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Abstract

Total preorders and Spohn’s ranking functions are most pop-
ular semantic structures in nonmonotonic reasoning and be-
lief revision. Each ranking function uniquely induces a total
preorder, while each total preorder corresponds to infinitely
many ranking functions because of the empty layers that
ranking functions may have. In this paper, we adopt a dy-
namic perspective and investigate the role of empty layers in
belief revision scenarios. We strengthen the notion of (infer-
ential) equivalence of ranking functions by introducing revi-
sion equivalence which postulates the equivalence of ranking
functions after (most general) revision operations. Moreover,
we single out so-called linearly equivalent ranking functions
as prototypes of ranking functions with regularly inserted
empty layers. Such ranking functions are most suitable to
provide an invariance property for revision equivalence which
claims that linear equivalence should be preserved. We show
that strategic c-revisions ensure (conditional) revision equiv-
alence of linearly equivalent ranking functions if the strate-
gies are adequately chosen, whereas the Darwiche-Pearl pos-
tulates for iterated revision alone are not enough to guarantee
revision equivalence of ranking functions. We evaluate vari-
ous other iterated revision approaches from the literature with
respect to revision equivalence and preserving linear equiva-
lence under revision. Furthermore, we present an approach to
defining equivalence preserving revision operators for rank-
ing functions from revision operators for total preorders.

1 Introduction
Total preorders on possible worlds and Spohn’s ranking
functions (Spohn 1988) are broadly used in nonmonotonic
reasoning and belief revision approaches. Indeed, for AGM
belief revision theory (Alchourrón, Gärdenfors, and Makin-
son 1985), total preorders are a basic requirement (Katsuno
and Mendelzon 1991), and for nonmonotonic reasoning,
they provide inference relations of high quality (Makinson
1989; Kraus, Lehmann, and Magidor 1990). Ranking func-
tions assign a natural number to each possible world and
thus implement a convenient representation of total preoders
that makes it easy to specify changes and validate inferences.
Ranking functions and total preorders clearly correspond to
one another, but ranking functions can have empty layers,
i.e., not each natural number is assigned to possible worlds,

while total preorders cannot. The benefit of such empty lay-
ers that naturally arise when working with ranking functions
is not clear prima facie, and they appear to be a bit arbi-
trary and even obsolete. Moreover, representation issues are
encountered — which ranking function would be most ad-
equate to represent total preorders in a revision scenario?
And in which cases is the chosen ranking representation ir-
relevant, and any ranking function representing the total pre-
order would yield the same revision result in the end?

In this paper, we argue that empty layers show their power
and relevance (only) when changing ranking functions. We
introduce the formal notion of revision equivalence1 to es-
tablish a strong equivalence relation among ranking func-
tions that guarantees the equivalence of ranking functions
also under (arbitrary) revisions. We show that strategic c-
revisions (Kern-Isberner 2004; Kern-Isberner, Sezgin, and
Beierle 2023) can ensure revision equivalence of so-called
linearly equivalent ranking functions while general iterated
revisions according to the Darwiche-Pearl framework (Dar-
wiche and Pearl 1997) cannot. This reveals that empty lay-
ers which are inserted into a ranking function in a most
regular way do not influence the qualitative results (i.e.,
with respect to the induced total preorder) of iterated revi-
sion operations when the arithmetics of ranking functions
is thoroughly used, as c-revisions do. This is a crucial in-
sight regarding the representation of total preorders by rank-
ing functions in belief revision: Any two revision equiva-
lent ranking functions may be taken as representations for a
given total preorder to be (suitably) c-revised, the induced
total preorders after change would be the same.

However, empty layers which are inserted into ranking
functions in arbitrary ways may heavily influence the quali-
tative outcomes of change. This is illustrated in various ex-
amples, using c-revisions and also other approaches from
the literature. On the other hand, we present a general ap-
proach to defining revision operators for ranking functions
which are able to preserve equivalence from (well-known)
approaches to revising total preorders. In this way, our
methodology allows for incorporating other approaches to

1We would like to thank Hans van Ditmarsch for mentioning
this term informally in his presentation at ACLAI’23 in Malaga,
Spain, initiating this research work in this way.
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iterated revision from the literature easily.
This paper is organized as follows: Section 2 recalls for-

mal basics and notations which are used in the paper. We
briefly point out links to related work in Secion 3, and give
a more comprehensive description of previous work on iter-
ated belief revision in Section 4. Section 5 introduces our
concept of revision equivalence for ranking functions, and
Section 6 sharpens this concept to linear revision equiva-
lence. In Section 7, we present our approach to define revi-
sion operators for ranking functions from revision operators
for total preorders, and we conclude in Section 8.

2 Formal Preliminaries
Let L be a finitely generated propositional language over
an alphabet Σ with atoms a, b, c, . . . and with formu-
las A,B,C, . . ., equipped with the standard connectives
∧,∨,¬. For conciseness of notation, we will omit the logical
and-connector, writing AB instead of A∧B, and overlining
formulas will indicate negation, i.e., A means ¬A. Logical
equivalence is denoted by ≡, and the set of classical logical
consequences of A ⊆ L by Cn(A), with ⊤ denoting an ar-
bitrary propositional tautology. The set of all propositional
interpretations resp. possible worlds over Σ is denoted by Ω.
ω |= A means that the propositional formula A ∈ L holds in
the possible world ω ∈ Ω; then ω is called a model of A, and
the set of all models of A is denoted by Mod (A). Similarly,
for sets of propositions S ⊆ L, Mod (S) denotes the set of
possible worlds that satisfy all elements of S . For proposi-
tions A,B ∈ L, A |= B holds iff Mod(A) ⊆ Mod(B),
as usual. Analogously, for sets of propositions A,B ⊆ L,
A |= B holds iff Mod (A) ⊆ Mod (B). By slight abuse of
notation, we will use ω both for the model and the corre-
sponding conjunction of all positive or negated atoms. This
will allow us to ease notation a lot. Since ω |= A means the
same for both readings of ω, no confusion will arise.

We also consider conditionals (B|A) ∈ (L|L) which ex-
press statements like “If A then plausibly B”. A condi-
tional belief base ∆ is a finite set of conditionals. Though
considering contradictions within conditionals is interesting
and relevant in principle, we focus on non-contradictory for-
mulas and conditionals here to make the general techniques
clearer, leaving the general case for future work. This means
that we presuppose for each conditional (B|A) dealt with in
this paper that A,AB ̸≡ ⊥ hold.

In this paper, we focus on epistemic states Ψ which are
represented by total preorders (TPO) on Ω: Ψ = (Ω,⪯Ψ).
Total preorders ⪯Ψ stand for plausibility orderings on the set
of possible worlds, and are transitive and reflexive total rela-
tions. As usual, ω1 ≺Ψ ω2 if ω1 ⪯Ψ ω2, but not ω2 ⪯Ψ ω1,
and ω1 ≈Ψ ω2 if both ω1 ⪯Ψ ω2 and ω2 ⪯Ψ ω1. The most
plausible worlds are located in the lowermost layer of ⪯Ψ

which we denote by min(Ω,⪯Ψ). More generally, if Ω̃ ⊆ Ω

is a subset of possible worlds, min(Ω̃,⪯Ψ) denotes the set
of minimal worlds in Ω̃ according to ⪯Ψ. A proposition A
is believed in Ψ, Ψ |= A, if for all ω ∈ min(Ω,⪯Ψ) it
holds that ω |= A, i.e. if min(Ω,⪯Ψ) |= A; the set of all be-
lieved propositions in Ψ is denoted by Bel (Ψ). The preorder
⪯Ψ is lifted to a relation between propositions in the usual

way: A ⪯Ψ B if there is ω |= A such that ω ⪯Ψ ω′ for all
ω′ |= B; equivalently, whenever Mod (A),Mod (B) are both
not empty, if min(Mod (A),⪯Ψ) ⪯Ψ min(Mod (B),⪯Ψ).
For conditionals (B|A), (B|A) is accepted in Ψ, denoted
by Ψ |= (B|A), if AB ≺Ψ AB. Note that A is plausi-
bly believed in Ψ iff the conditional (A|⊤) is accepted by
Ψ. This allows us to subsume plausible beliefs in terms of
conditional beliefs, which supports a more coherent view on
reasoning and revision.

Ordinal Conditional Functions (OCF, also called rank-
ing functions) κ : Ω → N ∪ {∞} with κ−1(0) ̸= ∅ were
firstly introduced by Spohn (Spohn 1988) and implement to-
tal preorders by ranks in the ordinals, here natural numbers.
These ranks express degrees of implausibility, or surprise.
The degree of (im)plausibility of a formula A is defined by
κ(A) := min{κ(ω)|ω |= A}. Hence, due to κ−1(0) ̸= ∅, at
least one of κ(A), κ(A) must be 0. A proposition A is be-
lieved in κ, denoted by κ |= A, if ω |= A for all ω such that
κ(ω) = 0; this is equivalent to saying that κ(A) > 0; the set
of all believed propositions in κ is denoted by Bel (κ). This
notion can be extended in a natural way to assign ranks to
sets of formulas S ⊆ L via κ(S) = min{κ(ω) | ω |= S}.
Conditionals are accepted in the epistemic state represented
by κ, written as κ |= (B|A), if κ(AB) < κ(AB). For a
subset of possible worlds Ω̃ ⊆ Ω, min(Mod (Ω̃), κ) denotes
the set of minimal worlds in Ω̃ according to their ranks in
κ. Note that these definitions are in full compliance with
corresponding definitions for total preorders.

Both ranking functions and total preorders are organized
in layers, i.e., subsets Ω0,Ω1, . . . of worlds which are equiv-
alent with respect to the total preorder resp. have the same
rank. Ω0 is the lowermost layer containing the most plausi-
ble worlds. By slight abuse of notation, we sometimes write
Ω0 ≺ Ω1 ≺ . . . to indicate the ordering of the layers. In
contrast to total preorders, ranking functions usually have
empty layers, i.e., there are ranks r ∈ N with κ−1(r) = ∅.

Total preorders and ranking functions both provide conve-
nient representations of epistemic states for nonmonotonic
reasoning and belief revision.

They are fully compatible in that each ranking function
induces (uniquely) a total preorder, and each total preorder
can be associated with some ranking function. In the paper
(Kern-Isberner, Sezgin, and Beierle 2023), this relationship
between total preorders and ranking functions are made pre-
cise via transformations. We recall the corresponding defi-
nitions and technical results in an adapted form here.

Definition 1 ((Kern-Isberner, Sezgin, and Beierle 2023)).
Let κ be a ranking function on Ω. The transformation
operator τ maps κ to an epistemic state Ψκ = (Ω,⪯κ),
τ : κ 7→ Ψκ, such that for all ω1, ω2 ∈ Ω

ω1 ⪯κ ω2 iff κ(ω1) ⩽ κ(ω2) (1)

holds. The transformation operator ρ maps each epistemic
state Ψ = (Ω,⪯Ψ) to a ranking function κΨ, ρ : Ψ 7→ κΨ,
by setting

κΨ(ω) = min
κ∈τ−1(Ψ)

{κ(ω)}. (2)
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ρ is a well-defined operator such that

κΨ(ω1) ⩽ κΨ(ω2) iff ω1 ⪯Ψ ω2 (3)

holds, i.e. κΨ ∈ τ−1(Ψ). We have that τ ◦ ρ = id, but
ρ ◦ τ ̸= id in general.

3 Related Work
Revision equivalence is similar in spirit to uniform equiv-
alence resp. strong equivalence in answer set programming
(ASP) (Eiter et al. 2005) which postulates that logic pro-
grams yield the same (respective parts of) answer sets even
if further facts resp. rules are added. However, while in ASP,
the role of a stronger notion of equivalence is to ensure mod-
ularity of (parts of) a logic program, we are more interested
in guaranteeing representation invariance regarding the TPO
structure in the context of this paper.

Our axiomatization of revision equivalence for ranking
functions is very similar to the equivalence axiom (E) in for-
getting (Gonçalves, Knorr, and Leite 2016; Kern-Isberner et
al. 2019). In this paper, we explore equivalence in the frame-
work of iterated revision operators.

4 AGM-based Iterated Revision
We recall basics of iterated revision according to (Darwiche
and Pearl 1997) and of c-revisions (Kern-Isberner 2004) in
this section.

4.1 Darwiche-Pearl (DP) Revision and
Elementary Operators

The DP framework (Darwiche and Pearl 1997) extends
the original AGM framework (Alchourrón, Gärdenfors, and
Makinson 1985; Katsuno and Mendelzon 1991) by taking
iterated belief revision into account. To this end, they uti-
lize total preorders to identify AGM revision operators for
epistemic states.
Proposition 1 ((Darwiche and Pearl 1997)). A revision op-
erator ∗ that assigns a posterior epistemic state Ψ ∗ A to a
prior state Ψ and a proposition A is an AGM revision oper-
ator for epistemic states iff there exists a total preorder ⪯Ψ

on Ω with Mod (Bel (Ψ)) = min(Ω,⪯Ψ) such that

Mod (Bel (Ψ ∗ C)) = min(Mod (C),⪯Ψ)

holds for every proposition C.
The following postulates for the revision of an epistemic

state Ψ equipped with a total preorder ⪯Ψ with a proposition
C have been proposed in (Darwiche and Pearl 1997):

(DP1) If ω1, ω2 |= C, then ω1 ⪯Ψ ω2 iff ω1 ⪯Ψ∗C ω2.
(DP2) If ω1, ω2 ̸|= C, then ω1 ⪯Ψ ω2 iff ω1 ⪯Ψ∗C ω2.
(DP3) If ω1 |= C and ω2 ̸|= C, then ω1 ≺Ψ ω2 implies
ω1 ≺Ψ∗C ω2.

(DP4) If ω1 |= C and ω2 ̸|= C, then ω1 ⪯Ψ ω2 implies
ω1 ⪯Ψ∗C ω2.

An AGM revision operator for epistemic states (in the
sense of Proposition 1) that satisfies postulates (DP1–4) will
be called a DP revision operator in this paper. A crucial

insight from (Katsuno and Mendelzon 1991; Darwiche and
Pearl 1997) is that total preorders (and in particular ranking
functions) are adequate representations of epistemic states
in the context of (iterated) AGM revision, and we work on
these representations. In the following, we often speak of to-
tal preorders and ranking functions as epistemic states, tac-
itly assuming their representative characteristic.

The term elementary revision operators (Chandler and
Booth 2020) stands for a group of three basic operators for
iterated belief revision of epistemic states Ψ (represented by
total preorders) with a single proposition A: natural revision
•n (Boutilier 1993), lexicographic revision •ℓ (Nayak, Pag-
nucco, and Peppas 2003), and restrained revision •r (Booth
and Meyer 2006). Those operators have been characterized
by axioms in (Chandler and Booth 2023). We focus on •n
and •ℓ here which can be characterized by the following
properties.

(NR) ω ⪯Ψ•nA ω′ iff (1) ω ∈ min(Mod (A),⪯Ψ), or (2)
ω, ω′ /∈ min(Mod (A),⪯Ψ) and ω ⪯Ψ ω′.

(LR) ω ⪯Ψ•ℓA ω′ iff (1) ω |= A and ω′ ̸|= A, or (2) (ω |=
A iff ω′ |= A) and ω ⪯Ψ ω′.

4.2 Strategic C-Revisions
C-revisions have been introduced in (Kern-Isberner 2001;
Kern-Isberner 2004) and are defined for ranking functions
as follows (we recall definitions from (Kern-Isberner 2004;
Kern-Isberner, Sezgin, and Beierle 2023) here):

Definition 2 (C-revisions for OCFs; cr∆κ,i,CR(κ,∆)). Let
κ be an OCF and ∆ = {(B1|A1), . . . , (Bn|An)} a set of
conditionals. Then a c-revision of κ by ∆ is an OCF κ∗ =
κ ∗∆ of the form

κ∗(ω) = κ0 + κ(ω) +
∑

1⩽i⩽n

ω⊨AiBi

ηi (4)

with nonnegative integers ηi for each (Bi|Ai), satisfying

(cr∆κ,i) ηi > min
ω⊨AiBi

{
κ(ω) +

∑
j ̸=i

ω⊨AjBj

ηj

}
− min

ω⊨AiBi

{
κ(ω) +

∑
j ̸=i

ω⊨AjBj

ηj

}
(5)

The constraint satisfaction problem for c-revisions of κ by
∆, denoted by CR(κ,∆), is given by the set of constraints
cr∆κ,i, for i ∈ {1, . . . , n}, where the ηi are constraint vari-
ables taking values in N.

(5) ensures that κ∗ |= ∆, and the integer κ0 is a nor-
malizing term, i.e., ensuring that κ∗(⊤) = 0. Each c-
revision is an iterated revision in the sense of Darwiche and
Pearl (Darwiche and Pearl 1997) because the DP-postulates
are implied by the principle of conditional preservation
(Kern-Isberner 2004; Kern-Isberner 2018). A solution of
CR(κ,∆) is an n-tuple #»η = (η1, . . . , ηn) of natural num-
bers, and each solution defines a proper c-revision κ∗

#»η ac-
cording to (4) (Kern-Isberner, Sezgin, and Beierle 2023).
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Since (4) and (5) provide a general schema for revision
operators, many c-revisions are possible. With a selection
strategy (Beierle and Kern-Isberner 2021), we can select sin-
gle, well-defined solutions for any revision problem:

Definition 3 (Selection strategy σ, strategic c-revision ∗σ).
A selection strategy (for c-revisions) is a function

σ : (κ,∆) 7→ #»η

assigning to each pair of an OCF κ and a (consistent) set of
conditionals ∆ an impact vector #»η that solves CR(κ,∆). If
σ(κ,∆) = #»η , the c-revision of κ by ∆ determined by σ is
κ∗

#»η , denoted by κ ∗σ ∆, and ∗σ is a strategic c-revision.

5 Revision Equivalence of Ranking
Functions

We start with considering (static) inferential equivalence and
then broaden our view to take revision operations into ac-
count. We also present some first results on when to expect
revision equivalence.

5.1 Inferential Equivalence
As can be found, e.g., in (Beierle and Kutsch 2019), two
ranking functions κ, κ′ are (inferentially) equivalent, κ ∼=
κ′, iff for all ω1, ω2 ∈ Ω it holds that κ(ω1) ≤ κ(ω2)
iff κ′(ω1) ≤ κ′(ω2). In particular, κ(ω1) = κ(ω2) iff
κ′(ω1) = κ′(ω2), i.e., equivalent ranking functions have
exactly the same layers, but may assign different ranks to
possible worlds resp. formulas. Nevertheless, they preserve
the property of a world being a minimal model for a formula.

Proposition 2. Let κ1
∼= κ2 be two equivalent OCFs, let

A ∈ LΣ. Then a model ω of A is a minimal model of A with
respect to κ1 iff it is a minimal model of A with respect to
κ2. In particular, Mod (Bel (κ1)) = Mod (Bel (κ2)), and for
any model ω of A, κ1(ω) = κ1(A) iff κ2(ω) = κ2(A).

Proof. Let ω |= A be a minimal model of A with respect to
κ1, i.e., κ1(ω) ≤ κ1(ω

′) for all models ω′ of A. Then also
κ2(ω) ≤ κ2(ω

′) for all models ω′ of A holds, and therefore
ω is also a minimal model of A with respect to κ2.

Since Mod (Bel (κ1)),Mod (Bel (κ2)) are the respective
minimal models of a tautology ⊤, Mod (Bel (κ1)) =
Mod (Bel (κ2)) follows as a special case.

Finally, observing that κi(ω) = κi(A) holds if and only
if ω is a minimal model of A with respect to κi, i ∈ {1, 2},
this yields κ1(ω) = κ1(A) iff κ2(ω) = κ2(A).

As an immediate consequence of Proposition 2, we obtain
that Bel (κ) is identical for all inferentially equivalent κ.

Proposition 3. If κ1
∼= κ2 for OCFs κ1, κ2, then Bel (κ1) =

Bel (κ2).

Note that two ranking functions κ1, κ2 are equivalent iff
τ(κ1) = τ(κ2), which can be seen immediately from (1).
We have that ρ ◦ τ ̸= id in general. However, κ and ρ ◦ τ(κ)
are equivalent.

ω κ1(ω) κ2(ω) κ∗
1(ω) κ∗

2(ω)

ab 0 0 1 2
ab 3 6 3 8
ab 2 4 2 2
ab 1 2 0 0

Table 1: Ranking functions κ1, κ2 and their DP-revisions for Ex-
ample 1

5.2 Revision Equivalence – Definitions
Equivalent rankings induce the same total preorder but can
assign different ranks to possible worlds due to having
empty layers at different positions. For the (static) condi-
tional/nonmonotonic inferences they yield, these empty lay-
ers have no effect. However, when revising the ranking
functions by the same proposition, or the same conditional,
empty layers may crucially influence the revised ranking
function.
Example 1. Let κ1, κ2 be ranking functions over Σ =
{a, b} as given in Table 1. It is straightforward to see that
κ1, κ2 are equivalent with Bel (κ1) = Bel (κ2) = Cn(ab).
Now, we revise both ranking functions by a according to
the so-called DP-principles for iterated revision from (Dar-
wiche and Pearl 1997), yielding κ∗

1, κ
∗
2 (see Table 1). Ac-

tually, κ∗
2 is a strategic c-revision κ∗

2 = κ2 ∗σ a with
σ(κ2, {a}) = (4), and c-revisions are known to satisfy the
DP-principles (Kern-Isberner 2018); for κ∗

1, those princi-
ples are easily checked.

While for both prior ranking functions, we have κi(ab) <
κi(ab), i.e., κi |= (a|b), i ∈ {1, 2}, this still holds for κ∗

1,
but not for κ∗

2. In more detail, we have κ∗
1(ab) = 1 <

2 = κ∗
1(ab), but κ∗

2(ab) = 2 = κ∗
2(ab). Therefore, κ∗

1
and κ∗

2 are no longer equivalent because the position of
empty layers in κ2 affects the revision outcome. Note that
σ(κ2, {a}) = (4) has not been chosen minimally. The cor-
responding constraint system (5) yields ηi > 2, so also
σ(κ2, {a}) = (3) would have been possible, providing a
minimal c-revision which would still accept (a|b). So, this is
not a failure of c-revisions per se, but amounts to freedom of
choice which should be used deliberately. In this case, there
is no explicit justification for choosing a number higher than
σ(κ2, {a}) = (3). Nevertheless, κ∗

2 still fully complies with
the DP-framework.

In this example, we observe how empty layers may in-
fluence revision operations of equivalent ranking functions.
This has important consequences for the representation of
total preorders by ranking functions in belief revision sce-
narios. Both ranking functions represent the total preorder
ab ≺ ab ≺ ab ≺ ab but revision of κ1 by a yields
ab ≺ ab ≺ ab ≺ ab, while the revision of κ2 by a pro-
duces ab ≺ ab ≈ ab ≺ ab. Note that both revisions are
DP-revisions, i.e., even the DP-framework cannot guaran-
tee equivalent revision outcomes of equivalent ranking func-
tions. Since this framework lifts AGM revision (Alchourrón,
Gärdenfors, and Makinson 1985) to the epistemic level, it is
clear that also AGM revision cannot address this point.
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To establish a representation invariance of total preorders
(which are fundamental to AGM belief change theory (Kat-
suno and Mendelzon 1991)) with respect to ranking func-
tions under belief revision, we introduce a stronger notion
of equivalence. As a general prerequisite and as indicated
in Section 2, we presuppose that all occurring propositions
and conditionals resp. sets thereof are consistent. This helps
us to focus on the core ideas of the methodology while the
more general case of allowing inconsistencies is left for fu-
ture work.
Definition 4 (Revision equivalence). Let κ1, κ2 be two rank-
ing functions (over the same signature), let ∗ be an iter-
ated revision operator taking ranking functions and (sets of)
propositions resp. conditionals as input, and returning a re-
vised ranking function as output.
• κ1, κ2 are (propositionally) revision equivalent with re-

spect to ∗, in symbols κ1
∼=∗ κ2, if κ1 ∗ A ∼= κ2 ∗ A for

all A ∈ L.
• κ1, κ2 are conditionally revision equivalent with respect

to ∗, in symbols κ1
∼=c∗ κ2, if κ1 ∗ (B|A) ∼= κ2 ∗ (B|A)

for all (B|A) ∈ (L|L).
• κ1, κ2 are universally propositionally/conditionally revi-

sion equivalent with respect to ∗, in symbols κ1
∼=∗

u κ2

resp. κ1
∼=c∗

u κ2, if κ1 ∗ S ∼= κ2 ∗ S for all S ⊂ L, resp.
κ1 ∗∆ ∼= κ2 ∗∆ for all ∆ ⊂ (L|L).
In spite of the many postulates that, e.g., the AGM theory,

or the DP framework provide, it is clear that (particularly) it-
erated revision operators dealing with ranking functions and
total preorders can be quite arbitrary. To restrict arbitrari-
ness a bit, we often postulate that any revision operator ∗ to
be considered for revision equivalence in the following satis-
fies a stability postulate which is inspired by AGM revision
resp. expansion:
(Stability) Let φ be a proper input for a revision operator
∗ for ranking functions, i.e., φ may be a proposition, or a
conditional, or even sets thereof. If κ |= φ, then κ∗φ = κ.

(Stability) claims that the prior ranking function is not
changed unnecessarily, i.e., if it already satisfies the success
condition of revision. For strategic c-revisions, (Stability)
can be ensured by postulating the following for strategies:
(Stab) σ(κ,∆) = (0, . . . , 0) if κ |= ∆.

Since our Definition 4 of revision equivalence is most
general and can be applied to any (advanced) revision op-
erator, we also presuppose a compatibility of revising by
conditionals with (multiple) propositional revision via the
following postulate.
Propositional Compatibility (PC) κ ∗ (A|⊤) = κ ∗ A for

all A ∈ L and all κ.
In this way, we ensure that conditional revision operators can
be used to define (iterated) propositional revisions. E.g., the
(strategic) c-revisions recalled in Sec. 4.2 can also be taken
as (multiple) propositional revision operators.

Before we explore the technical properties of revision
equivalence in more detail, we want to show that (proposi-
tional) revision equivalence generalizes (inferential) equiva-
lence, and that conditional revision equivalence generalizes

propositional revision equivalence, when the two postulates
above are presupposed.

Proposition 4. Let ∗ be an iterated revision operator tak-
ing ranking functions and propositions resp. conditionals as
input, and returning a revised ranking function as output.

• Revision equivalent ranking functions with respect to ∗
are (inferentially) equivalent if ∗ satisfies (Stability).

• Conditionally revision equivalent ranking functions with
respect to ∗ are (propositionally) revision equivalent with
respect to ∗ equivalent if ∗ satisfies (Propositional Com-
patibility).

The proof of this proposition is straightforward, and it is
clear that (Propositional Compatibility) can also be applied
to sets of propositions, i.e., to multiple revisions (Delgrande
and Jin 2012; Kern-Isberner and Huvermann 2017).

This proposition shows that the notions of conditional re-
vision equivalence, propositional revision equivalence, and
inferential equivalence are downwards compatible. It helps
us with our investigations which ranking functions are re-
vision equivalent with respect to a given revision operator
because we can focus on considering (inferentially) equiva-
lent ranking functions.

5.3 Some Negative Results and a First Theorem
It is clear that (conditional) revision equivalence is highly
desirable because it allows to take any ranking function that
implements a given total preorder via the transformation
operator τ for purposes of revision, and any such revision
would yield the same total preorder. Hence, revision opera-
tors for ranking functions could be unambiguously used for
defining (maybe complex) revisions of total preorders. For
instance, c-revisions are able to revise ranking functions by
sets of conditionals, which is far beyond what is currently
possible for total preorders (see, e.g., (Kern-Isberner, Sez-
gin, and Beierle 2023) for first approaches). However, the
next proposition shows that this is not realistic in general,
not even in simple cases when revising by just one proposi-
tion.

Proposition 5. Let κ1, κ2 be two different, but (inferen-
tially) equivalent ranking functions which both have at least
two layers such that their lowermost layer Ω0 has more than
one element. Then there is a strategic c-revision operator ∗σ
and A ∈ L such that κ1 ∗σ A ̸∼= κ2 ∗σ A.

Proof. Let κ1
∼= κ2 be as specified in the proposition. Then

we can choose ω1 ∈ Ω0, and ω2 in another layer, which
means that κi(ω1) = 0 and κi(ω2) > 0 for both ranking
functions (i ∈ {1, 2}). We c-revise by A = ω1 ∨ ω2, i.e.,
we investigate κ∗

i = κi ∗σ A for i ∈ {1, 2} with a strategic
c-revision ∗σ such that η1 = σ(κ1, A) = κ1(ω2) and η2 =
σ(κ2, A) = κ2(ω2)+1. Both κ∗

1, κ
∗
2 have the form (4), more

precisely, for i ∈ {1, 2},

κ∗
i (ω) = κi(ω) +

{
0 if ω ∈ {ω1, ω2}
ηi if ω ̸∈ {ω1, ω2}

and both constraint variables η1, η2 comply with the con-
straint (5) which yields ηi > κi(ω1) = 0 in this case. Now
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we consider models of B = ∨ω∈Ω0,ω ̸=ω1 ω. Due to the pre-
requisite that Ω0 has more than one element, B ̸≡ ⊥. For
all ω |= B, we have κ∗

i (ω) = ηi, i ∈ {1, 2}. According
to the selection of η1, η2, we now have κ∗

1(ω) = κ1(ω2),
but κ∗

2(ω) = κ2(ω2) + 1 > κ2(ω2). Therefore, κ∗
1 and κ∗

2
cannot be equivalent.

Proposition 5 states that any two ranking functions as
specified in the proposition cannot be (propositionally) re-
vision equivalent under c-revisions. Since any c-revision
fully complies with the DP-postulates, such ranking func-
tions cannot be (propositionally) revision equivalent under
DP-revisions.

Nevertheless, exploring the prerequisites of Proposition
5 and its proof, we find a specific type of ranking functions
that are (even conditionally) revision equivalent with respect
to c-revisions.

Proposition 6. If κ1, κ2 are two equivalent ranking func-
tions having exactly two layers Ω0,Ω1 such that Ω0 = {ω0}
contains exactly one element, then

κ1 ∗σ (B|A) ∼= κ2 ∗σ (B|A)

for any A,B ∈ L, and any strategic c-revision ∗σ whose
strategy σ satisfies (Stab).

The quite technical proof of this proposition has been
moved to the appendix due to limited space.

Since the uniform ranking function κu defined by
κu(ω) = 0 for all ω ∈ Ω is the only ranking function with
just one layer, we summarize the insights of this section in
the following theorem.

Theorem 7. Let κ1, κ2 be two different ranking functions.
Then κ1, κ2 are conditionally revision equivalent with re-
spect to strategic c-revisions complying with (Stab) iff both
κ1, κ2 have exactly two layers Ω0,Ω1 such that Ω0 = {ω0}
contains exactly one element.

Theorem 7 shows that revision equivalence of ranking
functions even under c-revisions can be expected only in
very special cases. Therefore, in the next section, we refine
both the notion of revision equivalence and the strategies for
c-revisions further.

6 Linear Revision Equivalence
As the previous section shows, revision equivalence is hard
to achieve in general. In this section, we equip the notion of
equivalence of ranking functions with more numerical struc-
ture by introducing linear revision equivalence. We define
this novel concept and show how strategic c-revisions can
be made compatible with it. Afterwards, we also evaluate
other approaches from the literature regarding linear revi-
sion equivalence.

6.1 Definition and Basic Properties
Revision equivalence is a property of ranking functions, but
is crucially parameterized by the used revision operator. If
the (type of) revision operator is fixed, then the research
question is in which cases equivalence of ranking functions
can be preserved under revision. Example 1 showed that

DP-revision operators are too general to guarantee revision
equivalence, and Proposition 5 revealed that also c-revisions
cannot preserve equivalence of ranking functions in gen-
eral. Nevertheless, Proposition 6 gives rise to some hope
that we can have revision equivalence under c-revisions for
specific classes of ranking functions. Therefore, we focus
on c-revisions first, and we also narrow down the notion of
equivalence of ranking functions to the specific case that we
observed in Example 1: there, we have κ2 = 2κ1, yielding a
specific form of equivalence where empty layers are inserted
in a very regular way. We call this linear equivalence.
Definition 5. Two OCFs κ1, κ2 over ΩΣ are linearly equiv-
alent, in symbols κ1

∼=ℓ κ2, if there is a positive rational
number q such that κ2 = q · κ1.

Note that in Definition 5, we allow q to be rational, but
q · κ must be an OCF in the end, yielding only natural num-
bers for ranks. It is obvious, that κ and any of its multiples
q · κ are equivalent. Clearly, ∼=ℓ is also an equivalence re-
lation on OCFs. Suitable representatives of the equivalence
classes are, e.g., those κ where the greatest common divisor
of all κ(ω) is 1. Note that ∼=ℓ is a subrelation of ∼=, so all
statements of Proposition 2 also hold for linearly equivalent
OCFs.

Proposition 2 states that for any equivalent OCFs κ1, κ2

and for any model ω of A, κ1(ω) = κ1(A) iff κ2(ω) =
κ2(A). From this, however, we cannot derive a relation-
ship between κ1(A) and κ2(A) in general, mainly because
of empty layers being possibly present in the OCFs. For the
special case of linearly equivalent OCFs, a useful result can
be shown here.
Lemma 8. If κ2 = q · κ1, then κ2(A) = q · κ1(A) for any
formula A.

Proof. Let ω be a minimal model of A with respect to κ2,
i.e., κ2(A) = κ2(ω) = q · κ1(ω). Due to Proposition 2,
κ1(ω) = κ1(A), and the statement of the lemma follows
immediately.

A crucial property of linearly equivalent ranking func-
tions is that they insert empty layers in a very regular way
– the distance between any two successive layers, i.e., the
number of empty layers between them, is constant. The fol-
lowing lemma makes this more precise, its proof is straight-
forward.
Lemma 9. Let κ1, κ2 be two equivalent ranking functions
with layers Ωj , j ∈ {0, . . . ,m}, i.e., κi(ω) = rji for all ω ∈
Ωj , 0 = r0i < r1i < . . . < rmi , i ∈ {1, 2}, j ∈ {0, . . . ,m}.
κ1, κ2 are equivalent iff there is q ∈ Q such that

rj2 − rj−1
2 = q · (rj1 − rj−1

1 ) (j ∈ {1, . . . ,m}).
In particular, if Ψ is an epistemic state and κ1 = κΨ its
minimal ranking representation according to Definition 1,
and κ2 = q · κΨ, then we have rj2 − rj−1

2 = q.

6.2 Strategies for Linear Revision Equivalence
Regarding the negative result with respect to DP-revision
and even linearly equivalent ranking functions, a first hy-
pothesis might be that c-revisions in general do a better job
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ω κ1(ω) κ2(ω) κ1 ∗σ a(ω) κ2 ∗σ a(ω) κ2 ∗σ′ a(ω)

ab 0 0 1 3 2
ab 3 6 4 9 8
ab 2 4 1 2 2
ab 1 2 0 0 0

Table 2: Ranking functions κ1, κ2 and their strategic c-revisions
for Example 2

preserving equivalence under revision. However, the next
example shows that also this is not the case.

Example 2. Let κ1, κ2 be the same ranking functions over
Σ = {a, b} as in Example 1, i.e., we have that κ2 = 2κ1,
hence κ1

∼=ℓ κ2 . Now, we strategically c-revise both
ranking functions by a, choosing σ(κ1, {a}) = (2), and
σ(κ2, {a}) = (5). However, we are again loosing equiva-
lence under revision, as Table 2 clearly shows. Now we have
(κ1 ∗σ a)(ab) = 1 = (κ1 ∗σ a)(ab), but (κ2 ∗σ a)(ab) =
3 > 2 = (κ1 ∗σ a)(ab).

Nevertheless, we might find that our selection strategy
σ is too arbitrary by setting σ(κ2, {a}) = (5). We know
that κ2 = 2κ1, so choosing σ′(κ2, {a}) = 2σ(κ1, {a}) =
2(2) = (4) seems to be more suitable. And indeed, as Ta-
ble 2 shows, we now have equivalence of the revised ranking
functions if we keep σ′(κ1, {a}) = σ(κ1, {a}) = (2). Even
more, we find that the revised ranking functions are still lin-
early equivalent with the same factor 2, i.e., κ2 ∗σ′ a =
2 · (κ1 ∗σ′ a).

The crucial insight from this example is that indeed,
strategic c-revisions yield revision equivalence of linearly
equivalent ranking functions if the strategies respect multi-
ples of ranking functions. This motivates the following pos-
tulate for strategic c-revisions:

(Multc) σ(q · κ,∆) = q · σ(κ,∆).

Using this postulate, we are now able to formulate a first
general positive result which even holds for universal condi-
tional revision:

Theorem 10. Linearly equivalent ranking functions are uni-
versally conditionally revision equivalent under any strate-
gic c-revision ∗σ where the strategy σ satisfies (Multc). More
precisely, if κ2 = q ·κ1, and σ satisfies (Multc), then it holds
that κ2 ∗σ ∆ = q · (κ1 ∗σ ∆) for any (consistent) set of
conditionals ∆ = {(B1|A1), . . . , (Bn|An)}.

Proof. Let κ2 = q · κ1 and let σ satisfy (Multc). Now let
κ∗
1 = κ1 ∗σ ∆ and κ∗

2 = κ2 ∗σ ∆ for a set of conditionals
∆ = {(B1|A1), . . . , (Bn|An)}. Furthermore, let σ(κ1,∆)i
and σ(κ2,∆)i denote the i-th element of σ(κ1,∆) and
σ(κ2,∆), respectively, belonging to the i-th conditional
(Bi|Ai). Then for all possible worlds ω it holds that

κ∗
2(ω) = ν2 + κ2(ω) +

∑
1⩽i⩽n

ω|=AiBi

σ(κ2,∆)i

ω κ1(ω) κ2(ω) (κ1 ∗DJ S(ω) (κ1 ∗DJ S)(ω)
abc 2 4 1 2
abc 3 6 0 0
abc 5 10 4 7
abc 4 8 3 5
abc 5 10 4 7
abc 4 8 3 5
abc 1 2 5 8
abc 0 0 4 6

Table 3: Ranking functions κ1, κ2 and their DJ-revisions with S =
{a, b} for Example 3.

where ν2 is the normalizing integer defined as

ν2 = −min
ω∈Ω

{
κ2(ω) +

∑
1⩽i⩽n,

ω|=AiBi

σ(κ2,∆)i

}
.

By substituting κ2 with q · κ1 and applying (Multc) as well
as distributivity (with respect to q) in both equations above,
we obtain

κ∗
2(ω) = q ·

(
ν1 + κ1(ω) +

∑
1⩽i⩽n

ω|=AiBi

σ(κ1,∆)i

)
where ν1 is the corresponding normalizing integer for κ1

defined as

ν1 = −min
ω∈Ω

{
κ1(ω) +

∑
1⩽i⩽n,

ω|=AiBi

σ(κ1,∆)i

}
.

Therefore, κ∗
2(ω) = q · κ∗

1(ω), which was to be shown.

This theorem shows that strategic c-revision ∗σ where the
strategy σ satisfies (Multc) respects linear equivalence in
a perfect way, i.e., the factor q which is crucially related
to number and position of empty layers (see Lemma 9) is
the same for the revised ranking functions. This yields a
clear invariance property that can be checked to ensure revi-
sion equivalence of ranking functions in a precise numerical
manner.
Definition 6. A revision operator ∗ preserves linear equiv-
alence if for any linearly equivalent κ1, κ2 such that κ2 =
q · κ1 and for any proper input φ, it holds that

κ2 ∗ φ = q · (κ1 ∗ φ).
Theorem 10 then states that strategic c-revisions ∗σ where

the strategy σ satisfies (Multc) preserve linear equivalence
under revision by sets of conditionals.

6.3 Linear Revision Equivalence for Other
Approaches from the Literature

Besides c-revisions, there are other OCF revision operators
in the literature. One such operator is the parallel OCF revi-
sion operator proposed in (Delgrande and Jin 2012), which
we denote by ∗DJ here. In order to define ∗DJ, we first need
to introduce two operations on sets of formulas.
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ω κ1(ω) κ2(ω) (κ1 ∗DJ {a})(ω) (κ1 ∗DJ {a})(ω)
ab 3 6 1 2
ab 2 4 0 0
ab 1 2 2 3
ab 0 0 1 1

Table 4: Ranking functions κ1, κ2 and their DJ-revisions with S =
{a} for Example 4.

Definition 7. Let S be a set of formulas and S ′ ⊆ S . Then
the completion of S ′ with respect to S is defined as

⌈S ′⌉S = S ′ ∪ {¬A | A ∈ (S \ S ′)}.

Furthermore, the reduction of S to a possible world ω is
defined as

⌊S⌋ω = {A ∈ S | ω |= A}.
The revision operator ∗DJ can now be defined via three

conditions, which can be utilized to successively set the
ranks of different sets of possible worlds in the resulting
OCF.
Definition 8 (∗DJ (Delgrande and Jin 2012)). Let κ be an
OCF and let S be a (finite and consistent) set of proposi-
tions. Then κ∗ = (κ ∗DJ S) is constructed as follows.

• For all ω1 ∈ min(Mod (S), κ), set κ∗(ω1) = 0.
• For 1 ≤ i ≤ |S| (successively): Let S ′′ ⊂ S with |S| −
|S ′′| = i. For all ω2 ∈ min(Mod (⌈S ′′⌉S), κ), set

κ∗(ω2) = 1 +max{κ∗(⌈S ′⌉S),
κ∗(⌈S ′⌉S) + κ(⌈S ′′⌉S)− κ(⌈S ′⌉S)
| S ′′ ⊂ S ′ ⊆ S with |S ′| − |S ′′| = 1}.

• For ω3 /∈ min(Mod (⌈⌊S⌋ω3
⌉S), κ), set

κ∗(ω3) = κ∗(⌈⌊S⌋ω3
⌉S) + κ(ω3)− κ(⌈⌊S⌋ω3

⌉S).

As this operator ∗DJ takes an OCF and a set of proposi-
tional formulas as input, one might be interested in checking
whether ∗DJ preserves (linear) equivalence, i.e. if κ1

∼= κ2

implies κ1∗DJS ∼= κ2∗DJS . The following example demon-
strates that this is not the case.
Example 3. Let κ1, κ2 be ranking functions over Σ =
{a, b, c} as defined in Table 3. Note that κ2 = 2 · κ1 and,
therefore, κ1

∼=ℓ κ2. Now let κ∗
1 = κ1 ∗DJ {a, b} and κ∗

2 =
κ2 ∗DJ {a, b}. Table 3 shows that κ∗

1(abc) = 4 = κ∗
1(abc)

while κ∗
2(abc) = 6 < 7 = κ∗

2(abc). Hence, κ∗
1 ≇ κ∗

2.

Even when revising by only a single proposition A via
∗DJ, equivalence among OCFs is not necessarily preserved,
as the following example shows.
Example 4. Let κ1, κ2 be ranking functions over Σ =
{a, b} as defined in Table 4. Note that κ2 = 2 · κ1 and,
therefore, κ1

∼=ℓ κ2. Now let κ∗
1 = κ1 ∗DJ {a} and

κ∗
2 = κ2 ∗DJ {a}. Table 4 shows that κ∗

1(ab) = 1 = κ∗
1(ab)

while κ∗
2(ab) = 1 < 2 = κ∗

2(ab). Hence, κ∗
1 ≇ κ∗

2.

7 Equivalence via TPO Revisions
In principle, every revision operator • for total preorders can
be used to define a revision operator for ranking functions κ
by utilizing the transformation functions τ and ρ. There are
two approaches to this:

• We transform κ into a TPO, perform the TPO revision
directly, and then transform the result back into an OCF.
This corresponds to defining an OCF-revision operator ⊛
by

κ⊛ φ = ρ(τ(κ) • φ), (6)

where φ is an appropriate input for •.

• We design an OCF-revision operator ∗ that mimics the be-
havior of • and check the correspondence to • afterwards.
More precisely, we define ∗ accordingly from scratch such
that

Ψ • φ = τ(κ ∗ φ) (7)

holds for every epistemic state Ψ properly represented by
a total preorder, every κ ∈ τ−1(Ψ), and every new infor-
mation φ.

Note that in Equation (7), the operator ∗ is required to work
for all κ ∈ τ−1(Ψ) instead of just the minimal κΨ from
Definition 1. Equations (6) and (7) are compatible in the
sense that ⊛ from (6) satisfies (7).

Lemma 11. Let • be a TPO-revision operator and let ⊛ be
the OCF-revision operator induced by • via (6). Then for
every epistemic state Ψ equipped with a TPO, every κ ∈
τ−1(Ψ), and every new information φ, it holds that

Ψ • φ = τ(κ⊛ φ).

Proof. According to (6), it holds that τ(κ⊛φ) = τ(ρ(τ(κ)•
φ)) = τ(κ) • φ = Ψ • φ.

Now we will take a closer look at the first approach.

Proposition 12. Let • be a revision operator for total pre-
orders, and let φ be an appropriate input for •. Then the
OCF-revision operator ⊛ induced by • via Equation (6) pre-
serves equivalence, i.e., any two equivalent ranking func-
tions are also (universally/propositionally/conditionally) re-
vision equivalent.

Proof. Let κ1, κ2 be equivalent OCFs. Then it follows im-
mediately from Definition 1 that τ(κ1) = τ(κ2). Hence, the
revision using ⊛ delivers not just equivalent, but identical
results for both OCFs, i.e. κ1 ⊛ φ = κ2 ⊛ φ.

Proposition 12 allows us to obtain OCF-revision operators
from TPO-revision operators via Equation (6) where the re-
vision result on the side of the total preorder does not depend
on the chosen ranking representation of the total preorder.

It should be noted that ⊛ does not satisfy (Stability) in
general, even if • does not alter the preorder when revising
with already known information. This is an artifact due to
the loss of all information about empty layers of the previous
ranking function when applying ρ ◦ τ .

From the proof of the proposition above, it is obvious that
transformation functions can also be used to preserve linear
equivalence among OCFs. For two equivalent OCFs κ1, κ2
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with κ2 = q · κ1 (and q > 1), one simply needs to scale the
result of the revision κ2 ⊛ φ with q. The following proposi-
tion demonstrates how such a scale-aware revision operator
can be defined.
Proposition 13. Let κ be an OCF, let ⊛ be constructed from
a revision operator • for total preorders as described in
Equation (6), and let φ be an appropriate input for •. Then
the OCF-revision operator ⊗ defined by

κ⊗ φ = (κ⊛ φ) ·min{κ(ω) | ω ∈ Ω, κ(ω) > 0}

preserves linear equivalence.

Proof. Let κ1, κ2 be equivalent OCFs with κ2 = q · κ1 and
let q > 1. For i ∈ {1, 2}, let ri = min{κi(ω) | ω ∈
Ω, κi(ω) > 0}. Then we have r2 = q · r1 due to Lemma 9.
As a result, κ2 ⊗ φ = (κ2 ⊛ φ) · r2 = ρ(τ(κ2) • φ) · r2 =
ρ(τ(κ1) • φ) · r1 · q = (κ1 ⊛ φ) · r1 · q = (κ1 ⊗ φ) · q.

Now we examine the second approach of defining OCF-
revision operators that behave like TPO-revision operators.
We provide two such operators that originate from well-
known elementary revision operators here.
Definition 9 (∗n, ∗ℓ). Let κ be an OCF and A be a propo-
sition. The natural OCF-revision operator ∗n is defined by

(κ ∗n A)(ω) =

{
0 iff ω |= A and κ(ω) = κ(A),

1 + κ(ω) otherwise.

The lexicographic OCF-revision operator ∗n is defined by

(κ ∗ℓ A)(ω) = κ(ω)− κ(A)

+

{
0 iff ω |= A,

1 + max
ω|=A

{κ(ω)} otherwise.

Note that ∗n does not satisfy (Stability), although •n does
not alter preorders when the lowermost layer already con-
tains only models of the new information. This is an arti-
fact that could be avoided by introducing an additional case
(κ ∗n A)(ω) = κ(ω) iff κ |= A in the definition, but we opt
for the more concise definition here.

For ∗ℓ, however, the violation of (Stability) is not an ar-
tifact, since •ℓ deliberately makes all models of the new in-
formation A more plausible, even if A is already believed.

We now show that the operators ∗n and ∗ℓ defined above
are indeed suitable OCF-realizations of the TPO-revision
operators •n and •ℓ, respectively.
Proposition 14. The operator ∗n complies with (NR) in the
sense that it fulfills Equation (7) with respect to •n. Analo-
gously, the operator ∗ℓ complies with (LR) in the sense that
it fulfills Equation (7) with respect to •ℓ.

Proof. Let Ψ be an epistemic state equipped with a total pre-
order ⪯Ψ and let κ ∈ τ−1(Ψ). Furthermore, let A be a
proposition and let ω, ω′ be possible worlds.

We first prove that Ψ •n A = τ(κ ∗n A) by show-
ing that Ψ• = τ(κ ∗n A) complies with the equivalence
stated in (NR). “⇐”: (1) If ω ∈ min(Mod (A),⪯Ψ), we
have κ(ω) = κ(A). This results in (κ ∗n A)(ω) = 0 ≤
(κ ∗n A)(ω′) for all ω′ ∈ Ω. Therefore, ω ⪯Ψ• ω′. (2)

If ω, ω′ /∈ min(Mod (A),⪯Ψ) and ω ⪯Ψ ω′, we have
κ(ω) ≤ κ(ω′). Therefore, (κ ∗n A)(ω) = κ(ω) + 1 and
(κ ∗n A)(ω′) = κ(ω′) + 1. Hence, ω ⪯Ψ• ω′.

“⇒”: We prove the other direction by contraposition. Let
ω /∈ min(Mod (A),⪯Ψ). This results in (κ ∗n A)(ω) =
κ(ω) + 1 > 0. (i) If ω′ ∈ min(Mod (A),⪯Ψ), we have
(κ ∗n A)(ω′) = 0 and consequently ω′ ≺Ψ• ω. (ii) If ω′ /∈
min(Mod (A),⪯Ψ), the negation of the second condition in
(NR) means we have ω′ ≺Ψ ω. As a result, (κ ∗n A)(ω′) =
κ(ω′) + 1 < (κ ∗n A)(ω) and ω′ ≺Ψ• ω.

Now we prove that Ψ •ℓA = τ(κ ∗ℓA). Let Ψ• = τ(κ ∗ℓ
A) and let c = maxω|=A{κ(ω)} be the maximal rank of
models of A in κ. We need to show that Ψ• complies with
the equivalence stated in (LR). “⇐”: (1) If ω |= A and ω′ ̸|=
A, we have κ(ω) ≤ c. Therefore, κ(ω) < 1 + c + κ(ω′).
Hence, (κ ∗ℓ A)(ω) < (κ ∗ℓ A)(ω′) and ω ≺Ψ•ℓA ω′. (2) If
(ω |= A iff ω′ |= A and ω ⪯Ψ ω′, we have κ(ω) ≤ κ(ω′).
During the revision, the same constant value is added to both
sides of this inequation. Therefore, (κ ∗ℓ A)(ω) ≤ (κ ∗ℓ
A)(ω′) and ω ⪯Ψ•ℓA ω′.

“⇒”: We prove this direction by contraposition. Let ω ̸|=
A and ω′ |= A. Analogously to the first case in the other
direction, the revision results in ω′ ≺Ψ• ω.

Moreover, both operators ∗n and ∗ℓ preserve equivalence
among OCFs. In order to prove this, we show more gener-
ally that compliance with (7) is enough for an OCF-revision
operator to guarantee preservation of equivalence.
Proposition 15. Let ∗ be a revision operator for ranking
functions that satisfies (7) for some revision operator • for
total preorders, and let φ be an appropriate input for •. Let
κ1, κ2 be equivalent OCFs. Then

κ1 ∗ φ ∼= κ2 ∗ φ.
Proof. Let • be a revision operator for total preorders such
that (7) holds with respect to ∗ and •, and let φ be a suitable
input for •. It holds that κ1, κ2 ∈ τ−1(Ψ) for Ψ = τ(κ1) =
τ(κ2). Therefore, Ψ•φ = τ(κ1 ∗φ) = τ(κ2 ∗φ) according
to Lemma 11, which means that (κ1 ∗ φ) ∼= (κ2 ∗ φ).

Proposition 15 implies that when using ranking functions
to implement a TPO-revision operator applied to a total pre-
order Ψ, any ranking function κ with τ(κ) = Ψ that satis-
fies (7) can be taken as a suitable representation, yielding a
unique revision result.

We are now able to formulate the following corollary, the
proof of which is immediate from Proposition 14 together
with Proposition 15.
Corollary 16. Let κ1, κ2 be equivalent OCFs. Then κ1 and
κ2 are (propositionally) revision equivalent with respect to
both ∗n and ∗ℓ.

However, although they preserve inferential equivalence,
the two OCF operators ∗n and ∗ℓ do not preserve linear
equivalence among OCFs.
Example 5. Table 5 shows two linearly equivalent ranking
functions κ1, κ2 with κ2 = 2 · κ1. We can see that both
(κ1 ∗n a) ∼= (κ2 ∗n a) and (κ1 ∗ℓ a) ∼= (κ2 ∗ℓ a). However,
there is no q ∈ Q such that (κ2 ∗n a) = q · (κ1 ∗n a) or
(κ2 ∗ℓ a) = q · (κ1 ∗ℓ a).
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ω κ1 κ2 (κ1∗n a) (κ2∗n a) (κ1∗ℓ a) (κ2∗ℓ a)
ab 1 2 0 0 0 0
ab 3 6 4 7 2 4
ab 0 0 1 1 3 5
ab 2 4 3 5 5 9

Table 5: Ranking functions κ1, κ2 and their natural and lexico-
graphic OCF revisions with a for Example 5.

8 Conclusion
In this paper, we introduced the novel concept of revision
equivalence for ranking functions to ensure that empty lay-
ers of ranking functions do not affect the induced qualita-
tive total preorder after revision. This allows for using the
convenient framework of ranking functions for revising to-
tal preorders, as then any ranking representation of a total
preorder can be used for revision. However, as our investi-
gations showed, revision equivalence is not easy to achieve
in general, e.g., under iterated revisions according to the
DP-framework (Darwiche and Pearl 1997). Therefore, we
introduced more structural information into the notion of
equivalence by considering linearly equivalent ranking func-
tions and found that c-revisions (Kern-Isberner 2004) are
perfectly adequate to preserve linear equivalence even for
revising by sets of conditionals. We also presented a gen-
eral approach to make use of revision operators for total
preorders such as natural (Boutilier 1993) or lexicographic
(Nayak, Pagnucco, and Peppas 2003) revision to define revi-
sion operators for ranking functions which preserve equiva-
lence.

As part of our future work, we plan to evaluate and make
use of more approaches to iterated revision from the liter-
ature, both revision operators for ranking functions and for
total preorders, and also to consider iterated revision frame-
works beyond the basic DP-framework. In particular, we
will investigate implications of the axioms (Ind) (Jin and
Thielscher 2004) and (P) (Delgrande and Jin 2012), and of
those axioms that have been used for characterizing the el-
ementary revision operators in (Chandler and Booth 2023)
for our framework. Moreover, the problem of ensuring the
preservation of equivalence is also relevant for improvement
operators (Konieczny and Perez 2008), whose behavior may
heavily depend on empty layers as well.
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