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Abstract

We provide complexity results and algorithms for reason-
ing in the central structured argumentation formalism of
ASPIC+. Considering ASPIC+ accommodated with pref-
erences under the last-link principle, the results are made
possible by rephrasing several argumentation semantics—
admissible, complete, stable, preferred and grounded—in
terms of defeasible elements of an ASPIC+ theory for both
democratic and elitist last-link lifting. Via the rephrasing, we
establish that acceptance is polynomial-time computable un-
der grounded semantics, and complete for either NP, coNP,
or ΠP

2 depending on the reasoning mode and semantics. We
also detail answer set programming encodings for deciding
acceptance for the NP/coNP-complete reasoning tasks and
empirically show that it scales significantly better than first
translating ASPIC+ reasoning tasks to abstract argumenta-
tion. Finally, we show that, in contrast to the last-link prin-
ciple, it is NP-hard to compute the grounded extension under
the weakest-link principle.

1 Introduction
Argumentation is today an important area of research in
the realm of knowledge representation and reasoning (Ba-
roni et al. 2018; Gabbay et al. 2021). We focus on the
central structured argumentation (Besnard et al. 2014; Bon-
darenko et al. 1997; Besnard and Hunter 2008; Garcı́a and
Simari 2004; Garcia, Prakken, and Simari 2020) formalism
ASPIC+ (Modgil and Prakken 2013) which in its generality
has been shown to capture a range of argumentative settings
in the real world (Prakken 2020; Odekerken et al. 2022).

In ASPIC+, strict inference rules—capturing deductively
valid inferences—and defeasible inference rules—capturing
presumptive inference—together with a knowledge base and
preferential information form the basic building blocks of
arguments. One approach to reasoning in ASPIC+ consists
of first explicitly constructing arguments from these build-
ing blocks, which gives rise to a corresponding abstract ar-
gumentation framework (Modgil and Prakken 2013), and
then reasoning over the abstract argumentation framework
in order to decide whether the conclusions of interest can
be drawn (Dung 1995). However, this two-step approach is
cumbersome in both theory and practice (Lehtonen, Wall-
ner, and Järvisalo 2020) as the first step of argument con-
struction may give rise to an exponentially larger abstract

framework (Strass, Wyner, and Diller 2019). This makes it
challenging to establish complexity results for ASPIC+ rea-
soning and to develop practical algorithms.

Recent work on assumption-based argumentation (Bon-
darenko et al. 1997; Lehtonen, Wallner, and Järvisalo 2021)
and specific fragments of ASPIC+ (Lehtonen, Wallner, and
Järvisalo 2020; Lehtonen, Wallner, and Järvisalo 2022;
Odekerken et al. 2023) has established that the explicit con-
struction of arguments can be avoided by rephrasing argu-
mentation semantics based on defeasible elements and di-
rectly drawing conclusions on the level of these rephras-
ings. This allows for establishing complexity results as well
as declarative algorithms based on answer set programming
(ASP) (Gelfond and Lifschitz 1988; Niemelä 1999) for rea-
soning in ABA and ASPIC+, which scale significantly better
than declarative algorithms based on the two-step approach.

However, so far such rephrasings have only been estab-
lished for specific fragments of ASPIC+. This is mainly
due to representational generality of ASPIC+, with various
potential ways of instantiating the formalism by consider-
ing, e.g., different types of notions of preferences, combined
with the non-triviality of formally establishing rephrasings
for different choices of argumentation semantics. In particu-
lar, rephrasings of several semantics have been presented for
ASPIC+ without allowing preferences (Lehtonen, Wallner,
and Järvisalo 2020), while rephrasing for the more generic
case of ASPIC+ with preferences has been so far established
only for the case of stable semantics and preferential reason-
ing under the so-called weakest-link principle wrt the eli-
tist lifting (Lehtonen, Wallner, and Järvisalo 2022), and for
grounded semantics in a fragment of ASPIC+ allowing no
strict rules or premises and only one type of defeat under the
last-link principle (Odekerken et al. 2023).

In this work, we considerably extend this recent line of
research from both a theoretical and practical perspective.
Complementing Lehtonen, Wallner, and Järvisalo (2022),
we mainly focus on ASPIC+ under the last-link principle,
which, along with the weakest-link principle, is one of the
central preference handling mechanisms for ASPIC+ (Mod-
gil and Prakken 2013). While Lehtonen, Wallner, and
Järvisalo (2022) focused on the specific case of stable se-
mantics and the elitist lifting, we consider a range of cen-
tral argumentation semantics (admissible, complete, stable,
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grounded and preferred) and both the elitist and demo-
cratic liftings. To cover each of these choices, we detail
rephrasings of the semantics as non-trivial extensions of
the previous works. Using the new rephrasings, we estab-
lish both new complexity results and algorithms. In terms
of complexity of reasoning, we show that acceptance un-
der grounded semantics is polynomial-time decidable while
deciding credulously acceptance is NP-complete under ad-
missible, complete, preferred and stable semantics; and that
skeptical acceptance is (i) polynomial-time decidable under
admissible and complete semantics; (ii) coNP-complete un-
der stable semantics; and (iii) Πp

2-complete under preferred
semantics, regardless of the choice of lifting. Key to the
complexity results and our algorithms is, as we show, that
success of a defeat can be decided by inspecting the de-
feating argument and the defeated defeasible element with-
out considering the full argument containing the defeated
element. A consequence is that, surprisingly, inclusion
of preferences under last-link does not increase computa-
tional complexity of the acceptance problems, in contrast
to ASPIC+ under weakest-link (Lehtonen, Wallner, and
Järvisalo 2022) and ABA+ (Lehtonen, Wallner, and Järvisalo
2021; Dimopoulos et al. 2024). From the algorithmic per-
spective, we detail how our new rephrasings allow for ex-
tending previously-proposed ASP encodings for deciding
acceptance in the NP/coNP problem variants we consider,
and show empirically that the approach scales significantly
better than first translating ASPIC+ reasoning to abstract ar-
gumentation. Finally, contrasting to polynomial-time de-
cidability of acceptance under grounded semantics under
the last-link principle, we show that grounded acceptance is
NP-hard under the weakest-link principle and elitist lifting,
demonstrating further the complexity discrepancy between
reasoning under last-link and weakest-link. Formal proofs
are provided in an online paper supplement.

2 ASPIC+

We start with background on ASPIC+ (Modgil and Prakken
2013; Prakken 2010). The basic notion of ASPIC+ is
that of an argumentation system. Following Modgil and
Prakken (2013), we incorporate preorders to argumentation
systems and knowledge bases to integrate preferences.

Definition 1 (Argumentation system). An argumentation
system (AS) is a tuple AS = (L, ,R, n,≤), where

• L is a set of atoms,

• : L 7→ 2L and n : Rd 7→ L are functions,
• ≤ is a partial preorder, i.e., a reflexive and transitive bi-

nary relation, onRd, and
• R = Rs ∪ Rd is the union of a set Rs of strict and a set
Rd of defeasible rules withRs ∩Rd = ∅.
Atom l ∈ L is a contrary of atom m ∈ L iff l ∈ m and

m ̸∈ l, and a contradictory of m iff l ∈ m and m ∈ l.
The function n names defeasible rules. Strict and defeasible
rules are of the form a1, . . . , an → c and a1, . . . , an ⇒ c,
resp., where a1, . . . , an, c ∈ L. When we do not distinguish
between strict and defeasible rules, we write a1, . . . , an ❀

c. For a rule r, ants(r) = {a1, . . . , an} is the set of an-
tecedents and cons(r) = c the consequent of r.

Arguments are constructed from a given argumentation
system with respect to a knowledge base.

Definition 2 (Knowledge base). A knowledge base over an
argumentation system AS = (L, ,R, n,≤) is a set K =
Ka ∪ Kp ⊆ L with Ka ∩ Kp = ∅, where Ka is a set of
axioms and Kp a set of ordinary premises.

Intuitively, axioms are true while premises can be as-
sumed to hold but are defeasible. Argumentation theories in
ASPIC+ consist of an argumentation system, a knowledge
base and preferences between premises.

Definition 3 (Argumentation theory). An argumentation
theory (AT) is a triple T = (AS,K,≤′), where AS is an argu-
mentation system, K is a knowledge base and≤′ is a partial
preorder on Kp.

Each part of an AT is assumed to be finite. As defined
by Modgil and Prakken (2013), we focus on arguments of
finite size, disallowing infinite rule-chaining. An argumen-
tation theory gives rise to arguments as follows.

Definition 4 (Arguments). Let T be an AT. We define the set
of arguments ArgT inductively as follows.

• If c ∈ K, then c ∈ ArgT is an (observation-based) argu-
ment for c with conc(c) = c.

• If there is a rule r : c1, . . . , cm ❀ c inR and Ai ∈ ArgT
with conc(Ai) = ci for each i, 1 ≤ i ≤ m, then A =
A1, . . . , Am ❀ c is a rule-based argument for c in ArgT
with conc(A) = c.

ArgT is the smallest set containing these arguments, allow-
ing only arguments of finite size.

We define several useful shorthands of arguments. For
an observation-based argument c ∈ K, the set of
premises is prem(c) = {c}, the set of defeasible rules
defrules(c) = ∅, the set of subarguments is sub(c) =
{c}, the top-rule is undefined, and the last defeasible
rule LDR(A) = ∅. For a rule-based argument A,
we have prem(A) = prem(A1) ∪ · · · ∪ prem(Am),
rules(A) = {r} ∪ rules(A1) ∪ · · · ∪ rules(Am),
sub(A) = {A} ∪ sub(A1) ∪ · · · ∪ sub(Am), and the
top rule is top-rule(A) = r. Moreover, we define
defrules(A) = rules(A) ∩ Rd, if top-rule(A) ∈
Rd then LDR(A) = {r}, and if top-rule(A) ∈ Rs then
LDR(A) = LDR(A1) ∪ · · · ∪ LDR(Am). Furthermore, for
any argument, premp(A) = prem(A) ∩ Kp. For a set of
arguments E, conc(E) = {conc(A) | A ∈ E}.
Example 1 (Running example). Let T = (AS,K,≤′) be an
AT with AS = (L, ,R, n,≤), where

• L = {a,¬a, b, c, d, e,¬e, f, p, q, x, y, z, d1, d2, d3, d4},
• Rs = {(p, q → a), (b, c→ e), (y → d), (z → d)},
• Rd = {(¬a⇒ b), (x⇒ c), (d⇒ ¬e), (¬e⇒ f)},
• n(¬a⇒ b) = d1, n(x⇒ c) = d2, n(d⇒ ¬e) = d3 and
n(¬e⇒ f) = d4,

• a = {¬a}, ¬a = {a}, e = {¬e} and ¬e = {e},
• d1 ≤ d3 and d3 ≤ d2,
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Figure 1: Running example AT. Dashed boxes and arrows signify
ordinary premises and defeasible rules, and solid boxes and arrows
signify axioms and strict rules, respectively.

• Ka = {x} and Kp = {p, q,¬a, y, z}, and
• p ≤′ ¬a and ¬a ≤′ q.

T gives rise to 16 arguments as shown in Figure 1. An
example of an observation-based argument is p. There are,
for example, two (rule-based) arguments for f : C3 = ((y →
d)⇒ ¬e)⇒ f and D3 = ((z → d)⇒ ¬e)⇒ f .

The acceptability of arguments is determined by defeats
between arguments. Intuitively, an argument A defeats an-
other argument B when the conclusion of A contradicts a
defeasible part of B. Additionally, certain types of defeats
require that A is not less preferred than the subargument of
B that A contradicts. Before discussing liftings from pref-
erences between individual elements of L and R to prefer-
ences between arguments (≺), we recall the general defini-
tions for different types of defeats.

Definition 5 (Defeats). Given an AT T = (AS,K,≤′)
where AS = (L, ,R, n,≤) and two arguments A and
B in ArgT , A defeats B iff A undercuts, contrary-rebuts,
contrary-undermines, successfully contradictory-rebuts or
successfully contradictory-undermines B.

• A undercuts argument B (on B′) iff for some B′ ∈
sub(B) with defeasible top rule r, conc(A) ∈ n(r).

• A contrary-rebuts argument B (on B′) iff for some B′ ∈
sub(B) for ϕ, B′ has a defeasible top rule and conc(A)
is a contrary of ϕ.

• A successfully contradictory-rebuts argument B (on B′)
iff for some B′ ∈ sub(B) for ϕ, B′ has a defeasible top
rule, conc(A) is a contradictory of ϕ and A ̸≺ B′.

• A contrary-undermines B (on B′) iff for some B′ = ϕ,
ϕ ∈ premp(B) and conc(A) is a contrary of ϕ.

• A successfully contradictory-undermines argument B (on
B′) iff for some B′ = ϕ, ϕ ∈ premp(B), conc(A) is a
contradictory of ϕ and A ̸≺ B′.

For preference-dependent (contradictory-rebutting or
contradictory-undermining) defeats, a lifting based on the
partial preorders ≤ on Rd and ≤′ on Kp is used for com-
paring arguments. Four orderings were proposed by Modgil
and Prakken (2013) based on combinations of the (i) elitist
(ELI) and democratic (DEM) set comparators and (ii) argu-
ment comparators weakest-link and last-link principle.

Definition 6 (Ordering comparison on sets). Let Γ and
Γ′ be finite sets. Then ✁s is defined as follows for s ∈
{ELI, DEM}.

1. If Γ = ∅ then Γ ✁̸s Γ
′;

2. Else, if Γ′ = ∅ then Γ✁s Γ
′;

3. Else, assuming a preordering ≤ (where X < Y iff X ≤
Y and Y ̸≤ X) over the elements in Γ ∪ Γ′:

(a) For s = ELI, Γ✁s Γ
′ if there is an X ∈ Γ with X < Y

for all Y ∈ Γ′.
(b) For s = DEM, Γ ✁s Γ′ if for each X ∈ Γ we have

X < Y for some Y ∈ Γ′.

Definition 7. Let s ∈ {ELI, DEM}, T be an AT, and A and
B be two arguments in T . We have B ≺ A under the last-
link principle iff

1. LDR(B)✁s LDR(A), or
2. LDR(B) = LDR(A) = ∅ and premp(B)✁s premp(A).

Under the weakest-link principle, B ≺ A iff the following
holds.

1. If all rules in B and A are strict, then premp(B) ✁s

premp(A).
2. If all premises of B and A are axioms, then

defrules(B)✁s defrules(A).
3. Otherwise defrules(B) ✁s defrules(A) and

premp(B)✁s premp(A).

Henceforth, we focus on the last-link principle, until Sec-
tion 7 where we discuss the weakest-link principle.
Example 2. Consider the running example. Under DEM,
A1 successfully contradictory-rebuts ¬a (and thus B1 and
B3): not all premises of A1 are less preferred than ¬a,
namely q ̸<′ ¬a, and so premp(A1) ̸✁ DEM{¬a}, and fi-
nally (as LDR(A1) = LDR(¬a) = ∅), A1 ̸≺ ¬a. On
the other hand, this defeat is not present under ELI since
a premise in A1 is less preferred than ¬a: p < ¬a, and thus
A1✁ELI{¬a} and A1 ≺ ¬a. Since top-rule(A1) is strict,
A1 is not defeated under either ELI or DEM. Similarly,
under DEM, B3 successfully contradictory-undermines C2

and D2: the rule d2 ∈ LDR(B3) is not less preferred
than d3, which constitues LDR(C2) and thus LDR(B3) ̸✁
DEMLDR(C2) and B3 ̸≺ C2 (similarly for D2). On the
other hand, under ELI, B3 does not defeat C2, since the rule
d1 ∈ LDR(B3) is less preferred than d3, so LDR(B3) ✁ELI

LDR(C2) and thus B3 ≺ C2 (similarly for D2).

Argumentation theories for a given ordering can be trans-
lated into abstract argumentation frameworks.
Definition 8 (AFs defined by ATs). The abstract argumen-
tation framework (AF) defined by an argumentation theory
T = (AS,K,≤′) and an ordering is the pair ⟨A, C⟩, whereA
is the set of arguments in ArgAT and C is the defeat relation
on A determined by AT and the used preference ordering.

The semantics of argumentation theories in ASPIC+ for a
given ordering are defined via their corresponding abstract
argumentation frameworks (Dung 1995).
Definition 9. Let AF = ⟨A, C⟩ be an abstract argumenta-
tion framework and S ⊆ A.
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• S is conflict-free in F iff (X,Y ) ̸∈ C for each X,Y ∈ S.
• S defends X ∈ A in F iff for each Y ∈ A with (Y,X) ∈
C, there is a Z ∈ S with (Z, Y ) ∈ C.

• S is admissible in F iff S is conflict-free and S defends
each X ∈ S.

• S is a complete extension of F iff S is admissible and, for
each X ∈ A, X ∈ S if S defends X .

• The (unique) grounded extension S of F is the subset-
minimal complete extension of F .

• S is preferred in F iff S is a subset-maximal complete
extension.

• S is stable in F iff S is preferred and for each Y ̸∈ S
there is an X ∈ S such that (X,Y ) ∈ C.

We abbreviate the semantics as σ ∈ {cf, adm, com, grd,
prf, stb} and refer to an extension under σ as a σ-extension
(in a given AF).

An atom x ∈ L is said to be credulously accepted under
semantics σ in a given AT T if there is a σ-extension E of
the AF defined by T with x ∈ conc(E), and x is skeptically
accepted under σ if for all σ-extensions E of the AF defined
by T we find that x ∈ conc(E).

Example 3. Returning to our running example, the AF
⟨A, C⟩ that the AT defines has 16 arguments (see also
Figure 1): A = {x,¬a, p, q, y, z, A1, B1, B2, B3, C1,
C2, C3, D1, D2, D3}. The defeat relation depends on the
chosen preference ordering. Under DEM, C = {(A1,¬a),
(A1, B1),(A1, B3),(B3, C2),(B3, C3),(B3, D2),(B3, D3)}
and under ELI, C = ∅. We can now see that under DEM, we
get the unique complete, stable and preferred extension {p,
q, x, y, z, A1, B2, C1, C2, C3, D1, D2, D3}. As there are
no defeats under ELI, the whole set of arguments forms the
unique complete, stable and preferred extension.

3 Rephrasing Semantics under Last-link
In order to establish complexity results and efficient algo-
rithms, we rephrase admissible, complete, stable, preferred
and grounded semantics for last-link principle in terms of
assumptions (sets of premises and defeasible rules), signif-
icantly extending previous work (Lehtonen, Wallner, and
Järvisalo 2020; Lehtonen, Wallner, and Järvisalo 2022) to
last-link and these central semantics. Working with assump-
tions rather than arguments enables a more efficient com-
putation of the acceptance status of atoms than a procedure
that first enumerates all arguments. In particular, for the lat-
ter, the number of arguments is not polynomially bounded
in general (Strass, Wyner, and Diller 2019). Our rephrasings
circumvent this blowup. Throughout this section we assume
the last-link principle.

An assumption compactly represents a set of arguments.
For brevity, we implicitly assume that a given AT T =
(AS,K,≤′) is associated with AS = (L, ,R, n,≤).
Definition 10 (Assumption (P,D)). Let T be an AT. We call
(P,D) with P ⊆ Kp and D ⊆ Rd an assumption in T .

Definition 11 (Argument based on (P,D)). Let T be an AT
and a pair (P,D) with P ⊆ L and D ⊆ Rd. An argu-
ment A ∈ ArgT is based on (P,D) if premp(A) ⊆ P and

defrules(A) ⊆ D. We define ArgT (P,D) to be the set
of all arguments based on (P,D).

The deductive closure of an assumption is the set of atoms
that are concluded by arguments based on the assumption.

Definition 12 (Deductive closure of assumption (P,D)).
Let T be an AT and a pair (P,D) with P ⊆ L and D ⊆ Rd.
The deductive closure of (P,D), denoted by ThT (P,D), is
{conc(A) | A ∈ ArgT (P,D)}.

We write (P,D) derives ϕ iff ϕ ∈ ThT (P,D) and omit
the subscript T when it is clear from context.

For any assumption, the deductive closure can be com-
puted in polynomial time by repeatedly applying the rules
in Rs ∪ D, starting from Ka ∪ P , until a fixed point is
reached (Lehtonen, Wallner, and Järvisalo 2020).

Example 4. Consider the running example and the assump-
tion (P,D) with P = {¬a} and D = {(¬a ⇒ b), (x ⇒
c)}. The arguments based on (P,D) are ArgT (P,D) =
{B1, B2, B3} (recall Figure 1) and the deductive closure
of (P,D) is ThT (P,D) = {¬a, x, b, c, e}. In other words,
(P,D) derives each of ¬a, x, b, c and e. This can be seen
by noting that ¬a is a premise and contained in P , ¬x is an
axiom, b and b can be derived from ¬a and x with defeasi-
ble rules contained in D, and finally e can be derived from
a and b with a strict rule.

3.1 Rephrasing Defeat
Next, we characterize the notion of an assumption defeating
a defeasible element. By Definition 5, in ASPIC+ there are
various types of defeats, which in some cases are dependent
on the preferences between rules and/or ordinary premises in
combination with the chosen ordering. We treat each defeat
type individually.

Preference-independent defeats As a first step, we con-
sider preference-independent defeats, following (Lehtonen,
Wallner, and Järvisalo 2020, Definition 10).

Definition 13 (Preference-independent defeats). Given an
AT T , an assumption (P,D) in T , r ∈ Rd and p ∈ Kp,

1. (P,D) undercuts r iff (P,D) derives an x ∈ n(r),
2. (P,D) contrary-rebuts r iff (P,D) derives a contrary of

cons(r), and
3. (P,D) contrary-undermines p iff (P,D) derives a con-

trary of p.

We establish correspondences between Definition 13 and
preference-independent defeats on arguments (Definition 5).

Proposition 1. Let T be an AT, (P,D) be an assumption in
T . For all B ∈ ArgT , it holds that

• (P,D) undercuts top-rule(B) iff an argument A ∈
ArgT (P,D) undercuts B on B in T ,

• (P,D) contrary-rebuts top-rule(B) iff an argument
A ∈ ArgT (P,D) contrary-rebuts B on B in T , and

• (P,D) contrary-undermines B iff an argument A ∈
ArgT (P,D) contrary-undermines B on B in T .
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Contradictory rebut with elitist lifting Moving on to
preference-dependent defeats, we capture successful contra-
dictory rebuts under elitist lifting as relations between as-
sumptions (P,D) and individual defeasible rules. Towards
this, we define Lr

(P,D) which collects all consequents of de-
feasible rules for which all antecedents are derivable from
(P,D) and that are not less preferred than r. Such rules can
be used as last defeasible rules (LDR) to derive a contradic-
tory of cons(r) with an argument that is not less preferred
than the target argument.
Definition 14. Given an AT T , an assumption (P,D) in T ,
and rule r ∈ R, let Lr

(P,D) = {cons(r
′) | r′ ∈ D, r′ ≮ r

and ants(r′) ⊆ Th(P,D)}.
We rephrase contradictory rebuts for the elitist lifting as

follows.
Definition 15 (ELI-contradictory-rebut). Given an AT T ,
an assumption (P,D) in T , and a defeasible rule r ∈
Rd, (P,D) ELI-contradictory-rebuts r if and only if (P ∪
Lr
(P,D), ∅) derives a contradictory of cons(r).

Example 5. Consider assumption (P,D) with P = {¬a}
and D = {(¬a⇒ b), (x⇒ c)} in the running example. For
the rule r = (d ⇒ ¬e) we have Lr

(P,D) = {c}. As (P ∪
Lr
(P,D), ∅) does not derive any contradictory of cons(r),

(P,D) does not ELI-contradictory-rebut r. Thus there is
no argument in ArgT (P,D) that contradictory-rebuts C2 on
C2 in T , where C2 = (y → d)⇒ ¬e.

Contradictory rebuttals from assumptions to rules capture
all contradictory rebuttals under elitist lifting.
Proposition 2. Let T be an AT and (P,D) an assumption in
T . For any argument B ∈ ArgT , it holds that (P,D) ELI-
contradictory-rebuts top-rule(B) iff an argument A ∈
ArgT (P,D) contradictory-rebuts B on B in T .

Contradictory rebut with democratic lifting We turn to
contradictory rebut with democratic lifting. We capture suc-
cessful contradictory rebuts under democratic lifting as rela-
tions between assumptions (P,D) and individual defeasible
rules, with the help of a graph induced byRs and (P,D).
Definition 16. Let T be an AT and (P,D) an assumption
in T . Then G(P,D) = (V,E) is a directed graph with
V = Th(P,D) and E = {(cons(r), a) | r ∈ Rs, a ∈
ants(r) and ants(r) ∈ Th(P,D)}.

Intuitively, the edges of G(P,D) go from conclusion to an-
tecedents of strict rules used in arguments based on (P,D).
Definition 17 (DEM-contradictory-rebut). Let T be an AT,
(P,D) an assumption in T , and r ∈ Rd. Then (P,D) DEM-
contradictory-rebuts r iff there is some x which is a contra-
dictory of cons(r) and either (P, ∅) derives x, or there is a
directed path in G(P,D) from x to a node in Lr

(P,D).

Example 6. Consider again assumption (P,D) with P =
{¬a} and D = {(¬a ⇒ b), (x ⇒ c)} and rule r =
(d ⇒ ¬e) from Example 5. Then G(P,D) = (V,E) with
V = {¬a, x, b, c, e} and E = {(e, b), (e, c)}. There is a
directed path in G(P,D) from e, which is a contradictory

of cons(r) = ¬e, to the node c in Lr
(P,D). Thus (P,D)

DEM-contradictory-rebuts r. Hence the argument B3 in
ArgT (P,D) contradictory-rebuts C2 on C2 in T .

Contradictory rebuttals from assumptions capture all con-
tradictory rebuttals under democratic lifting.

Proposition 3. Let T be an AT and (P,D) be an assumption
in T . For any argument B ∈ ArgT it holds that (P,D)
DEM-contradictory-rebuts top-rule(B) iff an argument
A ∈ ArgT (P,D) contradictory-rebuts B on B in T .

Contradictory undermine with elitist lifting We move
on to undermining defeats, where target of a defeat is an
ordinary premise. Towards rephrasing undermining defeats
in terms of assumptions, given an ordinary premise p ∈ Kp

and P ⊆ Kp, we define P≮p = {p′ ∈ P | p′ ≮ p} as the set
of all ordinary premises that are not less preferred than p,

Definition 18 (ELI-contradictory-undermine). Let T be an
AT, (P,D) an assumption in T , and p ∈ Kp. Then (P,D)
ELI-contradictory-undermines p if and only if (P≮p, ∅) de-
rives a contradictory of p.

Example 7. In the running example, consider the assump-
tion (P,D), where P = {p, q} and D = ∅, and ordinary
premise ¬a. Then P≮¬a = {p′ ∈ P | p′ ≮ ¬a} = {q} and
(P≮¬a, ∅) does not derive any contradictory of ¬a; there is
no argument in ArgT (P,D) that contradictory-undermines
¬a on ¬a in T under the elitist last-link principle.

Contradictory undermining from assumptions capture all
contradictory undermining defeats under elitist lifting.

Proposition 4. Let T be an AT and (P,D) an assump-
tion in T . For any argument B ∈ ArgT it holds that
(P,D) ELI-contradictory-undermines B iff an argument
A ∈ ArgT (P,D) contradictory-undermines B on B in T .

Contradictory undermine with democratic lifting To
capture contradictory-undermining under democratic lifting,
we use a graph induced byRs and (P,D).

Definition 19. Let T be an AT and P ⊆ Kp. Define GP =
(V,E) to be a directed graph with V = Th(P, ∅) and E =
{(cons(r), a) | r ∈ Rs, a ∈ ants(r) and ants(r) ⊆
Th(P, ∅)}.
Definition 20 (DEM-contradictory-undermine). Let T be an
AT, (P,D) an assumption in T , and p ∈ Kp. Then (P,D)
DEM-contradictory-undermines p iff there is an x which is
a contradictory of p and either (∅, ∅) derives x or there is a
directed path in GP from x to at least one node in P≮p.

Example 8. Consider again (P,D), where P = {p, q} and
D = ∅, and ordinary premise ¬a from Example 7. GP =
(V,E) with V = {p, q, x, a} and E = {(a, p), (a, q)}.
There is a directed path in GP from a to the node q ∈ P≮¬a.
By Definition 20, (P,D) DEM-contradictory-undermines
¬a and thus the argument A1 = p, q → a defeats argument
¬a under democratic lifting.

Contradictory undermining from assumptions capture all
contradictory undermine defeats under democratic lifting.
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Proposition 5. Let T be an AT and (P,D) an assumption in
T . For any argument B ∈ ArgT it holds that (P,D) DEM-
contradictory-undermines B iff there is some argument A ∈
ArgT (P,D) that contradictory-undermines B on B in T .

Defeat in general Based on our rephrasing, we introduce
a general notion of defeats on assumptions.

Definition 21. Let T be an AT, let (P,D) be an assumption
in T , x ∈ Kp ∪ Rd, and s ∈ {ELI, DEM}. We say that
(P,D) s-defeats x (in T ) if and only if

• (P,D) contrary-rebuts or contrary-undermines x,
• (P,D) undercuts x,
• (P,D) s-contradictory-rebuts x, or
• (P,D) s-contradictory-undermines x.

The following general correspondence is a direct conse-
quence of Propositions 1–5.

Proposition 6. Let T be an AT, (P,D) an assumption in
T and s ∈ {ELI, DEM}. For an argument B ∈ ArgT , an
argument A ∈ ArgT (P,D) defeats B on B in T under s iff

• if B is observation-based, then (P,D) s-defeats B, and
• otherwise (P,D) s-defeats top-rule(B).

3.2 Rephrasing Defence
Analogously to defeat, we introduce a notion of defence in
terms of assumptions.

Definition 22 (Defence by assumptions). Given an AT T ,
let (P,D) be an assumption in T and s ∈ {ELI, DEM}. Let
P ′ and D′ be the sets of ordinary premises and defeasible
rules not s-defeated by (P,D). For any x ∈ Kp ∪ Rd, x is
s-defended by (P,D) iff (P ′, D′) does not s-defeat x.

Recall that an argument A is defended by a set of argu-
ments S if each argument B defeating A is defeated by an
argument in S (Definition 9). In other words, each argument
not defeated by any argument in S must not defeat A. We
formally establish that a correspondence between defence
by arguments and defence by assumptions holds in general.

Proposition 7. Given an AT T , an assumption (P,D) in T ,
s ∈ {ELI, DEM} and an argument A ∈ ArgT , it holds that
ArgT (P,D) defends A if and only if (P,D) s-defends every
x ∈ premp(A) ∪ defrules(A).

3.3 Rephrasing Semantics
Based on defeat and defence, we now define the considered
argumentation semantics in terms of assumptions in such a
way that an assumption that satisfies the criteria of a seman-
tics compactly represents an extension of arguments under
the semantics. In this section, we focus on admissible, com-
plete, stable, and preferred semantics. The technically dif-
ferent treatment of grounded semantics will be discussed in
the next section.

Definition 23 (Applicable rules). Let T be an AT. Given an
assumption (P,D) in T , and rule r ∈ D, we say that r is ap-
plicable by (P,D) iff for each a ∈ ants(r): a ∈ Th(P,D).

For comparing two assumptions (P,D) and (P ′, D′), we
define (P,D) ⊑ (P ′, D′), which holds if P ⊆ P ′ and D ⊆
D′ (and (P,D) ⊏ (P ′, D′) if one of the relations is proper).

Definition 24. Let T be an AT and s ∈ {ELI, DEM}. An as-
sumption (P,D) in T is s-conflict-free iff (P,D) does not s-
defeat any x ∈ P∪D. An s-conflict-free assumption (P,D),
with all rules in D applicable by (P,D), is said to be

• s-admissible (in T ) iff (P,D) s-defends all x ∈ P ∪D,
• s-complete (in T ) iff (P,D) is s-admissible, P contains

all ordinary premises s-defended by (P,D) and D con-
tains all defeasible rules that are both applicable by
(P,D) and s-defended by (P,D),

• s-stable (in T ) iff each p ∈ Kp is either in P or s-defeated
by (P,D) and each rule r ∈ Rd is in D, s-defeated by
(P,D) or not applicable by (P ′, D′) with P ′ and D′ not
s-defeated by (P,D), and

• s-preferred (in T ) iff (P,D) is⊑-maximally s-admissible.

The condition for stable assumptions is slightly more in-
volved due to the fact that a defeasible rule might be outside
D and not s-defeated by (P,D), but also not applicable by
undefeated defeasible elements, in which case it can not ap-
pear in an argument outside the stable extension.

Towards a semantical correspondence, we show two use-
ful properties. Firstly, if an argument A defeats an argument
B “on a defeasible element” x, then A defeats any argument
C that contains x.

Proposition 8. Let T be an AT. For any A,B ∈ ArgT , if A
defeats B on B′, then

• if B′ is observation-based, then A defeats each C ∈ ArgT
such that B′ ∈ premp(C), and

• otherwise A defeats each C ∈ ArgT such that
top-rule(B) ∈ defrules(C).

The other useful property is that any complete extension
of arguments is “closed under defeasible elements“, mean-
ing that if a set of arguments E is a complete extension of an
AF defined by an AT and P and D are the sets of ordinary
premises and defeasible rules of arguments in E , then any
argument based on (P,D) is in E .

Proposition 9. Let T be an AT and F be the AF de-
fined by T under s with s ∈ {ELI, DEM}. For any E ⊆
ArgT , if E is complete in F then each argument based on
(premp(E),defrules(E)) is in E .

Finally, we show the correspondence between the stan-
dard definitions and our novel characterisation of semantics.

Theorem 10. Let T be an AT, σ ∈ {adm, com, stb, prf},
s ∈ {ELI, DEM}, and F the AF defined by T under s.

• If (P,D) is an s-σ-assumption in T , then
E = {A | A based on (P,D)} is a σ-extension in F .

• If E is a σ-extension of F , then (P,D) is an s-σ-
assumption of T with P = premp(E) and D =
defrules(E).
A direct consequence is the correspondence of acceptance

problems between the standard semantics definitions and our
rephrasings.
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Proposition 11. Let T be an AT, σ ∈ {adm, com, stb, prf},
σ′ = {com, stb, prf}, s ∈ {ELI, DEM}, and x ∈ L. Then
• x is credulously accepted in T under σ and s iff there is a
s-σ-assumption (P,D) in T s.t. x ∈ ThT (P,D), and

• x is skeptically accepted in T under σ′ and s iff in all
s-σ′-assumptions (P,D) in T we find x ∈ ThT (P,D).

3.4 Fixpoint Computation for Grounded
In this section, we give a polynomial time fixpoint algorithm
for computing the grounded extension based on assump-
tions. We first show that the defence relation is monotonous.
Lemma 12 (Monotonicity of defence). Let T = (AS,K,≤′)
be an AT with AS = (L, ,R, n,≤) and s ∈ {ELI, DEM}.
For each P ⊆ Kp, D ⊆ Rd, x ∈ Kp ∪ Rd, we have that if
(P,D) s-defends x, then each (P ′, D′) such that P ⊆ P ′ ⊆
Kp and D ⊆ D′ ⊆ Rd s-defends x.

Proposition 13 is a counterpart of Dung’s fundamental
lemma (Dung 1995, Lemma 10) for assumption defence.
Proposition 13. Let T = (AS,K,≤′) be an AT with AS =
(L, ,R, n,≤), s ∈ {ELI, DEM} and (P,D) an assumption
with P ⊆ Kp and D ⊆ Rd. Suppose that each rule in D
is applicable by (P,D) and that ArgT (P,D) is admissible.
Then each of the following holds:

1. For each k ∈ Kp that is s-defended by (P,D):
(a) ArgT (P ∪ {k}, D) is admissible, and
(b) for each x ∈ Kp ∪ Rd: if (P,D) s-defends x then

(P ∪ {k}, D) s-defends x.
2. For each r ∈ Rd that is s-defended by (P,D):

(a) ArgT (P,D ∪ {r}) is admissible, and
(b) for each x ∈ Kp ∪ Rd: if (P,D) s-defends x then

(P,D ∪ {r}) s-defends x.
Towards defining the grounded extension without con-

structing arguments, we define a characteristic function for
assumptions, in analogy with the “classical” characteristic
function for AFs (Dung 1995, Definition 16).
Definition 25 (Characteristic function). Consider AT T =
(AS,K,≤′) with AS = (L, ,R, n,≤), let s ∈ {ELI, DEM}
and let (P,D) be an assumption. Then def sT (P,D) =
(P ′, D′) where P ′ = {k ∈ Kp | k is s-defended by (P,D)}
and D′ = {r ∈ Rd | r is applicable and s-defended by
(P,D)}.

For i > 0, we denote i applications of def sT on (∅, ∅) by
def s,iT (∅, ∅) and define def s,0T (∅, ∅) = (∅, ∅).

By Proposition 14, iterating the characteristic function
starting from (∅, ∅) gives the grounded extension.
Proposition 14. Given an AT T = (AS,K,≤′) with AS =
(L, ,R, n,≤), let s ∈ {ELI, DEM} and let (P ∗, D∗) be the
least fixed point of def sT . Then the grounded extension of the
AF defined by T under s equals ArgT (P

∗, D∗).
Proposition 14 suggests a polynomial-time procedure for

computing the unique grounded extension. First, compute
(P ∗, D∗), the least fixed point of def sT . An application
of def sT takes polynomial time and at least one premise
or defeasible rule is added in each iteration, so (P ∗, D∗)

is reached in at most |Kp| + |Rd| iterations. Then, com-
pute Th(P ∗, D∗) by repeatedly applying applicable rules in
Rs ∪D∗ until reaching a fixed point.

4 Complexity Results
We can now establish the complexity of deciding accep-
tance in ASPIC+ under last-link principle and both elitist and
democratic liftings for the central semantics of admissible,
complete, stable, preferred and grounded. The characteri-
sations of the semantics proposed in Section 3 are key to
pinpointing the exact complexity, as they allow us to bypass
the exponential argument construction.

It follows from Proposition 14 that acceptance under
grounded semantics can be done in polynomial time.
Theorem 15. Given an T = (AS,K,≤′) and an atom x ∈
L, under the last-link principle and either democratic or eli-
tist lifting, deciding whether x is accepted under grounded
semantics in T can be done in polynomial time.

The characterisations of Definition 9 along with the corre-
spondence results of Theorem 10 and Proposition 11 imply
the following complexity results.
Theorem 16. Given an T = (AS,K,≤′) and an atom
x ∈ L, under the last-link principle and either democratic
or elitist lifting, deciding whether x is credulously accepted
in T under admissible, complete, preferred or stable se-
mantics is NP-complete. Skeptical acceptance of x in T is
polynomial-time decidable under admissible and complete
semantics, coNP-complete under stable semantics and ΠP

2-
complete under preferred semantics.

Notably, the complexity of these problems coincides with
the complexity of ASPIC+ without preferences (Lehtonen,
Wallner, and Järvisalo 2020) and reasoning in AFs (Dvořák
and Dunne 2017). This is in contrast to the weakest-link
principle under which deciding acceptance under stable se-
mantics is known to be Σp

2/Πp
2-hard (Lehtonen, Wallner, and

Järvisalo 2022). We expand on this discrepancy in Section 7,
showing that acceptance under grounded semantics also ex-
hibits a complexity jump under weakest-link principle.

5 ASP Encodings
We present ASP encodings of the (co)NP-complete accep-
tance problems under admissible, complete and stable se-
mantics under the last-link principle and s ∈ {ELI, DEM}.
Concretely, the answer sets to the proposed programs cor-
respond to admissible, complete, and stable s-assumptions.
This directly extends to deciding credulous and skeptical
queries. First, given an AT T = (AS,K,≤′), we assume
a naming function n′ for all rules in T (such that the image
of n′ does not overlap with L) and represent T in ASP as
AT(T ) ={axiom(a). | a ∈ Kn} ∪ {premise(a). | a ∈ Kp} ∪

{d head(n′(r), b). | r ∈ Rd, b = cons(r)} ∪
{d body(n′(r), b). | r ∈ Rd, b ∈ ants(r)} ∪
{s head(n′(r), b). | r ∈ Rs, b = cons(r)} ∪
{s body(n′(r), b). | r ∈ Rs, b ∈ ants(r)} ∪
{contrary(a, b). | b ∈ a, a, b ∈ L} ∪
{ctrd(a, b). | b ∈ a, a ∈ b, a, b ∈ L}.
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We detail only novel parts of the programs and explain other
parts as needed; the full encodings are in the supplement.
As a basis we use the module Πcommon (Lehtonen, Wallner,
and Järvisalo 2020) for ASPIC+ without preferences. This
encoding makes a non-deterministic guess of an assumption
(P,D) (represented by the predicate in), derives all atoms
derivable from (P,D) (der), using rules applicable by
(P,D) (app by in) and defines preference-independent
defeats of premises and rules by (P,D) (defeated), as
well as rules applicable by premises and rules that are
not defeated by (P,D) (app by undefeated). Fur-
ther, Πcommon enforces conflict-freeness and applicability
of each r ∈ D. To capture the semantics of ASPIC+

with preferences, we introduce additional rules to complete
defeated with preference-dependent defeats, detailed as
the modules ΠELI and ΠDEM (Listing 2 and 3).

We first introduce some further elements common to both
liftings in Πprf (Listing 1). In Line 1 a “good rule” cor-
responding to the rules used in deriving Lr

(P,D) (Defini-
tion 14) is defined as a defeasible rule applicable by in that
is not less preferred than a given defeasible rule. Line 2 en-
forces transitivity of preferences and Lines 3–5 derive the
no less pref predicate for encoding X ̸< Y .

For elitist lifting, Lines 1–4 of ΠELI define der rebut,
capturing atoms derivable from (P,D) in a way that re-
spects the conditions for contradictory rebut (recall Defini-
tion 15): premises and axioms are derivable (Lines 1–2),
as well as conclusions of good rules that are applicable by
(P,D) (Line 3) and conclusions of strict rules applicable in
a preference-sensitive manner (Line 4). Line 5 adds con-
tradictory rebuts to defeated: if der rebut(y, r) holds
for a rule r such that y is the contradictory of conc(r), then
y is contradictory rebutted by (P,D). Lines 6–8 capture
derivations for contradictory undermining (Definition 18),
namely all atoms derivable from (P≮p, D) for any given tar-
get premise p. Line 9 captures successful contradictory un-
dermine.

For democratic lifting, Lines 1–4 of ΠDEM define
nodef der, capturing atoms derived with no defeasible
rules, i.e., from (P, ∅). Lines 5–7 encode reachability in
G(P,D) (Definition 16), i.e., reachability via strict rules to
heads of defeasible rules that are applicable by (P,D). As
a special case for undermining, premises are reachable from
themselves (Line 5). Line 6 states that the head of a strict
rule that is applicable from (P, ∅) reaches all body elements
of the rules, and Line 7 enforces transitivity. Lines 8 and 9
correspond to the two cases in which (P,D) contradictory
rebuts a rule r (recall Definition 17). The first case, on
Line 8, is that (P,D) derives an atom that is a contradictory
of cons(r) and the head of a good rule is reachable from the
atom. The second, on Line 9, is that (P, ∅) derives a contra-
dictory of cons(r). Lines 10–11 encode derivability from
(∅, ∅) and Lines 12–13 encode the two cases for contradic-
tory undermining a premise p (recall Definition 20). Line 12
declares that if (∅, ∅) derives a contradictory of p, then p is
undermined; and Line 13 that if a contradictory of p is de-
rived via (P, ∅) and the contradictory reaches a premise in
P via only strict rules, then p is undermined.

Listing 1: Module Πprf

1 good_rule(RI,R) ← app_by_in(RI), no_less_pref(RI, R).

2 preferred(X,Z) ← preferred(X,Y), preferred(Y,Z).

3 s_less_pref(X,Y) ← preferred(Y,X), not preferred(X,Y).

4 no_less_pref(X,Y) ← premise(X), premise(Y),

not s_less_pref(X,Y).

5 no_less_pref(X,Y) ← d_head(X,_), d_head(Y,_),

not s_less_pref(X,Y).

Given these modules, we are ready to complete the en-
codings for stable, admissible, and complete semantics de-
fined on assumptions (recall Definition 24). The program for
finding a stable assumption of T = (AS,K,≤′) under lifting
s ∈ {ELI, DEM} is

Πs stable = AT(T ) ∪Πcommon ∪Πprf ∪Πs∪
{ ← not in(X), not defeated(X), premise(X).

← app by undefeated(R), not in(R).}

For admissibility, in addition to the modules presented so
far, an analogous module decides what is defeated by the
premises and rules that are not defeated by (P,D) (predi-
cate defeated by undefeated), which we refer to as
∆s adm. A constraint is added to enforce that not defeated
premises and rules do not defeat (P,D), resulting in

Πs admissible = AT(T ) ∪Πcommon ∪Πprf ∪Πs∪
∆s adm ∪ {← in(X), defeated by undefeated(X).}

Completeness builds on top of admissibility. We capture
rules that are applicable from premises and rules that are
not defeated by (P,D) (app by defended) with a mod-
ule ∆com, and add constraints for completeness, giving

Πs complete = Πs admissible ∪∆com∪
{←notin(X),not defeated by undefeated(X),premise(X).

← not in(X), not app by defended(X).}

Finally, for credulous acceptance, we add the constraint
“← not der(q).” stating that a given atom q ∈ ⨿ must be
derivable from (P,D). The query is credulously accepted iff
the program has answer sets. For skeptical acceptance, we
enforce instead “← der(q).” stating that the query q should
not be derivable from (P,D). The query is skeptically ac-
cepted iff the program has no answer sets.

Listing 2: Module ΠELI

1 der_rebut(X,R) ← premise(X), in(X), d_head(R,_).

2 der_rebut(X,R) ← axiom(X), d_head(R,_).

3 der_rebut(X,R) ← d_head(RI,X), good_rule(RI,R).

4 der_rebut(X,R) ← s_head(RI,X), d_head(R,_),

der_rebut(Y,R) : s_body(RI,Y).

5 defeated(R) ← d_head(R,S), der_rebut(Y,R), ctrd(S,Y).

6 der_undermine(X,Y) ← no_less_pref(X,Y), in(X),

premise(X), premise(Y).

7 der_undermine(X,Y) ← axiom(X), premise(Y).

8 der_undermine(X,Y) ← premise(Y), s_head(R,X),

der_undermine(Z,Y) : s_body(R,Z).

9 defeated(X)← premise(X),der_undermine(Y,X),ctrd(X,Y).
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Listing 3: Module ΠDEM

1 nodef_der(X) ← axiom(X).

2 nodef_der(X) ← premise(X), in(X).

3 nodef_der(X) ← s_head(R,X), nodef_app(R).

4 nodef_app(R) ← s_head(R,_), nodef_der(X):s_body(R,X).

5 s_reach(X,X) ← premise(X).

6 s_reach(X,Y) ← nodef_app(R),s_head(R,X),s_body(R,Y).

7 s_reach(X,Y) ← s_reach(X,Z), s_reach(Z,Y).

8 defeated(R) ← d_head(R,S), ctrd(S,Y), der(Y),

s_reach(Y,X), d_head(RG,X), good_rule(RG,R).

9 defeated(R) ← d_head(R,S), ctrd(S,Y), nodef_der(Y).

10 s_der(X) ← axiom(X).

11 s_der(X) ← s_head(R,X), s_der(Y) : s_body(R,Z).

12 defeated(X) ← s_der(Y), ctrd(X,Y), premise(X).

13 defeated(X) ← premise(X), ctrd(X,Y), nodef_der(Y),

s_reach(Y,Z),premise(Z),no_less_pref(Z,X),in(Z).

6 Empirical Evaluation
We present an empirical evaluation of our ASP-based al-
gorithms from Section 5 for the NP-hard tasks of decid-
ing credulous stable, admissible and complete acceptance
(DC-ST, DC-AD and DC-CO), and skeptical stable ac-
ceptance (DS-ST). We incorporated our approach to the
ASPIC+ solver ASPFORASPIC, available in open source
at https://bitbucket.org/coreo-group/aspforaspic/. We use
CLINGO (Gebser et al. 2016) version 5.7.1 as the ASP
solver. We compare our approach to PYARG (Odek-
erken, Borg, and Berthold 2023) which implements the two-
step approach, translating an AT to an AF and then us-
ing CLINGO to reason on the AFs using the ASPARTIX
ASP encodings for AF reasoning (Egly, Gaggl, and Woltran
2010). The experiments were run on 2.40-GHz Intel Xeon
Gold 6148 CPUs under a per-instance time limit of 600 sec-
onds and memory limit of 32 GB.

We generated benchmark instances following Lehtonen,
Wallner, and Järvisalo (2020; 2022) for language sizes |L|
from 50 to 2100, with 5 instances per size. We set param-
eters for the generators as follows based on preliminary ex-
periments with the aim of an approximate 50%/50% split
between instances with/without a stable extension. For each
atom, the number of rules deriving the atom and the size
of each rule were both assigned uniformly at random from
[1, 5]. We let 1% of atoms be axioms, 20% be premises and
half of the rules be strict and half defeasible. Each premise
has a contrary (or contradictory), 10% of rules has a con-
trary, 40% of sentences are in a contrary relation, and 50%
of contrary relations are symmetric (contradictories). We
used a random permutation (xi)0<i≤n of both premises and
defeasible rules. For j < i, we let xi be preferred to xj with
30% probability.

Table 1 compares the performance of our approach ASP-
FORASPIC to PYARG under elitist lifting. PYARG could
not solve instances beyond 50 atoms, while our approach
solves all instances with at most 1200 atoms for all tasks/se-
mantics with mean runtimes below 20 s for instances with at
most 400 atoms. Under democratic lifting (see supplement
for tabulated results) ASPFORASPIC solved all instances
with at most 1900 atoms, while PYARG had similar results

#solved (mean run time over solved (s))

PYARG

|L| DC-ST DC-CO DC-AD DS-ST

50 2 (20.8) 2 (20.0) 1 (34.7) 2 (19.5)
>50 0 — 0 — 0 — 0 —

ASPFORASPIC

|L| DC-ST DC-CO DC-AD DS-ST

50 5 (0.1) 5 (0.2) 5 (0.2) 5 (0.1)
100 5 (0.3) 5 (0.5) 5 (0.5) 5 (0.3)
200 5 (1.7) 5 (2.9) 5 (3.0) 5 (1.7)
400 5 (11.6) 5 (14.7) 5 (16.9) 5 (9.6)
800 5 (64.8) 5 (87.6) 5 (97.9) 5 (59.3)
1200 5 (175.5) 5 (226.4) 5 (239.0) 5 (181.6)
1600 5 (422.6) 4 (518.9) 4 (543.4) 5 (450.0)
1700 3 (473.8) 2 (587.9) 1 (591.1) 3 (486.4)
1800 2 (569.5) 0 — 0 — 3 (568.8)
1900 0 — 0 — 0 — 0 —

Table 1: ASPFORASPIC vs PYARG under elitist lifting.

as it did under elitist.
We also investigated the runtime impact of accounting for

preferences on the same benchmark set. Specifically, we ran
the existing ASP approach to ASPIC+ without preferences
which we extend on in this work (Lehtonen, Wallner, and
Järvisalo 2020) on the same benchmarks, ignoring the pref-
erences. We found that accounting for preferences results in
more solved instances. For example, for DC-CO, account-
ing for preferences resulted in 102 and 86 solved instances
under democratic and elitist lifting, resp., while when ignor-
ing the preferences, 81 instances were solved (see appendix
for details). This is in line with the intuition that without
preferences there are more defeats and therefore potentially
more assumption sets to check.

7 Obstacles to Extending to Weakest-link
As a final contribution, we identify obstacles to capturing
reasoning in ASPIC+ with preferences under the weakest-
link principle in a similar manner as was done for last-
link in this paper. We formally show, firstly, that deciding
grounded acceptance under weakest-link elitist lifting has
higher complexity, and secondly, that closure under defea-
sible elements (i.e., the property shown in Proposition 9 for
last-link principle) does not hold under weakest-link princi-
ple under grounded and complete semantics. These results
extend similar results previously shown for stable seman-
tics (Lehtonen, Wallner, and Järvisalo 2022). The first is
a practical and computational obstacle: extending the ap-
proach proposed in this paper would require multiple calls
to an NP-solver. The latter is a theoretical one: one needs
a way to bypass the fact that it is not in general possible to
exactly characterize AF extensions with assumptions only.
Proposition 17. It is NP-hard to decide whether the
grounded extension contains an argument for a queried
atom, under the weakest-link principle and elitist lifting.

We now show that under weakest-link principle, closure
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under defeasible elements does not hold under grounded and
complete semantics. Visualization of this counterexample
can be found in the supplement.
Counterexample 1. Let T = (L,R, n, ,K,≤) be an
AT with L = {a, b, c, d, e, f, p, q, q′, x, y, y′}, Kp =

{a, b, c, d, e, f}, Ks = ∅, y = {y′}, y′ = {y}, q = {q′},
q′ = {q}, p = {p′}, p′ = {p}, and

R = {r1 : q, p→ y′, r2 : a→ x, r3 : b→ x,

r4 : x⇒ y, r5 : c⇒ q, r6 : d⇒ p,

r7 : e⇒ q′, r8 : y, p→ q′, r9 : f ⇒ p′}.
Moreover, let c ≤′ a, d ≤′ a, r5 ≤d r4, and r6 ≤d r4.

Note that the argument ((c ⇒ q), (d ⇒ p)) → y′ is
strictly less preferred than ((a → x) ⇒ y) but not less
preferred than ((b → x) ⇒ y), and thus defeats the lat-
ter but not the former under weakest-link and either demo-
cratic or elitist lifting. Thus the grounded extension con-
tains, among others, a, b and ((a → x) ⇒ y). However,
from the defeasible elements of these three, one can con-
struct ((b → x) ⇒ y), which is not part of the grounded
extension. As the grounded extension is complete, this coun-
terexample applies to complete semantics as well.

Note that taking strict rules and axioms into account does
not remedy this, since (b→ x) is in the grounded extension
and thus all strict elements of ((b → x) ⇒ y) are also used
in the grounded extension. This result implies that given
an AT, a set of arguments might be an extension, while an-
other set using exactly the same rules and premises is not.
This is problematic in terms of extending our approach to the
weakest-link principle in which extensions are characterized
in terms of their (defeasible) rules and premises. Lehtonen,
Wallner, and Järvisalo (2022) showed that restricting to so-
called well-formed theories preserves closure under defea-
sible elements under stable semantics. Considering similar
restrictions for other semantics and other possibilities for ex-
tending the proposed approach to weakest-link principle are
interesting avenues for future work.

8 Conclusions
We established the computational complexity and developed
practical algorithms for reasoning in ASPIC+ under the last-
link principle and various central argumentation semantics.
A key to the complexity results and algorithms was a for-
mal rephrasing of argumentation semantics in terms of de-
feasible elements. Algorithmically, we detailed ASP encod-
ings based on the rephrasing for the NP/coNP-complee ac-
ceptance problem variants and, relying on an ASP solver,
showed empirically that our approach significanly outper-
forms a two-step approach to reasoning about acceptance via
AF construction and ASP. Interestingly, complexity of de-
ciding acceptance in ASPIC+ does not increase with the in-
clusion of preferences under the last-link principle. By con-
trast, we established NP-hardness under grounded semantics
for the weakest-link principle.

Acknowledgments
This work has been financially supported in part by Aus-
trian Science Fund (FWF) P35632, and Research Council of

Finland under grant 356046. The authors wish to thank the
Finnish Computing Competence Infrastructure (FCCI) for
supporting this project with computational and data storage
resources.

References
Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre,
L., eds. 2018. Handbook of Formal Argumentation. College
Publications.
Besnard, P., and Hunter, A. 2008. Elements of argumenta-
tion. MIT press Cambridge.
Besnard, P.; Garcia, A.; Hunter, A.; Modgil, S.; Prakken,
H.; Simari, G.; and Toni, F. 2014. Introduction to structured
argumentation. Argument & Computation 5(1):1–4.
Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; and Toni,
F. 1997. An abstract, argumentation-theoretic approach to
default reasoning. Artificial Intelligence 93:63–101.
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