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Abstract

We study extensions of description logics from the widely
used EL family with operators that make it possible to speak
about different levels of abstraction. We analyze the com-
putational complexity of reasoning and show that often, this
complexity is significantly lower than in the corresponding
extension of the more expressive description logic ALC. By
slightly varying the semantics, we also obtain a case that ad-
mits reasoning in polynomial time.

1 Introduction
Knowledge representation with ontologies often involves
concepts that are situated at different levels of abstraction or,
equivalently, at different levels of granularity. For example,
the widely known medical ontology SNOMED CT contains
the concepts Arm, Hand, Finger, Phalanx, Osteocyte, and
Mitochondrion which may reasonably be viewed as all be-
longing to different, increasingly more fine-grained levels of
abstraction. Existing ontology languages, however, do not
provide any explicit support for representing and interrelat-
ing different abstraction levels.
Recently, this shortcoming has led to the proposal of a

scheme for extending description logics (DLs) with opera-
tors that make it possible to explicitly speak about different
abstraction levels and their interaction (Lutz and Schulze
2023). The main features of this scheme are as follows.
Each of the (finitely many) abstraction levels is associated
with a classical DL interpretation. A refinement function
associates objects on more coarse-grained levels with an en-
semble of objects on more fine-grained levels. Such an en-
semble is simply a tuple of objects that the refined object
decomposes into. This may for instance be in the sense of
mereological parts, but the scheme is by no means restricted
to mereology.
Operators based on conjunctive queries (CQs) make it

possible to describe how objects relate to their refining en-
sembles. These operators come in two flavours. A refine-

ment operator expresses that every object of a certain kind
refines into a certain kind of ensemble. For example, the
statement

L2:qA refines L1:Aircraft,

cr ca rr ra Semantics EL / ELHr ALC
X standard CONP EXP

X X standard PSPACE 2EXP

X standard 2EXP 2EXP

X X X X standard 2EXP 2EXP

X X set ensemble PTIME EXP

X X set ensemble CONP-hard ?

Figure 1: The complexity of satisfiability in abstraction DLs.

where q denotes the conjunctive query

qA = Fuselage(x1) ^Wings(x2) ^ Stabilizer(x3)^
carries(x2, x1) ^ carries(x1, x3),

expresses that every instance of Aircraft on the more coarse-
grained abstraction levelL1 decomposes into an ensemble of
three objects on the more fine-grained level L2, as described
by qA. Conversely, an abstraction operator expresses that
for every ensemble of a certain kind, there is an object that
refines into it. Reusing the query qA from above, for exam-
ple, it would be reasonable to also state

L1:Aircraft abstracts L2:qA

expressing that every ensemble that consists of a fuselage, a
set of wings, and a stabilizer, related as stated by qA, forms
an aircraft. While the operators illustrated above speak
about concepts such asAircraft that are refined or abstracted,
there are analogous operators also for roles (that is, binary
relations) such as carries.
The DLs with abstraction and refinement proposed

in (Lutz and Schulze 2023) are based on the expressive de-
scription logics ALC and ALCI. In this paper, we replace
ALC with important members of the EL family of descrip-
tion logics, in particular with the eponymous EL and its ex-
tension ELHr with role hierarchies and range restrictions.
These DLs play an important role in practice for at least
three reasons. First, they are among very few description
logics that admit reasoning in polynomial time. Second,
a mild extension of ELHr was standardized by the W3C
as the EL profile of the widely used OWL 2 ontology lan-
guage (Motik et al. 2009). And third, many prominent
large-scale ontologies such as SNOMED CT are formulated
in ELHr or mild extensions thereof.
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Two guiding questions for our investigation are: (1) Are
the resulting DLs with abstraction and refinement computa-
tionally more well-behaved than those based on ALC? And
(2) Can we even identify useful cases where reasoning is
possible in polynomial time? We remark that polynomial
time cannot be expected in the presence of abstraction op-
erators because, whenever these operators are present, then
there is an obvious polynomial time reduction from the ho-
momorphism problem on directed graphs; this implies that
reasoning (concept satisfiability, to be precise) is at least
NP-hard. Refinement operators, however, do not preclude
polynomial time reasoning up-front.
We first prove that the extension ELHabs

r of ELHr with
abstraction and refinement operators for both concepts and
roles still enjoys the existence of universal models (defined
in terms of homomorphisms). This is important because
the existence of universal models makes a crucial differ-
ence when designing algorithms, and in fact universal mod-
els underlie all important polynomial time reasoning algo-
rithms for description logics. To construct universal models,
we give a non-trivial chase procedure tailored specifically
to ELHabs

r . The algorithms behind our upper complexity
bounds then all rely on universal models.
Our findings on the complexity of satisfiability in ELHabs

r
and various fragments thereof are summarized in Figure 1.
There, ‘cr’ stands for concept refinement operators, ‘ca’
for concept abstraction, and likewise for ‘rr’ and ‘ra’ and
roles in place of concepts. We remark that subsumption and
(un)satisfiability can be reduced to one another in polyno-
mial time in all considered logics. All stated results are com-
pleteness results with the lower bounds holding already for
(the respective fragments of) ELabs and the upper bounds
applying to ELHabs

r . The results shown in gray are from
(Lutz and Schulze 2023).
Full ELHabs

r and ELabs turn out to be computationally
no more well-behaved than in the case where ALC is used
as the base logic: satisfiability is 2EXPTIME-complete in
both cases. This still holds when only role refinement is
admitted. The picture changes, however, in the important
case where only concept-based operators are used, but no
role-based ones. With only concept refinement, the com-
plexity reduces to CONP which we consider a significant
improvement as it enables the use of SAT solvers to decide
satisfiability. With both concept refinement and abstraction,
satisfiability is PSPACE-complete which is still significantly
lower than 2EXPTIME-completeness in the case whereALC
is used as the base logic.
To attain polynomial time, we change the semantics: in-

stead of tuples of objects, ensembles are now sets of objects.
While this has a subtle impact on modeling (see Example 4
in the paper), it is still a very reasonable semantics. Under
this semantics, we indeed achieve polynomial time reason-
ing when only concept and role refinement is admitted.
To comply with space restrictions, proof details are pro-

vided in the appendix, available at https://www.informatik.
uni-leipzig.de/kr/research/papers.html.
Related Work. As already explained, we adopt the

framework of (Lutz and Schulze 2023). It is loosely related

to description logics of context (Klarman and Gutiérrez-
Basulto 2016) and to other multi-dimensional DLs (Wolter
and Zakharyaschev 1999). Granularity has also received
attention in foundational ontologies, see e.g. (Bittner and
Smith 2003). There are other approaches to combine de-
scription logic and abstraction/granularity, but from very dif-
ferent perspectives and in technically very different ways,
see for example (Calegari and Ciucci 2010; Cima et al.

2022; Glimm et al. 2017; Lisi and Mencar 2018).

2 Preliminaries
Fix countably infinite sets C and R of concept names and
role names. EL-concepts C,D take the form C,D ::= > |
A | C uD | 9r.C where A ranges over concept names and
r over role names. An ELHr-ontology is a finite set O of
concept inclusion (CIs) C v D with C andD EL-concepts,
role inclusions r v s with r, s 2 R, and range restrictions

> v 8r.C with r 2 R and C an EL-concept. We say O
is an EL-ontology if it contains no role inclusions and range
restrictions.
An interpretation is a pair I = (�I , ·I) with �I a non-

empty set (the domain) and ·I an interpretation function that
maps every concept name A 2 C to a set AI ✓ �I and ev-
ery role name r 2 R to a binary relation rI ✓ �I ⇥�I .
The interpretation function is extended to compound con-
cepts by setting >I = �I , (C1 u C2)I = CI

1 \ CI
2 , and

(9r.C)I = {d 2 �I | 9e 2 CI : (d, e) 2 rI}. An inter-
pretation I satisfies a concept inclusion C v D if CI ✓ DI

and likewise for role inclusions; it satisfies a range restric-
tion > v 8r.C if (d, e) 2 rI implies e 2 CI . We say that I
is a model of an ontology O if I satisfies all inclusions and
range restrictions in O. We write O |= r v s if every model
of O satisfies r v s. One can decide whether O |= r v s in
polynomial time by computing the reflexive-transitive clo-
sure of the role inclusions in O.
A conjunctive query (CQ) q(x̄) takes the form

q(x̄) '(x̄)with x̄ a tuple of variables and ' a conjunction
of concept atoms C(x) and role atoms r(x, y) where C is a
(possibly compound) EL-concept, r is a role name, and x, y
are variables from x̄. We require that every variable from x̄
occurs in some atom of q, but may omit this atom in writing
in case it is >(x). We may write ↵ 2 q to indicate that ↵
is an atom in '. With var(q), we denote the variables in '.
The arity of q is the length of x̄. We say that q is connected
if the undirected graph with node set var(q) and edge set
{{v, v0} | r(v, v0) 2 q for any r 2 R} is. Note that CQs as
defined here do not admit quantified variables. The reason is
that admitting such variables results in DLs with abstraction
and refinement to become undecidable, even when based on
EL (Lutz and Schulze 2023). In examples, we shall often
write only '(x̄) in place of q(x̄) '(x̄). We then choose a
variable naming scheme such as x1, x2, x3 that makes clear
the order of the variables in x̄ (and we then assume that there
are no repeated variables in x̄).
Let q(x̄) be a CQ and I an interpretation. A mapping

h : x̄ ! �I is a homomorphism from q to I if C(x) 2 q
implies h(x) 2 CI and r(x, y) 2 q implies (h(x), h(y)) 2
rI . A tuple d̄ 2 (�I)|x̄| is an answer to q on I if there is a
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homomorphism h from q to I with h(x̄) = d̄. We use q(I)
to denote the set of all answers to q on I.
For any syntactic object O such as an ontology or a con-

cept, we use ||O|| to denote the size ofO, that is, the number
of symbols needed to write O using a suitable alphabet.

3 DLs with Abstraction and Refinement
We extend ELHr to the DL ELHabs

r that supports abstrac-
tion and refinement, following (Lutz and Schulze 2023).
Fix a countable set A of abstraction levels. An ELHabs

r -
ontology is a finite set of statements of the following form:
• labeled concept inclusions C vL D, role inclusions
r vL s, and range restrictions > vL 8r, C,

• concept refinements L:q(x̄) refines L0:C,
• concept abstractions L0:C abstracts L:q(x̄),
• role refinements L:q(x̄, ȳ) refines L0:qr(x, y),
• role abstractions L0:r abstracts L:q(x̄, ȳ)

where L,L0 range over abstraction levels fromA, C,D over
EL-concepts, r over role names, q over conjunctive
queries, and qr over conjunctive queries of the form
C1(x) ^ r(x, y) ^ C2(y). In concept and role abstractions,
we additionally require the CQ q to be connected.
We also consider various fragments of ELHabs

r . With
ELHabs

r [cr,ca], for example, we mean the fragment of
ELHabs

r that admits only concept refinement and concept
abstraction, but neither role refinement nor role abstraction
(which are identified by rr and ra). As in the base case, we
dropH if no role inclusions are admitted and likewise for ·r
and range restrictions.
We next define the semantics of ELHabs

r , based on A-

interpretations that include one traditional DL interpreta-
tion for each abstraction level. Formally, an A-interpretation
takes the form I = (AI ,�, (IL)L2AI

, ⇢), where
• AI ✓ A is the set of relevant abstraction levels;
• � ✓ AI ⇥AI is such that the directed graph (AI ,�) is
a tree;1 intuitively, L � L0 means that L is less abstract
than L0 or, in other words, that the modeling granularity
of L is finer than that of L0;

• (IL)L2AI
is a collection of interpretations IL, one for

every L 2 AI , with pairwise disjoint domains; we use
L(d) to denote the unique L 2 AI with d 2 �IL ;

• ⇢ is the refinement function, a partial function that asso-
ciates pairs (d, L) 2 �I ⇥AI such that L � L(d) with
an L-ensemble ⇢(d, L), that is, with a non-empty tuple
over �IL . We want every object to participate in only
one ensemble and thus require that

(⇤) for all d 2 �I and L 2 AI , there is at most one e 2
�IL such that d occurs in ⇢(e, L(d)).

For readability, we may write ⇢L(d) in place of ⇢(d, L).
An A-interpretation I = (AI ,�, (IL)L2AI

, ⇢) satisfies

1Dropping this restriction results in undecidability (Lutz and
Schulze 2023).

• a labeled concept inclusion C vL D if IL satisfies C v
D, and likewise for role inclusions and range restrictions;

• L:q(x̄) refines L0:C if L � L0 and for all d 2 CIL0 , there
is an ē 2 q(IL) such that ⇢L(d) = ē;

• L0:C abstracts L:q(x̄) if L � L0 and for all ē 2 q(IL),
there is a d 2 CIL0 such that ⇢L(d) = ē;

• L:q(x̄, ȳ) refines L0:qr(x, y) if L � L0 and for all
(d1, d2) 2 qr(IL0), there is an (ē1, ē2) 2 q(IL) such that
⇢L(d1) = ē1 and ⇢L(d2) = ē2;

• L0:r abstracts L:q(x̄, ȳ) if L � L0 and for all (ē1, ē2) 2
q(IL), there is a (d1, d2) 2 rIL0 such that ⇢L(d1) = ē1
and ⇢L(d2) = ē2.

An A-interpretation is a model of an ELHabs
r -ontology if it

satisfies all inclusions, refinements, etc in it.
Example 1. We consider the domain of actions. Assume

that there is a MealPrep action that refines into subactions:

L2:qM refines L1:MealPrep where

qM = Buying(x1) ^ Cooking(x2) ^ precedes(x1, x2)

We might have budget-friendly meal preparation and buying

actions:

BudgetMealPrep vL1 MealPrep

BudgetBuying vL2 Buying

BudgetBuying u 9bought.Expensive vL2 ?
A budget-friendly meal preparation requires buying non-

expensive ingredients: L2:qB refines L1:BudgetMealPrep
where

qB(x1, x2) = BudgetBuying(x1).

We are interested in two reasoning problems: concept sat-
isfiability and concept subsumption. Concept satisfiability
means to decide, given an ontology O, an EL-concept C,
and an abstraction level L 2 A, whether there is a model I
ofO such that CIL 6= ;. We then say that C is L-satisfiable
w.r.t. O and call I an L-model of C and O.
For concept subsumption, we are given an ontology O,

two concepts C andD, and an abstraction level L 2 A, and
are asked to decide whether CIL ✓ DIL in every model I
of O. If this is the case we say that C is L-subsumed by D
w.r.t. O and write O |= C vL D.

We remark that the ?-concept, interpreted as ?I = ; in
every interpretation I, can be expressed in ELabs[cr] at the
expense of introducing fresh symbols: a CI C vL ? can be
simulated by

L0:A(x) refines L:C L0:r(x1, x2) refines L:C

where A, r, and L are a fresh concept name, role name,
and abstraction level. This is because the two refinements
require ensembles of different length. W.l.o.g., we thus use
the ?-concept whenever convenient.
Using ?, (un)satisfiability and subsumption are easily in-

terreducible in polynomial time. In fact, it is not hard to see
that a concept C is L-unsatisfiable w.r.t. an ontology O iff
C is L-subsumed by some fresh concept name A w.r.t. O.
Conversely, C is L-subsumed by D w.r.t. O iff C is L-
unsatisfiable w.r.t. O [ {C uD v ?}. We thus state all our
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results in terms of satisfiability and assume that it is under-
stood that (up to complementation) they also apply to sub-
sumption.

4 Upper Bounds
We prove upper complexity bounds for satisfiability in
ELHabs

r . A 2EXPTIME upper bound for full ELHabs
r

follows from the results in (Lutz and Schulze 2023).
We thus concentrate on the fragments ELHabs

r [cr] and
ELHabs

r [cr, ca].

4.1 Simplifying Assumptions
We discuss some assumptions, all w.l.o.g., made throughout
Section 4. First, we assume that the input ontology O is in
normal form, meaning that:

1. all the CIs in O are of one of the following forms, where
A,A1, . . . , An, B are concept names:

> vL A A1 u · · · uAn vL B

A vL 9r.B 9r.A vL B

2. all range restrictions and (concept and role) refinements
and abstractions contain only concept names, but no com-
pound concepts, also inside of CQs.

By introducing new concept and role names, any ELHabs
r

ontology O can be converted into an ontology O0 in nor-
mal form that is a conservative extension of O, i.e., every
model of O0 is also a model of O, and every model of O
can be extended to a model of O0 by appropriately choosing
the interpretations of the concept names that have been in-
troduced during the conversion. The conversion takes only
linear time, see for example (Baader et al. 2005). We fur-
ther assume that the concept C0 whose satisfiability is to be
decided is a concept name, thus not compound. Finally, we
assume that the abstraction level L0 for which satisfiability
is to be decided is the root of the tree GO that is defined by
the abstractions and refinements inO. Let us make the latter
more precise.
We use AO to denote the set of abstraction levels men-

tioned inO and�O for the smallest relation onAO such that
L �O L0 if O contains a concept refinement L:q(x̄) refines
L0:C or a concept abstraction L0:C abstracts L:q(x̄). The
abstraction graph of an ontology O is the directed graph

GO = (AO,��1
O

).

Note that by the definition of the semantics, O being satisfi-
able implies that GO is a tree.
Now assume that the abstraction level L0 for which sat-

isfiability is to be decided is not the root of GO, but LR is.
Then GO contains a path LR = bL1, . . . , bLk = L0 and we
can extend O with concept refinements bLi+1:A(x) refines
bLi:A and bLk:C0(x) refines bLk�1:A for 1  i < k, with
A a fresh concept name, and decide LR-satisfiability of A
w.r.t. the extended ontology.

4.2 Universal Models and The Chase
A crucial property of description logics of the EL family is
the existence of universal models, defined in terms of homo-
morphisms. In particular, universal models are at the basis
of all polynomial time algorithms for description logic rea-
soning that we are aware of. A fundamental observation that
underlies the design of our algorithms is that universal mod-
els also exist for ELHabs

r .
Let Ii = (AIi ,�i, (IL,i)L2AIi

, ⇢i) be an A-interpreta-
tion, for i 2 {1, 2}. A function h : �I1 ! �I2 is a ho-

momorphism from I1 to I2 if the following conditions are
satisfied, for all d, e 2 �I1 :

1. L(d) = L(h(d));

2. �1 ✓ �2;

3. d 2 AI1 implies h(d) 2 AI2 for all A 2 C;

4. (d, e) 2 rI1 implies (h(d), h(e)) 2 rI2 for all r 2 R;

5. ⇢1(d, L) = ē implies ⇢2(h(d), L) = h(ē)

where h(ē) is the tuple obtained from ē by applying h
component-wise. Note that this implies AI1 ✓ AI2 .
Let C0 be an EL-concept, O an ELHabs

r -ontology, and
L0 2 A an abstraction level. A model I of O with distin-
guished element d 2 CI

0 , where L(d) = L0, is a univer-

sal L0-model of C0 and O if the following holds: for every
model J of O and every e 2 CJ

0 with L(e) = L0, there
exists a homomorphism h from I to J with h(d) = e. Our
aim is to show the following.

Lemma 1. Let C0 be an EL-concept, O an ELHabs
r -

ontology, and L0 2 A. If C0 is L0-satisfiable w.r.t. O, then

there exists a universal L0-model of C0 and O.

Lemma 1 is proved by a somewhat intricate chase proce-
dure. For technical reasons, this chase may construct struc-
tures that do not satisfy all the conditions required of A-
interpretations. The chase does thus not run directly in A-
interpretations, but rather on a weakening that we call inter-
pretation candidates.
Let K be a countably infinite set of constants. A fact is

an expression of the form A(a) or r(a, b) where A is a con-
cept name, r a role name, and a, b are constants. Homomor-
phisms from conjunctive queries to sets of facts are defined
in the expected way. An interpretation candidate is a triple
I = (F, ⇢,⇠) where
• F is a fact assignment, that is, a function that maps each
abstraction level L 2 AO to a set of facts F (L). We
use dom(F (L)) to denote the domain of F (L), that is,
dom(F (L)) = {a 2 K | a is used in a fact in F (L)}.
We demand that the F (L) have pairwise disjoint domains
and may write dom(F ) to denote

U
L2AO

dom(FL). We
further use L(a), for any a 2 dom(F ), to denote the
unique L 2 AO such that a 2 dom(F (L));

• ⇢ is a refinement function, that is, a partial function that as-
sociates pairs (a, L) 2 dom(F )⇥AO such thatL � L(a)
with an L-ensemble ⇢(a, L), that is, with a non-empty tu-
ple over dom(F (L));
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• ⇠ is an equivalence relation on the set dom(F ). If we
set a1 ⇠ a2, we mean to set ⇠ := ⇠ [ {(a1, a2)} and
add the smallest number of tuples such that ⇠ is again an
equivalence relation. We use [a] to denote the equivalence
class of a 2 dom(F ) w.r.t. ⇠.
For readability we may write FL instead of F (L) and

⇢L(a) instead of ⇢(a, L). Note that ⇢, in contrast to the re-
finement function in A-interpretations, allows elements to
be part of multiple ensembles.
Our chase procedure starts from the initial interpretation

candidate I0 = (F 0, ⇢0,⇠0) for C0, L0, and O where
F 0
L = {A>(aL)} for all L 2 AO \ {L0}, F 0

L0
= {C0(a0)},

⇢0 is empty, and ⇠0 is the identity. It then applies a set of
rules in a fair way, that is, every rule that is applicable will
eventually be applied. The chase may also abort and report
unsatisfiability of the input. We start by giving the rules that
treat inclusions and range restrictions:

R1 if A1(a) 2 FL, . . . , An(a) 2 FL, and A1 u · · · u An vL

B 2 O, then add B(a) to FL;
R2 if a 2 dom(FL) and > vL A 2 O, then add A(a) to FL;
R3 if A(a) 2 FL, A vL 9r.B 2 O, then add r(a, b) and

B(b) to FL with b as a fresh constant;
R4 if r(a, b) 2 FL, A(b) 2 FL, and 9r.A vL B 2 O, then

add B(a) to FL.
R5 if r(a, b) 2 FL and r vL s 2 O, then add s(a, b) to FL;
R6 if r(a, b) 2 FL and > vL 8r.C 2 O, then add C(a) to

FL;

Next up are the rules that pertain to concept refinements and
abstractions in O. We may use x 2 x̄ to express that vari-
able x occurs in the tuple x̄. For a CQ q(x̄) and a tuple of
constants ā with |x̄| = |ā|, we use q(ā) to denote the set
of facts obtained from q by replacing in every atom the i-th
variable in x̄ by the i-th constant in ā, for 1  i  |ā|.

R7 if A(a) 2 FL, L0: q(x̄) refines L:A 2 O, and ⇢L0(a)
is undefined, then set ⇢L0(a) = ā for a tuple ā of fresh
constants with |ā| = |x̄|;

R8 if A(a) 2 FL, L0: q(x̄) refines L:A 2 O, ⇢L0(a) is de-
fined, and |x̄| = |⇢L0(a)|, then add q(⇢L0(a)) to FL0 ; if
|x̄| 6= |⇢L0(a)|, then return ‘unsatisfiable’;

R9 if h is a homomorphism from q to FL for any concept
abstraction L0:A abstracts L: q(x̄) 2 O and there is no
a 2 dom(FL0) with ⇢L(a) = h(x̄), then introduce a fresh
constant a and set ⇢L(a) = h(x̄);

R10 if h is a homomorphism from q to FL for any concept
abstraction L0:A abstracts L: q(x̄) 2 O and there is an
a 2 dom(FL0) with ⇢L(a) = h(x̄), then add A(a) to FL0 .

There are analogous rules for role refinement and role ab-
straction, given in the appendix. We also have rules that
concern overlapping ensembles. Intuitively, overlapping en-
sembles require the identification of elements, but we do not
want to do this in the chase itself to preserve monotonicity,
that is, rule applications should always extend the interpre-
tation candidate. We thus only record the necessary identifi-
cations in the ‘⇠’ component of interpretation candidates.

R15 if ⇢L(a1) = ē1, ⇢L(a2) = ē2, there are b1 2 ē1 and
b2 2 ē2 with b1 ⇠ b2 and |ē1| 6= |ē2|, then return ‘unsat-
isfiable’;

R16 if there are b1 2 ⇢L(a1) and b2 2 ⇢L(a2) with b1 ⇠ b2,
then set a1 ⇠ a2;

R17 if a1 ⇠ a2, ⇢L(a1) = ē1, and ⇢L(a2) = ē2 with |ē1| =
|ē2|, then set ē1[i] ⇠ ē2[i] for 1  i  |ē1|;

R18 if a1 ⇠ a2 and fact f 2 FL contains constant a1, then
add to FL the fact obtained from f by replacing some
occurrence of a1 with a2.

R19 if a1 ⇠ a2, ⇢L(a1) is defined, and ⇢L(a2) is unde-
fined, then add to FL facts A>(b1), . . . , A>(bn), with
b1, . . . , bn fresh constants and n = |⇢L(a1)|, and set
⇢L(a2) = (b1, . . . , bn) (where A> is a fresh concept
name).
A chase sequence is a sequence of interpretation candi-

dates I0, I1, . . . such that I0 = (F 0, ⇢0,⇠0), Ii+1 is ob-
tained from Ii by applying one of the rules defined above.
Every chase sequence I0, I1, . . . gives rise to an interpreta-
tion candidate I⇤ = (F ⇤, ⇢⇤,⇠⇤) in the limit, with F ⇤ =S

i Fi, ⇢⇤ =
S

i ⇢i, and ⇠⇤=
S

i ⇠i. We also call I⇤ the
result of chasing C0 w.r.t. L0 and O. It can be shown that,
up to isomorphism, all fair chase sequences deliver the same
result.2
The chase is sound and complete in the following sense.

Lemma 2. Let O be an ELHabs
r -ontology in normal form

whose abstraction graph GO is a tree, C0 a concept name,

and L0 an abstraction level. The L0-chase on C0 and O
does not abort if and only if C0 is L0-satisfiable w.r.t. O.

In the proof of the ‘only if’ direction of Lemma 2 (sound-
ness), we start from a non-aborting chase sequence that de-
livers a result I⇤ = (F ⇤, ⇢⇤,⇠⇤), and then construct from I⇤

an L0-model I of C0 and O. Intuitively, we apply filtration
to make the equalities recorded in ⇠⇤ real equalities. This is
achieved by setting I = (AI ,�, (IL)L2AI

, ⇢) where

�IL = {[a] | a 2 dom(F ⇤

L)}
AIL = {[a] | A(a0) 2 F ⇤

L and a0 2 [a]}
rIL = {([a], [b]) | r(a0, b0) 2 F ⇤

L and a0 2 [a], b0 2 [b]}
⇢L = {([a], ([b1] · · · [bn])) | (a0, (b01 · · · b0n)) 2 ⇢⇤L with

a0 2 [a], b0i 2 [bi] for 1  i  n}.

The remaining components AI and � are defined as AO

and �O, respectively. We show in the appendix that I is not
only an L0-model of C0 and O, but even a universal such
model, thus proving Lemma 1.

4.3 ELHabs
r [cr] in CONP

Our aim is to prove the following.

Theorem 1. Satisfiability in ELHabs
r [cr] is in CONP.

2Note that our rule R3 is oblivious in the sense that it may al-
ways add a fresh constant b even if there is already a b0 with r(a, b0)
and B(b0) in FL.
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It suffices to find an NP algorithm for unsatisfiability. As-
sume that the concept nameC0, the ELHabs

r [cr]-ontologyO,
and the abstraction level L0 are given as an input, that is, we
want to decide whether C0 is L0-unsatisfiable w.r.t. O. If
the abstraction graph GO of O is not a tree, we directly re-
turn ‘unsatisfiable’. Otherwise, the only remaining way in
which unsatisfiability may arise is that there are two refine-
ment statements that both apply to the same element of a
model, but require ensembles of different length.

Example 2. Consider the following ontology O:

C0 v 9r.A1

L1:A2(x) refines L0:A1

A2 v 9s.A3

L2:B(x) refines L1:A3

L2: r(x1, x2) refines L1:A3

The reader may try to construct an L0-model of C0 and O,

following the sequence of existential quantifications and re-

finements suggested by the order of the statements in O.

As suggested by Example 2, our algorithm guesses a se-
quence of existential quantifications and refinements that
lead to two ‘incompatible’ refinements. To make this pre-
cise, we need some preliminaries.
We use u to denote the universal role, that is, a fixed role

name that is always interpreted as uI = �I⇥�I . An ABox
is a finite set of facts as defined in the previous section. An
interpretation I satisfies a concept assertionC(a) if a 2 CI ,
a role assertion r(a, b) if (a, b) 2 rI , and an ABox A if it
satisfies all concept and role assertions in it. For an ABox
A, an ELHr-ontology O, and an EL-concept C, we write
A,O |= 9u.C if CI 6= ; in every model I of O that satis-
fiesA. It is known that givenA,O, and C, it can be decided
in polynomial time whetherA,O |= 9u.C (Krötzsch 2010).
Note that a conjunctive query can be viewed as an ABox in
an obvious way, by viewing variables as constants.
For a set of concept names S and L,L0 2 AO, we use

Qref
L,L0(S) to denote the set of CQs q(x̄) such that O con-

tains a concept refinement L0:q(x̄) refines L:C with C 2 S.
We assume that the conjunctive queries q(x̄) in concept re-
finements in O use canonical variable names, that is, the
variable with the left-most occurrence in x̄ is x1, the vari-
able that occurs next is x2, etc.
For an abstraction level L 2 AO, we use OL to denote

the ELHr-ontology that consists of all concept inclusions
C v D such that C vL D 2 O, all role inclusions r v s
such that r vL s 2 O, and all range restrictions > v 8r.C
such that > vL 8r.C 2 O.
We are now ready to describe the algorithm. It guesses

a sequence S1, L1, . . . , Sn, Ln where S1, . . . , Sn are sets of
concept names that occur in O and L1, . . . , Ln are abstrac-
tion levels, n  |AO|. It accepts if the following conditions
are satisfied, and rejects otherwise:

1. one of the following holds:

• L1 = L0 and OL1 |= C0 vL1 9u.(uS1) or
• OL1 |= > vL1 9u.(uS1);

2. for 1  i < n:

Ai,OLi |= 9u.(uSi+1)

where Ai is the union of all queries in Qref
Li,Li+1

(Si),
viewed as ABoxes.3

3. There are concept refinements L0: q(x̄) refines L:A 2 O
and L0: q0(x̄0) refines L:B 2 O such that A,B 2 Sn and
|x̄| 6= |x̄0|.

Note that in Example 2, we have always interleaved a sin-
gle existential restriction with each refinement statement.
In general, however, there can be a more complex ‘EL-
derivation’ between two subsequent refinements, and we ab-
stract away from that by using the universal role.
Lemma 3. The algorithm accepts iff C0 is L0-unsatisfiable

w.r.t. O.

The proof of Lemma 3 crucially uses universal models as
produced by the chase procedure from Section 4.2.
Note that, by what was said above, Conditions 1 to 3 can

be checked in polynomial time. We have thus obtained an
NP algorithm, as desired.

4.4 ELHabs
r [cr, ca] in PSPACE

We now add concept abstraction, that is, we move from
ELHabs

r [cr] to ELHabs
r [cr, ca]. This makes a significant dif-

ference because now we can also pass information upwards
through the tree-shaped abstraction graph of the ontology, as
illustrated by the following example.
Example 3. Consider the following ontology O:

L1:A1(x) refines L0:C0 L2:A2(x) refines L0:C0

A1 v B1 A2 v B2

L0:C1 abstracts L1:B1(x) L0:C2 abstracts L2:B2(x)

C1 u C2 v ?
C0 is L0-unsatisfiable w.r.t. O, but there is no (linear!) se-

quence of existential quantifications and refinements as in

Example 2.

We want to prove the following, which is substantially
more difficult than proving the CONP upper bound in the
previous section. In fact, we view the following as a main
result of this paper.

Theorem 2. Satisfiability in ELHabs
r [cr, ca] is in PSPACE.

Let a concept name C0, an ELHabs
r [cr, ca]-ontology O,

and an abstraction level L0 2 AO be given as an input.
If the abstraction graph of O is not a tree, we immediately
return ‘unsatisfiable’.
Our algorithm has some resemblance with the standard

non-deterministic PSPACE algorithm for the satisfiability of
ALC concepts (without ontologies) that verifies the exis-
tence of a tree model of polynomial depth by traversing it
in a depth-first manner, always keeping only a single path
in memory (Baader et al. 2017). In our case, we want to
verify the existence of an A-interpretation I that is an L0-
model of C0 and O. The tree that our algorithm traverses is

3Here we rely on canonical variable names.
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(AI ,��1), which we can w.l.o.g. assume to be the abstrac-
tion graph of O (since universal models constructed by the
chase have this property).
We are, however, confronted with two challenges. First,

the ‘upwards’ nature of abstractions makes it difficult to tra-
verse the tree in a depth-first manner. We address this by a
suitable guessing strategy. And second, the interpretations
IL of a universal model, which correspond to the nodes of
the traversed tree, are infinite and thus cannot be guessed.
While infinite but regularly-shaped models can often be sub-
stituted by ‘compact’ finite models of polynomial size when
designing algorithms for plain EL (Lutz et al. 2009), this is
no longer true in the presence of CQs. To address this, we
stick with infinite models IL, but represent them by com-
pact (finite!) interpretations that we call pseudo-models. We
then use a non-standard semantics for CQs on those compact
representations.

Pseudo-Models For the following, one should imagine the
interpretations IL to take the shape of an infinite tree whose
nodes are ensembles and domain elements that do not par-
ticipate in an ensemble. In a pseudo-model I, intuitively we
identify ensembles / non-ensemble elements that are isomor-
phic, thus obtaining finiteness but losing the tree-shape.
Let q(x̄) be a CQ and I an EL-interpretation (represent-

ing the pseudo-model). Recall that in Section 2, we had as-
sociated an undirected graphGq with q. We assume that I is
equipped with a set of ensembles. Let h be a homomorphism
from q to I. We aim to identify a condition on h (‘tame-
ness’) that allows us to obtain from h a homomorphism into
the interpretation obtained by unraveling the pseudo-model
I into an infinite tree-like interpretation.
We associate with h an equivalence relation ⇠h on var(q)

by setting x ⇠h y if Gq contains a path x = z1, . . . , zn = y
such that h(z1), . . . , h(zn) are all part of the same ensemble
in I. Let Gh,I be the directed graph whose nodes are the
equivalence classes of ⇠h and which has an edge (c1, c2) if
there is an r(x1, x2) 2 q with x1 2 c1 and x2 2 c2. A node
c of Gh,I is an ensemble node if there is an (equivalently:
for all) x 2 c such that h(x) is part of an ensemble in I. We
recommend to the reader to verify that all nodes that are not
ensemble nodes are singleton classes. We say that h is tame
if the following conditions are satisfied:

1. Gh,I is a tree, possibly with self-loops on ensemble
nodes;

2. for all edges (c1, c2) in Gh,I , there are d1, d2 2 �I such
that for all r(x1, x2) 2 q with x1 2 c1 and x2 2 c2, we
have h(x1) = d1 and h(x2) = d2 .

Condition 2 reflects the fact that the tree-like interpreta-
tions IL satisfy the following property: if di is an element
in ensemble ei, for i 2 {1, 2}, and there is a role edge
(d1, d2) 2 rIL , then d1, d2 are unique with this property.
An answer d̄ 2 q(I) is tame if there is a tame homo-

morphism h from q(x̄) to IL with h(x̄) = d̄. An A-
interpretation I being a pseudo-model of O is defined in the
same way as being a model ofO except that in the semantics
of concept abstractions, answers to a CQ q on an interpreta-
tion IL are replaced with tame answers.

A central observation underlying the subsequent algo-
rithm is that we can always find pseudo-models in which
each maximal connected component has size polynomial
in ||O||. Formally, a maximal connected component (MCC)

of an A-interpretation I is an EL-interpretation that can be
obtained as follows: choose an abstraction level L, then
choose a maximal subset � ✓ �IL such that the follow-
ing undirected graph is connected:

(�, {{d, e} | (d, e) 2 rIL for some role name r
or d, e in ē for some L-ensemble ē});

and finally take the restriction of �IL to domain �. In the
appendix, we prove the following.
Lemma 4. If C0 is L0-satisfiable w.r.t. O, then there is an

L0-pseudo-model I of C0 and O such that each MCC of I
has at most 2 · (||O||2 + ||O||) elements.

Our proof of Lemma 4 is rather laborious. The reason is
that the structure of the universal models as constructed in
Section 4.2 turns out to be surprisingly hard (and, to us, ac-
tually infeasible) to analyze. This is mainly due to the appli-
cation of the filtration construction after chase termination.
To avoid such an analysis, we first introduce another, more
semantic construction of universal models. In this construc-
tion, we start from the universal models from Section 4.2
and ‘combine small pieces of them’ in a uniform, tree-like
way. The structure of the resulting universal models, which
we call uniform, is clear by definition. In particular, each
EL-interpretation IL is a tree of ensembles / non-ensemble
nodes, as described above. Starting from uniform universal
models, we can then carefully craft pseudo-models by se-
lecting ensembles and non-ensemble elements and ‘rerout-
ing’ role edges.

The Algorithm The aim of our algorithm is to verify the
existence of a pseudo-model of C0 and O, as per Lemma 4.
To represent MCCs of that pseudo-model, we use mosaics.
A mosaic is a tupleM = (I, L,E, ē) that consists of
1. a model I of OL such that |�I |  2 · (||O||2 + ||O||),
2. an abstraction level L 2 AO,
3. a set E of non-overlapping ensembles, that is, non-empty

tuples over �I that do not share elements, and
4. a tuple ē over �I with ē 2 E or ē = ().
We may write IM for I, and likewise for LM , EM , and ēM .
We further define a function
• Qref

M,L0 that maps each d 2 �I to the set of CQs
Qref

M,L0(d) = {q | L0:q(x̄) refines L:A 2 O and d 2 AI};

• T abs
M,L0 that maps each d̄ 2 E to the set of concept names

T abs
M,L0(d̄) = {A | L0:A abstracts L:q(x̄) 2 O and d̄ 2

q(I) is tame}.
Note that, as mosaics are equipped with an explicit set E of
ensembles, it is clear what we mean by a tame answer.
Our algorithm is now listed as Algorithm 1. In Line 3, we

guess a set XL of sets of concept names. This is related to
the first challenge mentioned above and the idea is that for
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Algorithm 1 Algorithm for satisfiability in ELabs[cr,ca]
1: procedure EL[cr,ca]-SAT(C0, L0)
2: for all L 2 AO do
3: Guess a set XL 2 22

C
of sets concept names

such that |XL|  ||O||3 + ||O||2
4: Guess a mosaicM such that

LM = L0, CI
M

0 6= ;, and eM = ()
5: R RECURSE(M)
6: for all L 2 AO and T 2 XL do
7: Guess a mosaicM such that

LM = L, (
d
T )I

M 6= ;, and eM = ()
8: R R ^ RECURSE(M)

9: return R
10: procedure RECURSE(M = (I, L,E, ē))
11: for all d 2 �I and L0 2 AO s.t. Qref

M,L0(d) 6= ; do
12: Guess a mosaicM 0 = (I 0, L0, E0, ē0)
13: if ē0 /2 q(I 0) for some q 2 Qref

M,L0(d) or d /2 AI

for some A 2 T abs
L (ē0) then return false

14: RECURSE(M 0)

15: for all L0:A abstracts L:q(x̄) 2 O and all
tame answers d̄ 2 q(I) with d̄ 6= ē do

16: if d̄ 62 E then return false
17: Guess a set T 0 2 XL0

18: if T abs
M,L0(d̄) 6✓ T 0 or d̄ /2 q(I) for some
L0:q(x̄) refines L:A 2 O with A 2 T 0 then
return false

19: return true

every set S 2 XL, there must be an element on level L that
satisfies all concept names in S, and that (copies of) these
elements can be used to satisfy all abstractions that ever re-
quire a witness during the run of the algorithm. Intuitively,
the algorithm repeatedly guesses mosaics and makes recur-
sive calls to satisfy refinement statements from the ontology.
More precisely, it is the tuple ēM in the fourth component of
a mosaic M that, if not empty, is the ensemble which satis-
fies the refinement.
Lemma 5. The algorithm accepts iff C0 is L0-satisfiable

w.r.t. O.

It is easy to see that the recursion depth of the algorithm
is bounded by |AO| and that only a polynomial amount of
space is consumed. Needless to say, we can eliminate non-
determinism by applying Savitch’s theorem.

5 Lower Bounds
We prove lower complexity bounds that match the upper
bounds presented in Section 4. We start with the following.
Theorem 3. Satisfiability is

1. CONP-hard in ELabs[cr] and
2. PSPACE-hard in ELabs[cr, ca].

The proofs of Points 1 and 2 of Theorem 3 are closely
related. We start with Point 1, which is proved by reduction
from unsatisfiability in propositional logic.

Let ' be a propositional formula that uses variables
p1, . . . , pn and only the junctors ¬ and ^. Let sub(') be
the set of all subformulas of '. We construct an ELabs[cr]-
ontology O that uses the following concept and role names:
• T and F , for each  2 sub('), to represent that  
evaluates to true or false;

• Pi and P i, for i 2 {1, . . . , n}, to represent assigning true
or false to pi.

The ontology O uses the abstraction levels L0 � · · · � Ln.
When refining from Li to Li+1, we introduce two domain
elements that represent the two possible truth assignments
for variable pi+1. This is achieved by including in O the
following for 1  i  n:

Li:Pi(x1) ^ P i(x2) refines Li�1:>. (1)

If desired, it is easy to make the query connected. To pre-
serve the truth assignments to variables on finer levels, we
add for 1  i < n and i < j < n:

Lj+1:Pi(x1) ^ Pi(x2) refines Lj :Pi (2)

Lj+1:P i(x1) ^ P i(x2) refines Lj :P i (3)

This generates a binary tree of refinements of depth n, rep-
resenting all possible truth assignments at the leaves, that is,
by domain elements on level Ln. We evaluate ' on all these
truth assignments and generate an inconsistency if ' ever
evaluates to true:

Pi vLn Tpi and P i vLn Fpi for 1  i  n (4)
T vLn F¬ and F vLn T¬ for all ¬ 2 sub(') (5)

and for all  =  1 ^  2 2 sub('):

T 1 u T 2 vLn T F 1 vLn F F 2 vLn F (6)

and finally:
T' vLn ?. (7)

Lemma 6. ' is unsatisfiable iff > is L0-satisfiable w.r.t. O.

Point 2 of Theorem 3 is proved by reduction from the va-
lidity of quantified Boolean formulas (QBFs) of the form
'0 = Q1p1 · · ·Qnpn' with Qi 2 {9, 8} and ' a proposi-
tional formula that uses only the variables p1 to pn and the
junctors ¬ and ^ (Arora and Barak 2009). We construct an
ELabs[cr, ca]-ontology O such that '0 is valid if and only if
> is L0-satisfiable w.r.t. O.
The construction of O may be viewed as an extension of

the construction from the previous reduction. In particular,
we use the same concept and role names, plus a concept
name F and a role name s. We next give details. To con-
struct O, we reuse statements (1) to (6) from the previous
reduction, adding an s(x1, x2)-atom to the query in refine-
ments (1) to (3). As in the previous reduction, this generates
a full binary tree of refinements of depth n that represents
all truth assignments as domain elements on level Ln. We
next implement a bottom-up pass on this tree that evaluates
the quantifiers in '0 using the concept name F . We first add
to O:

F' vLn F. (8)
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For each i 2 {1, . . . , n} with Qi = 8 and j 2 {1, 2}, we
further add the following concept abstraction:

Li�1:F abstracts Li: q(x1, x2) where (9)
q(x1, x2) = F (xj) ^ s(x1, x2)

and for each i 2 {1, . . . , n} with Qi = 9, we add the con-
cept abstraction

Li�1:F abstracts Li: q(x1, x2) where (10)
q(x1, x2) = F (x1) ^ F (x2) ^ s(x1, x2)

Note that, as required and due to our use of the role name s,
the queries in these abstraction statements are connected.
This is in fact the only reason why s was introduced. Fi-
nally, we add the following CI, representing our wish that
'0 is valid:

F vL0 ?. (11)

Lemma 7. '0 is valid iff > is L0-satisfiable w.r.t. O.

Finally, we prove the following.
Theorem 4. Satisfiability in ELabs[rr] is 2EXPTIME-hard.

This is achieved by reducing the word problem for expo-
nentially space-bounded alternating Turing machines. More
precisely, we adapt a reduction from (Lutz and Schulze
2023) used there to show that satisfiability in ALCabs[rr] is
2EXPTIME-hard.

6 Getting To Polynomial Time
We now consider a semantic variation of ELHabs

r [cr] that re-
duces the complexity of satisfiability from coNP to PTime.
This variation is obtained by letting L-ensembles be sets

rather than tuples, that is, dropping the order of elements
in the ensemble. Moreover, refinements are now interpreted
as a partial description of an ensemble, that is, the variables
in the CQ used in the refinement describe elements of the
ensemble that must exist, but other elements may exist as
well.
In more detail, the refinement function ⇢ is now a partial

function that associates every pair (d, L) 2 �I ⇥AI such
that L � L(d) with a non-empty subset of�IL called an L-
ensemble. We still require that every object participates in
at most one ensemble, that is, Property (⇤) from the original
definition of the semantics is still required to be satisfied.
The semantics of refinement statements is then as follows.
An A-interpretation I = (AI ,�, (IL)L2AI

, ⇢) satisfies a
• concept refinement L:q(x̄) refines L0:C if L,L0 2 AI

and for all d 2 CIL0 , there is an ē 2 q(IL) s.t. all ele-
ments of ē are in ⇢L(d);

• role refinement L:q(x̄, ȳ) refines L0:qr(x, y) if L,L0 2
AI and for all (d1, d2) 2 qr(IL0), there is an (ē1, ē2) 2
q(IL) s.t. all elements of ēi are in ⇢L(di), for i 2 {1, 2}.

We call this semantics the set ensemble semantics. Note
that under this semantics, we can no longer simulate ? by
concept refinement. We instead assume that ? is explicitly
available as a concept constructor (to ensure that satisfiabil-
ity and subsumption are mutually reducible).
The following example illustrates the impact of switching

to set ensemble semantics which, we believe, is fairly mild
if the modeling discipline is adjusted in a suitable way.

Example 4. Consider the following ontology O:

SportsCar v Car

L1:Engine(x1) ^ Body(x2) refines L2:Car

L1:TurboEngine(x1) ^ Body(x2) refines L2:SportsCar

Under the standard semantics, every sports car refines into

an ensemble of exactly two elements, the first one both an

engine and a turbo engine, and the second one a body. Un-

der set ensemble semantics, a sports car may refine into an

ensemble of three elements: an engine, a turbo engine, and

a body. If we add the natural concept inclusion

TurboEngine v Engine,

then the turbo engine is also an engine and, arguably, the

difference between the two semantics becomes negligible.

We aim to prove the following.
Theorem 5. Under the set ensemble semantics, satisfiability
in ELabs[cr, rr] is in PTime.

We prove Theorem 5 by providing a polynomial time re-
duction from L-satisfiability in ELHabs

r [cr] to satisfiability
in ELHOr,?, the extension of ELHr with nominals and ?.
More precisely, we assume a countably infinite set I of in-
dividuals and admit expressions {a}, with a 2 I, as con-
cepts. The semantics is given by {a}I = a for all interpre-
tations I. It is known that satisfiability in ELHOr,? is in
PTime (Krötzsch 2010).
Let C0 be an EL-concept, O an ELHabs

r [cr]-ontology in
normal form, and L0 2 AO, given as input. We assume
w.l.o.g. that no two CQs in (refinements in) O share a vari-
able. If GO is not a tree, we may directly return ‘unsat-
isfiable’. Otherwise, we construct in polynomial time an
ELHOr,?-ontology O0. Introduce a fresh role name rL for
each role name r in O and each abstraction level L in O,
and an additional fresh role name u. We include in O0 the
following concept inclusions:
1. > v 9u.L for all L 2 AO;
2. LuA1 u · · ·uAn v B for all A1 u · · ·uAn vL B inO

(with A1 u · · · uAn = > if n = 0);
3. 9rL.A v B for all 9r.A vL B in O;
4. L uA v 9rL.(L uB) for all A vL 9r.B in O;
5. for all L:q(x̄) refines L0:A in O:

• L0uA v 9u.(LuBu{ax})wheneverB(x) is an atom
in q;

• L0 u A v 9u.(L u {ax} u 9rL.(L u {ay})) whenever
r(x, y) is an atom in q;

6. for all L:q(x̄, ȳ) refines L0:qr(x, y) in O with qr =
A1(x) ^ r(x, y) ^A2(y):
• A1 u9rL0 .A2 v 9u.(LuB u {ax}) whenever B(x) is
an atom in q;

• A1 u 9rL0 .A2 v 9u.(L u {ax} u 9sL.(L u {ay}))
whenever s(x, y) is an atom in q;

Moreover, O0 contains the following:
7. the role inclusion rL v sL for every role inclusion r vL s

in O;
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8. the range restriction > v 8rL.C for every range restric-
tion > vL 8r.C in O.

Lemma 8. C0 is L0-satisfiable w.r.t. O under set ensemble

semantics iff C0 u L0 is satisfiable w.r.t. O0
.

This proves Theorem 5. An extension to the case that
includes concept or role abstractions is not easily possi-
ble. In fact, it is straightforward to prove the following by
a reduction from the homomorphism problems on directed
graphs (the semantics of concept abstractions is defined as
expected).

Theorem 6. Under the set ensemble semantics, satisfiability
is coNP-hard in ELabs[cr, ca].

We remark that exactly the same reduction as given in this
section also serves to reduce satisfiability in ALCabs[cr, rr]
under set ensemble semantics to satisfiability in ALCO, the
extension of ALC with nominals. The latter problem is EX-
PTIME-complete (Tobies 2001), which explains the entry for
ALCabs under set ensemble semantics in Figure 1.

7 Conclusion
We have studied description logics of refinement and ab-
straction based on members of the EL family. While, com-
pared to the ALC version, the computational complexity
does not drop for the full logic, we have identified nat-
ural fragments where it does. We leave the complexity
of other (less natural) fragments such as ELHabs

r [ca] and
ELHabs

r [ca, ra] as future work.
It would be interesting to consider DLs of abstraction and

refinement based on the extension ELI of EL with inverse
roles. Then already reasoning in the base logic is EXPTIME-
hard so we cannot expect any lower complexities. One might
also define ontology languages with abstraction and refine-
ment based on existential rules, see e.g. (Baget et al. 2011;
Calı̀ et al. 2010). It is then natural to extend the arity of
all relations by one position that represents the abstraction
level. Note, however, that since every object is required to
refine only into a single ensemble, it does not seem possible
to encode abstraction and refinement into existing (decid-
able) existential rule formalisms in a simple way.
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