodes from this set that violate any
BSEs which are of the form q. The algorithm continues in
a loop over all remaining nodes. For each such node a, we
construct a logic program rule, seen in line 8. Next, we it-
erate over all BSEs in the constraints in a loop running be-
tween lines 9 and 17. We make a case distinction on φi.
For all four of these cases, seen on lines 11, 13, 15 and 17,
we follow the same construction as seen in Section 5. The
final program, consisting of all such rules for all shape con-
straints, is returned at line 18.

On the use of SPARQL. In Algorithm 1 we use the eval-
uation function ·G whenever we need to evaluate something
over the data graph G. We understand this to be implemented
via suitable SPARQL queries. In our implementation pre-
sented later, we will also not issue multiple queries per
shape, but instead collect all the necessary checks against
the data graph into a single query per shape constraint.

7 Implementation and Experiments
We present here our implementation of a prototype SHACL
validator, called ShaWell and proceed to show its practical
applicability in solving recursive SHACL via comparison
with other state-of-the-art validators. The source code is
publicly available2, where there are also instructions to eas-
ily build and install it on different operating systems.
ShaWell. ShaWell is written in the programming language
Go and implements Algorithm 1. It incorporates two key op-
timizations, however. The first is that instead of querying the
data graph multiple times, as a naive reading of Algorithm 1
would suggest, ShaWell issues exactly one SPARQL query
per shape. The second optimization is that in the produced
logic program, counting is encoded by a polynomial number
of rules, as opposed to exponentially many rules that Algo-
rithm 1 would produce. In case of recursion, ShaWell pro-
duces a logic program and uses DLV (Leone et al. 2006) to
produce a well-founded model. For non-recursive SHACL
documents, ShaWell eschews the need for a logic program
solver, and directly computes whether the data graph is valid
under the given SHACL document.

To compare the effectiveness and performance of ShaWell,
we decided to compare it with other SHACL validators that
provide support for recursive SHACL documents. For these
experiments, we focus on three other systems that support
SHACL documents with recursive shapes: Shacl-Sparql3
from Corman et al. (Corman et al. 2019), SHaclEX4 devel-
oped by Jose Emilio Labra Gayo (Labra Gayo 2016) and the
SHACL validator that is a part of the Apache Jena library5.
Methodology. We use two sets of recursive SHACL doc-
uments for our experiments. The first is a test set that was
used in (Corman et al. 2019), which expects (parts of) DB-
Pedia as the data graph, and uses custom shape constraints.
The second set is from (Ahmetaj et al. 2022b), which also
uses DBPedia for the data graph and provides two constraint
sets, C1 and C2, and 20 different target expressions, leading
to an overall 40 unique SHACL documents. The triple store
GraphDB at version 10.4.1 was used as the SPARQL end-
point. Our dataset is a complete copy of DBPedia, as of the
date of our experiment6, with over 120 million triples. Our
test machine has an Intel Xeon E5-2620 v2 CPU, clocked at
2.10GHz and with 64 GB of RAM and a 120GB SSD. It is
running Ubuntu 22.04.3, under the kernel version 5.15.0-89.

We can see in Table 1 the results of the validation pro-
cess for all three systems. In the table, the first two columns
state the test set and its size understood as the number of
tests in the set. Next, are four groups of four columns each,
for each of the four systems that are being compared. Each
group consists of the column (TO), indicating the number of
tests for which the system took more than 15 minutes to vali-
date, followed by the column (avg) (resp. (med) and (stdev))

2https://github.com/cem-okulmus/shawell
3https://github.com/rdfshapes/shacl-sparql
4https://www.weso.es/shaclex
5https://jena.apache.org/download/index.cgi
6From December 2022 (updated annually). Can be found at

http://dev.dbpedia.org/Download DBpedia.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

560

https://github.com/cem-okulmus/shawell
https://github.com/rdfshapes/shacl-sparql
https://www.weso.es/shaclex
http://dev.dbpedia.org/Download_DBpedia

ShaWell SHaclEX (Labra Gayo 2016) Shacl-Sparql (Corman et al. 2019) Apache Jena
Test Set Size TOs avg med stdev TOs avg med stdev TOs avg med stdev TOs avg med stdev

C1 20 1 113.37 1.48 199.66 7 31.59 3.98 67.92 Fails to parse 20 - - -
C2 20 3 106.23 1.42 212.19 7 31.62 3.96 65.33 Fails to parse 20 - - -
rec 3 0 181.27 195.15 80.72 3 - - - 0 0.25 0.25 0.00 3 - - -

Table 1: Results of our experiments, comparing ShaWell, SHaclEX, Shacl-Sparql, and Apache Jena. The running times reported here are
given in seconds and rounded to 2 decimal places. Timeout was set to 15 minutes.

ShaWell
Test Set Total SPARQL LP DLV Parse

C1 113.37 85.14 4.08 16.74 7.26
C2 106.23 80.08 4.34 17.58 4.11
rec 181.27 133.31 1.58 44.16 2.09

Table 2: This table shows a more detailed breakdown of the run-
ning time of ShaWell. All aggregations are over values in seconds.

which indicates the average (resp. median and standard de-
viation of) running time for all tests which did not time out
for the system in question. Note that in Table 1 some entries
are left blank, indicated by the symbol (-). This indicates
that all tests of a given test set timed out, and thus there is
no value that can be produced for the last three columns of
the group. In addition to this, another type of failure can be
seen for Shacl-Sparql, which failed to parse any tests from
test sets C1 and C2. The type of error produced indicates
that the developers do not support – as of the time of our
experiments – the entirety of the SHACL core standard.

Discussion of Experiments. We can see in Table 1 that
ShaWell produces the least amount of timeouts for test sets
C1 and C2, and matches Shacl-Sparql in producing no time-
outs for test set rec. In terms of average running times, it is
slower than SHaclEX and significantly slower than Shacl-
Sparql (for the test set rec that Shacl-Sparql can actually
parse and validate). Combined with the lower timeout value,
this may indicate that there is potential to further improve the
performance of our implementation.

To get further insight into the running time of ShaWell, we
show in Table 2 a detailed breakdown of its running times.
For each of the three tests sets, we show the average run-
ning time as “Total”, and this is followed by how much time
on average is spent on various phases of the algorithm. The
first phase, “SPARQL”, indicates how much time was spent
on average on the execution of SPARQL queries. The col-
umn “LP” represent how much time was spent producing
the ground logic program. The column “DLV” then indi-
cates how much time the computation of the well-founded
model in the solver DLV took on average. The last column
“Parse” shows the time spent parsing the output of DLV.

We can see that for C1 the SPARQL queries took 85.14
seconds out of 113.37, so around 75% of the total. For C2
we also get around 75% and for “rec” it is a slightly lower
73% that is spent on SPARQL queries. As such, the largest
performance gains would likely come from optimizing the
SPARQL queries, as well as potential optimizations on the
query engine. The actual amount of time time spent answer-
ing the logic program seems comparatively low.

8 Discussion and Conclusion
In this paper we have defined a well-founded semantics for
SHACL constraints with cyclic dependencies. This seman-
tics is not only intuitive and based on well-established prin-
ciples in logic programming and deductive databases, but it
also has advantages over the previous approaches (based on
supported and stable models) in terms of semantic and com-
putational properties, i.e., it avoids unfounded justifications
and is tractable. We presented our prototype implementation
of the transformation from SHACL into logic programs via
SPARQL queries, which makes use of a deductive database
engine to compute the well-founded model of the resulting
program. Our validator called ShaWell is publicly available
and serves to make the well-founded semantics for recursive
SHACL practically available to a larger audience.

We recall that (Andreşel et al. 2020) draws a connec-
tion between the usual well-founded semantics for logic
programs with default negation and the problem of cau-
tious validation under the 3-valued stable model seman-
tics for SHACL, which is due to the classic result by
Przymusinski (Przymusinski 1990). Thus a definition
of a well-founded semantics for SHACL can be derived
from (Andreşel et al. 2020), but it is not explicit in this
previous work. The authors of (Bogaerts and Jakubowski
2021) study the semantics of recursive SHACL in the con-
text of Approximation Fixpoint Theory (AFT), which is an
abstract framework that captures most standard semantics of
formalisms for nonmonotonic reasoning, including the sup-
ported model, the stable model, and the well-founded se-
mantics of logic programs. When applied to SHACL, AFT
allows to induce these three and other semantics for SHACL.
However, AFT is meant to be a unifying framework for cap-
turing multiple semantics, and hence it provides limited in-
sights into the specific semantics in terms of complexity,
knowledge representation, and adequacy for SHACL.

There are many research questions for future work. For
instance, the computational complexity of satisfiability and
implication of SHACL constraints under the well-founded
semantics is a natural next topic for investigations. Some
initial results in this area for the semantics introduced pre-
viously were presented in (Leinberger et al. 2020; Pareti,
Konstantinidis, and Mogavero 2022). Another direction is
to study explanations and repairs of violations of SHACL
constraints under the well-founded semantics: these top-
ics are natural as the SHACL standard calls for (but does
not specify the details of) the so-called validation reports
to support users and applications. Some initial work on ex-
plaining and repairing violations of SHACL constraints was
reported in (Ahmetaj et al. 2021; Ahmetaj et al. 2022a).

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

561

Acknowledgments
We thank Andrian Chmurovič who, during a student project
at TU Wien, worked on an separate implementation of a
SHACL validator and provided useful comments on the pre-
liminary version of this paper. This work was partially sup-
ported by the Austrian Science Fund (FWF) projects P30360
and P30873, and by the Wallenberg AI, Autonomous Sys-
tems, and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation.

References
Ahmetaj, S.; David, R.; Ortiz, M.; Polleres, A.; Shehu, B.;
and Šimkus, M. 2021. Reasoning about Explanations for
Non-validation in SHACL. In Proc. of KR 2021, 12–21.
Ahmetaj, S.; David, R.; Polleres, A.; and Šimkus, M. 2022a.
Repairing SHACL constraint violations using answer set
programming. In Proc. of ISWC 2022, volume 13489 of Lec-
ture Notes in Computer Science, 375–391. Springer.
Ahmetaj, S.; Löhnert, B.; Ortiz, M.; and Šimkus, M. 2022b.
Magic shapes for SHACL validation. Proc. VLDB Endow.
15(10):2284–2296.
Andreşel, M.; Corman, J.; Ortiz, M.; Reutter, J. L.;
Savkovic, O.; and Šimkus, M. 2020. Stable model semantics
for recursive SHACL. In WWW ’20: The Web Conference
2020, 1570–1580. ACM / IW3C2.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The description logic
handbook: theory, implementation, and applications. USA:
Cambridge University Press.
Bogaerts, B., and Jakubowski, M. 2021. Fixpoint seman-
tics for recursive SHACL. In Proc. ICLP 2021 (Technical
Communications), volume 345 of EPTCS, 41–47.
Bogaerts, B.; Jakubowski, M.; and Van den Bussche, J.
2022a. Expressiveness of SHACL features. In Olteanu, D.,
and Vortmeier, N., eds., Proc. of ICDT 2022, volume 220
of LIPIcs, 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.
Bogaerts, B.; Jakubowski, M.; and Van den Bussche, J.
2022b. SHACL: A description logic in disguise. In Proc. of
LPNMR 2022, volume 13416 of Lecture Notes in Computer
Science, 75–88. Springer.
Corman, J.; Florenzano, F.; Reutter, J. L.; and Savkovic,
O. 2019. Validating SHACL constraints over a SPARQL
endpoint. In Proc. of ISWC 2019, volume 11778 of LNCS,
145–163. Springer.
Corman, J.; Reutter, J. L.; and Savkovic, O. 2018. Semantics
and validation of recursive SHACL. In Proc. of ISWC 2018,
volume 11136 of LNCS, 318–336. Springer.
Knublauch, H., and Kontokostas, D. 2017. Shapes con-
straint language (SHACL). W3C Recommendation. https:
//www.w3.org/TR/shacl/.
Labra Gayo, J. E. 2016. SHaclEX - SHACL/ShEx imple-
mentation. https://github.com/weso/shaclex.
Leinberger, M.; Seifer, P.; Rienstra, T.; Lämmel, R.; and
Staab, S. 2020. Deciding SHACL shape containment

through description logics reasoning. In Proc. of ISWC
2020. Springer.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning. ACM Trans. Com-
put. Log. 7(3):499–562.
Lifschitz, V., and Turner, H. 1994. Splitting a logic program.
In Proc.of ICLP 1994, 23–37.
Pareti, P., and Konstantinidis, G. 2021. A review of SHACL:
from data validation to schema reasoning for RDF graphs.
In Šimkus, M., and Varzinczak, I., eds., Tutorial Notes of
the International Reasoning Web Summer School 2021 (RW
2021), volume 13100 of LNCS. Springer.
Pareti, P.; Konstantinidis, G.; and Mogavero, F. 2022. Sat-
isfiability and containment of recursive SHACL. Journal of
Web Semantics 74:100721.
Przymusinski, T. C. 1990. The well-founded semantics co-
incides with the three-valued stable semantics. Fundam. In-
form. 13:445–463.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. J. ACM
38(3):619–649.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

562

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://github.com/weso/shaclex

	Introduction
	Motivating Examples
	Preliminaries
	Well-founded Semantics for SHACL
	Connecting to Logic Programming
	Practical Validation of SHACL under WFS
	Implementation and Experiments
	Discussion and Conclusion

