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Abstract
Description Logic (DL) ontologies often need to model simi-
lar properties for different concepts. Taking inspiration from
generic classes in object-oriented programming, we introduce
concept parameters to describe related concepts. For exam-
ple, LocalAnesthesia[Eye] and LocalAnesthesia[Knee]
can be used to describe the anesthesia of an eye or a knee, re-
spectively. The main benefit of generic concepts is to be able
to describe general properties, for example, that every local
anesthesia is done by applying an anesthetic drug. We pro-
pose to use generic concepts, such as LocalAnesthesia[X]
to define such properties, where a concept variable X can
be replaced with suitable concepts. To capture the intended
meaning of generic concepts, we define two semantics for
this extension: the schema semantics, in which concept vari-
ables represent arbitrary concepts from a specific language,
and the second-order semantics, in which variables represent
arbitrary subsets of the domain. Generally, the second-order
semantics gives more logical consequences, but the schema
semantics allows a reduction to the classical DL reasoning.
To combine the benefits of both semantics, we define a useful
extension of the DL EL, for which both semantics coincide,
and a further restriction in which the entailment problem is
decidable.

1 Introduction and Motivation
Complex ontologies often contain groups of structurally
similar axioms. For example, one of the largest medi-
cal ontologies SNOMED CT1 defines various medical pro-
cedures characterized by the body location in which they
are applied and the medical substance used. For ex-
ample, DesensitizingTooth ⊑ ∃site.ToothStructure ⊓
∃substance.TopicalAnesthethic. When modeling such
procedures in object-oriented languages, such as Java, one
would typically use generic classes (see, e.g., (Garcia et al.
2003)) such as Application<L,S>, in which the type
parameter L refers to the location of the application and S
refers to the applied substance. These parameters can be
used, e.g., as return types of functions like getSite()
and getSubstance(). A concrete medical procedure,
such as DesensitizingTooth can then be defined
as Application<Tooth,TopicalAnesthethic>.
Generic classes offer many advantages, such as code re-
usability, readability, and prevention of modeling errors.

1https://www.snomed.org/

In this paper, we look at how similar generic concepts
can be defined in Description Logics (DLs). First, we al-
low atomic concepts to be parameterized with other con-
cepts. For example, we can write Heart[Dog] to rep-
resent the hearts of dogs or even Heart[∃owns.Dog] or
Heart[Owner[Dog]] to represent the hearts of dog owners.
Second, we allow the use of concept variables in places
of concepts to define the generic properties of (parameter-
ized) concepts. For example, we can define the generic
owner concept using an equivalence axiom Owner[X] ≡
∃owns.X . Intuitively, here the concept variable X can
be replaced with any other (parameterized) concept, ob-
taining more specific axioms such as Owner[Dog] ≡
∃owns.Dog. We also allow the usage of concept variables
without parameterized concepts, e.g., ∃owns.(X ⊓ Pet) ⊑
∃feeds.X as this axiom could anyway be expressed by ax-
iom Owner[X ⊓ Pet] ⊑ ∃feeds.X .

One possibility for defining the semantics of our lan-
guage extension is to regard parameterized concepts, such
as Heart[C], as atomic concepts, interpreted independently
for different values of C. Axioms with concept variables,
such as Owner[X] ≡ ∃owns.X , can be regarded as ax-
iom schemata that represent the set of axioms Owner[C] ≡
∃owns.C obtained after replacement of variables with con-
cepts. We call the semantics defined in this way the schema
semantics.

One advantage of the schema semantics for concept vari-
ables, is that any DL reasoning procedure could, in prin-
ciple, be used for checking entailment in the correspond-
ing generic DL extension, by systematically generating in-
stances of axiom schemata and checking entailment from the
resulting (increasing) sets of ordinary axioms (again, treat-
ing parametrized concepts as atomic concept names). This
immediately implies semi-decidability of the schema exten-
sion and, in cases limited to a finite number of replacement
concepts, also decidability and complexity results.

The schema semantics, however, also has disadvantages,
one is, that the entailments depend on the choices of con-
cepts used for variable replacements. Consider, for exam-
ple, the axiom schema ⊤ ⊑ ∃r.X . If we allow only re-
placements of X with EL concepts C, the resulting set of
axioms would be satisfiable, since there is a model (with one
element) that interprets every EL concept (including every
∃r.C) by the whole domain. If, however, we additionally
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allow X to be replaced by ⊥, i.e., by taking concepts from
EL⊥, then, clearly, this schema becomes unsatisfiable. As a
consequence, this axiom schema results in new EL logical
conclusions (e.g., A ⊑ B) when viewing it in the context of
a larger language (e.g., EL⊥). In Section 3 we give a simi-
lar example where an EL schema results in new EL conse-
quences when using ALC concept replacements, this time,
without making axioms inconsistent.2

Another problem with schema semantics is the preserva-
tion of equivalence. Again, assume that we have an equiv-
alence axiom Owner[Dog] ≡ ∃owns.Dog. Should then
the concepts Heart[∃owns.Dog] and Heart[Owner[Dog]]
be equivalent as well? Intuitively, both concepts describe
the same set of hearts of dog owners in two different ways.
However, under the schema semantics, both concepts are re-
garded as different atomic concepts, which can have differ-
ent interpretations. This example suggests that interpreta-
tions of parameterized concepts should depend on interpre-
tations of parameters and not on their syntactic form.

To come up with an alternative semantics that overcomes
these problems, once again, consider the generic axiom
Owner[X] ≡ ∃owns.X . According to this definition, in
every model of this axiom, the interpretation of Owner[C]
should be obtained from the interpretation of C by applying
some function – in this example the function that converts
the interpretation of C to the interpretation of ∃owns.C.
Our general assumption now is that the same holds for every
generic concept. E.g., we assume that concept Heart[X]
is an abbreviation for some (unknown) concept (possibly
in a very expressive DL) that uses the concept variable
X . Semantically, this means that in every interpretation
I = (∆I , ·I) there is a function HeartI that maps each
subset of domain elements M ⊆ ∆I (potentially the inter-
pretation of some concept C), to a subset HeartI(M) ⊆
∆I – the corresponding interpretation of the unknown con-
cept in which X is replaced with C. Parameterized con-
cepts can then be interpreted by applying this function, e.g.,
(Heart[Dog])I = HeartI(DogI). This definition ensures
that (Heart[C])I = (Heart[D])I whenever CI = DI .
The interpretation can also be extended to complex (generic)
concepts, such as ∃owns.(X ⊓ Heart[∃owns.X]), which
are, similarly, interpreted by functions from subsets of ∆I

to subsets of ∆I . Finally, an interpretation satisfies an ax-
iom, such as, Owner[Owner[X]] ⊑ Owner[X] if the values
of the respective functions are included for every argument.
Intuitively, the variable X ranges now not over possible con-
cepts C of some language but over all subsets M of the do-
main, or, equivalently, all unary predicates M(x). Hence,
we refer to this semantics as the second-order semantics.

It is easy to see that the second-order semantics is stronger
than the schema semantics. Indeed, if an axiom is sat-
isfied under the second-order interpretation I, then after
replacement of variables X by concepts C, the result-
ing axioms are satisfied in the (classical) interpretation J

2To see why this could be a concern, imagine that the axiom
schemata of Propositional Logic (PL) would obtain new logical
consequences (in the language of PL) when allowing variables to
be replaced by modal formulas.

that interprets (parameterized) concepts in the same way:
(Heart[Dog])J = (Heart[Dog])I = HeartI(DogI). The
converse is not true: as mentioned, the axiom ⊤ ⊑ ∃r.X
is satisfiable for replacement of variables with EL concepts,
but it is not satisfied in any second-order interpretation I be-
cause X can be replaced with the empty set ∅ = ⊥I ⊆ ∆I .
Furthermore, whereas schema entailment can always be re-
duced to first-order entailment (from a possibly infinite set of
formulas), there are axioms whose models under the second-
order semantics cannot be expressed by first-order formulas.
For example, the well-known Modal Logic (ML) McKinsey
axiom ✷✸X → ✸✷X – which can be written in the generic
extension of the DL ALC as ∀r.∃r.X ⊑ ∃r.∀r.X – cannot
be translated into even an infinite set of first-order formulas
that holds in exactly the same interpretations (of r) (Gold-
blatt 1975). Hence, even semi-decidability for this language
under the second-order semantics is an open question.

To combine the advantages of the schema and the second-
order semantics, in this paper, we are concerned with the
question, of whether there are restricted forms of generic
axioms for which second-order entailments are identical to
schema entailments. We answer this question positively by
defining a useful fragment of the generic extension of the
DL EL for which both semantics coincide, and its further
restriction, for which entailment under these (equivalent)
semantics is decidable in EXPTIME and in PTIME (Sec-
tion 6). Interestingly, the PTIME fragment can express sev-
eral well-known DL features, such as role chain axioms,
positive self restrictions, reflexive roles, and some forms
of (local) role-value-maps from KL-ONE, without requiring
additional DL constructors (see Section 7).

The main idea for proving these results, is to show that
the standard EL canonical model (Baader, Brandt, and Lutz
2005) for axioms obtained by replacing concept variables
with certain relevant EL concepts, can be extended to a
second-order model of the generic axioms. To obtain the
decidability and complexity result, we define a further re-
striction, in which the number of these relevant concepts is
at most polynomial. Therefore, the number of the resulting
schema instances is bounded by a function polynomial in the
size of the ontology and exponential in the maximal number
of different concept variables appearing in its axioms.

The results of this paper extend our previous results
(Hirschbrunn and Kazakov 2023) in which we allowed con-
cept variables but not parametrized concepts.

2 Related Works
Axiom schemata is certainly not a new concept. In fact, most
logic languages, including PL, First-Order Logic (FOL),
and MLs were originally defined axiomatically (see, e.g.,
(Blackburn, de Rijke, and Venema 2001)). In the context of
DLs, axiom schemata are used to define Nominal Schemas
(Krötzsch et al. 2011), in which (nominal) variables can be
replaced with any individual appearing in the ontology. Ax-
iom schemata with existentially-quantified concepts can also
be used to define operations, such as interpolants or least-
common subsumer (Colucci et al. 2010). To obtain decid-
ability results, most works restrict the set of values that can
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be used for the replacement of variables so that the resulting
set of (ordinary) axioms is finite. However, even for un-
restricted axiom schemata, such as those found in PLs and
MLs, it can often be shown that it is sufficient to replace vari-
ables with only finitely-many formulas found in (or built us-
ing) the entailment to be proved. For MLs, this sub-formula
property usually follows from cut-free sequent-style calculi
(see, e.g., (Fitting 2007)).

The idea of representing similar axioms in a general way
has been used in Ontology Design Patterns (ODPs) (He,
Zheng, and Lin 2015; Skjæveland et al. 2018; Kindermann
et al. 2018; Krieg-Brückner, Mossakowski, and Neuhaus
2019; Kindermann, Parsia, and Sattler 2019; Skjæveland et
al. 2017; Borgida et al. 2012). Somewhat similar to our
schema semantics, here one uses concept variables to de-
fine axiom templates, which can be used to generate ordi-
nary axioms for specific applications. The difference to our
extension is that ODPs do not include proper generic con-
cepts such as Owner[X] and are not endowed with model-
theoretic semantics. Instead, ODPs are typically a kind of
pre-processing step, where variables are replaced by con-
cepts from fixed sets of candidates to produce a classical
ontology that is then used as usual. This is even weaker than
our schema semantics, as for the schema semantics we do
not use a limited, application-dependent set of concepts to
replace variables, but a large set of concepts independent of
the specific use case, for example the set of all EL concepts.

3 Schema Semantics
We start by formally defining our extension of DLs with pa-
rameterized concepts and concept variables:

Definition 1 (Syntax). The syntax of DLs with parameter-
ized concepts and concept variables consists of disjoint and
countably infinite sets NC of concept names, each with an
assigned arity ar(A) ∈ N (A ∈ NC), NR of role names,
and NX of concept variables. Given a base DL L that
is a fragment of SROIQ, such as EL and ALC, we de-
fine by LX its corresponding extension with parameterized
(atomic) concepts and concept variables. Specifically, the
set of LX -concepts is the smallest set containing concept
variables X ∈ NX , concept atoms A[C1, . . . , Cn] where
A ∈ NC , n = ar(A) and Ci are LX -concepts (1 ≤ i ≤ n),
and which is closed under the concept constructors of L. An
LX -ontology is a (possibly infinite) set K of LX -axioms,
which are constructed from LX -concepts using the axiom
constructors of L.

Let the expression ex be either a LX -concept, a LX -
axiom, or a LX -ontology. We denote by sub(ex) (all) sub-
concepts of ex, i.e., substrings of the expression that are
valid concepts (not to be confused with concepts that are
subsumed by ex). For LX -concepts and LX -axioms, we
split sub(ex) into sub+(ex) and sub−(ex) the set of con-
cepts that occur positively, respectively negatively in ex, i.e.,
they occur on the right side of the axiom under an even (odd)
number of nested negations or on the left side under an odd
(even) number of nested negations, sub(ex) = sub+(ex) ∪
sub−(ex). We denote by vars(ex) = sub(ex) ∩ NX the
set of concept variables occurring in ex. We say that ex

is ground if vars(ex) = ∅. We denote by args(ex) the
set of (complex) concepts occurring as arguments of atomic
concepts in ex. Additionally, we define args+(ex) and
args−(ex) analogous to sub+(ex) and sub−(ex).

A (concept variable) substitution is a partial mapping θ =
[X1/C1, . . . , Xn/Cn] that assigns concepts Ci to concept
variables Xi (1 ≤ i ≤ n). We denote by θ(ex) the result of
applying the substitution to ex, defined in the usual way.

From now on we assume that DL concepts, axioms, and
ontologies may contain concept variables and parameterized
(atomic) concepts. If there are no variables in a concept,
axiom, or ontology, we call it ground.
Example 1. Consider the following three (non-ground) ax-
ioms:

α = A[X,Y ] ≡ ∃r.X ⊓ ∃s.Y, (1)
β = A[X,X] ⊑ ∃t.X, (2)
γ = A[X,Y ] ⊑ ∃t.(X ⊔ Y ). (3)

Axioms α, β belong to ELX , whereas axiom γ belongs to
ALCX due to the use of concept disjunction ⊔. Further,
args(α) = {X,Y }, sub+(β) = {∃t.X,X}, sub−(γ) =
{A[X,Y ], X, Y }, and vars(γ) = {X,Y }. Finally, for a
(non-ground) substitution θ = [X/X ⊔ Y ], we have:

θ(β) = A[X ⊔ Y,X ⊔ Y ] ⊑ ∃t.(X ⊔ Y ). (4)

Intuitively the axioms can be thought of as axiom
schemata representing all axioms obtained by replacing the
concept variables X and Y with ordinary (ground) concepts.
However, there are two problems: 1) it is unclear how to in-
terpret the parameterized concept formally and 2) the choice
of ground concepts to replace variables by is not obvious.
One could replace variables by just atomic concepts, or only
by concepts appearing in the given ontology, or by con-
cepts that can be constructed in a particular DL. Clearly,
each of these choices may result in different logical conse-
quences and algorithmic properties of the resulting schema
languages. To handle all such choices and the interpretation
of parameterized concepts, we provide a general (parame-
terized) definition of a schema entailment.
Definition 2 (Schema Semantics). A schema interpretation
for LX is a pair I = (∆I , ·I), where ∆I is a nonempty set
called the domain of I and · an interpretation function that
assigns to every ground LX -atom A[C1, . . . , Cn] a subset of
the domain A[C1, . . . , Cn]

I ⊆ ∆I and to every r ∈ NR a
relation rI ⊆ ∆I ×∆I . The interpretation I is extended to
ground LX -concepts and ground LX -axioms as usual. For
a ground LX -axiom α and ground LX -ontology K, we write
I |=∗ α when α is satisfied in I, I |=∗ K when I satisfies
every axiom in K, and K |=∗ α when I |=∗ K implies I |=∗

α for every schema interpretation I.
Let H be a (possibly infinite) set of ground LX -concepts

called a concept base. For an LX -axiom α, and LX -
ontology K, define by α↓H = {α[X1/C1, . . . Xn/Cn] |
Xi ∈ vars(α) & Ci ∈ H} and K↓H =

⋃
α∈K α↓H the

set of H-ground instances of α and K, respectively. For a
schema interpretation I, we write I |=∗

H α and I |=∗
H K

if I |=∗ α↓H and I |=∗ K↓H . We write K |=∗
H α if
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K↓H |=∗ α↓H and we say that α is a logical consequence of
K under schema entailment for a concept base H . Finally,
we write α↓L, K↓L and K |=∗

L α instead of α↓H , K↓H and
K |=∗

H α, respectively, if H is the set of all L-concepts. We
also sometimes use K |=∗

LX↓
α if K |=∗

H α for the set H of
all ground LX -concepts.

Note that if the concept base H is finite, entailment K |=∗
H

α under the schema semantics for H in LX can be reduced
to the standard DL entailment in L by replacing each ground
atom A[C1, . . . , Cn] in K↓H and α↓H with a distinguished
atomic concept.
Example 2 (Example 1 Continued). Notice that {γ} |=∗

H β
for any concept base H . Indeed, take any β′ = θ(β) =
A[C,C] ⊑ ∃t.C ∈ β↓H . Then γ↓H ∋ γ[X/C, Y/C] =
A[C,C] ⊑ ∃t.(C ⊔ C) |= β′. Also, notice that if H is
closed under concept disjunctions (i.e., C ∈ H and D ∈
H imply C ⊔ D ∈ H) then {α, β} |=∗

H γ. Indeed, take
any γ′ = θ(γ) = A[C,D] ⊑ ∃t.(C ⊔ D) ∈ γ↓H for θ =
[X/C, Y/D]. Since H is closed under disjunction, we have
{α, β}↓H ⊇ {A[C,D] ≡ ∃r.C ⊓∃s.D,A[C ⊔D,C ⊔D] ≡
∃r.(C⊔D)⊓∃s.(C⊔D), A[C⊔D,C⊔D] ⊑ ∃t.(C⊔D)} |=
{∃r.C ⊓ ∃s.D ⊑ ∃t.(C ⊔ D), A[C,D] ⊑ ∃t.(C ⊔ D)} |=
γ′ Consequently, {α, β} |=∗

ALCX↓
γ. However, it can be

shown that {α, β} ̸|=∗
ELX↓

γ. To prove this, consider the
EL ontology:

K = { L ⊑ ∃r.B⊓∃s.C, ∃t.B ⊑ D, ∃t.C ⊑ D } (5)

It is easy to see that K ∪ {α, γ}↓ELX↓ ⊇ K ∪ {α′, γ′} |=
L ⊑ D for α′ = α[X/B, Y/C] = A[B,C] ≡ ∃r.B ⊓ ∃r.C,
γ′ = γ[X/B, Y/C] = A[B,C] ⊑ ∃t(B ⊔ C). Hence, K ∪
{α, γ} |=∗

ELX↓
L ⊑ D. We show that K ∪ {α, β} ̸|=∗

ELX↓

L ⊑ D, which, in particular, implies that {α, β} ̸|=∗
ELX↓

γ,
for otherwise K ∪ {α, β} |=∗

ELX↓
K ∪ {α, γ} |=∗

EL L ⊑ D.
To prove that K ∪ {α, β} ̸|=∗

ELX↓
L ⊑ D, consider the

interpretation I = (∆I , ·I) defined by: ∆I = {a, b, c},
LI = {a}, BI = {b}, CI = {c}, A[B,C]I = A[⊤, C]I =
A[B,⊤]I = A[⊤,⊤]I = {a}, rI = {⟨a, b⟩}, sI =
{⟨a, c⟩}, tI = {⟨a, a⟩}, and E[E1, . . . , En]

I = hI = ∅
for all remaining concepts E[E1, . . . , En] and h ∈ NR.
Clearly, I |= K and I ̸|= L ⊑ D. It remains to prove
that I |= {α, β}↓ELX↓ . Take any α[X/E1, Y/E2] =
A[E1, E2] ≡ ∃r.E1 ⊓ ∃s.E2 ∈ α↓ELX↓ . Then either
(∃r.E1 ⊓ ∃s.E2)

I = ∅ or and a ∈ (∃r.E1 ⊓ ∃s.E2)
I and

E1 ∈ {B,⊤}, E2 ∈ {C,⊤}. In the first case A[E1, E2]
I =

∅ and in the latter A[B,C]I = A[⊤, C]I = A[B,⊤]I =
A[⊤,⊤]I = {a}. Therefore I |= α↓ELX↓ . Next, take
any β[X/F ] = A[F, F ] ⊑ ∃t.F ∈ β↓ELX↓ and any
d ∈ A[F, F ]I . Then d = a and F = ⊤ by definition of
I. Then d = a ∈ (∃t.⊤)I = (∃t.F )I as required.

Combining the above observations, we obtain: K ∪
{α, β} |=∗

ALCX↓
K ∪ {α, γ} |=∗

ELX↓
K ∪ {α, γ} |=∗

ELX↓

A ⊑ D, however, K ∪ {α, β} ̸|=∗
ELX↓

A ⊑ D.

4 Second-Order Semantics
Example 2 shows that, for the schema semantics, an ontol-
ogy formulated in one DL may have different conclusions,

even in the same DL, when the concept base is extended to
a larger language. This goes against the usual understanding
of logic, as this means that the consequences of an ontol-
ogy are not determined by the ontology alone. To mitigate
this problem, we consider the second-order semantics that is
independent of a concept base.

Definition 3 (Second-Order Semantics). A (second-order)
interpretation for a LX is a pair I = (∆I , ·I), where ∆I

is a nonempty set called the domain of I and ·I is an inter-
pretation function, that assigns to every A ∈ NC with arity
n = ar(A) a function AI : (2∆

I
)n → 2∆

I
and to every

r ∈ NR a relation rI ⊆ ∆I ×∆I . A valuation for I (also
called a variable assignment) is a mapping η that assigns to
every variable X ∈ NX a subset η(X) ⊆ ∆I .

The interpretation of LX -concepts CI,η ⊆ ∆I is re-
cursively defined by XI,η = η(X) for X ∈ NX ,
A[C1, . . . , Cn]

I,η = AI(CI,η
1 , . . . , CI,η

n ), and is extended
to other LX -concepts in the usual way. Satisfaction of ax-
ioms I |=2

η α under I and η is determined from interpreta-
tion of LX -concepts in α in the standard way. For example,
I |=2

η C ⊑ D iff CI,η ⊆ DI,η . We write I |=2 α if I |=2
η α

for every valuation η. Finally, for an ontology K, we write
I |=2 K if I |=2 β for every β ∈ K, and we write K |=2 α
if I |=2 K implies I |=2 α.

It is easy to show that second-order entailments are closed
under substitutions:

Lemma 1. I |=2 α implies I |=2 θ(α) for every LX -axiom
α, and every concept substitution θ.

Proof. To show that I |=2 θ(α), take any valuation η.
We need to prove that I |=2

η θ(α). Define another valua-
tion µ by setting µ(X) := θ(X)I,η for every X ∈ NX .
By induction over LX -constructors, it is easy to show that
CI,µ = θ(C)I,η for every LX -concept C and I |=2

η θ(β)

iff I |=2
µ β for every LX -axiom β. Now, since I |=2 α, we

obtain I |=2
µ α and thus I |=2

η θ(α). Since η was arbitrary,
this proves that I |=2 θ(α).

As discussed in Section 1, the second-order semantics is
stronger than the schema semantics:

Lemma 2. Let K be an LX -ontology, α a ground LX -
axiom, and H a set of ground LX -concepts. Then K |=∗

H α
implies K |=2 α.

Proof. To show K |=2 α, take any second-order interpreta-
tion I = (∆I , ·I) such that I |=2 K. We prove that I |=2 α.
For this, define a schema interpretation J = (∆J , ·J ) with
∆J = ∆I , A[D1, . . . , Dn]

J := A[D1, . . . , Dn]
I for ev-

ery A ∈ NC , n = ar(A) and Di ground LX -concepts, and
rJ = rI for every r ∈ NR. Note that this definition im-
plies that DJ = DI for every ground LX -concept since the
extension of interpretation under concept constructors is de-
fined in I and J in the same way. Likewise, I |=2 β iff
J |=∗ β for every ground LX -axiom β.

We claim that J |=∗
H K. Indeed, take any β ∈ K↓H .

Then β = θ(γ) for some γ ∈ K and substitution θ. Since
I |=2 K, we have I |=2 γ. Then by Lemma 1, I |=2 β.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

456



Since β is ground, we have J |=∗ β. Since β ∈ K↓H was
arbitrary, this proves that J |=∗

H K. Since K |=∗
H α, we

obtain J |=∗
H α. Since α is ground, we have J |=∗ α, and

so I |=2 α. Since I |=2 K was arbitrary, this proves that
K |=2 α.

Note that Lemma 2 cannot be extended to non-ground α.
Indeed, take K = {A[C] ⊑ B[C]}, α = A[X] ⊑ B[X] and
H = {C}. Clearly, K |=∗

H α, but K ̸|=2 α.
Let us consider some examples for the DL ELX , which

have more second-order entailments than entailments using
the schema semantics for which all ground ELX concepts
are included in the concept base. These examples will help
us to determine the restrictions for the use of concept vari-
ables, under which both semantics coincide.

First, we give a minor modification of the example with
axiom ⊤ ⊑ ∃r.X discussed in Section 1, which does not
result in an inconsistent ontology under the second-order se-
mantics.

Example 3. Consider the ontology K = {A ⊑ ∃r.X}. It is
easy to see that K |=2 ∃r.A ⊑ A. Indeed, assume that I |=2

K, and take any valuation η such that η(X) = ∅. Then
AI = AI,η ⊆ (∃r.X)I,η = ∅. Hence (∃r.A)I = ∅ ⊆ AI .
At the same time K ̸|=∗

ELX↓
∃r.A ⊑ A. Indeed, consider the

interpretation I = (∆I , ·I) with ∆I = {a, b}, AI = {a},
F [C1, . . . , Cn]

I = {a, b} for every F [C1, . . . , Cn] ̸= A,
and rI = {⟨a, a⟩, ⟨b, a⟩} for every r ∈ NR. By struc-
tural induction, it is easy to show that a ∈ CI for every
ground ELX concept C, hence I |= A ⊑ ∃r.C. Therefore,
I |=∗

ELX↓
K. However, since (∃r.A)I = {a, b} ̸⊆ {a} =

AI , we obtain K ̸|=∗
ELX↓

∃r.A ⊑ A.

Example 3 can be generalized to many other ELX axioms
C ⊑ D for which there exists a concept variable X appear-
ing in D but not in C. In this case, I |=2 C ⊑ D implies that
CI,η = ∅ for every valuation η because for the extension η′

of η with η′(X) = ∅, we obtain CI,η = CI,η′ ⊆ DI,η′
= ∅.

Now, take any I |=2 C ⊑ D. Then CI,η = ∅ for ev-
ery valuation η. Then θ(C)I = ∅ for every concept vari-
able substitution θ. Then for every ground ELX concept E
such that θ(C) ∈ sub(E) we have EI = ∅ as well. Thus,
{C ⊑ D} |=2 E ⊑ F for every F . If the schema semantics
preserves all these entailments then, in particular, all such
concepts E (containing instances of C) must be equivalent.
This can happen only in some trivial cases, e.g., when the
K contains an axiom of the form X ⊑ Y , which implies
that all concepts are equivalent. To ensure that the seman-
tics coincide in non-trivial cases, it, therefore, makes sense
to require that all variables that are present on the right side
of a concept inclusion axioms are also present on the left
side. Axioms that fulfill this requirement we called range
restricted axioms.

Example 4. Consider the ELX ontology K = {A ≡
B,C ⊑ F [A,B], F [X,X] ⊑ D}. It is easy to see that
K |=2 C ⊑ D but K ̸|=∗

ELX↓
C ⊑ D.

Example 4 presents another situation when the schema se-
mantics gives fewer consequences than the second-order se-
mantics. The problem in this example is that the variable X

occurs twice on the left side of an axiom, which prevents the
axiom F [A,B] ⊑ D from being constructed in the schema
entailment, even though F [A,B] ≡ F [A,A] ≡ F [B,B] in
second-order semantics.
Example 5. Consider the following two (non-ground) ax-
ioms:

α = A[X,X] ⊑ ∃t.X, (6)
β = A[X,Y ] ⊑ ∃t.(X ⊔ Y ). (7)

Example 5 shows that this is also an issue in the ab-
sence of atomic concepts with arity non-zero. This is a
simplified form of Example 2. For the same argument as
in this example, for α (6) and an EL ontology K from
(5), we have K ∪ {α} ̸|=∗

ELX↓
A ⊑ D, however, since

{α} |=∗
ALCX↓

β (7) and K ∪ {β} |=∗
ELX↓

A ⊑ D, we
have K ∪ {α} |=2 A ⊑ D.

The problem with α in this example is that the variable
X occurs twice on the left side of the axiom, which makes
this axiom equivalent to β under the second-order seman-
tics, and, consequently, being able to express an axiom with
a concept disjunction ∃r.C ⊓ ∃s.D ⊑ ∃t.(C ⊔ D), which
otherwise could not be expressed by ordinary ELX axioms,
i.e., under the schema semantics.

To prevent such cases for our fragment of ELX , it, there-
fore, makes sense to prohibit the occurrence of the same
variable twice on the left side of an axiom. Concepts in
which each variable occurs at most once, we call linear.
Example 6. Consider the ground ELX ontology K = {A ≡
B,C ⊑ F [A], F [B] ⊑ D}. It is easy to see that K |=2 C ⊑
D. Indeed, take any I |=2 K and d ∈ CI . Then, because
AI = BI , d ∈ F [A]I = F I(AI) = F I(BI) = F [B]I

and then because I |= F [B] ⊑ D, d ∈ DI .
On the other hand, K ̸|=∗

ELX↓
C ⊑ D, because for

schema entailment, we see parameterized concepts as names
of new, independent atomic concepts, which means that
there is a I |= K such that F [A]I ̸= F [B]I .

Therefore, for schema entailment and entailment us-
ing the second-order semantic to be equivalent, we need
to prevent cases such as in Example 6. To do this,
we need to either disallow C ⊑ F [A] or F [B] ⊑
D. If we return to generics in programming lan-
guages, we find that indeed F [B] ⊑ D is usually
disallowed. Consider e.g. Java, here we can define
class Text extends ArrayList<String>, but
not class ArrayList<String> extends Text.
Therefore, we disallow using parameterized concepts on the
right side of axioms if they contain an argument that is not
a simple variable. That is, F [X] ⊑ D is still allowed,
corresponding to class MyArrayList<T> extends
MyList<T> in Java. Concepts containing only parameter-
ized concepts with simple variables as arguments, we call
pure.

The next example motivates our last restriction.
Example 7. Consider the ELX ontology K = {∃r.X ⊑
∃s.(X ⊓ A)}. It is easy to see that K |=2 ∃r.⊤ ⊑ ∃r.A.
Indeed, take any I |=2 K and d ∈ (∃r.⊤)I . Then there
exists d′ ∈ ∆I such that ⟨d, d′⟩ ∈ rI . Take any valuation
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η with η(X) = {d′}. Since ⟨d, d′⟩ ∈ rI , we have d ∈
(∃r.X)I,η . Since I |=2

η K, we have d ∈ (∃s.(X ⊓ A))I,η .
In particular, ∅ ̸= (X⊓A)I,η = {d′}∩AI . Hence d′ ∈ AI .
Consequently, d ∈ (∃r.A)I .

On the other hand, K ̸|=∗
ELX↓

∃r.⊤ ⊑ ∃r.A, as ev-
idenced by the counter-model I = (∆I , ·I) with ∆I =
{a, b}, AI = {a}, rI = {⟨a, b⟩}, sI = {⟨a, a⟩},
and E[C1, . . . , Cn]

I = ∅, hI = ∅ for any remaining
E[C1, . . . , Cn] and h ∈ NR. To show that I |=∗

ELX↓
K, we

prove that I |= ∃r.C ⊑ ∃s.(C ⊓ A) for every ground ELX
concept C. For this, take any d ∈ (∃r.C)I . By definition of
rI , d = a and b ∈ CI . Then C can be only a conjunction
of concept ⊤. Hence a ∈ C. Hence d = a ∈ (∃s.C)I . Thus
I |= K. Since, a ∈ (∃r.⊤)I but (∃r.A)I = ∅, we proved
that K ̸|=∗

ELX↓
∃r.⊤ ⊑ ∃r.A.

Note that under the second-order semantics, the axiom
∃r.X ⊑ ∃s.(X ⊓ A) in K from Example 7 implies two
properties: (1) that r is a subrole of s (r ⊑ s), which is
equivalent to axiom ∃r.X ⊑ ∃s.X , and (2) that A is a range
of the role r (ran(r) ⊑ A), which is due to the fact that
for any element d′ such that ⟨d, d′⟩ ∈ rI this axiom holds
for X = {d′}. As was shown in the example, the schema
semantics cannot capture the second kind of properties. In
fact, an extension of EL with both (complex) role inclusions
and range restrictions becomes undecidable (Baader, Lutz,
and Brandt 2008)), which could explain why the schema se-
mantics cannot characterize consequences in this extension.
The same problem also occurs if single variables occur as
part of arguments of parameterized concepts. The easiest
way to see this is by simply adapting Example 7. Consider
the ontology K = {∃r.X ⊑ B[X ⊓ A], B[X] ⊑ ∃s.X},
clearly this is equivalent to the ontology in Example 7 and
has the same issues. To prevent situations like the one in Ex-
ample 7, we require that variables in the right side of axioms
appear only directly under existential restrictions. We gener-
alize a related notion of safe nominals (Kazakov, Kroetzsch,
and Simancik 2012) to define this restriction:

Definition 4 (Safe Concept). A ELX concept G is called
safe (for concept variables) if variables only occur in the
form of ∃r.X or directly as arguments of atomic concepts,
i.e. safe concepts are defined by the grammar:

G(i) ::= ⊤ | F [D1, . . . , Dn] | ∃r.X | ∃r.G | G1 ⊓G2

where Di is either a safe concept or a variable X ∈ NX .

5 When Semantics Coincide
In this section, we prove that the restrictions on the use of
concept variables and parameterized concepts as discussed
in Section 4 are sufficient to guarantee that the (ground)
logical consequences under the schema semantics and the
second-order semantics coincide. Towards this goal, we de-
fine a fragment ELXF1 of ELX that satisfies these restric-
tions:

Definition 5 (ELXF1). A ELX axiom β = E ⊑ G is in the
fragment ELXF1, if

• β is range restricted, i.e. vars(G) ⊆ vars(E),

• E is linear, i.e. E does not contain any variable twice,
• E is pure, i.e. args(E) ⊆ NX , and
• G is safe (cf. Definition 4).

Our next goal is to prove that K |=2 α implies K |=∗
H α

for every ELXF1 ontology K and certain ELX -axioms
α, provided that H contains all “relevant” ground ELX -
concepts determined by K and α. We prove this implication
by extending the well-known EL canonical model construc-
tion (Baader, Brandt, and Lutz 2005; Kazakov, Krötzsch,
and Simancik 2014) to ELX . Usually, canonical models are
defined using consequences of the ontology derived by cer-
tain inference rules, however, in our case, we define them
using consequences under the schema semantics.

Definition 6 (Canonical Interpretation). Let K be an ELX
ontology and H a nonempty concept base. The canonical
interpretation (w.r.t. K and H) is a second-order interpreta-
tion I = I(K, H) = (∆I , ·I) where ∆I = {xC | C ∈ H},
F I(M1, . . . ,Mn) = {xC ∈ ∆I | ∃xDi

∈ Mi : K |=∗
H

C ⊑ F [D1, . . . , Dn]} for F ∈ NC , and rI = {⟨xC , xD⟩ ∈
∆I ×∆I | K |=∗

H C ⊑ ∃r.D} for r ∈ NR.

Our next goal is to show that the defined interpretation
is indeed a model of K: I |=2 K. To achieve this, we
characterize the interpretation of ELX -concepts in terms of
schema entailment from K, similar to how interpretations of
atomic concepts were defined in I. For this, we need to be
able to turn valuations into substitutions by ground concepts.

Definition 7. Let I be a canonical interpretation w.r.t. an
ELX ontology K and a concept base H , and η a val-
uation for I. An η-substitution is any substitution θ =
[X1/D1, . . . , Xn/Dn] such that xDi

∈ η(Xi) (1 ≤ i ≤ n).

Lemma 3. Let I be the canonical interpretation w.r.t. an
ELX ontology K and a concept base H , η a valuation, E
a linear pure ELX -concept, and xC ∈ EI,η . Then K |=∗

H
C ⊑ θ(E) for some η-substitution θ.

Proof. The proof is by induction over the definition of linear
pure ELX concept E:

• E = ⊤. Then K |=∗
H C ⊑ θ(E) holds for every C and θ.

• E = F [X1, . . . , Xn], F ∈ NC . Then by definition of F I ,
xC ∈ EI,η = F I(η(X1), . . . , η(Xn)) iff K |=∗

H C ⊑
F [D1, . . . , Dn] for some Di ∈ H with xDi ∈ η(Xi) (1 ≤
i ≤ n). Then, because every variable occurs at most once
in F [X1, . . . , Xn] (linear), θ = [X1/D1, . . . , Xn/Dn] is
an η-substitution and K |=∗

H C ⊑ θ(E).

• E = X ∈ NX . Then xC ∈ EI,η = η(X). Then K |=∗
H

C ⊑ θ(X) holds for the η-substitution θ = [X/C].
• E = ∃r.L. Then xC ∈ EI,η implies ⟨xC , xD⟩ ∈ rI for

some xD ∈ LI,η . Then K |=∗
H C ⊑ ∃r.D by definition

of rI . If L = X ∈ NX then LI,η = η(X), in which case
K |=∗

H C ⊑ ∃r.θ(X) for the η-substitution θ = [X/D].
Otherwise, L is linear and pure, and since xD ∈ LI,η ,
by induction hypothesis, K |=∗

H D ⊑ θ(L) for some η-
substitution θ. Combined with K |=∗

H C ⊑ ∃r.D, we
obtain K |=∗

H C ⊑ ∃r.θ(L) = C ⊑ θ(E).
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• E = E1 ⊓E2. Then xC ∈ EI,η = EI,η
1 ∩EI,η

2 . Since E
is linear and pure then so are E1 and E2. So, by induction
hypothesis, K |=∗

H C ⊑ θ1(E1) and K |=∗
H C ⊑ θ2(E2)

for some η-substitutions θ1 and θ2. Furthermore, since E
is linear, E1 and E2 do not share variables. Hence, there
exists an η-substitution θ such that θ(E1) = θ1(E1) and
θ(E2) = θ2(E2). Consequently, K |=∗

H C ⊑ θ2(E2) ⊓
θ2(E2) = C ⊑ θ(E).

Lemma 3 characterizes interpretations of concepts on the
left-hand side of ELXF1-axioms. We now provide the con-
verse characterization of concepts appearing on the right-
hand side. This time, however, we need to make additional
assumptions about the content of the concept base H .
Lemma 4. Let I be the canonical interpretation w.r.t. an
ELX ontology K and a concept base H , η a valuation, G a
safe ELX -concept, and θ an η-substitution such that K |=∗

H
C ⊑ θ(G) for some C ∈ H , and θ(L) ∈ H for every
L ∈ args(G) and ∃r.L ∈ sub(G). Then xC ∈ GI,η .

Proof. The proof is by induction over the definition of safe
ELX concept G (see Definition 4):

• G = ⊤. Then xC ∈ GI,η = ∆I .
• G = F [L1, . . . Ln], F ∈ NC . Take any i with 1 ≤ i ≤ n.

Since Li ∈ args(G), we have Di := θ(Li) ∈ H . If
Li = X ∈ NX then xDi ∈ η(X) = LI,η

i since θ is an η-
substitution. Otherwise, Li is safe since G is safe. Since,
trivially, K |=∗

H Di ⊑ θ(Li), we obtain xDi
∈ LI,η

i
by induction hypothesis. Finally, since K |=∗

H C ⊑
F (D1, . . . , Dn) and xDi ∈ LI,η

i (1 ≤ i ≤ n), by defini-
tion of F I we obtain xC ∈ F I(LI,η

1 , . . . , LI,η
n ) = GI,η .

• G = ∃r.X . Since θ is an η-substitution, θ(X) = D for
some xD ∈ η(X), and since K |=∗

H C ⊑ θ(G) = C ⊑
∃r.D, by definition of rI , we obtain ⟨xC , xD⟩ ∈ rI . Con-
sequently, xC ∈ (∃r.X)I,η = GI,η .

• G = ∃r.L where L is safe. Then D := θ(L) ∈ H .
Since, trivially, K |=∗

H D ⊑ θ(L), we obtain xD ∈ LI,η

by induction hypothesis. Since K |=∗
H C ⊑ θ(G) =

C ⊑ ∃r.D, we obtain ⟨xC , xD⟩ ∈ rI by definition of rI .
Hence xC ∈ (∃r.L)I,η .

• G = G1 ⊓ G2. From K |=∗
H C ⊑ θ(G), we obtain

K |=∗
H C ⊑ θ(G1) and K |=∗

H C ⊑ θ(G2). Since G1

and G2 are safe, by induction hypothesis, xC ∈ GI,η
1 and

xC ∈ GI,η
2 . Hence xC ∈ (G1 ⊓G2)

I,η = GI,η .

The restriction to safe concepts in Lemma 4 is necessary,
as the following example shows:
Example 8. Consider H = {A,B} ⊆ NC and K = {A ⊑
B}. Then the canonical interpretation I for K and H has
domain ∆I = {xA, xB} and assigns AI = {xA, xB},
BI = {xB}. Now take E = X ∈ NX and define
η(X) = {xB}. Then θ(X) = B is an η-substitution and
K |=∗

H A ⊑ θ(E). However, xA /∈ EI,η = η(X) = {xB}.
We are now ready to harvest the fruits of our character-

ization of canonical interpretations. We first show that the
canonical interpretation satisfies every axiom from K, pro-
vided that H contains relevant concepts from such axioms.

Corollary 1. Let I be the canonical interpretation w.r.t.
K and H , and β = E ⊑ G ∈ K an ELXF1 axiom
such L↓H ⊆ H for every ∃r.L ∈ sub(G) and every
L ∈ args(G). Then I |=2 β.

Proof. Take any valuation η and any xC ∈ EI,η . We need
to prove that xC ∈ GI,η . Since E is linear and pure, by
Lemma 3, K |=∗

H C ⊑ θ(E) for some η-substitution θ.
Since β ∈ K is range restricted, θ(β) = θ(E) ⊑ θ(G) ∈
K↓H , therefore K |=∗

H C ⊑ θ(G). Since G is safe and
θ(L) ∈ L↓H ⊆ H for every ∃r.L ∈ sub(G) and every
L ∈ args(G), by Lemma 4, xC ∈ GI,η , as required.

Corollary 1 means that we can construct a canonical
model I of any K satisfying our syntactic restrictions. Now
if K |=2 α, this implies that I |=2 α. Next, we show that,
in this case, K |=∗

H α, that is, the second-order entailment
K |=2 α is characterized by the schema entailment for a suit-
able H . As in the case of axioms in K, we also need to apply
syntactic restrictions to α, however, this time the conditions
for concepts on the left and on the right must be swapped.

Corollary 2. Let I be the canonical interpretation w.r.t. K
and H , and α = G ⊑ E an ELX axiom such that G is
safe, G↓H ⊆ H and L↓H ⊆ H for every ∃r.L ∈ sub(G)
and L ∈ args(G), and E is linear and pure. Then I |=2 α
implies K |=∗

H α.

Proof. Take any substitution θ such that θ(X) ∈ H for
X ∈ vars(α). We need to show that K |=∗

H θ(α).
Since G↓H ⊆ H , we have C := θ(G) ∈ H . Trivially,
K |=∗

H C ⊑ θ(G). Now take any valuation η such that
η(X) = {xD} whenever θ(X) = D ∈ H . Note that θ
is an η-substitution. Since G is safe and L↓H ⊆ H for
every ∃r.L ∈ sub(G) and L ∈ args(G), by Lemma 4,
xC ∈ GI,η . Since I |=2 α, we have xC ∈ GI,η ⊆ EI,η .
Since E is linear and pure, by Lemma 3, K |=∗

H C ⊑ σ(E)
for some η-substitution σ. Since η(X) = {xD} for ev-
ery X ∈ vars(α) with D = θ(X), and both θ and σ are
η-substitutions, we obtain σ(α) = θ(α). Consequently,
K |=∗

H C ⊑ σ(E) = θ(G) ⊑ θ(E) = θ(α).

By combining Corollaries 1 and 2 for the given ELXF1

ontology K and an EL axiom α, we can define the small-
est concept base H such that the canonical interpretation I
w.r.t. K and H satisfies all axioms β ∈ K under the second-
order semantics and entails α only if K |=∗

H α. Note that
conditions L↓H ⊆ H and G↓H ⊆ H in Corollaries 1 and 2
are recursive over H . Therefore, the required concept base
H is defined as a fixed point limit for this condition.

Definition 8. Let K be a ELX ontology and α = G ⊑ E
an ELX axiom. Let H0 = {⊤}, and Hi+1 = Hi ∪G↓Hi ∪⋃
{L↓Hi | ∃r.L ∈ sub+(K) ∪ sub(G)} ∪

⋃
{L↓Hi | L ∈

args+(K) ∪ args(G)} for i ≥ 0. We call H∞ =
⋃

i≥0 H
i

the expansion base for K w.r.t α.

We show that the expansion base H∞ is indeed a fixed
point of the required conditions:

Lemma 5. Let H∞ be the expansion base for K w.r.t. α =
G ⊑ E. Then G↓H∞ ⊆ H∞ and L↓H∞ ⊆ H∞ for every
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∃r.L ∈ sub+(K) ∪ sub(G) and every L ∈ args+(K) ∪
args(G).

Proof. Take any L ∈ {G} ∪ args+(K) ∪ args(G) ∪ {L |
∃r.L ∈ sub+(K) ∪ sub(G)} and any D ∈ L↓H∞ . Then
D = L[X1/C1, . . . , Xn/Cn] for {X1, . . . , Xn} = vars(L)
and {C1, . . . , Cn} ⊆ H∞ =

⋃
i≥0 H

i. Since Hi ⊆ Hi+1

for every i ≥ 0, then {C1, . . . , Cn} ⊆ Hi for some i ≥ 0.
Then D ∈ L↓Hi ⊆ Hi+1 ⊆ H∞.

By combining Corollaries 1 and 2 and Lemma 5, we now
prove the following result:

Theorem 1. Let K be an ELXF1 ontology and α = G ⊑ E
an ELX axiom such that G is safe and E is linear and pure.
Let H∞ be the expansion base for K and α. Then K |=2 α
implies K |=∗

H∞ α.

Proof. By Definition 8, H∞ is nonempty. Let I be the
canonical interpretation w.r.t. K and H∞. By Lemma 5, the
conditions of Corollary 1 are satisfied for H = H∞, and
every β ∈ K. This implies I |=2 K. Then K |=2 α implies
I |=2 α. Likewise, by Lemma 5, the conditions of Corol-
lary 2 are satisfied for H = H∞ and α. Hence, I |=2 α
implies K |=∗

H∞ α, as required.

By combining Theorem 1 with Lemma 2, we obtain:

Corollary 3. Let K be a ELXF1 ontology and α = G ⊑ E
a ground ELX axiom with args+(α) = ∅. Then K |=2 α iff
K |=∗

ELX↓
α iff K |=∗

H∞ α.

Proof. Since α is ground, K |=∗
H∞ α implies K |=∗

ELX↓
α,

which, by Lemma 2, implies K |=2 α. Suppose that α =
G ⊑ E. Since α is ground, then G is safe and E is linear,
and since args+(α) = ∅, E is pure. Hence, by Theorem 1,
K |=2 α implies K |=∗

H∞ α.

6 Decidability
Because the schema semantics and the second-order se-
mantics coincide for ELXF1, we immediately obtain semi-
decidability of the entailment (of ground axioms) for the lat-
ter. In general, entailment in ELXF1 is still undecidable
because ELXF1 can express (unrestricted) role-value-maps:

Definition 9 (Role-Value-Maps). A role-value-map (Baader
2003) is an axiom of the form r1 ◦ · · · ◦ rm ⊑ s1 ◦ · · · ◦ sn
with m,n ≥ 1, ri, sj ∈ NR (1 ≤ i ≤ m, 1 ≤ j ≤ n).
The interpretation of role-value-maps is defined by: I |=
r1 ◦ · · · ◦ rm ⊑ s1 ◦ · · · ◦ sn iff rI1 ◦ · · · ◦ rIm ⊆ sI1 ◦ · · · ◦ sIn,
where ◦ is the usual composition of binary relations.

Lemma 6. For every interpretation I it holds I |=2

∃r1.∃r2. . . . ∃rm.X ⊑ ∃s1.∃s2. . . . ∃sn.X iff rI1 ◦· · ·◦rIm ⊆
sI1 ◦ · · · ◦ sIn.

Proof. (⇒): Assume that I |=2 ∃r1.∃r2. . . . ∃rm.X ⊑
∃s1.∃s2. . . . ∃sn.X . Then we need to show that ∀x, z ∈
∆I : (∃y1, . . . , ym−1 ∈ ∆I : ⟨x, y1⟩ ∈ rI1 , ⟨y1, y2⟩ ∈
rI2 , . . . , ⟨ym−1, z⟩ ∈ rIm) ⇒ (∃y1, . . . , yn−1 ∈ ∆I :
⟨x, y1⟩ ∈ sI1 , ⟨y1, y2⟩ ∈ sI2 , . . . , ⟨yn−1, z⟩ ∈ sIn). Take
any x, z ∈ ∆I such that ∃y1, . . . , ym−1 ∈ ∆I : ⟨x, y1⟩ ∈

rI1 , ⟨y1, y2⟩ ∈ rI2 , . . . , ⟨ym−1, z⟩ ∈ rIm Let η be a valuation
such that η(X) = {z}. Then x ∈ (∃r1.∃r2. . . . ∃rm.X)I,η

and it follows that x ∈ (∃s1.∃s2. . . . ∃sn.X)I,η . Then
∃y1, . . . , yn−1 ∈ ∆I : ⟨x, y1⟩ ∈ sI1 , ⟨y1, y2⟩ ∈
sI2 , . . . , ⟨yn−1, z⟩ ∈ sIn.

(⇐): Assume that ∀x, z ∈ ∆I : (∃y1, . . . , ym−1 ∈
∆I : ⟨x, y1⟩ ∈ rI1 , ⟨y1, y2⟩ ∈ rI2 , . . . , ⟨ym−1, z⟩ ∈
rIm) ⇒ (∃y1, . . . , yn−1 ∈ ∆I : ⟨x, y1⟩ ∈ sI1 , ⟨y1, y2⟩ ∈
sI2 , . . . , ⟨yn−1, z⟩ ∈ sIn). We need to show that I |=2

∃r1.∃r2. . . . ∃rm.X ⊑ ∃s1.∃s2. . . . ∃sn.X . Take any
x and η then if x ∈ (∃r1.∃r2. . . . ∃rm.X)I,η then
∃y1, . . . , ym−1, z ∈ ∆I : ⟨x, y1⟩ ∈ rI1 , ⟨y1, y2⟩ ∈
rI2 , . . . , ⟨ym−1, z⟩ ∈ rIm, z ∈ η(X). Then from the role-
value-map axiom it follows that ∃y1, . . . , yn−1 ∈ ∆I :
⟨x, y1⟩ ∈ sI1 , ⟨y1, y2⟩ ∈ sI2 , . . . , ⟨yn−1, z⟩ ∈ sIn. Then
x ∈ (∃s1.∃s2. . . . ∃sn.X)I,η . As x and η were chosen arbi-
trarily, this proves the proposition.

Theorem 2. Axiom entailment in ELXF1 is undecidable.

Proof. Theorem 2 follows directly from Lemma 6 and the
fact that axiom entailment is undecidable in EL extended
with role-value-maps (Baader 2003).

The reason for this undecidability is the deep nesting of
concept variables on the right side of axioms under exis-
tential restrictions. Such nested variables result in infinite
expansion base H∞ as the following example shows:

Example 9. Consider the ELXF1 ontology K = {X ⊑
∃r.∃r.X} and α = A ⊑ B. Then according to Defini-
tion 8, we have H1 = {A}, K1 = {A ⊑ ∃r.∃r.A}, H2 =
{A, ∃r.A}, K2 = {A ⊑ ∃r.∃r.A, ∃r.A ⊑ ∃r.∃r.∃r.A},
H3 = {A, ∃r.A, ∃r.∃r.A}, etc.

The same problem also occurs for nested parameterized
concepts such as A[A[X]]. If we restrict ELXF1 so that
variables on the right side do not appear under nested ex-
istential restrictions or parameterized atomic concepts, we
can show that the expansion K∞ of the ontology is, in fact,
exponential in the size of K, which gives us EXPTIME de-
cidability of the (schema and second-order) entailment.

Definition 10 (ELXF2). An ELXF2 axiom is an ELXF1

axiom α such that for every ∃r.L ∈ sub+(α) and every
L ∈ args+(α), either L = X ∈ NX or vars(L) = ∅.

Lemma 7. Let K be an ELXF2 ontology, α = G ⊑ E
a ground ELX axiom and H∞ the expansion base for K
and α. Then H∞ = {⊤, G} ∪ {L | (∃r.L ∈ sub+(K) ∪
sub(G) or L ∈ args+(K) ∪ args(G)) & vars(L) = ∅}.

Proof. By Definition 8, Hi+1 = Hi ∪ ∆i where ∆i =
G↓Hi ∪

⋃
{L↓Hi | ∃r.L ∈ sub+(K)∪sub(G)}∪

⋃
{L↓Hi |

L ∈ args+(K) ∪ args(G)} for i ≥ 0. By Defini-
tion 10 for ∃r.L ∈ sub+(K) and L ∈ args+(K) we
have L = X ∈ NX or vars(L) = ∅. If L = X then
L↓Hi = X↓Hi = Hi. If vars(L) = ∅ then L↓Hi = {L}.
Since α is ground, G↓Hi = {G} and L↓Hi = {L} for
every ∃r.L ∈ sub(G) and L ∈ args(G). Then ∆i =

∆ := {G} ∪ {L | (∃r.L ∈ sub+(K) ∪ sub(G) or L ∈
args+(K) ∪ args(G)) & vars(L) = ∅}. Hence H∞ =
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⋃
i≥0 H

i = H0 ∪∆ = {⊤, G} ∪ {L | (∃r.L ∈ sub+(K) ∪
sub(G) or L ∈ args+(K)∪args(G))&vars(L) = ∅}.

Since H∞ is a subset of (ground) concepts appearing in
K and α, we obtain:
Theorem 3. Let K be a ELXF2 ontology, α a ground ELX
axiom with args+(α) = ∅, and V the maximal number of
different concept variables in axioms of K. Then the entail-
ment K |=2 α is decidable in polynomial time in the size of
K and α and exponential time in V .

Proof. By Corollary 3, K |=2 α iff K |=∗
H∞ α. Since α

is ground, K |=∗
H∞ α iff K↓H∞ |=∗ α. The latter can be

reduced to classical EL entailment checking, which is poly-
nomially decidable (Baader, Brandt, and Lutz 2005).

By Lemma 7, H∞ ⊆ {⊤}∪sub(K)∪sub(α), so its size
is linear in the size of K and α: ||H∞|| ≤ ||K||+ ||α||+1. The
size of K↓H∞ can be bounded by ||K↓H∞ || ≤ ||K|| · ||H∞||V .
Thus, the size of K↓H∞ is bounded by a function, which is
polynomial in the size of K and α and exponential in V .

7 Discussion of Syntactical Restrictions
As the fragments ELXF1 and ELXF2 are obtained by im-
posing a large number of syntactic restrictions, it is natural
to ask, what the resulting fragment is actually capable of. In
this section, we look at the expressive power of these frag-
ments.

We start by showing, that ELXF2 expresses many fea-
tures from polynomial extensions of EL that require spe-
cial constructors. First, we can express role chain ax-
ioms from EL++ (Baader, Brandt, and Lutz 2005), which
are restricted forms of role-value-maps (cf. Definition 9)
with one role on the right-hand-side. For example father ◦
father ⊑ grandfather is equivalent to ∃father.∃father.X ⊑
∃grandfather.X . Second, we can express self restrictions
(Horrocks, Kutz, and Sattler 2006) on the right side of ax-
ioms. For example, GreatApes ⊑ ∃recognize.Self is
equivalent to GreatApes ⊓ X ⊑ ∃recognize.X . Third,
we can express positive occurrences of (local) role-value-
map concepts (see (Donini 2003)). For example, Male ⊑
(isParentOf ⊆ isFatherOf) is equivalent to Male ⊓
∃isParentOf.X ⊑ ∃isFatherOf.X . Actually, all these ex-
amples are special cases of ELXF2 axioms of the form
C0 ⊓∃r1.(C1 ⊓∃r2.(C2 · · · ⊓ ∃rn.(Cn ⊓X) . . . )) ⊑ ∃s.X ,
(n ≥ 0).

Many motivating examples from Section 1 can be ex-
pressed in ELXF2. For example, we can define a generic
concept Application[X,Y ] ≡ Procedure ⊓ ∃site.X ⊓
∃substance.Y and use it to define DesensitizingTooth ⊑
Application[ToothStructure,TopicalAnesthetic]. If we
additionally define LocalAnesthesia ≡ Procedure ⊓
∃substance.LocalAnesthetic and TopicalAnesthetic ⊑
LocalAnesthetic, we obtain the logical consequence
DesensitizingTooth ⊑ LocalAnesthesia. If we define
a generic version of this concept LocalAnesthesia[X] ≡
LocalAnesthesia ⊓ ∃site.X , using the schema seman-
tics we can obtain the conclusion DesensitizingTooth ⊑
LocalAnesthesia[ToothStructure], however, since the
right-hand side of this entailment is not a pure concept (see

Definition 5), by Theorem 1 we are not guaranteed to obtain
all such entailments for the reasons discussed in Example 6.

Note that due to the purity condition, we also cannot
use ground parameterized concepts in equivalences, such
as DogOwner ≡ Owner[Dog], or, in the left-hand sides
of axioms, such as Owner[Dog] ⊑ Human. However,
in cases when generic concepts are defined using equiva-
lences, such as Owner[X] ≡ ∃owns.X , we can lift this
restriction because the problematic axioms can be rewritten
to ELXF1; in our example: DogOwner ≡ ∃owns.Dog
and ∃owns.Dog ⊑ Human. The axiom Owner[X ⊓
Pet] ⊑ ∃feeds.X mentioned in Section 1 can be fixed in
the same way. Using the same approach for the generic
concepts of the previous paragraph, we could upgrade the
definition of DesensitizingTooth: DesensitizingTooth ≡
Application[ToothStructure,TopicalAnesthetic] and even
check entailments of A ⊑ LocalAnesthesia[B] for any
atomic concepts A and B.

Violations of other syntactic restrictions of ELXF1

could also be fixed by applying similar transformations.
For example, the axiom Child[X] ≡ ∃hasFather.X ⊓
∃hasMother.X is not linear. We could, however, poten-
tially rewrite the ontology to ELXF1, by replacing this defi-
nition with a more general (linear) definition Child[X,Y ] ≡
∃hasFather.X ⊓ ∃hasMother.Y . For the result to be in
ELXF1, we need to make sure that the subsequent replace-
ment of Child[C] with Child[C,C] in other places does not
violate the linearity restrictions. This means that the us-
age of Child[C] on the left-hand side must not contain vari-
ables; instead C has to be ground, like, e.g., in the axiom
Child[Dog] ⊑ Dog. This situation is reminiscent of syntac-
tic restrictions in other DLs. For example, concept disjunc-
tions can be allowed in the left-hand sides of EL axioms
without any change in the expressive power.

8 Conclusions and Outlook
To handle large sets of similar axioms in ontologies more
effectively, we draw inspiration from generics, a standard
feature of modern object-oriented programming languages.
In this paper, we introduce concept variables and parameter-
ized concepts as an extension of existing DLs. This allows
us to leverage the advantages of generics in programming for
DLs: the definition of a (generic) concept can be reused in
multiple places, reducing the need to copy and modify com-
plex concept formulations. This approach promotes more
modular ontology development and helps avoid errors that
can arise from refactoring axioms.

While type inference for generic classes in compilers is
typically defined using syntactic rules, our extension of DL
is grounded in a robust model-theoretic semantics based on
Second-Order Logic. This provides a strong foundation for
reasoning with generics but also leads to high algorithmic
complexity. To restore first-order expressiveness and decid-
ability, we investigated the relationship between the second-
order semantics and the schema semantics, which can be re-
duced to classical DL reasoning. To combine the advantages
of both semantics, we identified a fragment of the exten-
sion of EL where the conclusions entailed by both seman-
tics coincide, allowing us to translate well-behaved second-
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order reasoning into classical EL reasoning. Additionally,
we demonstrated that with further restrictions on this frag-
ment, decidability of reasoning can be achieved.

By Theorem 3, the complexity of checking entailment in
our second fragment ELXF2 is in EXPTIME. The source
of the exponential complexity is the number of different
variables that appear in axioms of the ontology because the
variables can be replaced with concepts from H∞ indepen-
dently from each other. Note that if the number of vari-
ables is bounded by a constant, by Theorem 3 the com-
plexity of reasoning reduces to PTIME. As in existing on-
tologies the size of axioms is small compared to the size
of the ontology, it is reasonable to assume that the num-
ber of different variables would indeed be similarly small.
In terms of these complexity results, our fragment ELXF2

behaves similarly to Datalog. Note that we can express
any Datalog rule such as T (x, y) ∧ T (y, z) → T (x, z) in
ELX simply by converting predicates to parameterized con-
cepts and replacing the Boolean connectives accordingly
like T [X,Y ] ⊓ T [Y, Z] ⊑ T [X,Z]. However, this trans-
lation does not generally satisfy the restrictions of ELXF1,
particularly, the linearity condition as seen in this example.
Therefore, we could not easily use this reduction to prove
that the complexity bound in Theorem 3 is tight.

In this paper, we focused on situations where the intro-
duced semantics coincide, but it may also be possible to
reduce second-order entailment to schema entailment even
when they do not coincide. For instance, to compute the
missing consequences from Examples 4 and 6, it seems suf-
ficient to perform replacements of generic parameters under
(stated or entailed) equivalences. For example, if we obtain
the equivalence A ≡ B, we can add an axiom F [. . . A . . .] ≡
F [. . . B . . .] for every parameterized ground concept con-
taining A or B. In future work, we plan to lift some of
the imposed syntactic restrictions using this approach. An-
other research direction is to extend generic parameters with
bounds – commonly used in object-oriented programming –
which prevent replacing variables with arbitrary values. For
example, an axiom Owner[X ⊑ Pet] ⊑ ∃feeds.X would
allow the replacement of concept variables X only with (en-
tailed) sub-concepts of Pet, such as Dog, but not, say, Car.

In summary, the findings of this paper demonstrate that
extending DLs with generic concepts is both feasible and
useful. This extension can be achieved while maintaining
decidability, provided certain reasonable restrictions are ap-
plied. With the help of abstract, generic concepts, we can
describe concepts in a more modular and reusable way. Ad-
ditionally, the introduction of concept variables enables the
expression of facts in novel ways, without relying on special
constructors. This paves the way for further expansions of
DLs that aim to generalize axioms across a broad spectrum
of specific cases.

A Acronyms
DL Description Logic
PL Propositional Logic
FOL First-Order Logic
ODP Ontology Design Pattern
ML Modal Logic
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