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Abstract

Choice constructs are an important part of the language of
logic programming, yet the study of their semantics has been
a challenging task. So far, only two-valued semantics have
been studied, and the different proposals for such semantics
have not been compared in a principled way. In this paper, an
operator-based framework allow for the definition and com-
parison of different semantics in a principled way is proposed.

1 Introduction
Logic programming is one of the most popular declara-
tive formalisms, as it offers an expressive, rule-based mod-
elling language and efficient solvers for knowledge repre-
sentation. An important part of this expressiveness comes
from choice constructs (Simons, Niemelä, and Soininen
2002), that allow to state e.g. set constraints in the body
or head of rules, and are, among others, part of the ASP-
Core-2 standard (Calimeri et al. 2012). For example, the
rule 1{p,q,r}2 ← s. expresses that if s is true, between
1 and 2 atoms among p, q and r are true. Choice con-
structs are non-deterministic, in the sense that there is more
than one way to satisfy them. For example, 1{p,q,r}2
can be satisfied by {p}, {p,q}, {r}, . . .. Formulating se-
mantics for such non-deterministic rules has proven a chal-
lenging task (Liu et al. 2010; Marek and Remmel 2004;
Faber, Leone, and Pfeifer 2004; Son and Pontelli 2007): sev-
eral semantics have been proposed but no unifying frame-
work for defining and comparing these semantics exists.
Furthermore, attention has been restricted to two-valued
semantics, in contradistinction to many other dialects for
logic programming for which three- or four-valued seman-
tics have been proposed. Moreover, many proposed seman-
tics only allow for choice constructs in the body, but not in
the head. Finally, relations with the non-deterministic con-
struct disjunction remain unclear.

In this paper, a unifying framework for the definition
and study of semantics for logic programs with choice con-
structs in the head and body is provided. This framework
is based on immediate consequence operators, which are
also useful for the design of explanatory tools and pro-
vide foundations for solvers (Kaminski and Schaub 2023;
Eiter and Geibinger 2023). The contributions of this paper
are the following: (1) we show how the famework of non-

deterministic approximation fixpoint theory (AFT) (Heyn-
inck, Arieli, and Bogaerts 2024) can be used to define a
wide variety of supported and stable semantics for choice
logic programs, (2) we introduce the constructive stable fix-
points, allowing to (3) generalize many existing semantics
for choice programs, (4) compare these semantics by intro-
ducing postulates, (5) provide a principled comparison with
disjunctive logic programs.
Outline of the Paper: In Section 2, the background on
choice programs and non-deterministic approximation fix-
point theory is given. In Section 3, approximation operators
for choice programs are defined. In Section 4, we study the
resulting supported semantics. In Section 5, we define sta-
ble semantics and show representation results, while giving
a postulate-based study in Section 6. In Section 7, we re-
late choice constructs and disjunctions. Related work and a
conclusion follows in Sections 8 and 9.
Relation with Previous Work: This paper extends this pre-
vious work (Heyninck 2023) by also considering choice con-
struct in the body, which gives rise to different possible ap-
proximators, and comparing these operators using the no-
tion of groundedness. A full version of this paper, including
proofs of all results, is available online (Heyninck 2024).

2 Background and Preliminaries
We recall choice programs and non-deterministic AFT.

2.1 Choice Rules and Programs
A choice atom (relative to a set of atomsA) is an expression
C = (dom,sat) where dom ⊆ A and sat ⊆℘(dom). Intu-
itively, dom denotes the domain of C, i.e. the atoms relevant
for the evaluation of C, whereas sat is the set of satisfiers of
C. We also denote, for C = (dom,sat), dom by dom(C) and
sat by sat(C). For a concrete example, consider 1{p,q,r}2
which intuitively states that between 1 and 2 of the atoms
p, q and r have to be true, corresponds to the choice atom
({p,q,r},{{p},{q},{r},{p,q},{p,r},{q,r}}) (notice that
{p,q,r} is the domain and not a satisfier). For such choice
atoms, we assume the domain and satisfiers are clear and
can be left implicit (and similarly for constructs such as
{p,q}= 1 or {p,q} ̸= 1).

A choice rule has the form C ← C1, . . . ,Cn where
C,C1, . . . ,Cn are choice atoms. C is called the head (de-
noted hd(r)) and C1, . . . ,Cn the body. If Ci is a literal (i.e.
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Ci = ({α},{{α}}), abbreviated by α , or Ci = ({α},{ /0}),
abbreviated by ¬α) for every i = 1, . . . ,n, we call it a nor-
mal choice rule. If C is an atom, we call r an aggregate rule.
A choice program is a set of choice rules, and is called nor-
mal[aggregate] if all of the rules are so. A choice atom C
is monotone if dom(C)∩ x ∈ sat(C) implies dom(C)∩ x′ ∈
sat(C) for any x ⊆ x′ ⊆ A, and it is convex if for any s.t.
x ⊆ y ⊆ A, dom(C)∩ x ∈ sat(C) and dom(C)∩ y ∈ sat(C),
dom(C)∩ z ∈ sat(C) for any x⊆ z⊆ y.

Following (Liu et al. 2010), a set x⊆A satisfies a choice
atom C if dom(C)∩ x ∈ sat(C). An interpretation x satisfies
a rule r if x satisfies the head of r or does not satisfy some
choice atom in the body of r. x is a model of P if it satisfies
every rule in P . A rule r ∈P is x-applicable if x satisfies the
body of r, and the set of x-applicable rules inP is denoted by
P(x). x ⊆A is a supported model of P if it is a model and
x ⊆

⋃
r∈P(x) dom(hd(r)). For some x ⊆ A, let HDP (x) =

{hd(r) | r ∈ P(x)} and ICP (x) =

{z⊆
⋃

C∈HDP (x)

dom(C) | ∀C ∈ HDP (x) : z(C) = T}

Example 1. Consider the program P = {1{p,q}2 ←
{p,q} ̸= 1}. The choice atoms behave as follows:

/0 {p} {q} {p,q}
1{p,q}2 F T T T
{p,q} ̸= 1 T F F T

This means that ICP ( /0) = ICP ({p,q}) =
{{p},{q},{p,q}}, whereas ICP ({p}) = ICP ({q}) = { /0}.
The models of P are {p}, {q} and {p,q}, and only {p,q}
is supported.

2.2 Approximation Fixpoint Theory
We first recall some basic algebraic notions. A lattice is a
partially ordered set (poset) ⟨L,≤⟩ s.t. for every x,y ∈ L,
a least upper bound x⊔ y and a greatest lower bound x⊓
y exist. A lattice is complete if every X ⊆ L has a least
upper bound

⊔
X and a greatest lower bound

d
X .

⊔L is
denoted by ⊤ and

d
L is denoted by ⊥. A function f : X →

Y from a poset ⟨X ,≤1⟩ to a poset ⟨Y,≤2⟩ is monotonic if
x1 ≤1 x2 implies f (x1) ≤2 f (x2), and x ∈ X is a fixpoint of
f if x = f (x) We define the ordinal powers of a function
f : X→ X as f 0(x) = x, f α+1(x) = f ( f α(x)) for a successor
ordinal α , and f α(x) =

⊔
β<α f β (x) for a limit ordinal α .

The following notation will be used: [x,y] = {z | x≤ z≤ y}.
We say a pair (x,y) is consistent if x≤ y and total if x = y.

We now recall basic notions from non-deterministic ap-
proximation fixpoint theory (AFT) by (Heyninck, Arieli,
and Bogaerts 2024), which generalizes approximation fix-
point theory as introduced by (Denecker, Marek, and
Truszczyński 2000) to non-deterministic operators. We refer
to the original paper (Heyninck, Arieli, and Bogaerts 2024)
for more details.

The basic idea behind non-deterministic approximation
operators is that we approximate a non-deterministic oper-
ator O by generating, for a given lower bound x and up-
per bound y that approximates z, a set of lower bounds
{x1,x2, . . .} and a set of upper bounds {y1,y2, . . .} that

under- respectively over-approximate O(z) = {z1,z2, . . .}.
Formally, a non-deterministic operator on L is a function
O : L →℘(L) \ { /0}. For example, the operator ICP is
a non-deterministic operator on the lattice ⟨℘(A),⊆⟩. As
the ranges of non-deterministic operators are sets of lattice
elements, one needs a way to compare them, such as the
Smyth order and the Hoare order. Let L = ⟨L,≤⟩ be a
lattice, and let X ,Y ∈℘(L). Then: X ⪯S

L Y if for every
y ∈ Y there is an x ∈ X such that x ≤ y; and X ⪯H

L Y if
for every x ∈ X there is a y ∈ Y such that x ≤ y. Given
some X1,X2,Y1,Y2 ⊆ L, X1×Y1 ⪯A

i X2×Y2 iff X1 ⪯S
L X2 and

Y2 ⪯H
L Y1; and X1×Y1 ⪯S

t X2×Y2 iff X1 ⪯S
L X2 and Y2 ⪯S

L Y1.
The main orders, instantiated for the lattice of interest for
this paper, ⟨A,⊆⟩ are recalled in Table 1.

Let L = ⟨L,≤⟩ be a lattice. Given an operator O :
L2 → L2, we denote by Ol the projection operator de-
fined by Ol(x,y) = O(x,y)1, and similarly for Ou(x,y) =
O(x,y)2. An operator O : L2 →℘(L)\ /0×℘(L)\ /0 is
called a non-deterministic approximating operator (ndao,
for short), if it is ⪯A

i -monotonic (i.e. (x1,y1) ≤i (x2,y2) im-
plies O(x1,y1) ⪯A

i O(x2,y2)), and is exact (i.e., for every
x ∈ L, O(x,x) = (Ol(x,x),Ol(x,x))). (x,y) is a fixpoint of
O if x ∈Ol(x,y) and y ∈Ou(x,y). A non-deterministic op-
erator O : L→℘(L) is downward closed if for every se-
quence X = {xε}ε<α of elements in L such that: (1) for
every ε < α , O(xε) ⪯S

L {xε}, and (2) for every ε < ε ′ < α ,
xε ′ < xε , it holds that O(

d
X)⪯S

L
d

X . We also introduce the
following generalisation of an approximation operator, as it
will allow us to capture some further existing semantics.
Definition 1. An operator O : L2 →℘(L)\ /0×℘(L)\ /0 is
a semi-ndao iff: (1) it is exact, (2) Ol(·,y) is ⪯S

L-monotonic
for any y∈L, and (3)Ou(x, ·) is⪯H

L -anti-monotonic for any
x ∈ L.

Any ndao is a semi-ndao (cf. Lemma 1 by (Heyninck,
Arieli, and Bogaerts 2024)). A (semi-)ndaoO approximates
an operator O if Ol(x,x) = O(x,x) for every x ∈ L.

We recall now stable operators (given an ndao O). The
complete lower stable operator is defined by (for any
y ∈ L) C(Ol)(y) = {x ∈ L | x ∈ Ol(x,y) and ¬∃x′ < x :
x′ ∈ Ol(x′,y)}. The complete upper stable operator is
defined by (for any x ∈ L) C(Ou)(x) = {y ∈ L | y ∈
Ou(x,y) and ¬∃y′ < y : y′ ∈ Ou(x,y′)}. The stable opera-
tor is given by: S(O)(x,y) = (C(Ol)(y),C(Ou)(x)). (x,y)
is a stable fixpoint of O if (x,y) ∈ S(O)(x,y).

Other semantics (e.g. well-founded state, Kripke-Kleene
fixpoints and state and semi-equilibrium semantics) have
been defined ((Heyninck, Arieli, and Bogaerts 2024; Heyn-
inck and Bogaerts 2023)) and can be immediately obtained
once an ndao is formulated. Due to space limitations, they
are not discussed or studied here.

3 Approximation Operators for Choice
Programs

The central task is to define non-deterministic approxima-
tions of the immediate consequence operator ICP . As is
usual, we conceive of pairs of sets of atoms (x,y) as four-
valued interpretations, where atoms in x are true whereas
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those in y are not false. Thus, assuming x ⊆ y, (x,y) repre-
sents an approximation of some set z ∈ [x,y]. The basic idea
behind all the operators defined below is the same: given
an input interpretation (x,y), we determine a set of rules that
are to be taken into account when constructing the new lower
(respectively upper bound), and then take as new lower (re-
spectively upper bounds) the interpretations that make true
the heads of all these rules. As is well-known already in
the case for aggregate programs, there are various ways to
give formal substance to this idea. We will consider four
operators inspired by previous work on aggregate or choice
programs, namely ICGZP (Gelfond and Zhang 2014), ICMR

P
(Marek and Remmel 2004), ICLPSTP (Liu et al. 2010), and
ICUP (Heyninck and Bogaerts 2023). The study of further
operators is left for future work. Intuitively, the GZ-operator
takes into account only rules of satisfied bodies whose do-
main remains unchanged in x and y. The lower bound of
the LPST-operator takes into account heads of rules whose
body is true in every interpretation between x and y, whereas
the upper bound collects the results of applying ICP to every
“non-false” interpretation (i.e. every member of [x,y]). The
lower bound of the MR-operator looks at all rules whose
body is satisfied by the upper bound y and by some subset
of the lower bound x, whereas its upper bound is identical
to the LPST-operator upper bound. The U -operator, finally,
has as a lower and upper bound the LPST-operator upper
bound. Given a choice program P and pair of sets of atoms
(x,y), let:

HDGZ,l
P (x,y) = {C | ∃C←C1, . . . ,Ci ∈ P ,∀i = 1 . . .n :

x∩dom(Ci) = y∩dom(Ci) ∈ sat(Ci)},

HDLPST,l
P (x,y) = {C | ∃C←C1, . . . ,Cn ∈ P ,∀i = 1 . . .n :

∀z ∈ [x,y] : z(Ci) = T},

HDMR,l
P (x,y) = {C | ∃C←C1, . . . ,Cn ∈ P ,∃z⊆ x :

∀i = 1 . . .n : y(Ci) = T and z(Ci) = T},

We then define (for x ∈ {LPST,MR,GZ}) the lower
bound operators by ICx,l(x,y) =

{z⊆
⋃

C∈HDx,l
P (x,y)

dom(C) | ∀C ∈HDx,l
P (x,y) : z∩dom(C) ∈ sat(C)}

Furthermore, we define (for † ∈ {MR,LPST,U}):

ICU ,lP (x,y) = IC†,u
P (x,y) =

⋃
x⊆z⊆y

ICP (z)

whereas ICGZ,uP (x,y) = ICGZ,lP (x,y). Finally, we define (for
x ∈ {LPST,MR,GZ,U}):

ICx(x,y) = (ICx,l(x,y),ICx,u(x,y)).
We also provide a handy summary of all operators in Table
2.

We first illustrate the behaviour of these operators:
Example 2. Consider again P from Example 1. We will
consider the three-valued interpretation ({p},{p,q}). We
observe that:

• ICMR,l
P ({p},{p,q}) = {{p},{q},{p,q}},

• ICLPST,lP ({p},{p,q}) = ICGZ,†P ({p},{p,q}) = { /0} (for
† = l,u), and

• ICU ,lP ({p},{p,q}) = ICU ,uP ({p},{p,q} =
{ /0,{p},{q},{p,q}}.

Thus, ({p},{p,q}) is a fixpoint of the MR- and U -operators,
but not of the LPST and GZ-operators.

Unsurprisingly, these ndaos are not well-defined for every
program (inevitably so, as this already holds for ICP ):
Example 3. Let P = {{p,q} ̸= 2←;{p,q} = 2←}. For
this program, no set satisfying both heads exists, and thus
ICxP (x,y) is not defined (for any x,y⊆A).

We therefore making the following
Assumption: We restrict attention to programs for which
ICx,†P (x,y) ̸= /0 for any x,y ⊆ A, x ∈ {LPST,MR,GZ,U}
and † ∈ {l,u}.

All operators are (semi-)approximators of ICP :1

Proposition 1. ICLPSTP and ICMR
P are ndaos for ICP .

ICMR
P is a semi-ndao for ICP . ICGZP is an ndao for ICP

when restricted to consistent inputs.
The following example shows that ⪯A

i -monotonicity of
ICGZP is not guaranteed when considering inconsistent inter-
pretations:
Example 4. Consider P = {p←{p,q} ̸= 0}. We see that

({p},{p})≤i ({p,q},{p}) yet

ICGZ,lP ({p},{p}) = {{p}} ̸⪯S
L IC

GZ,l
P ({p,q},{p}) = { /0}

To see that ICGZ,lP ({p,q},{p}) = { /0}, observe that
dom({p,r} ̸= 0)∩{p} ̸= dom({p,r} ̸= 0)∩{p,q}.

Furthermore, the LPST and MR-operators coincide for
normal choice programs:
Proposition 2. For any normal choice program,
ICMR
P (x,y) = ICLPSTP (x,y).

Remark 1. It can be easily verified that the LPST and MR-
operators coincide with the four-valued Przymusinski oper-
ator for normal logic programs (Przymusinski 1990), which
implies, with Proposition 3, Proposition 11 and Theorem 6
by (Heyninck, Arieli, and Bogaerts 2024), that the seman-
tics based on these operators faithfully generalize the (par-
tial) supported, (partial) stable and well-founded semantics
of normal logic programs.

4 Supported Model Semantics
In this section, we look at the fixpoints of ICxP , which give
a three-valued generalisation of the supported model seman-
tics by (Liu et al. 2010) (and the three-valued model seman-
tics of normal logic programs). Intuitively, fixpoints of ICxP
generalise the idea that only atoms supported by activated
rules can be accepted.

A first insight is that the total fixpoints of all operators
coincide with supported models (Liu et al. 2010).

1Proof of all results in the paper, as well as additional results
can be foud in the full version of this paper (Heyninck 2024).
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Preorder Type Definition
Element Orders

≤i ℘(A)2×℘(A)2 (x1,y1)≤i (x2,y2) iff x1 ⊆ x2 and y1 ⊇ y2
≤t ℘(A)2×℘(A)2 (x1,y1)≤t (x2,y2) iff x1 ⊆ x2 and y1 ⊆ y2

Set-based Orders
⪯S

L ℘(℘(A))×℘(℘(A)) X ⪯S
L Y iff for every y ∈ Y there is an x ∈ X s.t. x⊆ y

⪯H
L ℘(℘(A))×℘(℘(A)) X ⪯H

L Y iff for every x ∈ X there is an y ∈ Y s.t. x⊆ y
⪯A

i ℘(℘(A))2×℘(℘(A))2 (X1,Y1)⪯A
i (X2,Y2) iff X1 ⪯S

L X2 and Y2 ⪯H
L Y1

Table 1: List of the preorders used in this paper (instantiated for the lattice ⟨A,⊆⟩).

Immediate Consequence Operator for choice programs

P(x) = {C←C1, . . . ,Ci ∈ P | ∀i = 1 . . .n : x∩dom(Ci) ∈ sat(Ci)}
HDP (x) = {hd(r) | r ∈ P(x)}
ICP = {z⊆

⋃
C∈HDP (x) dom(C) | ∀C ∈ HDP (x) : z(hd(r)) = T}
Ndao based on (Gelfond and Zhang 2014)

HDGZ,l
P (x,y) = {C | ∃C←C1, . . . ,Ci ∈ P ,∀i = 1 . . .n : x∩dom(Ci) = y∩dom(Ci) ∈ sat(Ci)}

ICGZ,l(x,y) = {z⊆
⋃

C∈HDGZ,l
P (x,y)

dom(C) | ∀C ∈HDGZ,l
P (x,y) : z∩dom(C) ∈ sat(C)}

ICGZ,u(x,y) = ICGZ,l(x,y)
ICGZ(x,y) = (ICGZ,l(x,y),ICGZ,u(x,y))

Ultimate Ndao for choice programs

ICU ,lP (x,y) =
⋃

x⊆z⊆z ICP (z)
ICU (x,y) = (ICU ,l(x,y),ICU ,l(x,y))

Ndao based on (Liu et al. 2010)

HDLPST,l
P (x,y) = {C | ∃C←C1, . . . ,Cn ∈ P , i = 1 . . .n : ∀z ∈ [x,y] : z(Ci) = T},

ICLPST,l(x,y) = {z⊆
⋃

C∈HDLPST,l
P (x,y)

dom(C) | ∀C ∈HDLPST,l
P (x,y) : z∩dom(C) ∈ sat(C)}

ICLPST,u(x,y) = ICU ,l(x,y)
ICLPST(x,y) = (ICLPST,l(x,y),ICLPST,u(x,y))

Ndao based on (Marek and Remmel 2004)

HDMR,l
P (x,y) = {C | ∃C←C1, . . . ,Cn ∈ P ,∃z⊆ x : ∀i = 1 . . .n : y(Ci) = T and z(Ci) = T}

ICMR,l(x,y) = {z⊆
⋃

C∈HDMR,l
P (x,y)

dom(C) | ∀C ∈HDMR,l
P (x,y) : z∩dom(C) ∈ sat(C)}

ICMR,u(x,y) = ICU ,l(x,y)
ICMR(x,y) = (ICMR,l(x,y),ICMR,u(x,y))

Table 2: Concrete Operators for dlps and choice programs
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Proposition 3. Let a choice program P and x ∈
{LPST,MR,GZ,U} be given. Then (x,x) is a fixpoint of
ICxP iff x is a supported model of P .

However, our extension to three-valued semantics allows
to give semantics to a wider class of programs:

Example 5. Let P = {{p,q} = 1← {p} ̸= 1; p← q.}. It
can be easily checked that this program has no two-valued
supported model. However, ( /0,{p}) is a fixpoint of ICxP for
x ∈ {LPST,MR,U}.

A more detailed investigation of conditions for the exis-
tence of fixpoints is left for future work.

We now show that fixpoints of all four operators satisfy
a notion of supportedness, relative to how rule bodies are
evaluated according to their definition. For example, C can
be said to be true in (x,y) according to the LPST-operator
if z(C) = T for every z ∈ [x,y]. We formalize this as fol-
lows. Given (x,y) and ICxP , a ∈ x supported if a occurs
in the domain of the head of a rule whose body is true, i.e.
there is some C←C1, . . . ,Cn s.t. a ∈ dom(C), and if would
replace C by the dummy atom p, p is the only consequence
of ICx,l{p←C1,...,Cn}(x,y) (and similarly for y).

Proposition 4. Let a choice program P and x ∈
{LPST,MR,GZ,U} be given. Then (x,y) ∈ ICxP (x,y) im-
plies that for every a ∈ y, there is some C←C1, . . . ,Cn with
a ∈ dom(C) s.t. ICx{p←C1,...,Cn}(x,y) = ({{p} ∩ x},{{p} ∩
y}).

Normal choice programs We can simplify the definition
of supported models for normal choice programs. In order
to do this, we first have to generalize the four-valued truth-
assignments to choice constructs. The following forms a
generalization of assignment of truth-values to choice con-
structs that forms a natural generalization of the assignment
of atoms to choice constructs. We first recall the bilattice
FOUR, consisting of the elements T (true), F (false), U (un-
decided) and C (contradictory) and two order relations ≤i
and ≤t :

≤i

≤t
U

F T

C

Definition 2. Given a choice construct C and an interpreta-
tion (x,y), we say that:

• (x,y)(C) = T if x∩dom(c) ∈ sat(C) and y ∩ dom(c) ∈
sat(C);

• (x,y)(C) = F if x∩dom(c) ̸∈ sat(C) and y ∩ dom(c) ̸∈
sat(C);

• (x,y)(C) = C if x∩ dom(c) ∈ sat(C) and y∩ dom(c) ̸∈
sat(C),

• (x,y)(C) = U if x∩ dom(c) ̸∈ sat(C) and y∩ dom(c) ∈
sat(C).

We define three-valued models of a normal choice
program P as consistent interpretations (x,y) for whichd
≤t
{(x,y)(Ci) | i = 1 . . .n} ≤t (x,y)(C) for every C ←

C1, . . . ,Cn ∈P , and supported2 models as models (x,y) ofP
s.t. for every p ∈ y, there is a rule C←C1, . . . ,Cn ∈ P with
p ∈ dom(C) and

d
≤t
{(x,y)(Ci) | i = 1 . . .n} ≥t (x,y)(p).

I.e., a model is supported if for every non-false atom p, we
have a reason in the form of an activated rule for accepting
(or not rejecting) that atom.

Three-valued supported models of P coincide with fix-
points of ICLPSTP and ICMR

P , whereas those of ICGZP are a
subset of the three-valued supported models:
Proposition 5. Let some normal choice program P and
x ∈ {LPST,MR} be given. Then (x,y) is a three-valued
supported model of P iff (x,y) is a fixpoint of ICxP . Further-
more, if (x,y) is a fixpoint of ICGZP then (x,y) is supported,
but not always vice-versa. Supported models might not be
fixpoints of ICUP and vice-versa.

Models as pre-fixpoints It is well-known that for many
non-monotonic formalisms, pre-fixpoints of an operator can
characterise models of the corresponding knowledge base.
For the general case of choice constructs, this correspon-
dence does not hold:
Example 6. Consider P = {{p,q}= 1←}. Then
({p,q},{p,q}) is a pre-fixpoint of ICP (as
ICP ({p,q},{p,q}) = {{p},{q}} × {{p},{q}} ⪯S

t
({p,q},{p,q})) yet it is not a model (as the only models are
{p} and {q}): there is no way to prove p and q.

For choice programs with monotone heads, this corre-
spondence does hold:
Proposition 6. Let some choice program P s.t. for
every C ← C1, . . . ,Cn, C is monotone and some x ∈
{LPST,MR,GZ,U} be given. Then x is a model of P iff
IC l,x
P (x,x)⪯S

L x.

5 Stable Semantics
We now move to the stable semantics, whose main aim is
favvoding the acceptance of self-supporting cycles, e.g. ac-
cepting ({p},{p}) as a reasonable model of the program
{p← p}. For the deterministic case, this is done by look-
ing at fixpoints of the stable operator, obtained by calcu-
lating a new lower bound as the least fixpoint of Ol(·,y),
where y is the input upper bound (and similarly for the
upper bound). Intuitively, we take the least information
the upper bound obliges use to derive. In contradistinc-
tion to the deterministic case, there are divergent options for
how to define stable semantics for non-deterministic opera-
tors. We first consider the minimality-based stable seman-
tics known from non-deterministic AFT (Heyninck, Arieli,
and Bogaerts 2024), defined as the ≤-minimal fixpoints of

2These models have been called weakly supported models
(Brass and Dix 1995) for disjunctive logic programs.
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Ol(.,y) (cf. Section 2.2), which where shown to general-
ize the (partial) stable model semantics for disjunctive (ag-
gregate) programs (Heyninck, Arieli, and Bogaerts 2024;
Heyninck and Bogaerts 2023). For choice constructs, this
construction is overly strong:
Example 7. Consider the program P = {1{p,q}2←}. In-
tuitively, this rule allows to choose between one and two
among p and q. The stable version of ICxP (cf. Section 2.1)
behaves as follows (for any x= LPST,MR,GZ):

S(ICx,lP )(x) = {{p},{q}} for any x⊆A
{p} and {q} are the two stable fixpoints of ICxP . This is un-
desirable, as according to the intuitive reading of P , {p,q}
should also be allowed as a stable interpretation.

If we take one step back, we can explain the choice for
minimal fixpoints, and their shortcomings in the context
of choice constructs, in stable non-deterministic operators
(Heyninck, Arieli, and Bogaerts 2024) as follows. For de-
terministic operators, the stable version of an approxima-
tion operator O is defined as the greatest lower bound (glb)
of fixpoints of Ol(.,y). For deterministic operators over fi-
nite lattices, the minimal fixpoint of Ol(.,y) are identical
to the glb of fixpoints of Ol(.,y), and it is also identical to
the fixpoint obtained by iterating Ol(.,y) starting from ⊥
(i.e.

⋃
∞
i=1Oi

l(⊥,y)). For non-deterministic operators, this
correspondence does not hold. Indeed, the glb of fixpoints
of Ol(.,x) is often too weak (e.g. for the program P from
Example 7 we get {p}∩{q}∩{p,q} = /0 as the glb of fix-
points). However, this still leaves a third choice: namely
looking at fixpoints reachable by applications of Ol(.,y)
starting from ⊥. E.g. for choice programs, we are interested
in the fixpoints of ICx,lP (.,y) that can built them up from
the ground up (i.e. from /0) by a sequence of applications of
ICx,lP (.,y). We first generalize the notion of a well-founded
sequence by (Denecker and Vennekens 2014):
Definition 3. Given a non-deterministic operator O : L→
℘(L) over a complete lattice, a sequence x0, . . . ,xn ⊆ L
is well-founded relative to O if: (1) x0 = ⊥; (2) xi ≤ xi+1
and xi+1 ∈ O(xi) for every successor ordinal i ≥ 0; and (3)
xλ = (

d
{xi}i<λ ) for a limit ordinal λ . The well-founded

sequences relative to O are denoted by wfs(O).
Remark 2. The assumption of a complete lattice in Defini-
tion 3 is needed since the greatest lower bound is used in
point 3 of Definition 3.

Notice that, in contradistinction to the deterministic ver-
sion of a well-founded sequence (Denecker and Vennekens
2014), we require not merely that xi+1 ⪯S

L O(xi) (or, in
the case of deterministic operators O, xi+1 < O(xi)) but
xi+1 ∈O(xi). This is to ensure that xi+1 can actually be con-
structed from xi. For non-deterministic operators, this is not
ensured by xi+1 ⪯S

L O(xi):
Example 8. Let P = {{p,q} = 2 ←}. If we would al-
low for xi+1 ⪯S

L O(xi) in Definition 3.(2), /0,{p} would be
a well-founded sequence according to IC l

P (·,y) (for any
y ⊆ {p,q}) as {p} ⪯S IC l

P ({p},y) = {{p,q}}. However,
we have no way of deriving just p from the program P .

We now define the constructive stable operator:

Definition 4. Given an semi-ndao O over a complete lat-
tice L with y ∈ L, the c(onstructive)-complete lower bound
operator is defined as:

Cc(Ol)(y) = {x ∈Ol(x,y) | ∃x0, ..,x ∈ wfs(Ol(.,y))}

The c-complete upper bound operator Cc(Ou) is de-
fined analogously, and the c-stable operator is defined as
Sc(O)(x,y) = (Cc(Ol)(y),Cc(Ou)(x)). (x,y) is a c-stable
fixpoint iff (x,y) ∈ Sc(O)(x,y).
Example 9 (Example 7 continued). Consider again the pro-
gram from Example 7. We see that (for any y ⊆ {p,q}),
Sc(ICx,lP )(y) = {{p},{q},{p,q}}, as /0,{p}, /0,{q} and
/0,{p,q} are all well-founded sequences. Thus, the total
c-stable fixpoints of ICx

P are ({p},{p}), ({q},{q}) and
({p,q},{p,q}) (for x= LPST,MR,GZ,U ).

It is easy to see that for a deterministic operator over a
complete lattice, the c-stable operator coincides with the sta-
ble operator known from deterministic AFT. The c-stable
operator generalizes the minimality-based one:

Proposition 7. Let an (semi-)ndao O over a complete lat-
tice L = ⟨L,≤⟩ be given s.t. Ou(x, ·) is ⪯S

L-monotonic for
any x ∈ L. Then Cc(O†)(y) ⊇C(O†)(y) for any y ∈ L and
† = l,u. Furthermore, if (x,y) ∈ S(O)(x,y) then (x,y) ∈
Sc(O)(x,y).

Thus, what might appear to be a change to the previously
formulated stable semantics for non-deterministic approxi-
mation operators (Heyninck, Arieli, and Bogaerts 2024), is
a mere generalization of these semantics.

In general, non-deterministic operators might not admit
a fixpoint, which means that the c-complete operator is not
always well-defined (e.g. Cc(Ol)(x) = /0 or Cc(Ou)(y) = /0).
We illustrate this for Cc(Ou)(y), by giving an example of a
⪯H

L -monotonic operator that does not admit a well-founded
sequence.

Example 10. Let O : N∪{∞} where O(i) = {i+1} for any
i ∈ N and ∞ = N. Observe that O is ⪯H

L -monotonic, as for
any finite i, j s.t. i ≤ j, O(i) = {i+ 1} and i+ 1 ≤ j + 1 ∈
O( j), and for any finite i, i ∈O(∞). However, it is clear that
O admits no fixpoint and thus no well-founded sequence.

To ensure well-definedness of the c-stable operator we
will assume that the lower bound is downwards closed and
the upper bound satisfies the following, analogous, notion,
called upwards closedness:

Definition 5. An operator O is upwards closed if for every
sequence X = {xε}ε<α of elements in L s.t.

1. for every ε < α , xε ⪯H
L O(xε), and

2. for every ε ′ < ε < α , xε ′ < xε ,

it holds that
⊔

X ⪯H
L O(

⊔
X).

It can be easily observed that the operator from Exam-
ple 10 is not upwards closed. Downwards closedness of
Ol(·,y) and upwards closedness of Ol(x, ·) guarantee well-
definedness of the c-stable operator:
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Proposition 8. For any (semi-)ndao O over a complete lat-
tice s.t.Ol(.,y) is downwards closed andOu(x, .) is upwards
closed for any x,y ∈ L, Cc(Ol)(y) ̸= /0 and Cc(Oy)(x) ̸= /0.

We now show that the c-stable operator is well-defined for
all of the ndao’s considered in this paper for choice programs
P built up from choice atoms whose domain is finite. This
is a sufficient condition: other conditions might also guaran-
tee well-definedness. For most applications, this assumption
seems warranted.

Proposition 9. Let a choice program P s.t. for every
C1 ← C2, . . . ,Cn ∈ P , dom(Ci) is finite for i = 1 . . .n,
and x ∈ {MR,LPST,U} and x ⊆ y ⊆ A be given. Then
Sc(ICxP )(x,y) ̸= /0. Furthermore, Cc(ICGZ,lP )(y) ̸= /0.3

Upwards closedness is not guaranteed when allowing
choice constructs with infinite domains:

Example 11. Consider the set of atoms x = {ai | i ∈N} and
the choice atom C = (A,{A′ ⊆ A | A′ is infinite}). We let
P = {C←}. Let x j = A \ {a j | j ≤ i} for any i ∈ N. Then
{x j} j<∞ is a⊆-descending chain of infinite sets. We see that
for any j < ∞, ICP (x j) = {A′ ⊆ A | A′ is infinite} ⪯S

L {x j}
as x j ∈ {A′ ⊆ A | A′ is infinite}. However,

⋂
j<∞{x j} = /0,

whereas ICP ( /0) = {A′ ⊆ A | A′ is infinite} ⪯S
L {x j} and thus

ICP ( /0) ̸⪯S
L { /0}.

Remark 3. Another property that stable fixpoints of both
deterministic and non-deterministic operators have in com-
mon is that they are ≤t -minimal. As is to be expected
and as can be seen from the constructive stable fixpoint
({p,q},{p,q}) in Example 9, constructive stable fixpoints
are not necessariy ≤t -minimal, in contradistinction to
minimiality-based stable fixpoints (Proposition 14 by (Heyn-
inck, Arieli, and Bogaerts 2024)).

We now show a host of representation results: the LPST-
operator allows to generalize the semantics of Liu et al (Liu
et al. 2010) from two- to three-valued. The GZ-operator al-
lows to adapt the semantics of (Gelfond and Zhang 2014)
(defined for disjunctive programs) to choice programs, and
the semantics of (Marek and Remmel 2004) from two- to
three-valued. Due to spatial limitations, we cannot recall the
definitions of the represented semantics (but give them in the
full paper (Heyninck 2024)):

Proposition 10. Let a choice program P be given.

1. x is a stable model according to (Liu et al. 2010) iff (x,x)
is a stable fixpoint of ICLPSTP .

2. x is a stable model according to (Marek and Remmel
2004) iff (x,x) is a stable fixpoint of ICMR

P .
3. If P is a aggregate program then x is a stable

model according to (Gelfond and Zhang 2014) iff x ∈
Cc(ICGZ,lP )(x).

3Notice that, as ICGZ,uP is only ⪯H
L -monotonic for consistent

inputs, the complete operator for the upper-bound will not be well-
defined as it starts from ICGZ,uP (x, /0). This means that the GZ-
operator is only useful for total stable fixpoints.

Furthermore, for normal logic programs, all operators
besides the ultimate coincide, and the stable fixpoints re-
spectively partial stable fixpoint coincide with the stable re-
spectively partial stable models (and similarly for the well-
founded semantics) (recall Remark 1). Thus, the semantics
studied in this paper do not only generalize existing seman-
tics for choice or aggregate programs, but also the well-
known semantics for normal logic programs.

6 Groundedness
We introduce several postulates to facilitate a comparison
between semantics for choice programs (thus solving an
open question in the literature (Alviano, Faber, and Gebser
2023)) formalizing in different ways the idea of grounded-
ness. Furthermore, we show that for every notion of ground-
edness, there exist examples which have been argued in the
literature to be counter-intuitive.

Intuitively, the idea behind groundedness is that models
should be derivable from the ground up, i.e. they should be
supported by non-cyclic arguments. For choice programs,
what constitutes a cycle becomes less clear:
Example 12 ((Liu et al. 2010)). Consider the program
P = {{p,q} = 2← {p,q} ̸= 1}. There are two candidates
for stable models: /0 and {p,q} (as the only satisfier of the
head of the only rule is {p,q}), which we discuss:
(1) If we choose /0, then we see that the only rule in the pro-
gram is applicable but not applied.
(2) If we choose {p,q}, we could justify this intuitively by the
sequence /0,{p,q}: at the first step, /0 makes {p;q} ̸= 1 true
and thus we derive {p,q}. At the second step, however, we
can only justify our choice by a self-supporting justification:
{p,q} is true since it is derivable using the head of the rule
{p,q}= 2←{p;q} ̸= 1 and since {p,q}({p;q} ̸= 1) = T.

We observe that {p,q} is stable fixpoint for the U - and
MR-operator, but not for the LPST- and GZ-operators.

The benefit of our operator-based framework is that we
do not have to choose for a single “best” semantics: the
choices outlined above will be obtainable by using different
operators. We now carry forward our study of self-support
on a more general level by introducing three postulates of
decreasing strength. The first notion (inspired by (Gelfond
and Zhang 2014)) requires that we can find a stratification of
the program (i.e. an assignment κ of natural numbers repre-
senting levels) s.t. the entire domain of the head of a rule is
strictly higher stratified then the domain of the choice con-
structs in the body.
Definition 6. A set x is d(omain)-grounded (for P) if there
is some κ : x→ N s.t. every a ∈ x there is some r = C←
C1, . . . ,Cn ∈ P s.t. a ∈ dom(C), κ(a) > max{κ(b) | b ∈⋃n

i=1 dom(Ci)}.
As already observed by (Alviano, Faber, and Gebser

2023), this requirement might be overly strong:
Example 13. Consider P = {b← 1{a,b};a←}. Then one
might expect {a,b} to be a good candidate for a stable
model. Indeed, a is a fact and allows to support b. How-
ever, {a,b} is not d-grounded, as there is no κ : {a,b} → N
s.t. κ(b)> max{κ(a),κ(b)}.
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The following weaker notion (inspired in name and idea
by (Liu et al. 2010)) requires that at some point in a se-
quence, there is support for the body of a rule, and this sup-
port persists in every following step:

Definition 7. (1) A set x is an y-trigger for C← C1, . . . ,Cn
if for every z ∈ [x,y], z(Ci) = T for every i = 1, . . . ,n. (2)
A set x is s(trongly)-grounded (for P) if there is some κ :
x→N s.t. every a∈ x, there is some r =C←C1, . . . ,Cn ∈P
s.t. a ∈ dom(C) and there is an x-trigger z for r s.t. κ(a) >
max{κ(b) | b ∈ z}.

Intuitively, x is s-grounded if for every atom a∈ x, we can
find a rule that that has an x-trigger in a strictly lower level.

D-grounded sets are s-grounded, but not vice-versa:

Example 14. Consider P as in Example 13. We see that
{a,b} is strongly grounded. Indeed, if we take κ(a) = 0 and
κ(b) = 1, we see that b← 1{a,b} has a κ-lower {a,b}-
trigger in {a} as {a}(1{a,b}) = {a,b}(1{a,b}) = T.

The following example, first introduced by (Alviano
and Faber 2019), shows that in some circumstances, s-
groundedness might be overly strong:

Example 15. Consider P = {a←{a,b} ̸= 1;b←{a,b} ̸=
1}. One might expect the set {a,b} to be acceptable. Sup-
pose it is s-grounded. Then there is an {a,b}-trigger y for
a s.t. y ⊆ {b}. This is impossible as {b} ∈ [ /0,{a,b}] and
{b} ∈ [{b},{a,b}] and {b}∩dom({a,b} ̸= 1) ̸∈ sat({a,b}).
Thus, {a,b} cannot be s-grounded.

We thus introduce an even weaker notion of groundedness
which we call antecedent groundedness, which requires that
for every accepted atom, we can find a rule that is activated
by a lower κ-level:

Definition 8. A set x is a(ntecedent)-grounded if there is
some κ : x → N s.t. every a ∈ x, there is some r = C ←
C1, . . . ,Cn ∈ P s.t. a ∈ dom(C) and for every i = 1, . . . ,n
there is some z⊆ {b | κ(b)< κ(a)} s.t. z(Ci) = T .

S-grounded sets are a-grounded, but not vice-versa:

Example 16. Consider again P from Example 12. We first
observe that {p,q} is antecedent grounded as /0({p,q} ̸=
1) = T and thus we have found our antecedent justifica-
tion for {p,q}. However, /0 is not a {p,q}-trigger, as
{p} ∈ [ /0,{p,q}] and {p}({p,q} ̸= 1) = F. Likewise, it can
be seen that {a,b} in Example 15 is a-grounded.

The reader might think that a-groundedness is the most
suitable notion of groundedness, as it avoids the behavior
(deemed problematic by (Alviano and Faber 2019) in Exam-
ple 15). However, (Liu et al. 2010) argued that, for P from
Example 12, {p,q} is not a feasible candidate for an answer
set. Altogether, we see that for every notion of grounded-
ness, one can find examples deemed as counter-intuitive in
the literature.

Notice that all notions of groundedness generalize a well-
known notion of groundedness proposed for normal logic
programs (Erdem and Lifschitz 2003):

Proposition 11. Let P a normal logic program P . Then x is
a-grounded P then x is grounded according to (Erdem and
Lifschitz 2003), namely: there is a ranking κ : x→N s.t. for

every a ∈ x, there is some a← a1, . . . ,an,¬b1, . . . ,¬bm ∈ P
s.t. for every i = 1, . . . ,n, κ(a)> κ(ai).

The U -operator does not satisfy any notion of grounded-
ness, whereas all other operators give rise to a-grounded sta-
ble models, but only the LPST-operator and GZ-operator
give rise to s-grounded stable models and only the GZ-
operator gives rise to d-grounded stable models:

Proposition 12. Let P be a choice program and † ∈
{GZ,LPST,MR}. Then if (x,y) ∈ Sc(IC†

P )(x,y):

1. x and y are a-grounded (for P), and
2. x is s-grounded (for P) if † ∈ {GZ,LPST}.
3. x and y are d-grounded (for P) if † = GZ.

There are programs P s.t. (x,y) ∈ Sc(ICUP )(x,y) yet x and y
are not antecedent grounded.

Summing up, we see that the different semantics satisfy
different notions of groundedness, and that no notion of
groundedness is uncontested. It seems that it depends on
the application at hand which notion of groundedness is the
most suitable. The results of this section are summarized in
Table 3.

7 Disjunctions are Choice Constructs
Our study allows us to give a principled account of the rela-
tion between stable semantics for disjunctive logic programs
(DLPs) and choice programs. Indeed, in this section, we
show that for DLPs (Heyninck, Arieli, and Bogaerts 2024;
Heyninck and Bogaerts 2023) are a special case of the op-
erator for choice programs. This means that all semantics
obtained on the basis of these operators coincide, thus ex-
plaining the difference between semantics for stable mod-
els of disjunctive logic programs and choice logic programs
in terms of the choice of stable operator (minimality-based
versus constructive). In the rest of this section, we show
this claim in more detail, first providing the necessary back-
ground on DLPs and then showing DLP-operators are a spe-
cial case of the operators studied in this paper.

Preliminaries on disjunctive logic programs We first re-
call some necessary preliminaries on disjunctive logic pro-
gramming. For simplicity, we restrict attention to disjunctive
logic programs whose bodies consist solely of literals, leav-
ing the generalization of these results to stronger languages
for future work.

In what follows we consider a propositional4 language L,
whose atomic formulas are denoted by p,q,r (possibly in-
dexed), and that contains the propositional constants T (rep-
resenting truth), F (falsity), U (unknown), and C (contradic-
tory information). The connectives in L include negation
¬, conjunction ∧ and disjunction ∨. Formulas are denoted
by φ , ψ , δ (again, possibly indexed). A (propositional) dis-
junctively normal logic program P in L (a dlp in short) is a
finite set of rules of the form

∨n
i=1 pi ←

∧n
i=1 ai∧

∧m
i=1¬bi,

where the head
∨n

i=1 pi is a non-empty disjunction of atoms,
and the body ψ is a formula in L. We furthermore recall

4We restrict ourselves to the propositional case.
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Operator d-ground. s-ground. a-ground.

GZ ∨ ∨ ∨
LPST × ∨ ∨
MR × × ∨
U × × ×

Example of violation Ex. 13 Ex. 15 Ex. 12
Counter-intuitive according to (Alviano, Faber, and Gebser 2023) (Alviano and Faber 2019) (Liu et al. 2010)

Table 3: Results on Postulates

that a formula of the form
∧n

i=1 ai ∧
∧m

i=1¬bi can be evalu-
ated over the bilattice FOUR relative to (x,y) by assuming
the involution − defined by −T= F, −F= T, −U= U and
−C = C, and by defining truth assignments to complex for-
mulas recursively as follows:

• (x,y)(p) =


T if p ∈ x and p ∈ y,
U if p ̸∈ x and p ∈ y,
F if p ̸∈ x and p ̸∈ y,
C if p ∈ x and p ̸∈ y.

• (x,y)(¬φ) =−(x,y)(φ),
• (x,y)(ψ ∧φ) = ⊓≤t{(x,y)(φ),(x,y)(ψ)},
• (x,y)(ψ ∨φ) = ⊔≤t{(x,y)(φ),(x,y)(ψ)}.
Notice that this is equivalent to the evaluations introduced in
Section 4.

We recall the following ndao ICd
P introduced by (Heyn-

inck, Arieli, and Bogaerts 2024) and defined as follows
(given a dlp P and an interpretation (x,y)):

• HDd,l
P (x,y) = {∆ |

∨
∆← φ ∈ P ,(x,y)(φ)≥t C},

• HDd,u
P (x,y) = {∆ |

∨
∆← φ ∈ P ,(x,y)(φ)≥t U},

• ICd,†
P (x,y) = {x1 ⊆

⋃HDd,†
P (x,y) | ∀∆ ∈

HDd,†
P (x,y), x1∩∆ ̸= /0} (for † ∈ {l,u}),

• ICd
P (x,y) = (ICd,l

P (x,y),ICd,u
P (x,y)).

The operator ICd
P faithfully represents the semantics of

dlps: In general, total stable fixpoints ofP correspond to sta-
ble models of P (Gelfond and Lifschitz 1991), and weakly
supported models of P (Brass and Dix 1995) correspond to
fixpoints of ICd

P (Heyninck, Arieli, and Bogaerts 2024).

Disjunctions as Choice Constructs We now show how
the operator ICd

P can be seen as a special case of the opera-
tors for choice constructs. In more detail, for a DLP P , we
define D2C(P) = {1∆← φ |

∨
∆← φ ∈ P}. E.g. D2C({p∨

q←}) = {1{p,q} ←}. In other words, we replace every
disjunction by the choice atom that requires at least one el-
ement of ∆ is true. We will show here that the operator de-
fined for disjunctive logic programs (Heyninck, Arieli, and
Bogaerts 2024) then coincides with the operator ICxD2C(P)
(for x = MR,LPST). This implies that all AFT-based se-
mantics coincide for DLPs and their conversion into choice

rules. We can now point in a very exact way to the differ-
ence between DLPs and choice programs: it lies not in how
the constructs of disjunction and choice atoms are treated
(i.e. when they should be made true or false), but rather in
how the stable semantics is defined: for disjunctions, typi-
cally (e.g. in the most popular solvers (Gebser et al. 2016;
Eiter et al. 2012)), a minimality-based stable operator is
used, whereas for choice constructs, the c-stable operator
is more apt. Thus, disjunctive and choice programs use the
same (approximation) operators, but differ in how the corre-
sponding stable operator is constructed.

We now show that the operator ICd
P is a special case of

the MR- and LPST-operators from this paper, when applied
to the choice program D2C(P).
Proposition 13. For any disjunctive normal logic program
P , ICP = ICMR

D2C(P) = IC
LPST
D2C(P).

From this, we immediately obtain that all the major se-
mantics for disjunctive logic programming are special cases
of the semantics introduced in this paper. Namely, weakly
supported models of P coincide with fixpoints of ICMR

D2C(P)
whereas minimality-based stable fixpoints of P coincide
with stable models of P . Since, the c-stable semantics does
not enforce minimality, it will in general not correspond to
the stable models semantics:

Example 17. Let P = {p∨ q←}. Then ({p,q},{p,q}) is
a c-stable fixpoint of ICMR

D2C(P) but it is not a stable model of
P according to (Gelfond and Lifschitz 1991).

This also gives an answer to the question of how to com-
bine disjunctions and choice constructs in logic programs: a
choice as to which stable semantics are used has to be made:
either preserve the minimality of answer sets as in DLPs and
loses some reasonable models, or one gives up the minimal-
ity requirement by using the constructive stable semantics.
In this context, it is perhaps interesting to note that the con-
structive stable semantics still coincides with the standard
stable semantics for normal logic programs. In that case, all
stable models are minimal. On the other hand, we can now
also use minimality-based stable semantics on more compli-
cated choice construct than simple disjunctions.

8 Related Work
To the best of our knowledge, this is the first application of
AFT to the semantics of choice programs. We have shown
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how major semantics for choice programs (Marek and Rem-
mel 2004; Liu et al. 2010) can be characterized in our frame-
work. Other well-known semantics for (disjunctive) aggre-
gate programs are those by (Faber, Leone, and Pfeifer 2004;
Alviano and Faber 2019; Ferraris 2011), which are the ones
used in the solvers DLV respectively clingo (Ferraris 2011;
Alviano et al. 2017).

Another semantics, the FLP-semantics (Faber, Leone, and
Pfeifer 2004), were originally not defined for programs with
choice constructs in the head, but were generalized to allow
choice constructs in the head by (Eiter and Geibinger 2023).
Nevertheless, these semantics only allow for two-valued sta-
ble models, and were shown to differ from the semantics by
(Gelfond and Zhang 2014), (Liu et al. 2010) and (Marek and
Remmel 2004) already for aggregate programs (Alviano,
Faber, and Gebser 2023), which means, in view of Propo-
sition 10, that the stable semantics induced by the LPST-,
MR- and GZ-operators also differ from the FLP-semantics.
This comparison also holds for the semantics by (Ferraris
2011) as the latter coincide with the FLP-semantics for ag-
gregates with positive atoms (Alviano, Faber, and Gebser
2023).

Another line of work that is relevant for this paper
is the application of AFT to logic programs with aggre-
gates. (Pelov, Denecker, and Bruynooghe 2007) intro-
duce several approximation operators for aggregate pro-
grams, whereas (Pelov, Denecker, and Bruynooghe 2007)
introduces operator-based semantics for disjunctive aggre-
gate programs. These semantics were generalized by
(Heyninck and Bogaerts 2023) in the framework of non-
deterministic AFT. Generalizing the operator by (Pelov,
Denecker, and Bruynooghe 2007) to choice programs is
left for future work. An overview of semantics that are
(non-)representable in the deterministic AFT-framework is
given by (Vanbesien, Bruynooghe, and Denecker 2022).
This work severed as an important foundation of our pa-
per, as the operators ICGZP and ICMR

P are generaliza-
tions of the operator-based characterisations by (Vanbesien,
Bruynooghe, and Denecker 2022) of the corresponding se-
mantics.

9 Conclusion
The main contributions of this paper are the definition of
several ndaos for choice programs, the definition of the con-
structive stable operator, the characterisation of several ex-
isting semantics for various dialects of logic and choice pro-
grams and the introduction and study of postulates for choice
programs. We provide a principled view of choice programs
versus disjunctive programs.

This paper is subject to one restriction: we assume
ICc
P (x,y) ̸= /0 for every interpretation (x,y). In future work,

we will generalize our results beyond this assumption. We
also plan to study the complexity of the resulting semantics,
device implementations and study other AFT-based seman-
tics, such as the Kripke-Kleene and well-founded states and
semi-equilibrium semantics (Heyninck and Bogaerts 2023;
Heyninck, Arieli, and Bogaerts 2024) and study other op-
erators, e.g. inspired by (Pelov, Denecker, and Bruynooghe

2007).
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