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Abstract

We introduce Incentive Design: a new class of problems for
equilibrium verification in multi-agent systems. In our model,
agents attempt to maximize their utility functions, which are
expressed as formulae in LTL[F ], a quantitative extension of
Linear Temporal Logic with functions computable in polyno-
mial time. We assume agents are rational, in the sense that
they adopt strategies consistent with game theoretic solution
concepts such as Nash equilibrium. For each solution concept
we consider, we analyze the problems of verifying whether
an incentive scheme achieves a societal objective and finding
one that does so, whether it be social welfare or any other
aggregate measure of collective well-being. We study both
static and dynamic incentive schemes, showing that the lat-
ter are more powerful than the former. Finally, we solve the
incentive verification and synthesis problems for all the solu-
tion concepts we consider, and analyze their complexity.

1 Introduction
The design of mechanisms for aggregating preferences in
multi-agent systems is a key problem in algorithmic game
theory (Nisan et al. 2007). One classic approach is to de-
sign a system such that it satisfies the designer’s objective
(e.g., a property such as efficiency) under the assumption
that agents act rationally. In traditional approaches to for-
mal verification, one is interested in determining whether
a given property, expressed as a temporal logic formula,
holds on some or all of the possible executions of a sys-
tem (Baier and Katoen 2008). However, when compo-
nents of the system are rational agents, we can instead
focus our attention on only those outcomes of the system
that are rational from the perspective of the agents. This
is the central motivation behind the fields of rational ver-
ification and rational synthesis (Condurache et al. 2016;
Filiot, Gentilini, and Raskin 2018; Almagor, Kupferman,
and Perelli 2018; Fisman, Kupferman, and Lustig 2010;
Kupferman and Shenwald 2022; Brice, Raskin, and van den
Bogaard 2023).

In many settings, the underlying structure that describes
the agents’ interactions with the environment and other
agents is already known. While those systems may not com-
ply with the designer’s objective, a complete redesign is not
always feasible. For instance, a country may have environ-
mental legislation but fail to achieve its sustainability objec-

tives because the incentives of private individuals and com-
panies are not aligned with these higher-level objectives. In
such cases, policymakers may, for example, resort to estab-
lishing taxes based on a company’s pollution rate, or subsi-
dizing public transportation fees to incentivize its use.

In this paper, we are interested in designing incentives in
multi-agent systems to motivate rational agents to achieve
the designer’s objective. To achieve this, we introduce a new
class of problems for equilibrium verification that we call In-
centive Design. As usual in game theory, we consider agents
who seek to maximize their personal utility function. In our
setting, such utilities are expressed as formulae of LTL[F ]
(Almagor, Boker, and Kupferman 2016), a quantitative ex-
tension of Linear Temporal Logic (Pnueli 1977) with func-
tions that are computable in polynomial time. This enables
the representation of agents’ utilities as quantitative tempo-
ral specifications. The rationality of an outcome is defined
with respect to game theoretic solution concepts, including
dominant strategy equilibrium, Nash equilibrium, immune,
and resilient equilibria. For each of these solution concepts,
we study the problem of finding and verifying an appropri-
ate incentive mechanism to achieve a societal objective, be it
the social welfare or any other aggregating measure of col-
lective wellbeing. To address these challenges, we introduce
two problems: incentive verification and incentive synthesis.
In incentive verification, the aim is to verify whether the ap-
plication of a given incentive scheme guarantees some level
of satisfaction for a given objective. In incentive synthesis,
we are interested in finding an incentive scheme, if it exists,
which guarantees that the satisfaction value of some objec-
tive attains at least a certain level.

We focus on two major classes of incentive mechanisms:
static and dynamic. The former assigns new satisfaction val-
ues to some of the variables in the system, regardless of the
execution history. The latter dynamically reassigns satisfac-
tion values based on the history of the game thus far. We
demonstrate that dynamic incentives are more powerful than
their static counterpart. For all solution concepts that we
consider, we show that incentive verification is 2EXPTIME-
complete for both static and dynamic incentives, and is
hence no harder than the corresponding qualitative rational
verification problems. Finally, we solve the incentive syn-
thesis problem and prove that it is 2EXPTIME-complete in
the static case and in 3EXPTIME in the dynamic case.
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Related work. Our work is inspired by a rich line of re-
search analyzing and designing multi-agent systems com-
posed of rational agents, known as rational verification and
synthesis.

Also related is the problem of repairing the goals of play-
ers (Almagor, Avni, and Kupferman 2015) and synthesis of
dynamic norms (Alechina et al. 2022). This problem con-
sists at modifying the objectives or strategies of the players
in order to obtain stability or to improve social welfare. Re-
cent work has also proposed the application of formal meth-
ods to the verification and synthesis of mechanisms for so-
cial choice (Maubert et al. 2021; Mittelmann et al. 2022;
Belardinelli et al. 2022; Narayanasamy 2022).

The problem of designing incentives has been considered
from the perspective of economics, control theory, and ma-
chine learning (Ratliff et al. 2019). The economics approach
typically focuses on the treatment of information asymme-
tries and the design of incentive-compatible mechanisms
(Parkes et al. 2010; Laffont and Martimort 2009). The con-
trol theory approach introduces variables to encode infor-
mation about the evolution of the environment, as it depends
on agents’ choices (Olsder 2009; Weber 2011). Learning
approaches to dynamic incentives in multi-agent settings fo-
cus solely on adaptively modifying the rewards for quantita-
tive reward-maximising agents (Centeno and Billhardt 2011;
Ratliff and Fiez 2020; Yang et al. 2022). Differently from
this line of work, our approach is rooted in formal methods,
which guarantees the correctness of incentive schemes with
respect to the input specification. Instead of specifying a
particular global objective (such as utilitarian social welfare
maximisation) and then designing a solution to achieve it in
a wide variety of environments, our approach is more gen-
eral in that we allow arbitrary global objectives specified in
LTL[F ] to be provided as input to our procedures.

The closest work to ours is a line of research on Incentive
Engineering. In this direction, (Wooldridge et al. 2013) first
considered taxation schemes for one-shot Boolean games,
an approach that was later extended to concurrent games
where players have lexicographic LTL and mean-payoff ob-
jectives (Hyland, Gutierrez, and Wooldridge 2023b). A vari-
ant of the problem, where the incentive designer can only
observe some subset of the system variables, was studied by
(Hyland, Gutierrez, and Wooldridge 2023a). These works
investigate how to incentivize agents by introducing costs to
their actions. Our notion of incentives is more general, as
we allow for changes to any of the atomic features of the
game states. For the first time, we consider the setting in
which both the agents and the incentive designer have goals
expressed in a quantitative temporal logic.

2 Preliminaries
For the remainder of the paper, we fix a set of atomic propo-
sitions AP, a set of agents Ag, and a set of strategy variables
Var. We also let F ⊆ {f : [−1, 1]m → [−1, 1] | m ∈ N}
be a set of functions computable in polynomial time over
[−1, 1] of possibly different arities, that will parameterize
the logics we consider. With slight abuse of notation, we
denote by f ∈ F both the function and the corresponding

function symbol. It will be clear from the context what the
symbol corresponds to.

In this paper, we consider a variant of the classic model
of concurrent game structures (CGS) (Alur, Henzinger, and
Kupferman 2002), where atomic propositions are associated
with a weight in different states:
Definition 1. A weighted concurrent game structure
(wCGS) is a tuple G = (AP,Ag, (Aca)a∈Ag, V, vι, δ, ℓ)
where (i) AP is a finite set of atomic propositions; (ii)
Ag = {1, ..., n} is a finite set of n agents; (iii) Aca is a finite
set of actions for agent a and Ac =

Ś

a∈Ag Aca is the set of
joint actions; (iv) V is a finite set of positions; (v) vι ∈ V
is an initial position; (vi) δ : V ×

Ś

a∈Ag Aca → V is a
transition function; (vii) ℓ : V × AP → [−1, 1] is a weight
function.

In a position v ∈ V , each player a chooses an action ca ∈
Aca, and the state proceeds to the position δ(v, c) where c
is an action profile (ca)a∈Ag.

Given a coalition of agents C ⊆ Ag, we write oC for a
tuple of objects (oa)a∈C, one for each agent in C, and such
tuples are called profiles. We also write o for oAg. Given a
profile o and a ∈ Ag, we let oa be agent a’s component, and
o−a is used to denote the profile (ob)b̸=a.

A play π = v1v2... is an infinite sequence of positions
such that for every i ≥ 1 there exists an action profile c such
that δ(vi, c) = vi+1. We write πi = vi for the position at
index i in play π and π≥i = vivi+1... for the suffix of π
starting from the position at index i. A history h is a finite
prefix of a play, last(h) is the last position of history h, |h|
is the length of h and Hist is the set of histories.

We will find it useful to generalise the weight function
so that it may vary over the course of a play. Given a set
AP of atomic propositions, an infinite sequence of weight
functions ℓ⃗ = ℓ1ℓ2..., and a play π, the (AP, ℓ⃗)-labelling of
π, written L(π;AP, ℓ⃗), is given by the infinite sequence of
weight assignments

L(π;AP, ℓ⃗) := (ℓ1(v1, p))p∈AP(ℓ2(v2, p))p∈AP...

that is obtained by evaluating each weight function ℓi in the
sequence ℓ⃗ with at the corresponding position vi over the
set AP. In a standard wCGS, the sequence ℓ⃗ is given by
the repeating sequence ℓ⃗ = ℓℓℓ.... Later, we explore the
possibility for an incentive designer to dynamically modify
the weight functions, leading to a non-trivial sequence ℓ⃗.

A strategy for an agent a is a function σa : Hist → AcAg
that maps each history to an action. We let Stra be the set
of strategies for a and let Str =

∏
a∈Ag Stra be the set of

strategy profiles. An assignment A : Ag ∪ Var → Str is
a function from players and variables to strategies. For an
assignment A, an agent a, and a strategy σ for a, A[a 7→ σ]
is the assignment that maps a to σ and is otherwise equal to
A, and A[s 7→ σ] is defined similarly, where s is a variable.
For a strategy profile σ = (σa)a∈Ag, we write A[Ag 7→ σ]
for the assignment where A[a 7→ σa] for each a ∈ Ag.

For an assignment A and a history h, we let Out(A, h) be
the unique play that continues h following the strategies as-
signed by A. Formally, Out(A, h) is the play hv0v1... such
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that for all i ≥ 0, vi = δ(vi−1, c) where for all a ∈ Ag,
ca = A(a)(hv0...vi−1), and v−1 = last(h).

Example 1. Consider a scenario involving two manufac-
turing firms who share the usage of a river and a village
community who live downstream of the firms on the same
river. We represent this by the set Ag = {1, 2, 3}, where
agents 1 and 2 are the firms. At every time step, each
firm has two choices: to discharge waste water directly into
the river, or to first treat the waste water to clean it before
discharging it into the river. We represent this by letting
Aci = {ca, da}, a ∈ {1, 2} to denote the ‘clean’ and ‘dis-
charge’ actions for the two firms respectively. The ca action
incurs a fixed cost for firm a, whereas the da action incurs
no immediate cost for the firm. At every time step, the vil-
lage community also has two choices: to use the river water
for its day-to-day activities, or to use another water source.
We denote this by the actions Ac3 = {r, o}, which stand for
using the ‘river’ or an ‘other’ source of water respectively.
The use of the river by the village incurs a cost proportional
to the level of contamination of the river, up to a threshold of
k units, in which case the river becomes unusable and incurs
a very high cost. The use of the other source of water incurs
a high but fixed cost for the community.

In this setting, suppose that the river carries water away
(whether clean or dirty) at a constant rate of 1 unit per
timestep. We can define states to represent varying degrees
of contamination of the river water. Let V = {v0} ∪ {vci :
i ∈ {0, ..., k}, c ∈ Ac}, where k ∈ N+ is a threshold
such that if the river contamination level ever reaches k
units, the river ecosystem is destroyed and the water be-
comes permanently unusable. The duplication of states for
each joint action is used to record the previously taken joint
action. The river starts in a clean state (vι = {v0}), and
the transition function between intermediate states vci , i ∈
{1, ..., k − 1} can be represented by δ(vci , c

′) = vc
′

j , where
j = max(0,min(k, i + (d − c)/2)) and D represents the
number of agents who selected the d action in c. Transi-
tions out of the initial state are defined in the same manner,
and for the ruin states vck, we let δ(vck, c

′) = vc
′

k . In other
words, if both firms choose the discharge action, the water
quality deteriorates by 1 unit, up to the point of ruin. If only
one firm chooses the discharge action, the overall quality re-
mains as it is, and if both firms choose the clean action, the
river quality improves by 1 unit, up to a maximum level.

We use an atomic proposition q to represent water quality.
We can assign ℓ(vci , q) = 1 − 2i/k for all c ∈ Ac, so that
the water quality is 1 when the river is perfectly clean and
−1 when the river is unusable.

In order to model the effects of agent actions on their ob-
jectives, we additionally assume that the game has atomic
propositions {u1, u2, u3}, which represent the ‘utility’ that
each player achieves at a particular state. For a firm a ∈
{1, 2}, the weight function for these variables at a state vci is
given by ℓ(vci , ua) = 0.2 if ca = ca and ℓ(vci , ua) = 0.4 if
ca = da. For the community, we let ℓ(vci , u3) = ℓ(vci , q) if
c3 = r, ℓ(vci , u3) = 0 if c3 = o. Finally, we let ℓ(v0, q) = 1
and ℓ(v0, p) = 0 for all p ∈ AP \ {q}.

Quantitative Linear Temporal Logic. To specify play-
ers’ objectives and define the concept of a rational outcome,
we make use of Linear Temporal Logic with quantitative se-
mantics (LTL[F ]) (Almagor, Boker, and Kupferman 2016).
We work with this version over LTL primarily because as-
suming that formula satisfaction values (over which utilities
are typically defined) only take on the values of 0 or 1 lim-
its the kinds of incentive schemes that an incentive designer
can devise and implement. With quantitative logics such as
LTL[F ], there is much more flexibility in capturing the more
common conception of an incentive. A classic example of
this is in income taxes where the utility of employees de-
pends on their net income, which cannot be reduced to a
Boolean outcome.
Definition 2. The syntax of LTL[F ] is defined by the BNF

φ ::= p | f [φ, ..., φ] | Xφ | φUφ
where p ∈ AP and f ∈ F .

Here, X and U are the usual temporal operators “next”
and “until”. The meaning of f [φ1, ..., φn] depends on the
function f . We use ⊤, ∨, and ¬ to denote, respectively,
function 1, function x, y 7→ max(x, y) and function x 7→
−x.

We assume here that an agent a’s decision-making aims
to maximise the satisfaction value of an LTL[F ] formula γa.
Once goals for each agent are specified, we have a weighted
concurrent game, defined formally as follows:
Definition 3. Let G = (AP,Ag, (Aca)a∈Ag, V, δ, ℓ, Vι) be
a wCGS, and A an assignment. The satisfaction value
JφKGA(h) ∈ [−1, 1] of an LTL[F ] formula φ in a history h
is defined as follows, where π denotes Out(A, h):

JpKGA(h) = ℓ(last(h), p)

Jf [φ1,..., φm]KGA(h) = f(Jφ1KGA(h), ..., JφmKGA(h))

JXφKGA(h) = JφKGA(π|h|+1)

Jφ1Uφ2KGA(h) = sup
i≥0

min
(
Jφ2KGA(π|h|+i),

min
0≤j<i

Jφ1KGA(π|h|+j)
)

When the satisfaction value does not depend on the as-
signment, we write JφKG(h) for JφKGA(h) where A is any
assignment. Additionally, because arena transitions are de-
terministic with respect to actions in this setting, every as-
signment gives rise to a unique play. Therefore, we also de-
fine the semantics of LTL[F ] formulae over a play π with re-
spect to a valuation function ℓ over a set AP, written JφKAP,ℓ

π ,
in the same manner as above.

We define some abbreviations, corresponding
to classical logic and LTL operators: ⊥:= ¬⊤,
φ ∧ φ′ := ¬(¬φ ∨ ¬φ′), φ→ φ′ := ¬φ ∨ φ′,
Fψ := ⊤Uψ, Gψ := ¬F¬ψ.

We assume that F contains the comparison function

≤ : (x, y) 7→
{
1 if x ≤ y,

−1 otherwise,
similarly, the equality function is defined as

= : (x, y) 7→
{
1 if x = y,

−1 otherwise
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Definition 4. A weighted concurrent game (wCG) is a tuple
G = (G, (γa)a∈Ag), whereG is a wCGS and γa is an LTL[F ]
formula over AP, for all a ∈ Ag.

Solution concepts. In this paper we consider agents with
LTL[F ] goals, where the formula γa denotes the goal of
agent a. The utility of agent a in a wCGS G given the
strategy profile σ = (σa)a∈Ag is denoted utilGa (σ) and is
defined as the satisfaction value of γa in the initial state of
G when agents are assigned to their strategies in σ, that is,
utilGa (σ) = JγaKGA[Ag7→σ](vι).

We now recall some key game theoretic solution con-
cepts. Let G = (G, (γa)a∈Ag) be a wCG and σ = (σa)a∈Ag
be a strategy profile. We say that σ is a dominant strat-
egy equilibrium if the strategy associated with each agent
weakly maximizes her utility, for all possible strategies of
other agents. Formally, σ = (σa)a∈Ag is a dominant strat-
egy equilibrium in G if for all agent a and for all strategy
profiles σ′ ∈

∏
a∈Ag Stra, utilGa (σ

′) ≤ utilGa (σ
′
−a, σa).

We say σ is a Nash equlibrium if no agent can increase
her utility with a unilateral change of strategy. Formally,
σ = (σa)a∈Ag is a Nash equilibrium in G if for all agents a,
and all strategy σ′

a ∈ Stra, we have that utilGa (σ−a, σ
′) ≤

utilGa (σ).
In an m-resilient equilibrium, we consider deviations by

coalitions of agents rather than individuals: this solution
concept tolerates deviations of up to m agents (Abraham,
Dolev, and Halpern 2008). Formally, σ = (σa)a∈Ag is an
m-resilient equilibrium in G if for all coalitions C ⊆ Ag
with size at mostm, and all partial strategy profiles σ′

Ag\C ∈∏
a∈Ag\C σa, we have that utilGa (σAg\C,σ

′
C) ≤ utilGa (σ).

We write DSE(G),NE(G),REm(G) to denote the sets
of dominant strategy equilibria, Nash equilibria, and m-
resilient equilibria of a game G, respectively.
Example 2. Continuing from Example 1, we assume that the
objective of all players is to maintain a high level of utility at
all times. Suppose in addition that there is a regulator who
is able to impose taxes on the firms. We can model this by
introducing two new variables t1, t2 to represent the taxes
imposed on firms 1 and 2 respectively. Taxes are initially set
to 0, i.e., ℓ(v, ta) = 0 for all v ∈ V, a ∈ {1, 2}. Given this,
we define the goals for the players on a given play π to be
γa = G(ua − ta) for a ∈ {1, 2} and γ3 = Gu3, where the
‘−’ function is defined in the obvious manner.

In this scenario, the two firms do not internalize the effect
of their actions on the quality of the river. Since discharging
wastewater directly into the river is cheaper for them, there
is a Nash equilibrium where both firms choose the d action
every round, leading to the spoiling of the river after k time
steps. An incentive designer may wish to avoid this scenario
by putting in place appropriate incentives to discourage in-
discriminate pollution. To realize this aim, we now define
our model of incentives.

3 Incentives
Given a wCG G = (AP,Ag, (Aca)a∈Ag, V, vι, δ, ℓ, (γa)a∈Ag),
we interpret incentives as assignments of satisfaction values

to a particular set of propositional variables.
Let U ⊆ AP be a set of propositional variables in G. An

incentive scheme over U is a weight function θ : U →
[−1, 1] which induces a modified weight function ℓθ such
that for all v ∈ V and p ∈ AP, we have

ℓθ(p) =

{
θ(p) p ∈ U

ℓ(v, p) p /∈ U.

Defined in this way, an incentive scheme applied at a partic-
ular point in time modifies the satisfaction values of the vari-
ables in U . Depending on the interpretation of the variables,
this definition of incentives may take on different mean-
ings. For example, if a variable p represents the monetary
cost of being in a particular state, then an incentive on p
may be interpreted as a tax or subsidy on the visitation of
a state. Moreover, the variables can be used to represent
incentives that are agent-specific or ones that are common
to multiple agents, depending on the dependencies of util-
ity functions on these variables. Thus, the set U contains the
possible variables in the players’ shared environment, which
the regulator can intervene upon to influence their decision-
making, and are referred to as incentivized variables.

Let Θ denote the set of incentive schemes over a set U ⊆
AP. We will assume that incentive schemes have a fixed
level of granularity. More specifically, we assume that Θ is
a finite set of incentive schemes, and we say that an incentive
scheme θ has a granularity g ∈ Q+ if for all v ∈ V, p ∈ U ,
we have θ(p)− ℓ(v, p) = k · g, for some k ∈ Z.

A dynamic incentive scheme is a function T : Hist → Θ
that maps each history to an incentive scheme that is ap-
plied on the same round, i.e., the incentive scheme θk =
T (v1...vk) is applied in round k of the game. A dynamic
incentive scheme thus defines a dynamic modification to the
satisfaction values of a fixed subset of the propositional vari-
ables AP defined in a wCG G. In contrast, a static incentive
scheme is a dynamic incentive scheme that outputs the same
incentive scheme for all histories ending with the same state.
In other words, a static incentive scheme is a memoryless dy-
namic one, which outputs the same incentive at a given state,
no matter what history led to the arrival at that state.

It is relatively straightforward to interpret what the ap-
plication of a static incentive scheme T over a set U
means in a given wCG, and we write GT := GθT =
(AP,Ag, (Aca)a∈Ag, V, vι, δ, ℓθT , (γa)a∈Ag), where θT is
the incentive scheme that T outputs at each point in the
game. A dynamic incentive scheme, on the other hand,
can be thought of as inducing a dynamic (history-dependent)
weight function on the game G. In particular, given a play π
of a game G, a dynamic incentive scheme T induces an in-
finite sequence ℓ⃗T (π) = ℓθ1ℓθ2 ... of weight functions, such
that for every history h = v1...vk of π, we have θk = T (h).

More generally, dynamic weight functions be accommo-
dated in our model by defining new semantics for the sat-

isfaction value JφKG,ℓ⃗
A (h) of an LTL[F ] formula in a wCGS

G, given an infinite sequence of weight functions ℓ⃗ = ℓ1ℓ2...
over a finite set L = {ℓ1, ℓ2, ..., ℓ|L|} of possible weight
functions. This is achieved by letting

JpKG,ℓ⃗
A (h) := ℓ|h|(last(h), p),
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while the semantics for f , the X operator, and the U op-
erator remain the same. Thus, in the specific context of a
dynamic incentive scheme T over a set U ⊆ AP, we then
have

JpKGT

A (h) := JpKG,ℓ⃗T
A (h) =

{
T (h)(p) p ∈ U

ℓ(last(h), p) p /∈ U.

We also define the semantics of LTL[F ] over (AP, ℓ⃗)-
labelled plays L(π;AP, ℓ⃗), written JφKAP,ℓ⃗

π , in the same way.
Due to the fixed granularity assumption, a dynamic incen-

tive scheme’s set of possible outputs is always finite. As we
demonstrate later, this assumption is important as it allows
one to model check SL[F ] formulae with this modified se-
mantics, albeit at some additional computational cost. How-
ever, this does not affect the worst-case complexity results
we derive here.

We argue that for most practical purposes, this is a rea-
sonable assumption to make, as it will usually be the case
that beyond a certain level of granularity, the benefits of in-
troducing an even finer partition of the incentive space will
be outweighed by the additional complexity introduced in
computing the optimal incentive scheme and then imple-
menting it in practice. Examples of granularity appearing
in real-world incentive policies include taxation rates or the
US Federal Reserve’s interest rate on reserve balances.
Example 3. With incentives defined, we can now consider
possible incentive implementations by a regulator in our run-
ning example. In most instances, a regulator typically has an
objective that they would like to see accomplished as the re-
sult of the implementation of incentive schemes.

In our case, suppose that the regulator wants to impose
taxes on the firms to maintain a stable and acceptable water
quality level. To achieve this aim, the regulator can intervene
on the ta variables (i.e., U = {t1, t2}), setting them to some
positive taxation rate with a granularity of g = 0.2. This
objective and the taxation constraints may be expressed by
the formula φ = G(q = 1 ∧ t1 ≥ 0 ∧ t2 ≥ 0).

With static incentive schemes, the only way to achieve
this is to set the values of t1 and t2 so that at least one of
the firms is worse off by performing the d action. If only
one firm is taxed in this way, the policy may be criticised as
being unfair. If both firms are taxed in this way, this results
in an unnecessary loss of profits to both firms. However,
if a dynamic incentive scheme is used, which alternates be-
tween taxing the firms a sufficient amount for selecting the d
action, the regulator can achieve their objective in a fair and
efficient manner.

Problem statement. Using the definitions thus far, we
are able to state the core problems that we study in the re-
mainder of this text. We begin with the problems in the fam-
ily of incentive verification problems, which ask whether a
given static/dynamic incentive scheme guarantees a certain
best- or worst-case equilibrium satisfaction value for a given
LTL[F ] formula φ. For a game G, formula φ, static incentive
scheme T , solution concept ζ, and threshold c ∈ [−1, 1].
ζ-S-E-INCENTIVE-VERIFICATION: is there a strategy
profile σ ∈ ζ(G) such that JφKGT

A[Ag7→σ] ≥ c?

ζ-S-A-INCENTIVE-VERIFICATION: does it hold that for
all strategy profiles σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

Similarly, we can define the incentive verification prob-
lems for dynamic incentive schemes. For a game G, formula
φ, dynamic incentive scheme T , solution concept ζ, thresh-
old c ∈ [−1, 1].

ζ-D-E-INCENTIVE-VERIFICATION: is there a strategy
profile σ ∈ ζ(G) such that JφKGT

A[Ag7→σ] ≥ c?

ζ-D-A-INCENTIVE-VERIFICATION: does it hold that for
all strategy profiles σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

While the ability to verify the effectiveness of a proposed
incentive scheme is arguably a useful tool to have, policy-
makers are often faced with the task of designing effective
incentive schemes for a given purpose. This motivates the
study of what we refer to as the class of incentive synthesis
problems, which are defined as follows.

For a given game G, formula φ, solution concept ζ, incen-
tivised variables U ⊆ AP, threshold c ∈ [−1, 1].

ζ-S-E-INCENTIVE-SYNTHESIS: is there a static incen-
tive scheme T over U such that for some strategy profile
σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

ζ-S-A-INCENTIVE-SYNTHESIS: is there a static incen-
tive scheme T over U such that for all strategy profiles
σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

ζ-D-E-INCENTIVE-SYNTHESIS: is there a dynamic in-
centive scheme T overU such that for some strategy profile
σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

ζ-D-A-INCENTIVE-SYNTHESIS: is there a dynamic in-
centive scheme T over U such that for all strategy profiles
σ ∈ ζ(G), we have JφKGT

A[Ag7→σ] ≥ c?

We remark that although these problems are stated in
terms of thresholds, our method of solving these problems
allows one to find the optimal satisfaction values of the given
formula under some/all equilibria of a game.

4 Static Incentives
In this section, we show how to solve emptiness and synthe-
sis for the static incentive case. We do this by employing
procedures for the model checking of formulae in SL[F ], an
extension of LTL[F ] that includes strategy quantifiers that
are useful to quantify over the strategic abilities of agents
(Bouyer et al. 2023). We first recall the syntax and semantics
of SL[F ], together with a statement about its model check-
ing against a wCGS. Subsequently, we show how SL[F ]
can be used to express all the various solution concepts con-
sidered in this paper. Finally, we show how to use such a
representation to solve both the verification and synthesis
problems for the case of static incentives.

Definition 5. The syntax of SL[F ] is defined by the BNF

φ ::= ψ | ∃s. φ | (a, s)φ
where ψ is an LTL[F ] formula, s ∈ Var, and a ∈ Ag.
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Intuitively, the new operator ∃s. φ selects a strategy that
maximizes the satisfaction value of φ; (a, s)φ means that
the strategy s is assigned to agent a in the evaluation of φ.

Definition 6. Let G = (AP,Ag, (Aca)a∈Ag, V, δ, ℓ, Vι) be
a wCGS, and A an assignment. The satisfaction value
JφKGA(h) ∈ [−1, 1] of an SL[F ] formula φ in a history h
is defined as follows:

J∃s. φKGA(h) = max
σ∈Str

JφKGA[s7→σ](h)

J(a, s)φKGA(h) = JφKGA[a 7→A(s)](h).

The other cases are similar to the semantics of LTL[F ].
We also use the standard univeral quantifiers

∀s. φ := ¬∃s.¬φ. For a variable profile s = (s1, ..., sn)
with 1 ≤ n ≤ |Ag|, we use the abbreviations
∃sφ := ∃s1, ..., ∃sn φ and ∀sφ := ∀s1, ..., ∀sn φ.
Definition 7 (SL[F ] model-checking (Bouyer et al. 2023)).
Given an SL[F ] formula φ, a wCGS G, an assignment A,
a history h, and a predicate P ⊆ [−1, 1], decide whether
JφKGA(h) ∈ P .

In (Bouyer et al. 2023), it is shown that the model-
checking problem for SL[F ] is decidable and its complexity
is (k+1)-EXPTIME-complete, where k is the block-nesting
depth of the checked formula. Informally, the block-nesting
depth counts how many times an SL[F ] formula in prenex-
normal form alternates between an existential and a univer-
sal quantifier1.

Expressing solution concepts in SL[F ]. Let s =
(sa)a∈Ag be a profile of strategy variables and γa be a
LTL[F ] formula denoting agent a’s goal. The following
SL[F ] formulae express the notion that the strategy profile
assigned by σ is a strategic equilibrium:

DSE(s) :=
∧

a∈Ag

∀t.
[
(Ag, t)γa ≤ (a, sa)(Ag−a, t−a)γa

]

NE(s) :=
∧

a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)γa ≤ (Ag, s)γa

]

REm(s) :=
∧

C⊆Ag:|C|≤m

∀tC

[ ∧
a∈C

(
(Ag−C, s−C)(C, tC)γa

≤ (Ag, s)γa
)]

Proposition 1. For a wCG G = (G, (γa)a∈Ag), a strategy
profile σ and a variable profile s = (sa)a∈Ag, it holds that:

• σ is a dominant strategy equilibrium iff
JDSE(s)KGA[a 7→A(s)](h) = 1;

• σ is a Nash equilibrium iff JNE(s)KGA[a 7→A(s)](h) = 1;
• σ is an m-resilient equilibrium iff

JREm(s)KGA[a 7→A(s)](h) = 1.
1By prenex normal form, we mean formulae in which all the

quantifiers appear in the outermost part of the formula.

Proof. These follow from the definitions of utilGa (σ) and the
solution concepts.

Using these constructions, we can now address the verifi-
cation and synthesis problems for static incentives.
Theorem 1. For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., n}, ζ-
S-E-INCENTIVE-VERIFICATION and ζ-S-A-INCENTIVE-
VERIFICATION are 2EXPTIME-complete.

Proof. We begin with ζ-S-E-INCENTIVE-VERIFICATION,
noting that the approach for the dynamic counterpart is sim-
ilar. To establish the upper bound, observe that model check-
ing the following SL[F ] formula in the game GT induced by
T decides the ζ-S-E-INCENTIVE-VERIFICATION problem:

∃σ.[ζ(σ) ∧ (Ag,σ)φ].

By Proposition 1 and the semantics of the SL[F ] operators
∃σ and ∧, we see that the satisfaction value of the above
formula either represents the highest satisfaction value of
φ that can be obtained by some ζ-equilibrium of GT , or it
takes on the value of -1. Using this, we can compare the
obtained satisfaction value with the threshold c to decide
the answer to ζ-S-E-INCENTIVE-VERIFICATION. Member-
ship in 2EXPTIME then straightforwardly follows from the
fact that model checking an SL[F ] formula can be done in
(k + 1) − EXPTIME for formulas φ where the number of
alternations in strategy quantifiers is k (Bouyer et al. 2023).

For ζ-S-A-INCENTIVE-VERIFICATION, we can apply
the same reasoning as above, only this time with the fol-
lowing SL[F ] formula:

∀σ.[ζ(σ) → (Ag,σ)φ].

For hardness, we reduce from qualitative (strong) rational
synthesis, which is the problem of deciding whether a strat-
egy profile exists in a concurrent game such that the goal
φ0 of a player 0 is satisfied in some rational outcome of
the game while holding this player’s strategy fixed (Kupfer-
man, Perelli, and Vardi 2016). Here, the term ‘rational’ in-
cludes the solution concepts we consider, namely dominant
strategy equilibria, Nash equilibria, and h-resilient equilib-
ria. The qualitative component means that player goals are
given by formulae expressed in LTL, which is a special case
of LTL[F ] (Bouyer et al. 2023), where the following condi-
tions apply:

• For all v ∈ V, p ∈ AP, ℓ(v, p) ∈ {−1, 1};
• For all players a ∈ Ag, γa is an LTL formula, i.e., an

LTL[F ] formula where F = {¬,∨,∧}.

The strong version of the rational synthesis problem quanti-
fies universally over rational outcomes, i.e., it asks whether
there exists a strategy for player 0 such that φ0 is guaran-
teed to be satisfied for all rational outcomes for the remain-
ing players. Since the (strong) rational synthesis problem
is 2EXPTIME-complete for all solution concepts we con-
sider (Kupferman, Perelli, and Vardi 2016), we can straight-
forwardly obtain the lower bound by reducing from stan-
dard rational synthesis to our variants of the E-INCENTIVE-
VERIFICATION problem and from strong rational synthe-
sis to the A-INCENTIVE-VERIFICATION problem by sim-
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ply verifying an incentive scheme which applies no mod-
ifications to the game, where the formula to be verified is
given by φ0 and the player whose strategy is fixed is an ad-
ditional inconsequential dummy player who is added to the
game.

For the synthesis of a static incentive, we can proceed sim-
ilarly to the emptiness problem. Essentially, we first (non-
deterministically) guess an appropriate static incentive, then
check that it solves the problem by employing the emptiness
procedure introduced above.

Theorem 2. For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., n},
ζ-S-E-INCENTIVE-SYNTHESIS and ζ-S-A-INCENTIVE-
SYNTHESIS are 2EXPTIME-complete.

Proof. For the upper bound, we proceed by simply nonde-
terministically guessing an incentive scheme, of which there
are |Θ| = |AP|1/g , where g is the granularity of incentive
schemes. Since, g is assumed to be a rational number, the
number of incentive schemes is thus exponential in the rep-
resentation of the granularity.

Static incentive schemes can be represented in space at
most equal to that required for representing the valuation
function ℓ, which is hence polynomial in the size of the in-
put. Once this incentive scheme is guessed, we can run ζ-S-
E-INCENTIVE-VERIFICATION for the existential version of
incentive synthesis or ζ-S-A-INCENTIVE-VERIFICATION
for the universal version to obtain a solution to our problems.
Since guessing a static incentive scheme is in PSPACE and
running an incentive verification procedure is in 2EXPTIME
for both cases, the overall complexity of the procedure is in
2EXPTIME.

For the lower bound, we can apply the same reduction as
used in Proposition 1, but with an additional modification
to the game to account for the incentive design component.
This can be handled by simply introducing a new proposi-
tional variable q /∈ AP to the game, which is guaranteed
not to influence the decision-making of agents in any way,
and letting the incentive designer intervene only on this new
variable, i.e., setting U = {q}. In this way, there exists an
incentive scheme such that the satisfaction value of φ0 is 1
on some/all ζ-equilibria of the game if and only if the answer
to the rational synthesis problem is “yes”.

Given these results, we observe that in the case of static
incentives, the incentive verification and synthesis problems
have the same worst-case complexity. As our results in the
following section will demonstrate, this is not necessarily
the case when considering dynamic incentive schemes. This
contrast, along with the fact that static incentive schemes are
typically simpler to implement and communicate in practice,
suggests that it may be better to use static incentives in cases
where they are sufficient to implement a goal.

5 Dynamic Incentives
Especially in the context of dynamic incentive schemes, a
key aspect of our approach is to embed the incentive de-
signer into the game as a player, whose actions correspond

to the application of incentives. To achieve this, we intro-
duce a transformation which converts a given wCGS G into
a modified game G′, which naturally encodes the abilities of
the incentive designer to modify the values of propositional
variables as described above. Intuitively, the transforma-
tion works by interleaving actions of the incentive designer
(which correspond to incentive schemes) and the actions of
the players in the original game. This is done because the
incentive designer requires access to the history of the game
in order to decide what incentives to implement on a given
round, but this decision must be made before the next ac-
tions of the agents so that it applies on the round in which
they take their actions. To perform this interleaving while
preserving the satisfaction values of players’ goals on the
modified runs, we will first need to introduce the notion of
run inflations and formula translations (Kučera and Strejček
2005).

Given an (AP, ℓ⃗)-labelled play L1 = L(π;AP, ℓ⃗) and an
(AP′, ℓ⃗′)-labelled play L2 = L(π′;AP′, ℓ⃗′) where AP ⊆
AP′, we say that L2 is a d-fold inflation of L1 if it is the
case that for all p ∈ AP, we have ℓ′di(v

′
di, p) = ℓi(vi, p) for

every i ∈ Z+.
We say that a d-fold inflation L2 of L1 is r-labelled if r ∈

AP′ and for all i, j ≥ 0, we have that ℓ′j(v
′
j , r) = 1 if j = di

and ℓ′j(v
′
j , r) = −1 otherwise. Intuitively, r-labelling is an

indicator taking the value of 1 only at the positions in the
inflated play π′ that correspond to positions in the original
play π, which will be useful for translating LTL[F ] formulae
over the latter into formulae over the former.

Next, we define a translation function trd which trans-
forms an LTL[F ] formula φ into another LTL[F ] formula
trd(φ) that preserves the satisfaction value of φ over a d-
fold inflation of any labelled play over which φ is evaluated.
More precisely, let φ be an LTL[F ] formula over a set AP
of atomic propositions. The d-fold translation trd(φ) of φ
is the LTL[F ] formula defined over the set AP ∪ {r}, where
r is a new atomic proposition, that is given by the following
semantics:

• trd(p) = Xd−1p for every p ∈ AP;

• trd(f [φ1, ..., φm]) = f [trd(φ1), ..., tr
d(φm)];

• trd(Xφ) = Xdtrd(φ);

• trd(φ1Uφ2) = (r → trd(φ1))U(r → trd(φ2))

where Xe represents an application of the X operator e
times. The following is an adaptation of Lemma 1 in
(Gutierrez, Perelli, and Wooldridge 2018) to the setting of
LTL[F ] formulae that we consider.

Lemma 1. Let AP and AP′′ be two disjoint sets of atomic
propositions with r ∈ AP′′. Let L1 = L(π;AP, ℓ⃗) be an
(AP, ℓ⃗)-labelled play and suppose that L2 = L(π′;AP′, ℓ⃗′)
is an r-labelled, d-fold inflation of L1 with AP′ = AP ∪
AP′′. Then, for all LTL[F ] formulae φ over L1, it holds that

JφKAP,ℓ⃗
π = Jtrd(φ)KAP′,ℓ⃗′

π′ .

Proof. The proof goes by structural induction on the for-
mula φ, that is, we show that for all LTL[F ] formula φ and
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i ≥ 0, it holds that JφKAP,ℓ⃗
π≥i

= Jtrd(φ)KAP′,ℓ⃗′

π′
≥di

. Considering

the base case, it is straightforward to see that JpKAP,ℓ⃗
π≥1

=

Jtrd(p)KAP′,ℓ⃗′

π′
≥d−1

by the definition of the d-fold inflation. Now,
by the induction hypothesis and the definition of the seman-
tics for Jf [φ1,..., φm]KAP,ℓ⃗

π≥i
, it follows that

Jtrd(f [φ1,..., φm])KAP′,ℓ⃗′

π′
≥di

= Jf [trd(φ1),..., tr
d(φm)])KAP′,ℓ⃗′

π′
≥di

= f(Jtrd(φ1)K
AP′,ℓ⃗′

π′
≥di

,..., Jtrd(φm)KAP′,ℓ⃗′

π′
≥di

)

= f(Jφ1KAP,ℓ⃗
π≥i

,..., JφmKAP,ℓ⃗
π≥i

) = Jf [φ1,..., φm]KAP,ℓ⃗
π≥i

.

Moving on to the next operator, suppose that φ = Xψ
for some LTL[F ] formula ψ and recall that by definition,
JXψKAP,ℓ⃗

π≥i
= JψKAP,ℓ⃗

π≥i+1
. By the semantics of the X operator

and the induction hypothesis, we have

JXψKAP,ℓ⃗
π≥i

= JψKAP,ℓ⃗
π≥i+1

= Jtrd(ψ)KAP′,ℓ⃗′

π′
≥d(i+1)

= JXdtrd(ψ)KAP′,ℓ⃗′

π′
≥di

= Jtrd(Xψ)KAP′,ℓ⃗′

π′
≥di

.

Finally, for the until operator, we apply the same reasoning.
Suppose that φ = φ1Uφ2. Then, by the semantics of the U
operator and the induction hypothesis, we have

Jφ1Uφ2KAP,ℓ⃗
π≥i

= sup
j≥0

min
(
Jφ2KAP,ℓ⃗

π≥i+j
, min
0≤k<j

Jφ1KAP,ℓ⃗
π≥i+k

)
= sup

j≥0
min

(
Jtrd(φ2)K

AP′,ℓ⃗′

π′
≥d(i+j)

,

min
0≤k<j

Jtrd(φ1)K
AP′,ℓ⃗′

π′
≥d(i+k)

)
= sup

j≥0
min

(
Jmax(−r, trd(φ2))K

AP′,ℓ⃗′

π′
≥d(i+j)

,

min
0≤k<j

Jmax(−r, trd(φ1))K
AP′,ℓ⃗′

π′
≥d(i+k)

)
= sup

j≥0
min

(
Jmax(−r, trd(φ2))K

AP′,ℓ⃗′

π′
≥di+j

,

min
0≤k<j

Jmax(−r, trd(φ1))K
AP′,ℓ⃗′

π′
≥di+k

)
= sup

j≥0
min

(
Jr → trd(φ2))K

AP′,ℓ⃗′

π′
≥di+j

,

min
0≤k<j

Jr → trd(φ1))K
AP′,ℓ⃗′

π′
≥di+k

)
= Jtrd(φ1Uφ2)K

AP′,ℓ⃗′

π′
≥di

.

Together, the concepts of inflation and translation al-
low us to define the incentive-augmented game G′, which
is a modified version of a game G which includes the
incentive designer as a player whose actions represent
the imposition of different incentive schemes. Given
a wCG G = (AP,Ag, (Aca)a∈Ag, V, vι, δ, ℓ, (γa)a∈Ag), the
incentive-augmented version of G is defined as the wCG
G′ = (AP′,Ag′, (Aca)a∈Ag′ , V

′, vι, δ
′, ℓ′, (γ′a)a∈Ag), where

• AP′ = AP ∪ {r}, where r /∈ AP.

• Ag′ = Ag ∪ {n+ 1}, where player n+ 1 corresponds to
the incentive designer;

• Aca remains unchanged for all a ∈ Ag, and Acn+1 = Θ;

• V ′ = V ∪ V Θ, where V Θ = {vθ|v ∈ V, θ ∈ Θ};

• δ′ : V ′ ×
Ś

a∈Ag′ Ac′a → V ′ is defined in the following
way. For all v ∈ V, c′ ∈ Ac′ with c′n+1 = θ ∈ Θ, we
have δ′(v, c′) = vθ and for all v ∈ V Θ, c′ ∈ Ac′ with
c′−n+1 = (ca)a∈Ag, we have δ′(vθ, c′) = δ(v, (ca)a∈Ag);

• ℓ′ : V ′ × AP → [−1, 1] is defined such that for all v ∈
V, p ∈ AP, we have ℓ′(v, p) = 0 and for all vθ ∈ V Θ, we
have

ℓ′(vθ, p) =

{
θ(p), p ∈ U

ℓ(v, p), p /∈ U.

Moreover, for all v ∈ V ′, we have

ℓ′(v, r) =

{
−1, v ∈ V

1, v ∈ V Θ;

• γ′a = tr2(γa).

This translation of goals is well-defined due to the addi-
tion of the r variable which is used to r-label plays in
G′. Intuitively, G′ introduces a new player – the ‘incentive
player’ – whose actions correspond to the application of in-
centives at each round of the original game. The incentive
player’s actions are taken in an alternating manner with the
rest of the players in the positions V , which are interleaved
with the new positions V Θ such that at every odd timestep
t = 2k + 1, k ∈ N, the game will be in a position vt ∈ V ,
whereas at every positive even timestep t′ = 2k, k ∈ Z+,
the game will be in a position vθt′ ∈ V Θ. In this way, at po-
sitions v ∈ V , only the incentive player’s action determines
the next position and at positions vΘ ∈ V Θ, only the origi-
nal players’ actions (i.e., players 1, ..., n) will determine the
next position.

Due to the definition of the modified valuation function
ℓ′ and the 2-fold translation of the players’ objectives, the
incentive schemes chosen by the incentive player at each of
their turns modify the satisfaction values of the players’ ob-
jectives, influencing the players’ strategic considerations.

Moreover, it is straightforward to see that once the incen-
tive player’s strategy has been fixed, this induces a new game
with potentially different stable outcomes from the origi-
nal game. Under this construction, the task of the incentive
player can then be formulated as the problem of choosing a
strategy such that some or all of the induced equilibria of the
resulting game for the remaining players maximises the sat-
isfaction value of the incentive designer’s objective. The fol-
lowing result establishes the relationship between strategies
for the incentive player in an incentive-augmented game and
the application of dynamic incentive schemes in the original
game.

Proposition 2. Suppose that G is a weighted concurrent
game, G′ is its incentive-augmented version, φ is an LTL[F ]
formula, and (σ′, T ) is a strategy profile in G′. Then, there
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is a strategy profile σ in G and a dynamic incentive scheme
T such that

JφKGT

A[Ag7→(σ)] = Jtr2(φ)KG
′

A[Ag′ 7→(σ′,T )].

Proof. We prove the claim by constructing the strategy pro-
file σ and the dynamic incentive scheme T . Firstly, let σ be
the strategy profile in G such that for all even-length histories
h′ = v1v

θ1
1 v2v

θ2
2 ...vkv

θk
k , k ∈ Z+ that are generated by σ′

in G′, it holds that σ(h) = σ′(h′), where h = v1v2, ..., vk.
This strategy profile will be referred to as the 2-fold defla-
tion of the strategy profile σ′, which extracts the actions that
players take at every second round of the game G′. Next, let
T be the dynamic incentive scheme such that for any given
history h′ = v1v

θ1
1 ...v

θk−1

k−1 vk of a play π′ in G′ and the cor-
responding history h = v1v2...vk of a play π in G resulting
from the execution of σ, we have that T (h′) = T (h). By
the construction of the game G′, we see that the incentive
scheme θk corresponding to the chosen action T (h′) is im-
plemented in position vθkk , that is, for all p ∈ AP, we have
ℓ′(vθkk , p) = ℓ⃗T (h) = ℓθk . In other words, the satisfaction
values for all variables on round 2k, k ∈ Z+ of the game G′

coincide with those on round k of the game G.
Now, let π′ be the play generated in G′ by (σ′, T ),

ℓ⃗′ = ℓ′ℓ′..., π be the play generated in G by (σ), and
ℓ⃗T (π) = ℓθ1ℓθ2 .... Then, we can conclude that the (AP′, ℓ⃗′)-
labelled play L2 = L(π′;AP′, ℓ⃗′) in G′ is an r-labelled d-
fold inflation of L1 = L(π;AP, ℓ⃗T (π)) in G and hence, the
result follows by the application of Lemma 1.

Finally, we turn our attention to the dynamic incentive
verification and synthesis problems. Again, we are able to
make use of the expressive power of SL[F ] to define a suit-
able formula which can be model-checked to determine the
solution to our problems.

Theorem 3. For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., n}, ζ-
D-E-INCENTIVE-VERIFICATION and ζ-D-A-INCENTIVE-
VERIFICATION are 2EXPTIME-complete.

Proof. Regarding ζ-D-E-INCENTIVE-VERIFICATION, we
use the construction G′, which introduces the incentive de-
signer as a player in the game, whose actions are interleaved
with those of the original players Ag. Given this, we can
solve the incentive verification problem by model checking
the following SL[F ] formula in the game G′:

(n+ 1, T )
[
∃σ′.[ζ(σ′) ∧ (Ag,σ′)tr2(φ)]

]
,

where the strategy T is defined such that for all histories
h = v1v2...vk ∈ Hist of the original game G and a cor-
responding history h′ = v1v

θ1
1 v2v

θ2
2 ...v

θk
k , we have that

T (h′) = T (h). By the construction of G′, strategies for the
original players in Ag are inconsequential on odd timesteps,
and moreover, the formula ζ(σ′) is now defined in terms of
the 2-fold translated versions of players’ goals. Applying
the definition of the 2-fold translation of

Thus, by Proposition 2, ζ(σ′) has a satisfaction value
of 1 in the above formula if and only if the 2-fold de-
flation of σ′ in the original game GT is a ζ-equilibrium.

Moreover, by Proposition 2 again, the satisfaction value of
the subformula (Ag,σ′)tr2(φ) in G′ is equal to the sat-
isfaction value of the formula (Ag,σ)φ in the game GT .
Hence, model-checking this formula indeed solves the ζ-D-
E-INCENTIVE-VERIFICATION problem. For all of our solu-
tion concepts, this formula has an alternation depth of 1, and
hence, the formula can be model-checked in 2EXPTIME.

Similarly, for ζ-D-A-INCENTIVE-VERIFICATION, we
model check the formula:

(n+ 1, T )
[
∀σ′.[ζ(σ′) → (Ag,σ′)tr2(φ)]

]
,

which again has an alternation depth of 1 when converted
into prenex normal form.

For hardness, we can apply the same reduction as used
in the proof of Proposition 1, i.e., we reduce from qual-
itative rational synthesis and its strong variant to the ζ-
D-E-INCENTIVE-VERIFICATION and ζ-D-A-INCENTIVE-
VERIFICATION problems respectively. Again, we check a
dynamic incentive scheme that does not modify any of the
variables and use player 0’s goal as the global formula to be
checked, with a threshold c = 1.

As with static incentive schemes, the incentive verifi-
cation problem for dynamic incentive schemes remains in
2EXPTIME. However, the following result indicates that we
do not necessarily obtain the same complexity when moving
from static to dynamic incentive synthesis.
Theorem 4. For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., n}, ζ-
D-E-INCENTIVE-SYNTHESIS is 2EXPTIME-complete and
ζ-D-A-INCENTIVE-SYNTHESIS is in 3EXPTIME and is
2EXPTIME-hard.

Proof. Starting with the existential version of the problem,
we again make use of the construction G′. The ζ-D-E-
INCENTIVE-SYNTHESIS problem can be solved by model-
checking the following SL[F ] formula:

∃T .
[
(n+ 1, T )∃σ′.[ζ(σ′) ∧ (Ag,σ′)tr2(φ)]

]
.

By a similar argument as in the proof of Theorem 3, model-
checking this formula solves the ζ-D-E-INCENTIVE-
SYNTHESIS, and we can extract the dynamic incentive
scheme T from a witness T to the outer existential quan-
tifier of the above formula using the method outlined in the
proof of Proposition 2. Noting that the quantifiers over T
and σ′ do not introduce another level of alternation, model
checking this formula is also in 2EXPTIME.

For ζ-D-A-INCENTIVE-SYNTHESIS, we cannot group
the quantifiers for incentive schemes and the candidate ζ-
equilibria, which introduces another level of alternation in
the representative SL[F ] formula:

∃T .
[
(n+ 1, T )∀σ′.[ζ(σ′) → (Ag,σ′)tr2(φ)]

]
.

This leads to a 3EXPTIME procedure for the universal in-
centive synthesis problem. For the lower bounds, one can
use the same reduction as in Theorem 2, where we set up
the game so that the incentive designer has no effect on the
rational outcomes of the original rational synthesis problem.
The addition of memory for the incentive designer does not
impact their capabilities in this setup, so the arguments for
the reduction carry through.
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6 Conclusion

We have introduced an approach to designing incentives for
rational agents with LTL[F ] goals in order to achieve a so-
cietal objective. We formalized the problems of verifying
and synthesizing static and dynamic incentive schemes for
a range of solution concepts. We then proved that, for all
solution concepts that we consider, the complexity of in-
centive verification is 2EXPTIME-complete, which is not
harder than the corresponding qualitative rational verifica-
tion problems. In practice, verification is double exponential
only in the sizes of the formulae representing the societal ob-
jectives, which are typically small for most applications. In
the case of incentive synthesis, we showed it is 2EXPTIME-
complete in the static case and in 3EXPTIME in the dynamic
case.

Similar to the rational verification problem, our static in-
centive synthesis has double exponential cost only in the size
of the goals. However, there is also an additional exponen-
tial cost in the size of the representation of the granularity,
which can be chosen by the incentive designer for their pur-
poses. In practical applications such as setting interest rates
or fixing minimum bidding increments in auctions, incen-
tive designers typically use a rather coarse level of gran-
ularity, which would not incur a significant blowup in the
algorithm’s worst-case runtime. For dynamic incentive syn-
thesis, there is a triple exponential cost in the size of the
goals, and we again have an exponential cost in the size of
the granularity, but the cost is the same as in verification for
the remaining parts of the input. Thus, even with a poten-
tially exponential gap between static and dynamic incentive
synthesis, for relatively succinct goal specifications, there
may not be a significant difference in runtimes between the
two approaches.

For future work, we intend to study the synthesis of in-
centive schemes with minimal modifications to the original
game and to analyze Incentive Design in the cooperative set-
ting. Due to the expressivity of SL[F ], many additional re-
quirements or constraints that one may wish to impose on
the incentive schemes can be naturally incorporated into the
global goal in our framework, which enables a wide vari-
ety of incentive design problems to be solved using the ap-
proaches outlined here.
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