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Abstract

Approaches to computational argumentation provide founda-
tional ways to reason argumentatively within Artificial Intelli-
gence (AI). The underlying formal approaches can oftentimes
be classified into structured argumentation and abstract argu-
mentation. The former prescribe rigorous workflows, start-
ing from knowledge bases to finding arguments in favour and
against claims under scrutiny, and drawing conclusions. Ab-
stract argumentation provides formal semantics operating on
arguments whose internal structure is hidden and only rela-
tions are kept for reasoning, resulting in so-called argumen-
tation frameworks (AFs). In this work, we apply a form of
existential abstraction on the prominent structured approach
of assumption-based argumentation (ABA), leading to an in-
teractive way of simplifying argumentation scenarios by ab-
stracting irrelevant details, towards supporting explainability.
Existential abstraction was shown to be promising in many
areas of AI, including a recent work on AFs. We lift this ap-
proach to the structured level—which is, as we show, both
not direct from AFs and can benefit from utilization of the in-
ternal structure of arguments. Among our contributions, we
introduce existential abstraction on ABA via clustering as-
sumptions, develop semantics on clustered ABA frameworks
for reasoning on such clusterings, show differences to the
level of AFs, and provide a prototype interactive tool that
obtains faithful clusterings that do not lead to any spurious
reasoning.

1 Introduction
Computational argumentation is a well-established area
within Artificial Intelligence (AI) that provides foundational
approaches to dialectical and argumentative reasoning (Ba-
roni et al. 2018; Gabbay et al. 2021), with a variety of het-
erogeneous application areas (Atkinson et al. 2017) such as
legal reasoning (Prakken and Sartor 2015), medical reason-
ing (Cyras et al. 2021a), and multi-agent systems (Amgoud,
Dimopoulos, and Moraitis 2007; Dimopoulos, Mailly, and
Moraitis 2019; Fan and Toni 2012).

Central to approaches in this field are formalisations of
argumentation, which can be categorized into structured ar-
gumentation (Čyras et al. 2018; Modgil and Prakken 2018;
Garcı́a and Simari 2018; Besnard and Hunter 2018; Gor-
don, Prakken, and Walton 2007; Kakas, Moraitis, and
Spanoudakis 2019) and abstract argumentation (Dung 1995;
Baroni et al. 2018). The former provides principled ap-

proaches of how to reason argumentatively on given, pos-
sibly conflicting, knowledge bases. This is achieved by pre-
scribing how to instantiate argument structures and their re-
lationships from given knowledge. Abstract argumentation,
on the other hand, provides approaches on how to find ac-
ceptable (sets of) arguments when arguments are seen as en-
tities without internal structure. The most prominent for-
malisation in abstract argumentation being argumentation
frameworks (AFs) (Dung 1995), which represent arguments
as vertices and a directed counter-argument (attack) relation
between arguments is represented as directed edges. Accep-
tance of sets of arguments is defined through argumentation
semantics (Baroni, Caminada, and Giacomin 2011).

Inherently, one central aim of computational argumenta-
tion is to provide argumentative reasons, explanations, or
explications for statements that are under scrutiny. Natu-
rally, over the course of the last decades several approaches
were studied that augment argumentative methods for ex-
plainability or supporting explanations, see also two recent
surveys for an overview on this topic (Cyras et al. 2021b;
Vassiliades, Bassiliades, and Patkos 2021).

Among the methods supporting explainability, we in par-
ticular find approaches that simplify given argumentation
scenarios (Baroni et al. 2014; Fan and Toni 2015; Ulbricht
and Wallner 2022; Sakama 2018; Dvořák et al. 2019), with
a recent approach utilizing abstraction on AFs via cluster-
ing of arguments (Saribatur and Wallner 2021). As wit-
nessed by several works in the field, a lifting or adaptation
of approaches from abstract to structured argumentation is
both not direct (Prakken and Winter 2018; Wallner 2020;
Prakken 2023; Rapberger and Ulbricht 2023) and brings
such approaches closer to applications.

In this paper we introduce existential abstraction to struc-
tured argumentation by clustering (parts of) given knowl-
edge bases and thus lift abstraction to the level of structured
argumentation.

Abstraction can be useful to focus on relevant details, ab-
stracting away redundant parts or undesired parts. Our ap-
proach also provides an automated way with possible user-
interaction of applying existential abstraction. We focus
on the prominent structured approach of (flat) assumption-
based argumentation (ABA) (Čyras et al. 2018), with appli-
cations in, e.g., medical reasoning (Cyras et al. 2021a) and
multi-agent systems (Gao et al. 2016).
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Figure 1: In this figure we show two ABAFs (top) and two frame-
works (bottom) where the latter occur after applying a clustering
on the former. Assumptions attack each other based on what atoms
they derive. Different conclusions by the same assumption are con-
catenated.

Example 1. Let us illustrate our approach with an example.
All details will be formalized in the main body of the paper.
For now, let us consider an assumption-based argumenta-
tion framework. Suppose we are thinking of purchasing our
own house. However, being unemployed and having no sav-
ings prevents us from doing so, as under these assumptions,
we have no money. One way to get a house, would be to get
a job. Another would be to get a loan. Getting a loan, albeit
being a valid solution that would grant us enough money, is
not the best idea in general. This is a possible interpretation
to Figure 1(a), where a stands for our need for a house, b
and c for the assumption of having no savings and of being
unemployed respectively. Then d represents the assumption
of a job offering, e is the possibility of getting a loan, and
lastly f signals that getting a loan is not a good idea. On the
other hand, independently of our desire for a new home, we
are also bothered by our colleagues, who accuse each other
of being liars (example by Bench-Capon, 2016). In fact, w
claims that v is lying, v does not trust u, and eventually u
does not trust w.

Argumentation semantics define which sets of assump-
tions can be deemed acceptable. A main ingredient is that of
admissibility of a set of assumptions. A set of assumptions
is conflict-free if one cannot derive a contrary of the set. A
conflict-free set A is admissible if all assumptions sets B
that attack A (i.e., derive a contrary within A) are attacked
by A, i.e., A defends itself.

For instance, in the example framework, there are admis-
sible sets containing assumption a and giving an argumenta-
tive reason for accepting a, e.g., {a, d} and {a, e}. Consider
now a “clustering” of the assumptions e, f , u, v, and w into
one cluster that we call x̂ (Figure 1(b)). In Figure 1(b), at-

tacks from clusters are interpreted existentially, e.g., there
is an attack from within the cluster onto b. In such a clus-
tered ABA framework the sets {a, d} and {a, x̂} are admissi-
ble, with the formalization we provide below. For intuitions,
the set {a, d} is unchanged, and the set {a, x̂} states that a
needs a defender (against b) and there is a way to attack b,
and defend a, from within the cluster, but the details have
been abstracted away. Considering the meaning of the sym-
bols, {a, d} can be interpreted as buying a house can be
defended when we start a new job. The set {a, x̂} can be
interpreted existentially: buying a house can be argumen-
tatively defended by some assumptions in the cluster x̂, but
which one(s) was abstracted away. In particular, also all un-
related assumptions (u, v, and w) were abstracted away. In
our methodology below, we also allow for interactive query-
ing of a user to “zoom in” into a cluster to get more infor-
mation, and, e.g., to extract assumptions from the cluster.

Nevertheless, not any clustering, or any abstraction, gives
rise to sound reasoning, as in this case. For instance, Fig-
ure 1(c) shows a different ABA framework that, when apply-
ing the same clustering (e, f , u, v, and w into x̂), results in
the same clustered framework of Figure 1(b). That is, after
clustering, these two ABA frameworks coincide. However,
in case of the ABA framework in Figure 1(c), there is no ad-
missible set corresponding to {a, x̂} (defense of a requires
d). Hence, this set is “spurious” under admissibility, since
it allows to draw a conclusion not warranted on the original
ABA instance.

As a different direction, consider another prominent se-
mantics of ABA: stable semantics. There is no stable set
in both the example ABA frameworks, intuitively due to the
odd-cycle between assumptions u, v, and w. The same be-
haviour can be seen when clustering all assumptions, except
these three, into one big cluster, thereby abstracting away
information not needed to see the behaviour of having no
stable assumption sets, see Figure 1(d). This matches also
the intuition behind the example: the accusations and the
issue of buying a house are unrelated, and the non-existence
of a stable assumption set relies on the odd-cycle.

Main contributions of our work are as follows.

• We introduce clusterings on assumptions in ABA frame-
works, applying a form of existential abstraction.

• We present semantics of the resulting clustered ABA
frameworks (cABAFs) for conflict-free sets, admissible
sets, and stable sets, i.e., the counterparts of classical
ABA semantics when a clustering is taken into account,
and show several properties. We define spuriousness and
faithfulness, i.e., non-spurious reasoning on cABAFs. We
show that the novel semantics do not exhibit an increase
in complexity w.r.t. classical ABA semantics.

• We show that clusterings (abstractions) on AFs and ABAs
are not only distinct, but the latter can produce less spuri-
ousness and is also proved to be more involved. In addi-
tion to including different types of strength of attacks in
cABAFs, we show that defining semantics in an optimal
way to prevent spuriousness faces an additional complex-
ity barrier compared to such semantics of AFs.
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• For the semantics we propose, while it is in general com-
plex to find faithful clusterings, we present two ways
of obtaining a clustering and an interactive tool based
on answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) for one of them. Both are capable of
obtaining faithful abstractions.

• Using the tool we present use cases for abstracting large
parts of a given ABA and focusing (i) on reasons for not
having stable sets and (ii) on interactions of assumptions
towards acceptance under admissibility.

The prototype and more details are available online.1

2 Assumption-based Argumentation
We recall assumption-based argumentation (ABA) (Bon-
darenko et al. 1997; Čyras et al. 2018). One main part of
ABA is a so-called deductive system (L,R), with L a for-
mal language and R a set of inference rules over L. In this
work we assume that L is a set of atoms. A rule r ∈ R
is of the form a0 ← a1, . . . , an with ai ∈ L. We define a
shorthand for the head of a rule r by head(r) = a0, and for
the (possibly empty) body via body(r) = {a1, . . . , an}. An
ABA framework (ABAF) contains a deductive system and
specifies which atoms are assumptions and their contraries.

Definition 1. An ABAF is a tuple D = (L,R,A, ), where
(L,R) is a deductive system, A ⊆ L a non-empty set of
assumptions, and a total function, mapping assumptions
a ∈ A to atoms s ∈ L (the contrary function).

We extend the contrary function to sets: S = {x | x ∈
S}. In this work, we focus on ABAFs which are flat, i.e., no
assumption can be derived: we require for each rule r ∈ R
that head(r) /∈ A holds. We assume that ABA frameworks
are finite (L, R, and body(r) for each r ∈ R are finite).
We also make the convention of having a single contrary for
each assumption instead of multiple ones. This is a choice
that is made mostly for presentational and accessibility rea-
sons. In general, one can modify an ABAF where each
assumption has multiple contraries, to acquire a modified
framework with single contraries (Toni 2014).

Semantics of ABAFs can be defined using subsets of as-
sumptions and using derivation trees (proof trees), with the
latter interpreted as arguments. We focus on the assumption-
based definition. Let D = (L,R,A, ) be an ABAF. An
atom s ∈ L is derivable from a set of assumptions A ⊆ A if
s ∈ A or there is a sequence of rules (r1, . . . , rn) such that
head(rn) = s and for each rule ri ∈ R we find that its body
is derived from earlier rules in the sequence or is in A, i.e.,
body(ri) ⊆ A ∪

⋃
j<i{head(rj)}. Then, ThD(A) contains

all atoms derivable from A in D.
For illustration, we sometimes present derivations as

rooted proof trees (arguments), with assumptions in leaves,
internal nodes corresponding to rule derivations, and the root
showing a derived atom.

A set A of assumptions attacks a set B of assumptions if
one can derive the contrary of an assumption in B from A.

1http://www.kr.tuwien.ac.at/research/systems/abstraction/

Definition 2. Let D = (L,R,A, ) be an ABAF and
A,B ⊆ A be two sets of assumptions. Assumption set A
attacks assumption set B in D, if b ∈ ThD(A) for some
b ∈ B.

When A attacks {b}, we sometimes omit the brackets.

Definition 3. Let D = (L,R,A, ) be an ABAF. An as-
sumption set A ⊆ A is conflict-free in D, A ∈ cf (D), iff A
does not attack itself. Moreover, A defends assumption set
B ⊆ A in D iff for all C ⊆ A that attack B it holds that A
attacks C.

Main semantics of ABA can now be defined, as follows.

Definition 4. Let D = (L,R,A, ) be an ABAF and let
A ∈ cf (D). Then the set A is

• admissible, A ∈ adm(D), iff A defends itself, and
• stable, A ∈ stb(D), iff A attacks each {x} ⊆ A \A.

In this paper we focus on the semantics defined above,
as for other semantics (e.g. complete) we signal through an
example, that abstracting them is more involved.

For reasoning, an atom s is credulously accepted under
σ in an ABAF D iff there is a σ-assumption-set A s.t. s ∈
ThD(A).
Example 2. As a running example we consider the ABAF D
shown in Figure 2(a) with assumption setA = {a, b, c, d, e},
L = {a, b, c, d, e, x, y, z, w, t}, and contraries, a = z, b =
t, c = x, d = w, e = t. Consider also the rules of this
framework to be the following:

x← a, b , w ← e ,

y ← c , and z ← d.

In the figure, we omitted the arguments consisting solely of
assumptions (proof trees concluding assumptions), for the
sake of a concise presentation. We remark that including
them would make no difference to our results. According to
the definition above, the set {b, c, e} is conflict-free, and this
set is also stable and admissible. On the contrary the sets
{a, b, c} and {a, b, d} are not conflict-free, and thus they are
neither admissible nor stable.

3 Clustering Assumptions
Let us start by defining the notion of existential abstraction
in ABAFs. In this work, abstraction refers to clustering the
set of assumptions of an ABAF, obtained by using a map-
ping m, intuitively mapping assumptions to clusters. For-
mally, we can view the mapping m as a partition of the orig-
inal set of assumptions. For instance, for A = {a, b, c} we
can map a and b to the same cluster, i.e., clustering them to-
gether, and leave c unclustered. An associated mapping m
would be m(a) = m(b) = â and m(c) = c, with the “hat”
notation â denoting a cluster. Assumption c is mapped to it-
self (signaling no clustering). Equivalently, we can partition
A = {a, b, c} by Â = {{a, b}, {c}}. Assumption c is in a
singleton set, and we refer to such singleton “clusters” also
directly as singletons. For simplicity, we use partitions and
mappings sometimes interchangeably (e.g., viewing clusters
â as sets containing their assumptions).
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We extend m to sets of assumptions straightforwardly:
m(A) = {â | m(a) = â, a ∈ A}.

A clustering of assumptions leads to rules and the contrary
function being modified accordingly.

Definition 5. Given an ABAF D = (L,R,A, ), let Â be
a partition of A and m be the surjective mapping from A to
Â. Then, the clustered ABAF (cABAF) of D according to m

is D̂ = m(D) = (L̂, R̂, Â, ˆ) where

• L̂ \ Â = L \ A and Â = m(A),
• each rule r ∈ R is mapped to the rule r̂ of the form
head(r)← m(body(r)), hence obtaining R̂,

• ˆ is a total mapping from Â to 2L̂ such that for all â ∈ Â
we have ˆ̂a = {b̂ ∈ Â | ∃b ∈ b̂, a ∈ â s.t. b = a} ∪ {x̂ ∈
L̂ \ Â | ∃a ∈ â s.t. x = a}.
When there is no danger of ambiguity regarding the con-

trary of a cluster, we will omit the double-hat notation.
We remark that a clustered ABAF is not a “classical”

ABAF. The contrary function of a classical ABAF maps el-
ements of its assumption set to a particular atom in its for-
mal language. Instead, the contrary function of a clustered
ABAF maps clusters to subsets of the clustered formal lan-
guage. When applying a mapping to a classical ABAF, con-
traries of clusters can map either to (clustered) assumptions
or non-assumptions, leading to a case distinction in the def-
inition above.
Example 3. Remember the framework described in Exam-
ple 2, and let m be the mapping that maps assumptions d
and c into the same cluster ĉ, and the assumptions a, b, e

to themselves. This mapping results in cABAF D̂ (see Fig-
ure 2(b)), whose assumption set is Â = {a, b, ĉ, e}. As men-
tioned previously, the contrary function of a cABAF does not
fit in the requirements of the definition of a classical ABAF.
This is evident in this example, since the contrary of the clus-
ter ĉ is not an element of the set L̂ = {a, b, ĉ, e, x, y, z, w, t}.
In fact, ĉ = {x,w} /∈ L̂.

Regarding the rules, as Definition 5 states, for each rule
in R, we get a clustered rule by applying m to its body.
Therefore, the clustered rule set R̂ contains the following
rules: (x← a, b), (w ← e), (y ← ĉ), and (z ← ĉ).

Abstraction on flat ABAFs leads to flat clustered ABAFs.
Derivation in cABAFs is defined as for ABAFs.

Derivability of a classical ABAF and a clustering of this
ABAF is connected, as stated next. We define Single(Â) =

{â ∈ Â | |â| = 1} to be the set of singletons in Â.
Proposition 1. Let D = (L,R,A, ) be an ABAF, m a
mapping, and m(D) = D̂ = (L̂, R̂, Â, ˆ) the resulting
cABAF. Moreover, let S ⊆ A and m(S) = Ŝ ⊆ Â.

1. It holds that ThD(S) ⊆ ThD̂(Ŝ). However, when x ∈
ThD̂(Ŝ) it is not necessarily true that x is in ThD(S).

2. If we additionally assume that Ŝ ⊆ Single(Â), then
ThD̂(Ŝ) = ThD(S).

3. In general, ThD̂(Single(Ŝ)) ⊆ ThD(S).

a b
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e

W
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a b
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e
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Figure 2: Classical ABAF (a) and clustered ABAF (b) in an
argument-based view. On the right, cluster d̂ derives both Z and
Y , thus we represent these derivations together as one argument.

4. It holds that ThD(A) = ThD̂(Â).
5. If x ∈ ThD̂(Ŝ), then there is S′ ⊆ A s.t. x ∈ ThD(S′).

The first three statements give us a hint on the difference
of deriving an atom by singletons, in comparison to deriving
it by clusters. Singletons preserve the information of the
original ABAF, and this is why we treat them in a special
way. The formula in (4) shows that all derivable atoms in
D, are also derivable in D̂, while (5) states that if a clustered
set derives an atom, then there must be some S′ ⊆ A that
derives this atom too.

In this work, when given a clustered ABAF D̂, we assume
that D̂ has an associated (fixed) partition function m. We
sometimes view cABAFs D̂ without concrete ABAFs D s.t.
m(D) = D̂. In such instances, a mapping is nevertheless as-
sumed to be known. In other words, we assume knowledge
of contents of each cluster. This implies that the underlying
non-clustered assumption set is given by A = m−1(Â).

It turns out that it is useful to distinguish three kinds of
attacks on cABAFs, each representing different “strengths”
of attacks, when considering the clustering.

Definition 6. Let D̂ = (L̂, R̂, Â, ˆ) be a cABAF, and
Â, B̂ ⊆ Â. We say that

• Â (normally) attacks B̂ if ∃b̂ ∈ B̂ and b̂ ∩ ThD̂(Â) ̸= ∅,

• Â fully attacks B̂ if ∃b̂ ∈ B̂ and b̂ ⊆ ThD̂(Â), and

• Â truly attacks B̂ if ∃b̂ ∈ B̂ and b̂ ⊆ ThD̂(Single(Â)).

When B̂ = {b̂}, then we omit the curly brackets and say
that Â (normally, fully, truly) attacks b̂. In words, a set of
clustered assumptions Â (possibly containing singletons) at-
tacks b̂ normally similarly as in classical ABAFs by deriving
some contrary of b̂ (except here there can be multiple con-
traries). A full attack represents the case that all contraries
are derived. That is, each original assumption in the cluster
is attacked, even after clustering. True attacks, the strongest
kind, additionally require that singletons among Â fully at-
tack, implying that non-abstracted assumptions carry out the
full attack.
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Example 4. Continuing Example 3, a (normal) attack oc-
curs when a set of clustered assumptions can derive an atom
that is a contrary of another cluster. When this happens we
say that the set attacks the latter cluster. Using the example,
we can see that the set {a, b} attacks cluster ĉ. That is be-
cause the set {a, b} can derive the atom x, and also it holds
that ĉ = {x,w}, which entails that â ∩ ThD̂({a, b}) ̸= ∅.

An aspect of this type of attack is that clusterings may
introduce new (normal) attacks not part of the classical one.
For instance, in Figure 2, assumption set {e} is not attacking
any of the premises of a rule that derives atom y. However,
this changes after the clustering: {e} attacks ĉ, which is
now in the body of a rule that derives y. This subtle detail is
important for defining the notion of defense in cABAFs.

We say that a set of clusters fully attacks a cluster, if this
set can derive all the contraries of the cluster. In Figure 2(b),
the singleton cluster a has exactly one contrary, namely z.
Cluster ĉ derives atom x, landing a full attack on a.

Finally, a true attack is a special case of a full attack, for
we now do care about the size of the clusters. More specifi-
cally, a true attack happens when a set of singletons derives
all the contraries of a cluster. An example of such an attack
can be viewed in Figure 2(b) between the set of singletons
{a, b, e} and the cluster ĉ.

4 Semantics of Clusterings
In this section we define semantics of cABAFs, with the aim
of abstracting classical semantics of ABAFs, by introducing
as little spuriousness as possible.

A semantics σ̂ in D̂ is a set σ̂(D̂) ⊆ 2Â. To distinguish
between semantics on ABAFs and semantics on cABAFs
we will, whenever not obvious from the context, refer to the
former as classical and the latter as abstract semantics.

We now define main concepts of abstract semantics σ̂ and
their relation to a classical semantics σ. For the assumption
sets under a semantics, i.e., set of sets of assumptions σ(D),
we define m(σ(D)) = {m(A) | A ∈ σ(D)}.

Definition 7. Let D = (L,R,A, ) be an ABAF and D̂ be
its clustered framework according to some partition function
m. We say that D̂ under σ̂

• abstracts D under σ if m(σ(D)) ⊆ σ̂(D̂) and

• is faithful w.r.t. D under σ if m(σ(D)) = σ̂(D̂).

Moreover, for Â ∈ σ̂(D̂) \m(σ(D)), we say that Â is spu-
rious (in D̂ under σ̂ w.r.t. D under σ). If such a set exists,
then D̂ under σ̂ is spurious w.r.t. D under σ.

Intuitively, an abstract semantics is abstracting a classi-
cal semantics if the abstract semantics preserves, under the
mapping, the assumption sets under the classical semantics.
That is, no σ-assumption-set is missed. Faithfulness means
that the abstract semantics is abstracting and does not intro-
duce spuriousness, in the form of Â ∈ σ̂(D̂) which have no
counterpart in the concrete σ(D).

We are now ready to define our abstract semantics for
conflict-freeness, admissibility, and stable semantics. We
begin with the notion of defense.

Definition 8. A set of clusters Â, defends a cluster â that is
fully attacked in D̂, if there is an atom x ∈ â such that for
all sets of clusters Ĉ that derive x, Â attacks a cluster in Ĉ.
Additionally, we consider clusters that are not fully attacked
in D̂ to be defended, by any set.

If a cluster is fully attacked, this means that all of the ele-
ments in the cluster receive an attack in any classical frame-
work that maps to this setting. Defending against any con-
trary of the cluster, means that there is an element of the
cluster that is actually defended in some classical framework
by a preimage of the set of clusters.

Definition 9. Let D̂ = (L̂, R̂, Â, ˆ) be a cABAF. A set of
clusters Â ⊆ Â is
• conflict-free in D̂ if it does not attack itself truly,
• admissible, if it is conflict-free and it defends all of its

clusters, and
• stable iff it is conflict-free, ∀â /∈ Â there must be a full

attack from Â to â, and if â ∈ Â, then if Ŝ ⊆ Â is a set
of clusters that fully attack â, then Â must attack at least
one of the clusters in Ŝ.

In other words, for a conflict-free set it holds that Â ∈
ĉf (D̂) iff ∀â ∈ Â, â ⊈ ThD̂(Single(Â)). Intuitively, if all
of the vulnerabilities of a cluster (i.e., atoms that are con-
traries to an element of the cluster) are derived by singletons
of the set, then there can be no concrete framework in which
a preimage of this set does not contain any attacks. The
point of Definition 9 is that only if there are no true attacks
involved in set of clustered assumptions, can we guarantee
that for some concrete framework, this clustered set is not
spurious.

An admissible set of clusters might receive many attacks,
but in no case can it be that a cluster has all its elements un-
defended. Alternatively, Â ∈ ˆadm(D̂) if the set Â \ att(Â)
does not fully attack Â, where att(Â) is the set of clusters
that are attacked by Â.

In the case of stable assumption sets, the definition dif-
fers a bit more from the classical counterpart. This is mainly
because of the last requirement, which eliminates sets con-
taining fully attacked clusters by unattacked members of the
set. The reasoning behind this requirement is that a cluster
of a stable assumption set can be fully attacked by the as-
sumption set itself and still not be spurious. However, if a
cluster is contained and fully attacked by unattacked mem-
bers of the set, there is no way that there is a classical sta-
ble assumption set that maps to this set, since then it is not
conflict-free. Thus, adding this property eliminates those
extra spurious sets that contain such attacks.

As in classical ABAFs, a stable set is also admissible.
Proposition 2. Let D̂ be a cABAF. It holds that each ab-
stract stable assumption set in D̂ is abstract admissible in
D̂.
Example 5. Let us continue Example 4. The set of sin-
gletons {a, b, e} truly attacks the cluster ĉ. Hence, the set
{a, b, e, ĉ} is not conflict-free. On the contrary, the set
{b, e, ĉ} is conflict-free in D̂. Now to see whether this set
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is spurious, we only need to check if any of its preimages in
D is conflict-free under the classical semantics. Indeed, the
set {b, e, c} is conflict-free in D, and also m({b, e, c}) =
{b, e, ĉ}. Hence, this set is not spurious. However this
clustering is not faithful under conflict-free semantics, and
this becomes clear when looking at the set {a, b, ĉ}. This
set is spurious, as it is conflict-free in D̂ since it contains
no true attacks, but none of its preimages, i.e., {a, b, d},
{a, b, c, d}, and {a, b, c} are conflict-free in D. However,
we cannot avoid such spuriousness, as there is an ABAF D′

with m(D′) = D̂ such that {a, b, ĉ} is conflict-free in D′. As
a matter of fact, in Figure 3 we present an ABAF D′ which
maps to D̂ under the same clustering and in which the same
set is not spurious. We formalize the framework in Figure
3(a) as follows:

• A = {a, b, c, d, e}, L = {a, b, c, d, e, x, y, z, w, t},
• a = z, b = t, c = w, d = x, e = t,
• R′ = {x← a, b, w ← e, y ← c, z ← d}.

Applying the same clustering on D′, i.e., m(a) =

a,m(b) = b,m(c) = m(d) = d̂,m(e) = e, results in the
same cABAF D̂, only now the set {a, b, c} is conflict-free in
D. Thus in this case, the set {a, b, d̂} is not spurious.

In Example 4 cluster ĉ attacks fully the singleton a. This
implies that {a, ĉ} /∈ ˆadm(D̂). However, the singleton e de-
fends a from atom z, and consequently {a, e} ∈ ˆadm(D̂).
At this point, we just remind that attacks can occur in ad-
missible set, e.g., {a, e, ĉ} ∈ ˆadm(D̂).

The sets {b, e, a} and {b, e, ĉ} are both stable under the
abstract semantics. The former set is a set of singletons, and
one can directly check that it is also stable in the classical
framework. On the other hand, the latter is spurious, as
none of the sets {b, e, d}, {b, e, c}, and {b, e, c, d, } is stable.

As a direct property, if a clustered ABAF has only single-
ton assumptions (no abstraction is applied), then the abstract
semantics coincide with the classical semantics (additionally
we also require that the contrary function maps only to one
contrary per assumption as in classical ABAFs). One ob-
servation is that when all clusters are singletons any attack
between them is true.

Proposition 3. Let D̂ = (L̂, R̂, Â, ˆ) be a cABAF for which
it holds that Single(Â) = Â and ˆ assigns only single
atoms to assumptions. Then classical conflict-free, admis-
sible, and stable semantics coincide with abstract conflict-
free, admissible, and stable semantics.

Extending the definition of abstracting to semantics, we
say that a semantics σ̂ on cABAFs abstracts σ on ABAFs
if for each ABAF D and mapping m with m(D) = D̂ it
holds that D̂ under σ̂ abstracts D under σ. We show that our
abstract semantics are all abstracting their classical counter-
parts.

Theorem 1. It holds that the abstract conflict-free, admis-
sible, and stable semantics abstract classical conflict-free,
admissible, and stable semantics, respectively.

a b

X

c

Y

d

Z

e

W

(a)

a b

X

d̂

Z/Y

e

W

(b)

Figure 3: Framework (a) is a preimage of (b), w.r.t. which {a, b, ĉ}
is not spurious under conflict-freeness.

Proof for conflict-free. Let D be an ABAF and m(D) =

D̂ a cABAF. Let A ⊆ A be a conflict-free set, such
that m(A) = Â /∈ ĉf (D̂). Then ∃â ∈ Â s.t.
â ⊆ ThD̂(Single(Â)). However, ThD̂(Single(Â)) ⊆
ThD(A). Hence, ∀a ∈ A with m(a) = â, ∃B ⊆ A,
s.t. B attacks a. This contradicts the assumption that
A ∈ cf (D).

This is a key property of the abstract semantics: it is guar-
anteed that through abstracting we do not lose any essential
information regarding assumption sets. However, we still
have to avoid the threat of excessive spuriousness. Spuri-
ousness cannot be avoided completely. We can, however,
aim to minimize it as much as possible. The following result
shows that the definition of conflict-freeness for cABAFs is
optimal w.r.t. spuriousness.

Theorem 2. Let D̂ = (L̂, R̂, Â, ) be a clustered ABAF ac-
cording to a mapping m. Let also τ̂ be a clustered semantics
that abstracts cf . Then we have ĉf (D̂) ⊆ τ̂(D̂).

Sketch proof. Aiming to a contradiction, we assume that
there is a clustered ABAF D̂ s.t. ĉf (D̂) ⊆ τ̂(D̂) does not
hold, i.e., ∃Â ∈ ĉf (D̂) s.t. Â /∈ τ̂(D̂). We will use that to
construct a classical ABAF D = (L,R,A, ) such that, (i)
m(D) = D̂ and (ii) m(A) = Â for some A ∈ cf (D). In
our construction, L = m−1(L̂) and A = m−1(Â). The set
A =

⋃
â∈Â{ca} contains one representative from each clus-

ter in Â, and the rules and contrary relation are defined in a
way to avoid derivations and any conflict within this set.

In contrast to conflict-free semantics, finding optimal ad-
missible semantics for cABAFs seems to be more involved.
We show this formally, by utilizing a complexity-theoretic
result. The next theorem states that the complexity of decid-
ing, given a specific cABAF and a clustered assumption set,
whether this set is spurious under all possible preimages of
this cABAF is computationally involved.

Theorem 3. Deciding if there exists an ABAF and an ad-
missible set of assumptions mapping to a given cABAF and
given set of clustered assumptions, respectively, is NP-hard.
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Sketch proof. We reduce from SAT. Let ϕ = c1 ∧ · · · ∧ cm
be a formula in CNF over variables X . Construct D̂ =
(L̂, R̂, Â, ), with Â =

⋃
x∈X{ŷx} ∪

⋃
i≤m{di, fi} ∪ {e},

where ŷx = {yx1
, yx2
} are clusters with two concrete as-

sumptions and di,fi for i ≤ m and e singletons. Define
R̂ =

⋃
x∈X{ŷx} ∪

⋃
i≤m{di, fi} ∪ {e}{(x← ŷx), (¬x←

ŷx), (z ← x,¬x)}, and the contrary relations: ci = di,
di = fi, z = e, e = ŷx, where each ci is an atom represent-
ing each clause of ϕ. Finally we define Â =

⋃
x∈X{ŷx} ∪⋃

i≤m{fi} ∪ {e}.
If ϕ is satisfiable, let Y ⊆ X be a model of ϕ. Con-

struct rule set R of D by x ← yx1
and ¬x ← yx2

if x ∈
Y , x ← yx2

and ¬x ← yx1
if x /∈ Y, (z ← x,¬x), c ←

x, if x appears in c. For contraries in D let e = yx1
, if x /∈

Y e = yx2
, if x ∈ Y . Set A = {yx1

, x ∈ Y } ∪ {yx2
, x /∈

Y }∪ {e}∪ {fi}, maps to Â and is admissible. If ϕ is unsat-
isfiable, let A,D s.t. the claim holds. Set A cannot contain
both yx1 and yx2 for x ∈ X . If A contains yx1 (yx2 ), then
yx2 = e (yx1 = e). Since ϕ is unsatisfiable not enough of
c ← x can be triggered, which in turn means that an A that
maps to Â cannot be admissible.

In more words, this result states that, if one would define
a semantics τ̂ that “optimally” defines an abstracting coun-
terpart to classical admissibility requires conditions that are
NP-hard to check. That is, if one defines τ̂ to exactly contain
only those clustered assumption sets Â, for given D̂ and m,
for which some classical ABAF D with m(D) = D̂ exists
who has a matching A (m(A) = Â) requires conditions to
check whether Â ∈ τ̂(D̂) that are NP-hard.

On the other hand, the semantics we defined (Definition 9)
exhibit the same complexity as the corresponding semantics
in classical ABA frameworks.

Proposition 4. One can in polynomial time decide whether
a given set of clustered assumptions is conflict-free, admissi-
ble, or stable in a given cABAF. It is NP-complete to decide
credulous acceptance under admissibility or stable seman-
tics in cABAFs.

We remark that our complexity statements are not con-
tradictory: computation of abstract semantics of a given
cABAF has the same complexity as in classical ABAFs.
However, an optimal variant of admissibility is more in-
volved, i.e., it is NP-hard to verify whether a set of clustered
assumption is part of such an optimal admissible semantics.
These complexity results also set apart existential abstrac-
tion in AFs (Saribatur and Wallner 2021) and existential ab-
straction in cABAFs: in AFs optimal admissibility does not
exhibit a “complexity jump”. Due to this complexity jump,
we opted to focus on our notion of abstract admissibility
(with the same complexity as classical ABA semantics). See
also Section 6 for more relations to AFs.

Complexity is also reflected when checking whether a
clustered assumption set is spurious, given an ABAF and
cABAF.

Proposition 5. Given an ABAF D and its clustered ABAF
D̂, w.r.t. the clustering m, deciding whether a clustered

assumption set is spurious under admissibility is coNP-
complete.

The preceding proposition suggests that finding cluster-
ings is challenging, in general: when searching for a faith-
ful cABAF, one needs to (also) solve non-spuriousness. We
provide two ways of finding faithful cABAFs in Section 5.

Up to now, we focused on conflict-free, admissible, and
stable semantics. However, what happens when we consider
other semantics like complete, preferred and grounded?
These semantics seem to be more involved. Defining an
abstract semantics that abstract complete semantics is not
impossible, since already the abstract admissible semantics
are indeed abstracting the former. However, this abstraction
is of low importance as it barely progresses towards what
would be an optimal abstraction. Let us briefly remind the
reader of the complete, preferred and grounded semantics.
A complete set of assumptions is an admissible set that con-
tains all the assumptions it defends. A preferred set is a
subset-maximal complete set, while the grounded set is the
minimal complete set. Initially, one could attempt to define
an abstract complete semantics in a straightforward way, by
finding sets that contain all the clusters they defend, imitat-
ing the classical complete mechanism. In the following ex-
ample we see that such a naive approach, although it seems
to be in the right direction, does not bear any fruit.
Example 6. Consider the following ABAF:

L = {¬c,¬b} ∪ A, A = {a, b, c, c′},
R = {¬c← a,¬b← c′}, b = ¬b, c = ¬c.

In this framework the sets ∅, {a}, {c′}, {a, c′} are admis-
sible. Out of these sets, only the set {a, c′} is complete.

Let us now consider a clustering on this framework
through mapping m, where m(a) = a,m(b) = b,m(c) =
m(c′) = ĉ. In the resulting cABAF we find that the ad-
missible sets are ∅, {a}, {ĉ}, {a, ĉ}, {a, b}, {a, b, ĉ}. To de-
fine abstract complete sets, let us make use of the function
FD̂(Ŝ) = {â ∈ Â |â is defended by Ŝ}. If we were to con-
sider as abstract complete sets all the sets that are fixed
points of F then the set {a, b, ĉ} would be the only fixed
point. Here, we observe that there is a mismatch between the
complete set of D and the abstract complete set of D̂, since
{a, c′} ∈ com(D), but m({a, c′}) = {a, ĉ} /∈ ˆcom(D̂).

Additionally, using the same example we can draw some
conclusions regarding preferred and grounded semantics. In
the ABAF above the set {a, c′} is also the grounded and
preferred set, since it the only complete set. However, as
mentioned above, this set does not even map to an abstract
complete set, therefore this abstraction cannot work.

A careful reader might wonder: do we have to include the
set {a, b, ĉ} in the abstract complete sets? Could it be the
case that this set is always spurious? As an answer to this,
we present the following framework:

L = {¬c,¬b} ∪ A, A = {a, b, c, c′},
R = {¬c← a,¬b← c}, b = ¬b, c = ¬c.

This framework maps to the same D̂ under the same map
m, and in this framework the set {a, b, c′} is complete. This
justifies accepting {a, b, ĉ} as an abstract complete set.
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As in classical ABAFs, an atom is credulously accepted,
under σ̂, if there is a σ̂ set deriving the queried atom.

Proposition 6. Let D̂ w.r.t. σ̂ be faithful to D w.r.t. some
semantics σ, and â ∈ Â.

1. If â is credulously accepted in D̂, then there is an assump-
tion a ∈ â so that a is credulously accepted in D.

2. If â is not in any Â ∈ σ(D̂), then for every a ∈ â, it holds
that a is not in any A ∈ σ(D).

If there is an Â ∈ σ̂(D̂) s.t. Single(Â) = Â, then x ∈
ThD̂(Â) iff x is credulously accepted in D under σ.

In the case that involves singletons, the above says that
given a faithful clustering that maps an assumption a to it-
self, the fact that a is credulously accepted in the cABAF,
can be translated into the fact that a is credulously accepted
in the classical framework.

An atom x that is credulously accepted under clustered
semantics in D̂, is not necessarily credulously derived in D
as well. Proposition 1 implies that for a given clustered set
Â that derives an atom x, there is a classical set A that maps
to Â and also derives x. However, if Â ∈ σ̂(D̂) for some
semantics σ, that means that x is credulously accepted in
D̂, but there is no guarantee A ∈ σ(D), hence x might not
be credulously derivable in D. By requiring credulous ac-
ceptance to stem from sets of singletons only, implies, by
Proposition 1, that acceptance transfers to the concrete case.

5 Obtaining Clusterings and Use Cases
In this section we present two methods for obtaining faith-
ful clusterings and example uses. The first method starts
at a “coarse” abstraction, e.g., with clustering all assump-
tions into one big cluster and refines, upon user requests
using answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011). The other approach computes a faithful
clustering under adm starting with singletons and iteratively
clusters following the grounded semantics.

Abstraction & refinement We implemented a prototype
tool, which is a modification of the tool provided for cluster-
ing arguments in AFs (Saribatur and Wallner 2021) (which,
in turn, is based on work on abstraction in ASP (Saribatur,
Eiter, and Schüller 2021)). This tool conducts an abstrac-
tion & refinement algorithm to find a faithful abstraction
in a given cABAF. That is, this tool follows the promi-
nent counterexample guided abstraction refinement (CE-
GAR) approach (Clarke et al. 2003). The candidate space
(possible clusterings) is allowing also clusterings that are
spurious. By checking spuriousness, we can either conclude
that the given clustering is faithful, which can be returned,
or is not faithful. A counterexample to faithfulness is a rea-
son for spuriousness that can be used to for finding hints
how to refine the search space of clusterings. That is, how to
generate the next clustering. This process is repeated until a
faithful clustering is found.

The tool is interactive: if a faithful abstraction is obtained,
the tool prompts the user with the found mapping and asks

{8} {ĉ1}
full

full

(a)

{7}{8} {ĉ2}
full

full

(b)

{7}{8}

{16}

{ĉ3}
full
full

true

(c)

Figure 4: Attacks among sets containing one (clustered) assump-
tion in aba 100 0 .3 5 5 1 .aba . The first clustering (a) Â1 =
{8, ĉ1} clusters all assumptions but one. Set {8, ĉ1} is abstract
admissible. The second clustering (b) is Â2 = {7, 8, ĉ2} and as-
sumption set {7, 8} is (spuriously) abstract admissible. In (c) we
have Â3 = {7, 8, 16, ĉ3} and {7, 8} ceases to be abstract admissi-
ble: the true attack from {16} is not counter-attacked by {7, 8}.

whether they would need further details on some assump-
tions in a cluster. If yes, the tool continues the search for a
faithful abstraction from the input the user provides.

Checking faithfulness is not trivial, and we implemented
this check using ASP encodings of the abstract argumen-
tation semantics. These encodings are based on previous
ASP encodings that compute assumption sets on classical
ABAFs (Lehtonen, Wallner, and Järvisalo 2021). We dis-
abled further abstractions of the original tool.

Uses Cases Let us look at two ABAFs from the recent 5th
International Competition on Computational Models of Ar-
gumentation (ICCMA)2 without any stable assumption set:
aba 100 0 .1 10 10 5 .aba and aba 100 0 .3 5 5 1 .aba .
The first one contains ten assumptions and the second one
thirty assumptions.

We first look at reasons why there are no stable assump-
tions in the smaller instance. As computed by our prototype,
refining the clustering with all assumptions in one big clus-
ter, we arrive at a faithful clustering that only makes one as-
sumption concrete: 3. Inspecting this assumption one sees
that 3 = 3, and in flat ABA frameworks assumptions (like 3)
cannot be derived. That is, there can be no stable assumption
in this ABAF.

For the larger instance, our prototype tool suggested an
initial clustering, which we manually refined further. The
resulting faithful clustering makes six assumptions concrete
(3, 6, 13, 16, 20, and 22). Inspecting this instance, it be-
comes clear that 22 is self-attacking, but the contrary 22 can
be derived. However, only conflicting sets, in the clustering,
attack 22, directly indicating that no stable assumption sets
can exist here. Note that the abstraction reduces the number
of assumptions to see this behavior from thirty to six.

Next, let us look at the larger instance and the credulously
accepted assumption 8 under admissibility. Figure 4 shows

2https://iccma2023.github.io/
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attacks, full attacks, and true attacks among assumption sets
containing one (clustered) assumption.3 Clustering all as-
sumptions except 8 into one big cluster ĉ1 (Figure 4(a)) is
deemed faithful by our tool (under ˆadm). Indeed, we get
{8, ĉ1} as an abstract admissible set, mirroring classical ad-
missible sets on the original framework.

Let us “zoom in” more. Since 7 contributes to deriving 8,
we proceed by making 7 concrete (singleton), as well. That
is, we have now 7, 8, and ĉ2 as the (clustered) assumptions
(Figure 4(b)). This is deemed not faithful: our abstract ad-
missible semantics states that {7, 8} is abstract admissible.
However, this set is not admissible in the original frame-
work; when looking at attacks among sets containing one
(clustered) assumption: {7} defends {8} against {ĉ2}.

The refinement tool in addition suggests making 16 con-
crete to arrive at a faithful clustering (Figure 4(c)). On this
clustering the (faithful) abstract admissible sets imply that 7
and 8 only occur together if ĉ3 is also present. As shown in
the figure, 16 truly attacks 8, and {ĉ3} defends 8 against 16.
The two assumptions 7 and 8 do not fully attack anything
and do not attack 16 in this clustering, so they need to be
defended by ĉ3. This clustering tells us that 7 and 8 can, in
fact, be accepted jointly, but require additional defense from
“inside” ĉ3 that we abstracted away.

Iterative clustering Next, we present a way of cluster-
ing that is faithful under adm . The idea is to cluster w.r.t.
defended sets, mimicking the grounded assumptions set in
ABAFs (Čyras et al. 2018). Both the grounded assumption
set and the clustering can be computed in polynomial time.

We create three types of clusters, the d- , a- and s-type.
In d0 we include all unattacked assumptions, and in di all
assumptions defended by all previous d−type clusters. In
other words, we follow the following scheme:

d0 = m(DefendedBy(∅)),

di = m(DefendedBy(

i−1⋃
j=0

dj)) \
i−1⋃
j=0

dj .

Clusters of type a are singletons that are attacked by some
d− type cluster. We denote by aij a singleton attacked by
di, for some j ∈ N. All those assumptions that are not d−
or a− type, are mapped to singletons s1, . . . , sl. We call this
specific clustering, defence-based clustering.

Proposition 7. Let D = (L,R,A, ), and m be the
defence-based clustering. m is faithful under admissibility.

Example 7. Let us look again to Example 2. First, we find
the assumptions that are not attacked. In this case, these as-
sumptions are e and b, hence the first cluster is d̂0 = {e, b}.
Then we check which assumptions do they defend. Since e
attacks d, and d is the only way to derive the contrary of
a, i.e. z, then the set {e, b} defends a. This is the only de-
fended assumption, thus d̂1 = {a}. We also observe that
assumption d is attacked by cluster d̂0, and assumption c is

3Attacks involving assumption sets with more members are not
shown due to conciseness of presentation.

attacked by both d̂0 and d̂1, therefore they are a− type clus-
ters, namely a0 and a1, respectively. As a matter of fact,
this clustering is indeed faithful, since the admissible sets
{a, b, e}, {a, e}, {b, e}, {e}, {b}, ∅ are mapped faithfully to
the sets {d̂0}, {d̂0, d̂1}, and ∅.

6 Relating ABAFs and AFs
In this section we relate to the recent clustering (Saribatur
and Wallner 2021) on AFs (Dung 1995).

An AF F = (Args,Att) is a pair of a set of arguments
Args and Att ⊆ Args × Args represents attacks. We say
that an argument a ∈ Args is defended by a set S ⊆ Args,
iff ∀b ∈ Args s.t. (b, a) ∈ Att, ∃c ∈ S s.t. (c, b) ∈ Att.
This definition extends naturally to defending sets of ar-
guments. A set S ⊆ Args is conflict-free, iff ∀a, b ∈
S, (a, b) /∈ Att, and admissible, iff S ∈ cf (F ) and S de-
fends itself.

Given a surjective mapping m, we define the clustered AF
F̂ to be the pair ( ˆArgs, Âtt), where m(Args) = ˆArgs and
m(Att) = Âtt = {(â, b̂) : (a, b) ∈ Att,m(a) = â,m(b) =

b̂}. A clustered argument a is called a singleton iff |â| = 1.
Let F̂ = ( ˆArgs, Âtt) be a clustered AF according to m.

The set Ŝ ⊆ ˆArgs is conflict-free, iff ∀â, b̂ ∈ Single(Ŝ)

we have (â, b̂) /∈ Âtt, admissible, iff Ŝ ∈ ĉf (F̂ ) and the set
Single(Ŝ) is defended.

In the case of AFs, the clustering happens on the level of
arguments. As a first comparison, abstracting on structured
frameworks provokes slightly more involved notions than in
non-structured frameworks. For example, attacks on clus-
tered AFs require knowledge of singletons, while in ABAFs
we have three types of attacks.

Interestingly, structure allows us to take advantage of the
number of vulnerabilities of a cluster. In a clustered AF,
consider a cluster that attacks another cluster. We only know
that there is an argument in the first cluster that attacks some
other argument in the second cluster. However, it could be
the case that there are more arguments in the first cluster,
that address attacks in one or more arguments in the second
cluster. In ABAFs, structure offers us the benefit to handle
the relations of derivability in a more sophisticated way, and
thus gain more information on attacks. Even though when
clustering assumptions we lose the details on which assump-
tion is “responsible” for deriving an atom, we still have the
information that the atom can be derived by a specific set.

Example 8. We consider the frameworks of our run-
ning Example 2. Viewed as an AF, this AF F contains
four arguments, A, C, D, and E, representing the rules
a, b ← x, c ← y, d ← z, and e ← w, respec-
tively. The attacks in F are given by the set Att =
{(E,D), (D,A), (A,C)}. Then we apply the mapping m

as follows, m(A)=A,m(C)= Ĉ,m(D)= Ĉ,m(E)=E.

The set {A,E, Ĉ} is conflict-free in F̂ w.r.t. the abstract AF
semantics, as the attacks in F̂ , i.e., (A, Ĉ), (Ĉ, A), (E, Ĉ),
are not attacks among singletons. However, the sets
{A,C,D,E}, {A,D,E}, and {A,C,E} (preimages of the
set above) are not conflict-free. Hence this set is spurious.
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Let us take into account the information that lies in the
structure of the ABAF. The sets {a, b, c, d, e}, {a, b, c, e},
and {a, b, d, e} are not conflict-free in D. Clustering c, d
to cluster ĉ, we get that the set {a, b, ĉ, e} is conflicting un-
der ĉf . Hence this set is not spurious, indicating that struc-
ture can be beneficial to minimize spuriousness. Note that
{a, b, ĉ, e} corresponds to {A,E, Ĉ} on the AF-level.

Moreover, in contrast to the AF case optimality of abstract
admissibility is more intricate: we showed NP-hardness
when one would design an optimal abstract admissible se-
mantics (Section 4). Finally, as shown previously (Lehtonen
et al. 2023), AF and ABA reasoning also differs in terms of
the number of arguments generated. When considering the
direct instantiation of AFs from ABAFs, the number of argu-
ments is in general not polynomially bounded by the given
ABAF. Abstraction on ABAFs then can operate on poten-
tially smaller structures to begin with.

7 Conclusions
In this work we introduced existential abstraction to
assumption-based argumentation (ABA), by clustering as-
sumptions. Such clusterings allow for abstracting parts of
the given knowledge. We proposed semantics of the result-
ing clusterings. We showed that our definition of conflict-
freeness is optimal in avoiding spuriousness. For admissi-
bility, we showed that such optimal criteria are NP-hard to
check. For our semantics, we presented use cases and two
approaches to obtain (faithful) clusterings: one via using a
“grounded-like” algorithm and one using an iterative refine-
ment, which can be queried interactively by a user.

We believe that our approach can be beneficial for sup-
porting explainability, a key area of formal argumentation,
by providing foundational work towards abstracting cer-
tain parts of argumentative reasoning in a faithful man-
ner. Interactive tools that give users the ability to “zoom
in” or “zoom out” can be useful to improve understanding.
Among interesting avenues for future works are, e.g., ex-
tending our approach to other formal approaches to struc-
tured argumentation, such as ASPIC+ (Modgil and Prakken
2018), defeasible logic programming (DeLP) (Garcı́a and
Simari 2018), deductive argumentation (Besnard and Hunter
2018), Carneades (Gordon, Prakken, and Walton 2007), or
Gorgias (Kakas, Moraitis, and Spanoudakis 2019). More-
over, extending abstraction with a recently proposed notion
of forgetting parts of an ABA knowledge base (Berthold,
Rapberger, and Ulbricht 2023) appears intriguing. Finally,
existential abstraction via clustering was studied also for
ASP (Saribatur, Eiter, and Schüller 2021) via modification
of logic programs and subsequent use of answer set seman-
tics. We believe applying the approach followed in this pa-
per, i.e., only minimally modifying the given structure (logic
program) and usage of an “abstract answer set semantics”
can be lead to an interesting future research direction for ab-
straction in ASP.
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Dvořák, W.; Järvisalo, M.; Linsbichler, T.; Niskanen, A.;
and Woltran, S. 2019. Preprocessing argumentation frame-
works via replacement patterns. In Calimeri, F.; Leone, N.;
and Manna, M., eds., Proc. JELIA, volume 11468 of Lecture
Notes in Computer Science, 116–132. Springer.
Fan, X., and Toni, F. 2012. Agent strategies for aba-based
information-seeking and inquiry dialogues. In Raedt, L. D.;
Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.; Heintz,
F.; and Lucas, P. J. F., eds., Proc. ECAI, volume 242 of
Frontiers in Artificial Intelligence and Applications, 324–
329. IOS Press.
Fan, X., and Toni, F. 2015. On computing explanations in ar-
gumentation. In Bonet, B., and Koenig, S., eds., Proc. AAAI,
1496–1502. AAAI Press.
Gabbay, D.; Giacomin, M.; Simari, G. R.; and Thimm, M.,
eds. 2021. Handbook of Formal Argumentation, volume 2.
College Publications.
Gao, Y.; Toni, F.; Wang, H.; and Xu, F. 2016.
Argumentation-based multi-agent decision making with pri-
vacy preserved. In Jonker, C. M.; Marsella, S.; Thangarajah,
J.; and Tuyls, K., eds., Proc. AAMAS, 1153–1161. ACM.
Garcı́a, A. J., and Simari, G. R. 2018. Argumentation based
on logic programming. In Baroni, P.; Gabbay, D.; Giacomin,
M.; and van der Torre, L., eds., Handbook of Formal Argu-
mentation. College Publications. chapter 8, 409–435.
Gordon, T. F.; Prakken, H.; and Walton, D. 2007. The
Carneades model of argument and burden of proof. Artif.
Intell. 171(10-15):875–896.
Kakas, A. C.; Moraitis, P.; and Spanoudakis, N. I. 2019.
GORGIAS: Applying argumentation. Argument Comput.
10(1):55–81.
Lehtonen, T.; Rapberger, A.; Ulbricht, M.; and Wallner, J. P.
2023. Argumentation frameworks induced by assumption-
based argumentation: Relating size and complexity. In Mar-
quis, P.; Son, T. C.; and Kern-Isberner, G., eds., Proc. KR,
440–450.
Lehtonen, T.; Wallner, J. P.; and Järvisalo, M. 2021. Declar-
ative algorithms and complexity results for assumption-
based argumentation. J. Artif. Intell. Res. 71:265–318.
Modgil, S., and Prakken, H. 2018. Abstract rule-based ar-
gumentation. In Baroni, P.; Gabbay, D.; Giacomin, M.; and
van der Torre, L., eds., Handbook of Formal Argumentation.
College Publications. chapter 6, 287–364.
Prakken, H., and Sartor, G. 2015. Law and logic: A review
from an argumentation perspective. Artif. Intell. 227:214–
245.
Prakken, H., and Winter, M. D. 2018. Abstraction in
argumentation: Necessary but dangerous. In Modgil, S.;
Budzynska, K.; and Lawrence, J., eds., Proc. COMMA, vol-
ume 305 of Frontiers in Artificial Intelligence and Applica-
tions, 85–96. IOS Press.

Prakken, H. 2023. Relating abstract and structured accounts
of argumentation dynamics: the case of expansions. In Mar-
quis, P.; Son, T. C.; and Kern-Isberner, G., eds., Proc. KR,
562–571. ijcai.org.
Rapberger, A., and Ulbricht, M. 2023. On dynamics in
structured argumentation formalisms. J. Artif. Intell. Res.
77:563–643.
Sakama, C. 2018. Abduction in argumentation frameworks.
J. Appl. Non Class. Logics 28(2-3):218–239.
Saribatur, Z. G., and Wallner, J. P. 2021. Existential abstrac-
tion on argumentation frameworks via clustering. In Bien-
venu, M.; Lakemeyer, G.; and Erdem, E., eds., Proc. KR,
549–559. ijcai.org.
Saribatur, Z. G.; Eiter, T.; and Schüller, P. 2021. Ab-
straction for non-ground answer set programs. Artif. Intell.
300:103563.
Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument Comput. 5(1):89–117.
Ulbricht, M., and Wallner, J. P. 2022. Strongly accepting
subframeworks: Connecting abstract and structured argu-
mentation. In Toni, F.; Polberg, S.; Booth, R.; Caminada,
M.; and Kido, H., eds., Proc. COMMA, volume 353 of Fron-
tiers in Artificial Intelligence and Applications, 320–331.
IOS Press.
Vassiliades, A.; Bassiliades, N.; and Patkos, T. 2021. Ar-
gumentation and explainable artificial intelligence: a survey.
Knowl. Eng. Rev. 36:e5.
Wallner, J. P. 2020. Structural constraints for dynamic op-
erators in abstract argumentation. Argument Comput. 11(1-
2):151–190.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

59


	Introduction
	Assumption-based Argumentation
	Clustering Assumptions
	Semantics of Clusterings
	Obtaining Clusterings and Use Cases
	Relating ABAFs and AFs
	Conclusions

