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Abstract

Algorithms for learning database queries from examples and
unique characterisations of queries by examples are promi-
nent starting points for developing automated support for
query construction and explanation. We investigate how far
recent results and techniques on learning and unique charac-
terisations of atemporal queries mediated by an ontology can
be extended to temporal data and queries. Based on a system-
atic review of the relevant approaches in the atemporal case,
we obtain general transfer results identifying conditions un-
der which temporal queries composed of atemporal ones are
(polynomially) learnable and uniquely characterisable.

1 Introduction
Providing automated support for constructing database
queries from data examples has been an important re-
search topic in database management, knowledge represen-
tation and computational logic, often subsumed under the
query-by-example paradigm (Martins 2019). One promi-
nent approach is based on exact learning using member-
ship queries (Angluin 1987b), where one aims to identify
a database query by repeatedly asking an oracle (e.g., do-
main expert) whether certain data examples are answers or
non-answers to the query. Recently, the ability to uniquely
characterise a database query by a finite set of positive
and negative examples has been identified and investigated
as a ‘non-procedural’ necessary condition for learnability
via membership queries (Staworko and Wieczorek 2015;
ten Cate and Dalmau 2022; Fortin et al. 2022). More pre-
cisely, a query q(x) is said to fit a pair E = (E+, E−) of
sets E+ and E− of pointed databases (D, a) if D |= q(a)
for all (D, a) ∈ E+, and D ̸|= q(a) for all (D, a) ∈ E−.
The example set E uniquely characterises q within a class Q
of queries if q is the only one (up to equivalence) in Q that
fits E. The existence of (polynomial-size) unique character-
isations is a necessary pre-condition for (polynomial) learn-
ability via membership queries. Such characterisations can
also be employed for explaining and synthesising queries.

Extending results on characterising and learning conjunc-
tive queries (CQs) under the standard closed-world seman-
tics (ten Cate and Dalmau 2022), there has recently been
significant progress towards CQs mediated by a description
logic (DL) ontology under the open-world semantics (Funk,

Jung, and Lutz 2021; 2022b). The focus has been on on-
tologies in the tractable DL-Lite and EL families and tree-
shaped CQs such as ELQs (EL-concepts) and ELIQs (ELI-
concepts). In fact, even under the closed-world seman-
tics, only acyclic queries can be uniquely characterised and,
equivalently, learned using membership queries in polyno-
mial time (ten Cate and Dalmau 2022).

In this paper, we aim to understand how far these char-
acterisability and learnability results for atemporal queries
mediated by an ontology can be expanded to the tempo-
ral case. Temporal ontology-mediated query answering
provides a framework for accessing temporal data using a
background ontology. It has been investigated for about
a decade—see, e.g., (Artale et al. 2017) for a survey—
resulting in different settings and a variety of query and on-
tology languages (Baader, Borgwardt, and Lippmann 2015;
Borgwardt and Thost 2015; Artale et al. 2022; Gutiérrez-
Basulto, Jung, and Kontchakov 2016; Artale et al. 2014;
Wałęga et al. 2020). As a natural starting point, we assume
that the background ontology holds at all times and does not
admit temporal operators in its axioms. As a query language
we consider a combination of ELIQs with linear temporal
logic (LTL ) operators. First observations on unique char-
acterisability and learnability of plain LTL queries (Fortin
et al. 2022) showed that, even without ontologies, a restric-
tion to so-called path queries (defined below) is needed to
obtain positive general and useful results. Our main con-
tributions in this paper are general transfer theorems iden-
tifying abstract properties of query and ontology languages
that are needed to lift unique characterisability and learnabil-
ity from atemporal ontology-mediated queries and ontology-
free path LTL queries to temporalised domain queries me-
diated by a DL ontology. To facilitate the transfer, we begin
by revisiting the atemporal case. Below is an overview of
the obtained results.

Atemporal case. We present and compare two approaches
to finding unique (polysize) characterisations of atemporal
queries mediated by an ontology: via frontiers and via split-
partners (aka dualities). Both tools are developed under the
condition that query containment in the respective atemporal
DLs can be reduced to query evaluation. We call this con-
dition containment reduction. It applies to all fragments of
the expressive DL ALCHI and more general FO-ontologies
without equality as well as to DL-Lite with functional roles.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

487



It ensures that whenever a unique characterisation of a query
mediated by an ontology exists, there is also one with a
single positive example in E+. These tools yield two es-
sentially optimal unique characterisability results: frontiers
give polynomial-size characterisations of ELIQs mediated
by an ontology in the DLs DL-LiteH and DL-Lite−F (Funk,
Jung, and Lutz 2021; 2022b), while split-partners provide
exponential-size characterisations of ELIQs mediated by an
ALCHI ontology and polysize characterisations of ELQs
mediated by an RDFS ontology.

Temporalising unique characterisations. We now assume
that temporal data instances are finite sets of facts (ground
unary and binary atoms) timestamped by the moments i ∈ N
they happened and that queries are equipped with temporal
operators. By combining the results from the atemporal case
above with the techniques of (Fortin et al. 2022), we estab-
lish general transfer theorems on (polysize) unique charac-
terisations of temporal queries mediated by a DL ontology.

We first consider the temporal operators ⃝ (at the next
moment), 3 (sometime later), and 3r (now or later) and de-
fine, given a class Q of atemporal queries (say, ELIQs), the
family LTL⃝33r

p (Q) of path queries of the form

q = r0 ∧ o1(r1 ∧ o2(r2 ∧ · · · ∧ onrn)),

where oi ∈ {⃝,3,3r} and ri ∈ Q. These queries are
evaluated at time 0. Even if Q consists of conjunctions
of atoms only and no ontology is present, not all queries
in LTL⃝33r

p (Q) can be uniquely characterised. A typi-
cal example of a non-characterisable query in this class is
q(x) = 3r(A(x) ∧B(x)) (Fortin et al. 2022). We first give
an effective syntactic criterion for an LTL⃝33r

p (Q)-query
to be ‘safe’ in the sense of admitting a unique characterisa-
tion. Then we prove a fully general transfer theorem stating
that if a DL L admits containment reduction and (polysize)
unique characterisations for Q-queries mediated by an L-
ontology, then so does the class of safe temporalised queries
in LTL⃝33r

p (Q). For example, this theorem yields polysize
unique characterisations of safe queries in LTL⃝33r

p (ELIQ)

mediated by a DL-Lite−F or DL-LiteH ontology and expo-
nential ones for safe LTL⃝33r

p (ELIQ)-queries mediated by
an ALCHI ontology.

Our second transfer result concerns temporal queries with
the binary operator U (until) under the strict semantics and
the family LTLU

p (Q) of path queries of the form

q = r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . )))).

For its subclass of so-called O-peerless queries, in which
the ri, li ∈ Q do not contain each other wrt a given on-
tology O, we prove general transfer of unique characterisa-
tions provided that unique characterisations for the atempo-
ral class Q can be obtained via split-partners. For example,
this result gives exponential-size unique characterisations of
peerless queries in LTLU

p (ELIQ) mediated by any ALCHI
ontology and polysize characterisations of peerless queries
in LTLU

p (ELQ) mediated by any RDFS ontology. We also
show that the general transfer fails if frontier-based charac-
terisations of queries in Q are used in place of split-partners.

Temporalising learning. We apply our results on unique
characterisations to learning a target query qT , known only
to a teacher, wrt a given ontology O in Angluin’s frame-
work of exact learning. We allow the learner to use mem-
bership queries, which return in unit time whether a given
example (D, a) is a positive one for qT wrt to O. Given
that we always construct example sets effectively, it is not
difficult to show that our exponential-size unique characteri-
sations entail exponential learning algorithms. We are, how-
ever, mainly interested in efficient algorithms formalised as
polynomial time or polynomial query learnability.

Obtaining such algorithms from polysize characterisa-
tions is more challenging and we currently only know how
this can be done if the unique characterisation is based
on polysize frontiers. Hence, we focus on queries in
LTL⃝33r

p (Q) and show that polynomial query learnability
transfers from Q to safe queries in LTL⃝33r

p (Q) and that
polytime learnability transfers if natural additional condi-
tions hold for Q and the considered ontology language.

Omitted details and proofs can be found in the full arXiv
paper (Jung et al. 2023).

2 Related Work
The unique characterisation framework for temporal for-
mulas, underpinning this paper, was originally introduced
by Fortin et al. (2022). Recently, it has been generalised
to finitely representable transfinite words as data examples
(Sestic 2023), whose results are not directly applicable to
the problems we are concerned with as the queries have no
DL component and no ontology is present. It would be of in-
terest to extend the techniques used by Sestic (2023) to the
more general languages considered here.

The database and KR communities have been working on
identifying queries and concept descriptions from data ex-
amples (Staworko and Wieczorek 2015; Konev et al. 2017;
ten Cate, Dalmau, and Kolaitis 2013; Ozaki 2020; ten Cate
and Dalmau 2022). In reverse engineering of queries, the
goal is typically to decide whether there is a query sepa-
rating given positive and negative examples. Relevant work
includes (Arenas and Diaz 2016; Barceló and Romero 2017)
under the closed world and (Lehmann and Hitzler 2010;
Gutiérrez-Basulto, Jung, and Sabellek 2018; Funk et al.
2019; Jung et al. 2022) under the open world assumption.

We are not aware of any work on exact learning of tem-
poral formulas save (Camacho and McIlraith 2019) and
the related work on exact learning of finite automata start-
ing with (Angluin 1987a). In contrast, reverse engineer-
ing of LTL -formulas has recently received significant at-
tention (Lemieux, Park, and Beschastnikh 2015; Neider and
Gavran 2018; Camacho and McIlraith 2019; Fijalkow and
Lagarde 2021; Fortin et al. 2023).

The use of unique characterisations for explaining and
constructing schema mappings was promoted and investi-
gated by Kolaitis (2011) and Alexe et al. (2011).

Unique characterisability of DL concepts under both
closed and open world assumptions has recently been stud-
ied by ten Cate, Koudijs, and Ozaki (2024).
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3 Atemporal Ontologies and Queries
We assume that background knowledge about the object do-
main is given as a standard description logic ontology. This
section recaps the relevant definitions.

As usual in DL, we work with any signature of unary and
binary predicate symbols, typically denoted A,B and P,R,
respectively. A data instance is any finite set A ̸= ∅ of
atoms of the form A(a) and P (a, b) with individual names
a, b, and also ⊤(a), which simply says that a exists. We
denote by ind(A) the set of individuals in A and by P− the
inverse of P , assuming that P−(a, b) ∈ A iff P (b, a) ∈
A. Let S range over binary predicates and their inverses.
A pointed data instance is a pair (A, a) with a ∈ ind(A).
The size |A| of A is the number of symbols in it.

In general, an ontology, O, is a finite set of first-order
(FO) sentences in the given signature. Ontologies and data
instances are interpreted in structures I = (∆I , ·I) with
domain ∆I ̸= ∅, aI ∈ ∆I , ⊤I = ∆I , AI ⊆ ∆I , and
P I ⊆ ∆I × ∆I . As usual in database theory, we assume
that aI ̸= bI for distinct a, b; moreover, to simplify nota-
tion, we adopt the standard name assumption and interpret
each individual name by itself, i.e., aI = a. Thus, I is a
model of A if a ∈ AI and (a, b) ∈ P I , for all A(a) ∈ A
and P (a, b) ∈ A. We call I a model of an ontology O if
all sentences in O are true in I, and say that O and A are
satisfiable if they have a common model.

The ontology languages we consider here are certain
members of the DL-Lite family, ALCHI , and ELHIF ; we
define them below as fragments of first-order logic.

DL-LiteF (Calvanese et al. 2007b) aka DL-LiteFcore (Artale
et al. 2009) allows axioms of the following forms:

∀x
(
B(x) → B′(x)

)
, ∀x

(
B(x) ∧B′(x) → ⊥

)
,

∀x, y, z
(
S(x, y) ∧ S(x, z) → (y = z)

)
, (1)

where basic concepts B(x) are either A(x) or ∃S(x) =
∃y S(x, y). In DL parlance, the first two axioms in (1) are
written as B ⊑ B′ and B ⊓ B′ ⊑ ⊥, and the third one as
≥ 2S ⊑ ⊥ or fun(S), a functionality constraint stating
that relation S is functional.

DL-Lite−F (Funk, Jung, and Lutz 2022b) is the fragment of
DL-LiteF , in which concept inclusions (CIs) B ⊑ B′

cannot have B′ = ∃S with functional S−.
DL-LiteH (Calvanese et al. 2007b) aka DL-LiteHcore (Artale

et al. 2009) is obtained by disallowing the functionality
constraints in DL-LiteF and adding axioms of the form

∀x, y (S(x, y) → S′(x, y)) (2)

known as role inclusions (RIs) and written as S ⊑ S′.
RDFS1 has CIs between concept names, RIs between role

names, and CIs of the forms ∃P ⊑ A or ∃P− ⊑ A saying
that the domain of P and range of P are in A, respectively.

ALCHI (Baader et al. 2017) has the same RIs as in (2) but
more expressive CIs ∀x (C1(x) → C2(x)), in which the
concepts Ci are defined inductively starting from atoms
⊤(x) and A(x) and using the constructors C(x)∧C ′(x),

1https://www.w3.org/TR/rdf12-schema/

¬C(x), and ∃y (S(x, y) ∧ C(y))—or C ⊓ C ′, ¬C, and
∃S.C in DL terms.

ELHIF (Baader et al. 2017) has RIs (2), functionality con-
straints, and CIs with concepts built from atoms and ⊥
using ∧ and ∃y (S(x, y) ∧C(y)) only. ELHI and ELIF
are the fragments of ELHIF without functionality con-
straints and RIs, respectively.

We reserve L for denoting any of these ontology languages:
RDFS ⊂

DL-Lite−F ⊂ DL-LiteF ⊂ ELIF ⊂ ELHIF

DL-LiteH ELHI⊂
⊂

ALCHI⊂

The most general query language over the object domain
we consider consists of conjunctive queries (CQs, for short)
q(x) with a single answer variable x. We often think of
q(x) as the set of its atoms and denote by var(q) and sig(q)
the sets of its individual variables and predicates symbols,
respectively. We say that q(x) is satisfiable wrt an ontology
O if O ∪ {q(x)} has a model.

Given a CQ q(x), an ontology O, and a data instance A,
we say that a ∈ ind(A) is a (certain) answer to q over A
wrt O and write O,A |= q(a) if I |= q(a) for all models
I of O and A. Recall that ∅,A |= q(a) iff there is function
h : var(q) → ind(A) such that h(x) = a, A(y) ∈ q implies
A(h(y)) ∈ A, and P (y, z) ∈ q implies P (h(y), h(z)) ∈ A.
Such a function h is called a homomorphism from q to A,
written h : q → A; h is surjective if h(var(q)) = ind(A).

We say that a CQ q1(x) is contained in a CQ q2(x) wrt an
ontology O and write q1 |=O q2 if O,A |= q1(a) implies
O,A |= q2(a), for any data instance A and any a ∈ ind(A).
If q1 |=O q2 and q2 |=O q1, we say that q1 and q2 are
equivalent wrt O, writing q1 ≡O q2. For O = ∅, we often
write q1 ≡ q2 instead of q1 ≡∅ q2.

Two smaller query languages we need are ELI-queries
(or ELIQs, for short) that can be defined by the grammar

q := ⊤ | A | ∃S.q | q ∧ q′

and EL-queries (or ELQs), which are ELIQs without in-
verses P−. Semantically, an ELIQ q has the same meaning
as the tree-shaped CQ q(x) that is defined inductively start-
ing from atoms ⊤(x) and A(x) and using the constructors
∃y (S(x, y) ∧ q(y)), for a fresh y, and q(x) ∧ q′(x). The
only free (i.e., answer) variable in q is x.

We reserve Q for denoting a class of queries with answer
variable x such that whenever q1, q2 ∈ Q, then q1∧q2 ∈ Q.
Some of our results require restricting Q to a finite signature
σ: we denote by Qσ the class of those queries in Q that are
built from predicates in σ. The classes of all σ-ELIQs and
σ-ELQs are denoted by ELIQσ and ELQσ , respectively.

It will be convenient to include the ‘inconsistency query’
⊥ into all of our query classes. By definition, we have
O,A |= ⊥(a) iff O and A are unsatisfiable.

4 Unique Characterisability
An example set is a pair E = (E+, E−), where E+ and E−

are finite sets of pointed data instances (A, a). A CQ q(x)
fits E wrt O if O,A+ |= q(a+) and O,A− ̸|= q(a−), for
all (A+, a+) ∈ E+ and (A−, a−) ∈ E−. We say that E
uniquely characterises q wrt O within a given class Q of
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queries if q fits E and q ≡O q′, for every q′ ∈ Q that fits
E. Note that, in this case, E+ = ∅ implies q ≡O ⊥, and so
q is not satisfiable wrt O.

We first observe that, for a large class of ontologies O,
including all those considered here, if q is uniquely charac-
terised by some E = (E+, E−) wrt O, then q has a unique
characterisation of the form E′ = ({(q̂, a)}, E−) with a sin-
gle positive example (q̂, a). Say that an ontology O admits
containment reduction if, for any CQ q(x), there is a pointed
data instance (q̂, a) such that the following conditions hold:

(cr1) q(x) is satisfiable wrt O iff O and q̂ are satisfiable;

(cr2) there is a surjective h : q → q̂ with h(x) = a;

(cr3) if q(x) is satisfiable wrt O, then for every CQ q′(x),
we have q |=O q′ iff O, q̂ |= q′(a).

An ontology language L admits containment reduction if ev-
ery L-ontology does. If the pointed data instance (q̂, a) is
computable in polynomial time, for every O in L, we say
that L admits tractable containment reduction. The next
lemma illustrates this definition by a few concrete examples.

Lemma 1. (1) FO without equality admits tractable con-
tainment reduction; in particular, ALCHI admits tractable
containment reduction.

(2) ELIF admits tractable containment reduction.
(3) {≥ 3P ⊑ ⊥} does not admit containment reduction.

Proof. For (1), one can define q̂ as q, with the variables
regarded as individual names. To show (2), q has to be fac-
torised first to ensure functionality; (3) is shown in the full
paper (Jung et al. 2023).

It is readily checked that we have the following:

Lemma 2. Suppose O admits containment reduction and
q ∈ Q is satisfiable wrt O, having a unique characterisation
E = (E+, E−) wrt O within Q. Then E′ = ({(q̂, a)}, E−)
is a unique characterisation of q wrt O within Q, too.

We use two ways of constructing unique characterisa-
tions: via frontiers and via split-partners. Let O be an ontol-
ogy, Q a class of queries, and q ∈ Q a satisfiable query wrt
O. A frontier of q wrt O within Q is a set Fq ⊆ Q such that

• for any q′ ∈ Fq , we have q |=O q′ and q′ ̸|=O q;

• for any q′′ ∈ Q, if q |=O q′′, then either q′′ |=O q or
there is q′ ∈ Fq with q′ |=O q′′.

(Note that if q ≡O ⊤, then Fq = ∅.) An ontology O is said
to admit (finite) frontiers within Q if every q ∈ Q satisfiable
wrt O has a (finite) frontier wrt O within Q. Further, if such
frontiers can be computed in polynomial time, we say that
O admits polytime-computable frontiers.

The next theorem follows directly from the definitions:

Theorem 1. Suppose Q is a class of queries, an ontology
O admits containment reduction, q ∈ Q is satisfiable wrt
O, and Fq is a finite frontier of q wrt O within Q. Then
({(q̂, a)}, {(r̂, a) | r ∈ Fq}) is a unique characterisation
of q wrt O within Q.

As shown by Funk, Jung, and Lutz (2022b), the two main
ontology languages that admit polytime-computable fron-
tiers within ELIQ are DL-LiteH and DL-Lite−F , whereas
DL-LiteF itself does not admit finite ELIQ-frontiers. By
Theorem 1 and Lemma 1, we then obtain:
Theorem 2. If an ELIQ q is satisfiable wrt a DL-LiteH or
DL-Lite−F ontology O, then q has a polysize unique charac-
terisation wrt O within ELIQ.

We next introduce split-partners aka dualities (McKenzie
1972; ten Cate and Dalmau 2022). Let σ be a finite signa-
ture, Qσ a class of σ-queries, O a σ-ontology, and Θ ⊆ Qσ

a finite set of queries. A set S(Θ) of pointed data instances
(A, a) is called a split-partner for Θ wrt O within Qσ if, for
all q′ ∈ Qσ , we have

O,A |= q′(a) for some (A, a) ∈ S(Θ) iff

q′ ̸|=O q for all q ∈ Θ. (3)

Say that an ontology language L has general split-partners
within Qσ if all finite sets of Qσ-queries have split partners
wrt any L-ontology in σ. If this holds for all singleton sub-
sets of Qσ , we say that L has split-partners within Qσ .

We illustrate the notion of split-partner by a few exam-
ples, the last of which shows that, without the restriction to
a finite signature σ, split-partners almost never exist.
Example 1. (i) Let O be any ontology such that O and A
are satisfiable for all data instances A, say, O = {A ⊑ B}.
Let Qσ be any class of σ-CQs, for some signature σ. Then
the split-partner S⊥ of the query ⊥ wrt O within Qσ is

S⊥ = {Bσ}, for Bσ = {R(a, a) | R ∈ σ}∪{A(a) | A ∈ σ}.
(Here and below we drop a from (A, a) if ind(A) = {a}.)
Clearly, O,Bσ |= q, for any q ∈ Qσ different from ⊥.

(ii) For O = {A ⊓ B ⊑ ⊥} and σ = {A,B}, we have
S⊥ = {{A(a)}, {B(a)}}.
(iii) There does not exist a split-partner for Θ = {A} wrt

the empty ontology O within ELIQ. To show this, observe
that B ̸|=O A for any unary predicate B ̸= A. Hence, as
any data instance A is finite, there is no finite set S({A})
satisfying (3).

In contrast, for frontiers and unique characterisations, re-
strictions to sets of predicates containing all symbols in the
query and ontology do not make any difference. Indeed, let
σ be the signature of O and q. Then, for any class Q of
queries, a set Fq is a frontier for q wrt O within Q iff it is
a frontier for q wrt O within the restriction of Q to σ. The
same holds for unique characterisations E of q wrt O.

The following result is proved in the full paper (Jung et al.
2023) using a construction from the reduction of ontology-
mediated query answering to constraint satisfaction (Bien-
venu et al. 2014).
Theorem 3. ALCHI has general split-partners within
ELIQσ that can be computed in exponential time.

For ELQs, we can construct general split-partners wrt
RDFS ontologies in polynomial time, provided that the num-
ber of input queries is bounded. The proof generalises the
construction of split-partners for queries in ELQ wrt to the
empty ontology in (Fortin et al. 2022; ten Cate et al. 2023).
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Theorem 4. Let σ be a signature, O a σ-ontology in RDFS,
and n > 0. For any set Θ ⊆ ELQσ with |Θ| ≤ n, one can
compute in polynomial time a split-partner S(Θ) of Θ wrt
O within ELQσ .

Here is our second sufficient characterisability condition:

Theorem 5. Suppose Q is a class of queries, an ontology O
admits containment reduction, q ∈ Q is satisfiable wrt O,
and σ contains the predicate symbols in q and O. If Sq is a
split-partner for {q} wrt O within Qσ , then ({(q̂, a)},Sq)
is a unique characterisation of q wrt O within Q.

As a consequence of Theorems 3, 4, 5 and Lemma 1, we
obtain the following:

Theorem 6. If a query q ∈ ELIQσ is satisfiable wrt an
ALCHI-ontology O in a signature σ, then q has a unique
characterisation wrt O within ELIQσ .

The sufficient conditions of Theorems 1 and 5 use the
notions of frontier and split-partner, respectively. (Notice
that both of them are applicable to ELIQs wrt DL-LiteH and
RDFS ontologies; however, only split-partners will give us
polysize unique characterisations of temporalised ELQs wrt
RDFS ontologies in Theorem 13 (ii), Section 7.) We now
show examples of queries and ontologies having frontiers
but no split-partners and vice versa. The query witness-
ing that frontiers can exist where split-partners do not exist
provides a counterexample even if one admits CQ-frontiers,
frontiers containing not only ELIQs but also CQs and de-
fined in the obvious way in the full paper (Jung et al. 2023).

Theorem 7. EL does not admit finite CQ-frontiers within
ELIQ.

Proof. The query q = A ∧ B does not have a finite CQ-
frontier wrt the ontology O = {A ⊑ ∃R.A, ∃R.A ⊑ A}
within ELIQs.

Example 2. Observe that the following set of pointed data
instances is a split-partner of {q} wrt O from the proof
of Theorem 7 within ELIQ{A,B,R}; here all arrows are as-
sumed to be labelled by R:

a

A

b

A,B

a

B

b

A,B

Theorem 8. There exist a DL-Lite−F ontology O, a query
q and a signature σ such that {q} does not have a finite
split-partner wrt O within ELIQσ .

Proof. Let O = {fun(P ), fun(P−), B ⊓ ∃P− ⊑ ⊥} and
q = A. Then Q = {q} does not have a finite split-partner
wrt O within ELIQ{A,B,P}.

Observe that {⊤} is a frontier for A wrt O from the proof
of Theorem 8 within ELIQ and that we can combine the
two proofs above to also refute the natural conjecture that
frontiers and splittings together provide a ‘universal tool’ for
constructing unique characterisations.

5 Temporal Data and Queries
We now extend the definitions of Sections 3 and 4 by adding
a temporal dimension to the domain data and queries me-
diated by an ontology. Our definitions generalise those
of (Fortin et al. 2022), where the ontology-free case was first
considered.

A temporal data instance, denoted D, is a finite sequence
A0, . . . ,An of data instances, where each Ai comprises
the facts with timestamp i. We assume all ind(Ai) to be
the same, adding ⊤(a) to Ai if needed, and set ind(D) =
ind(A0). The length of D is max(D) = n and the size of D
is |D| =

∑
i≤n |Ai|. Within a temporal σ-data instance, we

often denote by ∅ the instance {⊤(a) | a ∈ ind(D)}.
Temporal queries for accessing temporal data instances

we propose here are built from domain queries (with one
implicit answer variable x) in a given class Q (say, ELIQs)
using ∧ and the (future-time) temporal operators of the stan-
dard linear temporal logic LTL over the time flow (N, <):
unary ⃝ (next time), 3 (sometime later), 3r (now or later),
and binary U (until); see below for the precise semantics.
The class of such temporal queries that only use the opera-
tors from a set Φ ⊆ {⃝,3,3r,U} is denoted by LTLΦ(Q).
The class LTL⃝33r

p (Q) comprises path queries of the form

q = r0 ∧ o1(r1 ∧ o2(r2 ∧ · · · ∧ onrn)), (4)

where oi ∈ {⃝,3,3r} and ri ∈ Q; path queries in
LTLU

p (Q) take the form

q = r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . )))), (5)

where ri ∈ Q and either li ∈ Q or li = ⊥. We use C to
refer to classes of temporal queries. The size |q| of q is the
number of symbols in q; the temporal depth tdp(q) of q is
the maximum number of nested temporal operators in q.

An (atemporal) ontology O and temporal data instance
D = A0, . . . ,An are satisfiable if O and Ai are satisfiable
for each i ≤ n. For satisfiable O and D, the entailment
relation O,D, ℓ, a |= q with ℓ ∈ N and a ∈ ind(D) is
defined by induction as follows, where Aℓ = ∅, for ℓ > n:

O,D, ℓ, a |= q iff O,Aℓ |= q(a), for any q ∈ Q,

O,D, ℓ, a |= q1 ∧ q2 iff O,D, ℓ, a |= qi, for i = 1, 2,

O,D, ℓ, a |= ⃝q iff O,D, ℓ+ 1, a |= q,

O,D, ℓ, a |= 3q iff O,D,m, a |= q, for some m > ℓ,

O,D, ℓ, a |= 3rq iff O,D,m, a |= q, for some m ≥ ℓ,

O,D, ℓ, a |= q1 U q2 iff O,D,m, a |= q2, for some m > ℓ,

and O,D, k, a |= q1, for all k, ℓ < k < m.

If O and D are not satisfiable, we set O,D, ℓ, a |= q to hold
for all q, ℓ and a. Our semantics follows the well estab-
lished epistemic approach to evaluating temporal queries;
see (Calvanese et al. 2007a; Artale et al. 2022) and ref-
erences therein. The alternative classical Tarski semantics
based on temporal interpretations is equivalent to our seman-
tics for all Horn ontologies whose FO-translations belong to
the Horn fragment of first-order logic (Chang and Keisler
1998), and so for all DLs we consider here except ALCHI .
A detailed discussion of the relationship between the two
semantics is given in the full paper (Jung et al. 2023).
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We call a temporal query q satisfiable wrt an ontology O
if O ∪ {q} has a model. Note that q of the form (4) or (5) is
satisfiable wrt O iff all ri in q are satisfiable wrt O.

By an example set we now mean a pair E = (E+, E−)
of finite sets E+ and E− of pointed temporal data instances
D, a with a ∈ ind(D). We say that a query q fits E wrt
O if O,D+, 0, a+ |= q and O,D−, 0, a− ̸|= q, for all
(D+, a+) ∈ E+ and (D−, a−) ∈ E−. As before, E
uniquely characterises q wrt O within a class C of tempo-
ral queries if q fits E wrt O and every q′ ∈ C fitting E wrt
O is equivalent to q wrt O.

The following lemma shows that typically queries that
are not satisfiable wrt the ontology in question cannot be
uniquely characterised.

Lemma 3. Let O be an ontology and C a class of temporal
queries containing, for any n > 0, a satisfiable wrt O query
of temporal depth ≥ n. If a query q is not satisfiable wrt O,
then q is not uniquely characterisable wrt O within C.

To prove Lemma 3, assume that q is not satisfiable wrt O
but E = (E+, E−) uniquely characterises q wrt O within
C. In this case E+ = ∅. Let n be the maximal length of
instances in E−. Then any q′ ∈ C of temporal depth > n
fits E, which is a contradiction.

In what follows, we mostly exclude such unsatisfiable
queries from consideration.

Suppose C is a class of queries and O an ontology. If each
q ∈ C satisfiable wrt O is uniquely characterised by some
E wrt O within C′ ⊇ C, we say that C is uniquely charac-
terisable wrt O within C′. Let Cn be the set of queries in
C of temporal depth ≤ n. We say that C is polysize char-
acterisable wrt O for bounded temporal depth if there is a
polynomial f such that every q ∈ Cn is characterised by
some E of size ≤ f(n) within Cn, n ∈ N.

Note that 3q ≡ ⃝3rq, so 3 does not add any expressive
power to LTL⃝33r

p (Q) and LTL⃝33r
p (Q) = LTL⃝3r

p (Q);
however, LTL⃝3

p (Q) ⫋ LTL⃝33r
p (Q). We also observe

that our temporal query languages do not admit containment
reduction as, for example, there is no temporal data instance
q̂ for q = ⃝(A∧3B) because it will have to fix the number
of steps between 0 and the moment of time where B holds.

We next prove general theorems lifting unique char-
acterisability from domain queries considered above and
ontology-free LTL queries of (Fortin et al. 2022) to temporal
queries mediated by a DL ontology.

6 Unique Characterisations in LTL⃝33r
p (Q)

The aim of this section is to give a criterion of (polysize)
unique characterisability of temporal queries in the class
LTL⃝33r

p (Q) under certain conditions on the ontology and
on the class Q of domain queries. It will be convenient to
represent queries q of the form (4) as a sequence

q = r0(t0), R1(t0, t1), . . . , Rm(tm−1, tm), rm(tm), (6)

where Ri ∈ {suc, <,≤}, suc(t, t′) stands for t′ = t+1, and
tv = {t0, . . . , tm} are variables over the timeline (N, <).

Example 3. Below are a temporal query q and its represen-
tation of the form (6):

q = ∃P.B ∧ ⃝(∃P.A ∧3A) ;
∃P.B(t0), suc(t0, t1), ∃P.A(t1), (t1 < t2), A(t2) (7)

with tv(q) = {t0, t1, t2}.

We divide q of the form (6) into blocks qi such that

q = q0R1q1 . . .Rnqn, (8)

where Ri = Ri
1(t

i
0, t

i
1) . . . R

i
ni
(tini−1, t

i
ni
), Ri

j ∈ {<,≤}
and

qi = ri0(s
i
0)suc(si0, s

i
1) . . . suc(siki−1, s

i
ki
)riki

(siki
) (9)

with siki
= ti+1

0 , tini
= si0. If ki = 0, the block qi is called

primitive.

Example 4. The query q from Example 3 has two blocks

q0 = ∃P.B(t0), suc(t0, t1), ∃P.A(t1) and q1 = A(t2)

connected by (t1 < t2). It contains one primitive block, q1.

Suppose we are given an ontology O and a class Q of
domain queries. Then a primitive block qi = ri0(s

i
0) with

i > 0 in q of the form (8) is called a lone conjunct wrt O
within Q if ri0 is meet-reducible wrt O within Q in the sense
that there are queries r1, r2 ∈ Q such that r ≡O r1∧r2 and
r ̸≡O ri, for i = 1, 2. Lone conjuncts and their impact on
unique characterisability are illustrated by the next example.

Example 5. The query 3A, which is represented by the se-
quence ⊤(t0), (t0 < t1), A(t1), does not have any lone con-
juncts wrt the empty ontology within ELIQ, but A is a lone
conjunct of 3A wrt O = {A ≡ B ⊓ C} within ELIQ.

The query q = 3A is uniquely characterised wrt the
empty ontology within LTL⃝33r

p (ELIQ) by the example
set E = (E+, E−), where E+ contains two temporal data
instances ∅, {A} and ∅, ∅, {A} and E− consists of one in-
stance {A}. However, q = 3A cannot be uniquely charac-
terised wrt O = {A ≡ B ⊓ C} within LTL⃝33r

p (ELIQ) as
it cannot be separated from queries of the form

3(B ∧3r(C ∧3r(B ∧3r(C ∧3r(. . . )))))

by a finite example set. Observe also that A is a lone con-
junct in q′ = 3(A∧3rD) wrt O′ = O∪{D ⊑ A} but, for
the simplification q′′ = 3D of q′, we have q′′ ≡O′ q′ and
q′′ does not have any lone conjuncts wrt O′.

Example 5 shows that the notion of lone conjunct depends
on the presentation of the query. To make lone conjuncts se-
mantically meaningful, we introduce a normal form. Given
an ontology O and a query q of the form (8), we say that q
is in normal form wrt O if the following conditions hold:

(n1) ri0 ̸≡O ⊤ if i > 0, and riki
̸≡O ⊤ if either i > 0 or

ki > 0 (thus, of all the first/last r in a block only r00 can
be trivial);

(n2) each Ri is either a single ti0 ≤ ti1 or a sequence of <;

(n3) riki
̸|=O ri+1

0 if qi+1 is primitive and Ri+1 is ≤;

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

492



(n4) ri+1
0 ̸|=O riki

if i > 0, qi is primitive and Ri+1 is ≤;

(n5) riki
∧ ri+1

0 is satisfiable wrt O whenever Ri+1 is ≤.

Lemma 4. Let O be an FO-ontology (possibly with =).
Then every query q ∈ LTL⃝33r

p (Q) is equivalent wrt O
to a query in normal form of size at most |q| and of temporal
depth not exceeding tdp(q). This query can be computed in
polynomial time if containment between queries in Q wrt O
is decidable in polynomial time.

Note that containment between queries in Q = ELIQ is
decidable in polynomial time for DL-LiteF -ontologies O
but not for DL-LiteH-ontologies (unless P = NP) (Kikot,
Kontchakov, and Zakharyaschev 2012).

We call a query q ∈ LTL⃝33r
p (Q) safe wrt O if it is

equivalent wrt O to an LTL⃝33r
p (Q)-query in normal form

that has no lone conjuncts. It follows from the proof of The-
orem 9 given in the full paper (Jung et al. 2023) that, for any
query satisfiable wrt O, the normal form is unique modulo
equivalence of its constituent domain queries.

We are now in a position to formulate the main result of
this section.
Theorem 9. Suppose an ontology O admits containment re-
duction and Q is a class of domain queries that is uniquely
characterisable wrt O. Then the following hold:

(i) Let q ∈ LTL⃝33r
p (Q) be satisfiable wrt O. Then q is

uniquely characterisable within LTL⃝33r
p (Q) wrt O iff q is

safe wrt O.
(ii) If O admits polysize characterisations within Q,

then those queries that are uniquely characterisable within
LTL⃝33r

p (Q) wrt O are actually polysize characterisable
within LTL⃝33r

p (Q) wrt O.
(iii) LTL⃝33r

p (Q) is polysize characterisable wrt O for
bounded temporal depth if O admits polysize unique char-
acterisations within Q.

(iv) LTL⃝3
p (Q) is uniquely characterisable wrt O. It is

polysize characterisable wrt O if O admits polysize unique
characterisations within Q.

A detailed proof of Theorem 9 is given in the full pa-
per (Jung et al. 2023). To explain the intuition behind it, we
show and discuss the positive and negative examples that
provide the unique characterisation required for (i). Sup-
pose O admits containment reduction and Q is a class of
domain queries with a unique characterisation ({r̂},Nr) of
r ∈ Q wrt O within Q. Assume that q ∈ LTL⃝33r

p (Q) in
normal form wrt O takes the form (8) with qi of the form (9).
We define an example set E = (E+, E−) characterising q
under the assumption that q has no lone conjuncts wrt O.
Let b be the number of ocurrences of ⃝ and 3 in q plus 1.
For every block qi of the form (9), let q̂i be the temporal
data instance

q̂i = r̂i0r̂
i
1 . . . r̂

i
ki
.

For any two blocks qi, qi+1 such that riki
∧ri+1

0 is satisfiable
wrt O, we take the temporal data instance

q̂i 1 q̂i+1 = r̂i0 . . . r̂
i
ki−1

̂riki
∧ ri+1

0 r̂i+1
1 . . . r̂i+1

ki+1
.

Now, the set E+ contains the data instances given by

– Db = q̂0∅b . . . q̂i∅bq̂i+1 . . . ∅bq̂n,

– Di = q̂0∅b . . . (q̂i1 q̂i+1) . . . ∅bq̂n, if Ri+1 is ≤ and

– Di = q̂0∅b . . . q̂i∅ni+1 q̂i+1 . . . ∅bq̂n, otherwise.

Here, ∅b is a sequence of b-many ∅ and similarly for ∅ni+1

(intuitively, these ‘paddings’ of multiple ∅s are needed to
ensure that queries fitting the examples have the same block
structure as the target query). By the definition of r̂ using
containment reduction, it follows that O,D, 0, a |= q, for
all D ∈ E+. Intuitively, the data instances in E+ force any
query that is entailed to be divided into blocks in a similar
way as q. The set E− contains all data instances of the form

– D−
i = q̂0∅b . . . q̂i∅ni+1−1q̂i+1 . . . ∅bq̂n, if ni+1 > 1,

– D−
i = q̂0∅b . . . q̂i 1 q̂i+1 . . . ∅bq̂n, if Ri+1 is a single <

and riki
∧ ri+1

0 is satisfiable wrt O,

– the data instances obtained from Db by applying to it ex-
actly once each of the rules (a)–(e) defined below in all
possible ways.

It follows from the assumption that q is in normal form
and the reduced ‘gaps’ between blocks in D−

i that we have
O,D−

i , 0, a ̸|= q for all D−
i . To obtain a unique charcater-

isation, the additional data instances obtained by applying
rules (a)–(e) to Db are crucial. They ‘weaken’ Db by replac-
ing some r̂ by negative examples in Nr or by introducing
big ‘gaps’ between some r̂s. To make our notation more uni-
form, we think of the pointed data instances in Nr as having
the form r̂′, for a suitable CQ r′ (which is not necessarily in
Q). The rules are as follows:

(a) replace some r̂ij with rij ̸≡O ⊤ by an r̂ ∈ Nri
j
, for i, j

such that (i, j) ̸= (0, 0)—that is, the rule is not applied to
r00;

(b) replace some pair r̂ij r̂
i
j+1 within block i by r̂ij∅br̂ij+1;

(c) replace some r̂ij such that rij ̸≡O ⊤ by r̂ij∅br̂ij , where
ki > j > 0—that is, the rule is not applied to rij if it is on
the border of its block;

(d) replace r̂iki
(ki > 0) by r̂∅br̂iki

, for some r̂ ∈ Nri
ki

, or

replace r̂i0 (ki > 0) by r̂i0∅br̂, for some r̂ ∈ Nri
0
;

(e) replace r̂00 with r00 ̸≡O ⊤ by r̂∅br̂00 , for r̂ ∈ Nr0
0
, if

k0 = 0, and by r̂00∅br̂00 if k0 > 0.

The proof that (E+, E−) as defined above uniquely char-
acterises q wrt O if q contains no lone conjuncts is non-
trivial and extends ideas from the ontology-free case in-
vestigated in (Fortin et al. 2022). Claim (ii) follows from
the observation that the unique characterisation constructed
in (i) is polynomial in the size of the characterisations
({r̂},Nr) of the domain queries used in q. For (iii), as-
sume that tdp(q) ≤ n. Then we add to rules (a)–(e) the
following rule: if r̂ is a lone conjunct in q, then replace
r̂ by (r̂1∅b · · · ∅br̂k)n in Db for Nr = {r̂1, . . . , r̂k} with
ri ̸≡O rj , for i ̸= j. As r is meet-reducible wrt O, one can
first show that |Nr| ≥ 2 and then that we obtain a unique
characterisation of q wrt O within the class of queries in
Q of temporal depth ≤ n. To show (iv), one can follow
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the proof of (i) without 3r in q but possibly with lone con-
juncts. Now, rules (c), (d), and (e) are not needed in the
construction of E−.

As an immediate consequence of Lemma 1 and Theo-
rems 2, 6 and 9 we obtain:

Theorem 10. (i) For any DL-LiteH or DL-Lite−F ontology
O, the following hold:

(i1) any q ∈ LTL⃝33r
p (ELIQ) satisfiable wrt O is uniquely

characterisable—in fact, polysize characterisable—wrt
O within LTL⃝33r

p (ELIQ) iff q is safe wrt O;
(i2) LTL⃝33r

p (ELIQ) is polysize characterisable wrt O for
bounded temporal depth;

(i3) LTL⃝3
p (ELIQ) is polysize characterisable wrt O.

(ii) Let σ be a signature. Then claims (i1)–(i3) also hold
for ALCHI ontologies provided that ‘polysize’ is replaced
by ‘exponential-size’ and ELIQ by ELIQσ .

7 Unique Characterisations in LTLU
p (Qσ)

We next consider temporalisations by means of the binary
operator U (until), which is more expressive than ⃝ and 3
as ⃝q ≡ ⊥U q and 3q ≡ ⊤U q under the strict semantics.
Compared to the previous section, we now have to restrict
queries to a finite signature because otherwise the implicit
universal quantification in U makes queries such as ⊥ U A
not uniquely characterisable wrt the empty ontology (Fortin
et al. 2022). For the same reason, we also have to disallow
nesting of U on the left-hand side of U in queries. Finally,
in the ontology-free case, polysize unique characterisations
for propositional LTL -queries with U are only available for
the so-called peerless queries (Fortin et al. 2022). These ob-
servations lead to the following classes of temporal queries,
for which we are going to obtain our transfer results.

Let Q be a domain query language and σ a finite signature
of unary and binary predicate symbols. Then Qσ denotes
the set of queries in Q that only use symbols in σ. The class
LTLU

p (Qσ) comprises temporal path queries of the form (5)
where each ri ∈ Qσ and each li is either in Qσ or ⊥ (recall
that q, ri, li have a single answer domain variable x and
that we evaluate q at time point 0). Given an ontology O,
we consider the class LTLU

pp(Qσ) of O-peerless queries in
LTLU

p (Qσ) of the form (5), in which ri ̸|=O li and li ̸|=O ri,
for all i ≤ n. In what follows we write O,D |= q instead of
O,D, 0, a |= q when a is clear from context. We also write
D |= q instead of ∅,D |= q (that is, for the empty ontology).

A fundamental difference to the previous section and The-
orem 9 is that now containment reduction and unique char-
acterisability of domain queries are not sufficient to guar-
antee transfer to the temporal case. Recall that DL-Lite−F
admits polytime computable frontiers but no split-partners.

Theorem 11. There exist a DL-Lite−F ontology O, a sig-
nature σ and a query q ∈ LTLU

pp(ELIQσ) satisfiable wrt
O such that q is not uniquely characterisable wrt O within
LTLU

p (ELIQσ).

In fact, one can take O and σ from the proof of Theorem 8
and set q = ⊥UA ≡ ⃝A. Observe that to separate ⃝A from
q′ UA with a σ-ELIQ q′ such that q′ ̸|=O A, one has to add

to E− a temporal σ-data instance D = {⊤(a)},A, {A(a)}
such that O,A |= q′(a) but O,A ̸|= A(a). Such A could
be provided by a finite split-partner for {A} wrt O within
ELIQσ had it existed, but not from a frontier.

We establish the following general transfer theorem, as-
suming containment reduction and split-partners:
Theorem 12. Suppose Q is a class of domain queries,
σ a signature, an ontology language L has general split-
partners within Qσ , and O is a σ-ontology in L admitting
containment reduction. Let q ∈ LTLU

pp(Qσ) be satisfiable
wrt O. Then the following hold:

(i) q is uniquely characterisable wrt O within LTLU
p (Qσ).

(ii) If a split-partner for any set Θ, |Θ| ≤ 2, of Qσ

queries wrt O within Qσ is exponential, then there is an
exponential-size unique characterisation of q wrt O.

(iii) If a split-partner of any set Θ as above is polynomial
and a split-partner S⊥ of ⊥(x) within Qσ wrt O is a single-
ton, then there is a polynomial-size unique characterisation
of q wrt O.

The detailed proof of Theorem 12 given in the full pa-
per (Jung et al. 2023) is by reduction to the ontology-free
LTL case, using a characterisation of (Fortin et al. 2022).
Here, we define the example set that provides the character-
isation for (i). Suppose a signature σ, a σ-ontology O, and
a query q ∈ LTLU

pp(Qσ) of the form (5) are given. We may
assume that rn ̸≡O ⊤. We obtain the set E+ of positive
examples by taking
(p′0) r̂0 . . . r̂n;

(p′1) r̂0 . . . r̂i−1l̂ir̂i . . . r̂n;

(p′2) r̂0 . . . r̂i−1l̂
k
i r̂i . . . r̂j−1l̂j r̂j . . . r̂n, i < j, k = 1, 2.

Here, l̂ki is a sequence of k-many l̂i. The negative examples
E− comprise the following instances D whenever D ̸|= q:
(n′0) A1, . . . ,An and A1, . . . ,An−i,A,An−i+1, . . . ,An,

for (A, a) ∈ S({ri}) and (A1, a), . . . , (An, a) ∈ S⊥;
(n′1) D = r̂0 . . . r̂i−1Ar̂i . . . r̂n, where (A, a) is an ele-

ment of S({li, ri}) ∪ S({li}) ∪ S⊥;
(n′2) for all i and (A, a) ∈ S({li, ri})∪S({li})∪S⊥, some

data instance

Di
A = r̂0 . . . r̂i−1Ar̂il̂

ki+1

i+1 r̂i+1 . . . l̂
kn
n rn,

if any, such that max(Di
A) ≤ (n+ 1)2 and Di

A ̸|= q† for
q† obtained from q by replacing all lj , for j ≤ i, with ⊥.

We have (ii) since (E+, E−) is at most exponential in the
size of split-partners of sets with at most two queries. For
(iii), observe that (n′1) is exponential in |S⊥| iff |S⊥| ≥ 2.

As a consequence of Lemma 1, Theorem 12 (ii) and (iii),
and Theorems 3 and 4 we obtain the following (note that, for
every RDFS ontology, the split-partner S⊥ of ⊥ is a single-
ton by Example 1 (i)):
Theorem 13. (i) Each q ∈ LTLU

pp(ELIQσ) satisfiable wrt
an ALCHI ontology O in a signature σ is exponential-size
uniquely characterisable wrt O within LTLU

p (ELIQσ).
(ii) Each q ∈ LTLU

pp(ELQσ) is polysize uniquely charac-
terisable wrt any RDFS ontology in σ within LTLU

p (ELQσ).
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8 Exact Learnability
We apply the results on unique characterisability obtained
in Section 6 to exact learnability of queries wrt ontologies.
Given a query class C and an ontology O, the learner aims
to identify a target query qT ∈ C by means of member-
ship queries of the form ‘does O,D, 0, a |= qT hold?’ to
the teacher. We call C polynomial time learnable wrt L on-
tologies using membership queries if there is a learning al-
gorithm that given O constructs (up to equivalence wrt O)
any qT satisfiable wrt O in time polynomial in the sizes of
qT and O. For the weaker requirement of polynomial query
learnability, it suffices that the total size of the examples
given to the oracle be bounded by a polynomial. We start
with making the following observation, where exponential
query learnability is defined in the expected way.

Theorem 14. Let L be an ontology language and C be a
class of queries such that (1) C has an effective syntax, (2)
for every L-ontology O, every query in C satisfiable wrt O
admits effective exponential size unique characterisations
wrt O, and (3) satisfiability of queries in C wrt L-ontologies
is decidable. Then, C is exponential query learnable wrt L
ontologies.

Proof. Let qT ∈ C be the target query and O an L ontol-
ogy. Due to (1), we can enumerate all queries from C in
increasing size. For every enumerated q, test whether q is
satisfiable wrt O, using (3). If so, then using (2), we com-
pute its unique characterisation (E+, E−) wrt O and use
membership queries to check whether all examples in E+

are positive examples and all examples in E− are negative
examples. If so, output q.

Since our main focus in this section is, however, polyno-
mial time and query learnability, we consider below cases
which allow for polynomial size unique characterisations.
As the presence of ⊓ and ⊥ in the ontology language pre-
cludes polynomial query learnability already in the atempo-
ral case, c.f. Theorem 6 in (Funk, Jung, and Lutz 2022b),
we follow their approach and assume that the learner also
receives an initial positive example D, a with D and O sat-
isfiable. Note that the existence of such an example implies
that the target query is satisfiable wrt the ontology. In or-
der to state our main result, we introduce one further natu-
ral condition. An ontology language L admits polynomial
time instance checking if given an L ontology O, a pointed
instance (A, a), and a concept name A, it is decidable in
polynomial time whether O,A |= A(a).

Theorem 15. Let L be an ontology language that contains
only ELHI or only ELIF ontologies and that admits poly-
size frontiers within ELIQ that can be computed. Then:

(i) The class of safe LTL⃝33r
p (ELIQ) queries are polyno-

mial query learnable wrt L ontologies using membership
queries.

(ii) The class LTL⃝33r
p (ELIQ) is polynomial query learn-

able wrt L ontologies using membership queries if the
learner knows the temporal depth of the target query.

(iii) The class LTL⃝3
p (ELIQ) is polynomial query learn-

able wrt L ontologies using membership queries.

If L further admits polynomial time instance checking and
polynomial time computable frontiers within ELIQ, then in
(ii) and (iii), polynomial query learnability can be re-
placed by polynomial time learnability. If, in addition, meet-
reducibility wrt L ontologies can be decided in polynomial
time, then also in (i) polynomial query learnability can be
replaced by polynomial time learnability.

To achieve the generality of the results independently of
the exact languages, in the proof of Theorem 15 we rely on
the results and techniques from Section 6 and general results
proved in the context of exact learning of (atemporal) ELIQs
wrt ontologies (Funk, Jung, and Lutz 2022a).

Let qT be a target query, O be an ontology, and D, a be a
positive example with D = A0 . . .An and D and O satisfi-
able. The idea is to modify D in a number of steps such that,
in the end, D viewed as temporal query is equivalent to qT .

We describe how to show (i); (ii) and (iii) are slight
modifications thereof. In Step 1, the goal is to find a tempo-
ral data instance D where each Ai is tree-shaped and hence
can be viewed as an ELIQ. This can be done separately for
each time point using membership queries and standard un-
raveling techniques from the atemporal setting (Funk, Jung,
and Lutz 2022a). In Step 2, we exhaustively apply Rules (a)-
(e) from the proof of Theorem 9 to D, as long as D, a re-
mains a positive example. In Step 3, we take care of lone
conjuncts in D (when viewed as a temporal query) – recall
that qT is safe and thus does not have any. For this step, we
rely on a characterisation of meet-reducibility in terms of
minimal frontiers. For computing those, we exploit the fact
that containment of ELIQs wrt ELHI and ELIF ontologies
is decidable (Bienvenu et al. 2016). After Step 3, D (viewed
as query) is already very similar to qT . More precisely,
when representing qT in shape (8) as a sequence of blocks
q0R1q1 . . .Rmqm, then D has the shape D0∅b . . . ∅bDm,
for sufficiently large b, and each qi is isomorphic to Di. So
in Step 4, it remains to identify the precise separators Ri.
They can be a single ≤ or a sequence of <, and the two cases
can be distinguished using suitable membership queries.

In order to show that this entire process terminates after
asking polynomially many membership queries, we lift the
notion of generalisation sequences from (Funk, Jung, and
Lutz 2022a) to the temporal setting. For the sake of conve-
nience, we treat the data instances in the time points as CQs.
A sequence D1, . . . of temporal data instances is a generali-
sation sequence towards qT wrt O if for all i ≥ 1:

• Di+1 is obtained from Di by modifying one non-temporal
CQ rj in Di to r′j such that rj |=O r′j and r′j ̸|=O rj ;

• O,Di, 0, a |= qT for all i ≥ 1.

Intuitively, data instances in generalisation sequences be-
come weaker and weaker, and based on this, we show that
the length of generalisation sequences towards qT wrt O
is bounded by a polynomial in max(D1) and the sizes of
qT ,O. The crucial observation is that the sequences of tem-
poral data instances obtained by rule application are mostly
generalisation sequences towards qT wrt O; thus the steps
terminate in polynomial time. If they are not, we use a dif-
ferent (but usually easier) termination argument.
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It remains to note that the sketched algorithm runs in poly-
nomial time when L satisfies all the required criteria.

We finally apply Theorem 15 to concrete ontology lan-
guages, namely DL-Lite−F and DL-LiteH.

Theorem 16. The following learnability results hold:

(i) The class of safe queries in LTL⃝33r
p (ELIQ) is poly-

nomial query learnable wrt DL-LiteH ontologies using
membership queries and polynomial time learnable wrt
DL-Lite−F ontologies using membership queries.

(ii) The class LTL⃝33r
p (ELIQ) is polynomial time learn-

able wrt both DL-Lite−F and DL-LiteH ontologies using
membership queries if the learner knows the temporal
depth of the target query in advance.

(iii) The class LTL⃝3
p (ELIQ) is polynomial time learnable

wrt both DL-Lite−F and DL-LiteH ontologies using mem-
bership queries.

Theorem 16 is a direct consequence of Theorem 15 and
the fact that the considered ontology languages satisfy all
conditions mentioned there. In particular, we show in the
appendix that meet-reducibility of ELIQs wrt DL-Lite−F on-
tologies Turing reduces to ELIQ containment wrt DL-Lite−F
ontologies, which is tractable (Bienvenu et al. 2013). The
latter is not true for DL-LiteH which explains the difference
in (i). We leave it for future work whether LTL⃝33r

p (ELIQ)
is polynomial time learnable wrt DL-LiteH ontologies.

9 Outlook
Many interesting and challenging problems remain to be ad-
dressed. We discuss a few of them below.

(1) Is it possible to overcome our ‘negative’ unique charac-
terisability results by admitting some form of infinite (but
finitely presentable) examples? Some results in this direc-
tion without ontologies are obtained in (Sestic 2023).

(2) We have not considered learnability using membership
queries of temporal queries with U. In fact, it remains
completely open how far our characterisability results for
these queries can be exploited to obtain polynomial query
(or time) learnability.

(3) We only considered path queries with no temporal oper-
ator occurring in the scope of a DL operator. This is moti-
vated by the negative results of (Fortin et al. 2022), which
showed that (i) applying ∃P to ⃝3-queries quickly leads
to non-characterisability and that (ii) even without DL-
operators and without ontology, branching 3-queries are
often not uniquely characterisable. We still believe there
is some scope for useful positive characterisability results.
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