
Verification of General Games with Imperfect Information using Strategy Logic

Yifan He1 , Munyque Mittelmann2 , Aniello Murano2 , Abdallah Saffidine1 , Michael Thielscher1
1University of New South Wales, Australia

2University of Naples Federico II, Italy
{yifan.he1,mit}@unsw.edu.au, {munyque.mittelmann, aniello.murano}@unina.it, abdallahs@gmail.com

Abstract

The Game Description Language with Imperfect Information
(GDL-II) is a lightweight formalism for representing the rules
of arbitrary games, including those where players have pri-
vate information. Its purpose is to build general game-playing
systems, that is, automated players that can understand the
rules of games and learn how to play them without human
intervention. Epistemic Strategy Logic (SLK), on the other
hand, is a rich logical framework for reasoning about multi-
agent systems and the strategic behavior of agents with par-
tial observability. To enable a general game-playing system
to take advantage of this rich formalism for the automatic ver-
ification of properties of games, we present a formal transla-
tion from GDL-II games to SLK models. We prove the cor-
rectness of this translation and show how crucial properties
of general games, including playability and the existence of
Nash equilibria, can be expressed as formulas in SLK. Fi-
nally, we demonstrate the application of an existing model-
checking system to verify the properties of GDL-II games.

1 Introduction
The Game Description Language (GDL) has been developed
as a lightweight knowledge representation formalism for de-
scribing the rules of arbitrary games. It is used as the input
language for general game-playing (GGP) systems, which
can learn to play any new game from the mere rules and
without human intervention, thus exhibiting a form of gen-
eral intelligence. While the original GDL defined for the
first AAAI GGP competition (Love, Genesereth, and Hin-
richs 2006; Genesereth and Björnsson 2013) was restricted
to games in which players have complete information about
the game state, the language has later been extended to
GDL-II to be able to describe any game with imperfect in-
formation (Thielscher 2011; Schiffel and Thielscher 2014).

As a lightweight specification language, GDL merely pro-
vides means for representing the rules of a game while a
crucial aspect of general game playing is the ability to au-
tomatically reason about a given specification. GGP sys-
tems require this ability as a basis for search (Kuhlmann,
Dresner, and Stone 2006; Clune 2007), to use machine
learning for game playing (Goldwaser and Thielscher 2020;
Gunawan 2023), and for solving games (Thielscher 2009;
He, Saffidine, and Thielscher 2024). Automated reasoning
can also be used for analysing general games (Ruan, Van

Der Hoek, and Wooldridge 2009). Important basic proper-
ties of games include, for example, universal termination,
i.e., ensuring that a game described in GDL is guaranteed
to terminate; playability, i.e., ensuring that in all reachable
states, every player knows their legal moves; and properties
about strategies such as the existence of Nash equilibrium.

Strategy Logic (SL) (Mogavero et al. 2014) provides
a rich logical framework for reasoning about multi-agent
systems and the strategic behavior of agents. Its exten-
sion, Epistemic Strategy Logic (SLK) (Berthon et al. 2021),
enables reasoning about games with partial observability.
Taking advantage of this formalism to automatically ver-
ify properties of general games requires a formal translation
from GDL-II games to interpreted systems, which are the se-
mantical structures used in both SLK and the model check-
ing toolkit MCMAS (Lomuscio, Qu, and Raimondi 2017;
Čermák et al. 2018). In this paper, we propose such a trans-
lation and prove its correctness. We also show how to ex-
press and verify properties regarding the strategic behavior
of agents in GDL-II games using MCMAS. Our main contri-
bution is thus a concrete link between the general Game De-
scription Language and Strategy Logic that bridges the re-
search in GGP with the recent developments in formal meth-
ods for strategic reasoning. Specifically, for the first time,
we show that GDL-II descriptions can be translated into in-
terpreted systems, which can be used as models for logic for
strategic reasoning under imperfect information and model-
checked using MCMAS.
Related work. For the verification of temporal invariance
properties in GDL and of epistemic properties in GDL-II,
Answer Set Programming has been used in the past (Haufe,
Schiffel, and Thielscher 2012; Haufe and Thielscher 2012).
In addition, the model checker MCK (Gammie and Van
Der Meyden 2004) was considered to verify GDL-II prop-
erties (Huang, Ruan, and Thielscher 2013). However, none
of these works handle the strategic dimension, which also
holds for the translation of epistemic GDL-III into Dynamic
Epistemic Logic (DEL) that focuses on automated epistemic
reasoning and planning (Engesser et al. 2021). Ruan, Van
Der Hoek, and Wooldridge (2009) provide a framework in
which GDL can be understood as a specification language
for models of Alternating-time Temporal Logic (ATL). But
their approach is restricted to the original GDL for games
with complete state information.
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Outline. We start by presenting basic definitions in Sec-
tion 2. Then, we present our translation from GDL-II games
to interpreted systems in Section 3 and prove its correctness
in Section 4. In Section 5 we demonstrate its use to verify
properties expressed in SLK. We conclude in Section 6.

2 Preliminaries
We recall basic definitions of the Game Description Lan-
guage with Imperfect Information and Epistemic Strategy
Logic. We consider a set of atomic propositions AP, a set of
agents R, a set of actions Acr for each r ∈ R, and a set of
strategy variables S. We let Ag = R ∪ Env, where Env is a
distinguishing element also called the environment.

2.1 GDL-II
The Game Description Language (GDL) is a general lan-
guage for expressing game rules using a syntax similar to
that of logic programs. The extension GDL-II enables the
description of incomplete information games and contains
the following predefined keywords:

role(R) R is a player
init(F ) F holds in the initial position
true(F ) F holds in the current position

legal(R,M) R can do action M in the current position
does(R,M) player R does action M
next(F ) F holds in the next position
terminal the current position is terminal
goal(R,N) R gets N points in the current position

sees(R,P ) R perceives P in the next position
random the random player

Plain GDL considers only the first eight keywords (Love,
Genesereth, and Hinrichs 2006). The final two were added
in GDL-II to support the description of games of incom-
plete information. The keyword sees(R,P ) is used to
specify the conditions under which a player R gets infor-
mation P , while random denotes a special player that is
assumed to always perform random actions (Schiffel and
Thielscher 2014). GDL-II is a universal language that can
express all finite extensive-form games with imperfect in-
formation (Thielscher 2011).

As an example, consider the simple 2-player game in ex-
tensive form depicted in Fig. 2. Fig. 1 gives a GDL-II de-
scription of this game. The players take alternating moves.
When it is their turn, they can both choose between actions l
and r , otherwise they can only play noop. After each round,
each player perceives the most recent action that she played.

Valid game descriptions must satisfy certain syntactic re-
strictions; for details, we refer to Love, Genesereth, and
Hinrichs (2006). A GDL-II description is grounded if it is
variable-free. The atom dependency graph of a grounded
GDL-II description G can be obtained by creating a node
for each atom in G and a directed edge between any two
atoms b to h such that there exists a rule in G with h appears
in the head and b in the body (Genesereth and Thielscher
2014). A game description is acyclic if its atom dependency
graph contains no directed cycle. For simplicity, in this

paper, we only consider GDL-II descriptions that are both
grounded and acyclic. A method of obtaining a grounded
version of any valid GDL-II description has been described
by Huang, Ruan, and Thielscher (2013), and while not com-
pulsory, all game descriptions used in past GGP competi-
tions are acyclic.

Let At be the set of ground atoms inG. We define Atother
as the set of all atoms in At that are not of form does(r, a),
init(f), true(f), next(f), or sees(r, a). By Base we mean
the set of all fluents f such that init(f) ∈ At , true(f) ∈ At ,
or next(f) ∈ At . Given a set of fluents Q ⊆ Base , we
introduce the notationQtrue def= {true(f). | f ∈ Q}. Finally,
for a joint action A = ⟨A(r1), . . . , A(rn)⟩, i.e. an action
A(ri) for each player ri, let

Adoes def= {does(r1, A(r1))., . . . , does(rn, A(rn)).}

Definition 1 (GDL-II semantics (Ruan and Thielscher
2011)). Let G be a GDL-II specification over a set of ground
terms σ. The semantics of G is the state transition system
⟨R,Q1, T, l, u, I, g⟩ defined as follows:

• R = {r ∈ σ | G |= role(r)} (players);
• Q1 = {f ∈ Base | G |= init(f)} (initial position);
• T = {Q ⊆ Base|G ∪Qtrue |= terminal} (terminal po-

sitions);
• l = {(r, a,Q)|G ∪ Qtrue |= legal(r, a)}, where r ∈ R,
a ∈ σ, and Q ⊆ Base (legality relation);

• u(A,Q) = {f ∈ Base | G ∪Qtrue ∪Adoes |= next(f)},
for all A : R→ σ and all Q ⊆ Base (update function);

• I = {(r,A,Q, p) | G ∪ Adoes ∪Qtrue |= sees(r, p)}, for
all r ∈ R\{random},A ∈ σ|R|−1,Q ⊆ Base , and p ∈ σ
(information relation, determining players’ percepts);

• g = {(r, v,Q) | G ∪ Qtrue |= goal(r, v)}, where r ∈
R \ {random}, v ∈ N0, and Q ⊆ Base (goal relation).

Different runs of a game can be described by develop-
ments, which are sequences of states and legal joint moves
by each player up to a certain round:

⟨Q1, A1, Q2, . . . , Qk−1, Ak−1, Qk⟩
Informally, under perfect recall, a role r ∈ R\{random}
cannot distinguish two developments if, and only if, these
are of the same length and the player takes the same
moves and gets the same percepts in every round (Ruan and
Thielscher 2011). Formally, if d = ⟨Q1, A1, Q2, . . . , Qn⟩
and d′ = ⟨Q1, A

′
1, Q

′
2, . . . , Qm⟩ are two developments, then

player r cannot distinguish d and d′ (written as d ∼r d
′) iff

• n = m.
• {p|(r,Ai, Qi, p) ∈ I} = {p|(r,A′

i, Q
′
i, p) ∈ I}, for all

1 ≤ i ≤ m,
• Ai(r) = A′

i(r), for all 1 ≤ i < m.
Based on the semantics, the epistemic game model for a

GDL-II description is defined as follows.
Definition 2 (GDL-II Epistemic Game Model (Ruan and
Thielscher 2011)). Consider a GDL-II description G with
semantics ⟨R,Q1, T, l, u, I, g⟩. The epistemic game model
of G is a structure ⟨W,R, (∼i)i∈R\{random}, V ⟩ , where
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role(x). role(o). init(control(x)). init(s1).
legal(P,l) <= true(control(P)). legal(x,noop) <= true(control(o)).
legal(P,r) <= true(control(P)). legal(o,noop) <= true(control(x)).
sees(Player,Move) <= does(Player,Move).
next(control(x)) <= true(control(o)). next(s2) <= true(s1), does(x,l).
next(control(o)) <= true(control(x)). ... next(s11) <= true(s9), does(o,r).
goal(x,7) <= true(s3). ... goal(x,6) <= true(s11). terminal <= true(s3).
goal(o,9) <= true(s3). ... goal(o,6) <= true(s11). ... terminal <= true(s11).

Figure 1: A simple GDL-II game description (given in infix notation).

S1

S2 S5

S3 S4 S6 S9

S7 S8 S10 S11

(8,8) (4,10) (5,4) (6,6)

(7,9) (9,7)

{} {}

{l} {noop} {r} {noop}

{noop} {r} {noop} {r}

Figure 2: Game tree of the simple GDL-II game in Fig. 1 with
the goal value for players x and o given at each terminal state and
the percepts of the two players (here: their own preceding move)
shown to the left and right of some states.

• W is the set of developments of G;
• ∼i ∈W×W is the indistinguishability relation for player
i ∈ R\{random};

• V : W → 2σ is an interpretation function, associating
each development d with the set of ground terms in d that
are true in the last state of d.

2.2 Epistemic Strategy Logic
Epistemic Strategy Logic (SLK) is an extension of SL (Mo-
gavero et al. 2014) to handle imperfect information.
Definition 3. The syntax of SLK is defined as follows:

φ ::= p | φ ∨ φ | ¬φ | ⟨⟨x⟩⟩φ | (r, x)φ | Krφ | Xφ | φUφ

where p ∈ AP, x ∈ S, and r ∈ R.
The formula ⟨⟨x⟩⟩φ means that there exists a strategy x

such that φ holds; (r, x)φ means that, when strategy x is
assigned to r, φ holds; Krφ means that agent r knows that
φ holds; X and U are the usual temporal operators “next”
and “until”.

We consider the SLK semantics by Čermák et al. (2018),
which is based on interpreted systems.
Definition 4. An interpreted system (IS) is a tuple I =〈
(Str, Acr, Pr, trr)r∈Ag, I, h

〉
where

• Str is a finite, non-empty set of local agent states. For
each agent r ∈ R, we assume that Str = Stpr × Stvisr

Env,
where Stpr is the set of internal states of agent r and Stvisr

Env
is an image of the set of environment states visible to agent
r via her visibility function visr : StEnv → Stvisr

Env.
We denote by St = (

∏
r∈R St

p
r)× StEnv the set of global

states. Given a global state s ∈ St, we denote by sEnv(s)

and sp
r the environment state and the internal state of agent

r in s, respectively. We also let sr(s) =
(
sp
r, visr(sEnv(s))

)
denote the local state of agent r in s;

• Acr is a finite non-empty set of actions available to agent
r. The set of decisions for all agents is Dc =

∏
r∈Ag Acr.

Given c ∈ Dc, we write cr for r’s action in c;
• Pr : Str → 2Acr \ {∅} is the protocol of agent r, i.e., a

function specifying the available actions for r at a given
state. The global protocol P : St → 2Dc is defined as
P(s) = {c ∈ Dc | ∀r ∈ Ag.cr ∈ Pr(sr(s))} for all s∈St;

• trr : Str ×Dc → Stpr is an evolution function, mapping
every local state of an agent and decision to a new internal
state of the same agent. The global evolution is a function
tr : St × Dc → St, defined as follows: tr(s, c) = s′ iff,
for all agents r ∈ Ag, it holds that tr(sr(s), c) = sr(s′);

• I ⊆ St is a finite non-empty set of initial global states;
• h : AP → 2St is a valuation function, mapping each

proposition to the set of global states in which it is true.

A (memoryless) strategy is a function σ : St → c map-
ping each global state to an action. Given an agent r, we say
that σ is r-coherent if, for each s ∈ St, σ(s) ∈ Pr(sr(s)).

A strategy σ is uniform w.r.t. the agent r if, for every pair
of global states s1, s2 ∈ St with sr(s1) = sr(s2) (i.e., s1 and
s2 are indistinguishable by r) it holds that σ(s1) = σ(s2).
Given a group of agents A ⊆ R, by StrA we denote the
set of all r-coherent uniform strategies, for each r ∈ A. A
strategy profile σ = (σr)r∈R is a tuple of strategies, where
σr is r-coherent, for r ∈ Ag.

An assignment A : Ag ∪ S → Str is a function from
players and strategy variables to strategies such that A(r) is
r-coherent for each agent r. For an assignment A, an agent
r and a strategy σ for r, A[a 7→ σ] is the assignment that
maps a to σ and is otherwise equal to A, and A[x 7→ σ] is
defined similarly, where x is a strategy variable.

Given a strategy variable x and a SLK formula φ, we let
shrφx be the set of agents associated to x in φ, i.e., shrφx

def=
{r ∈ R : (r, x)ψ is a subformula of φ}.

Definition 5. The satisfaction relation |= for a state s ∈ St,
an IS I, an assignment A, and SLK formula φ is defined in-
ductively. We only give the inductive cases for strategy quan-
tification and epistemic operators, and refer to (Čermák et
al. 2018) for the other standard cases.

• I,A, s |= ⟨⟨x⟩⟩φ iff ∃σ ∈ Strshrφx s.t. I,A[x 7→ σ], s |= φ

• I,A, s |= (r, x)φ iff I,A[r 7→ A(x)], s |= φ

• I,A, s |= Krφ iff I,A, s′ |= φ for all s′ s.t sr(s′) = sr(s)
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We define and use the standard abbreviations as follows:
⊥ def= ¬⊤, φ ∧ φ′ def= ¬(¬φ ∨ ¬φ′), φ→ φ′ def= ¬φ ∨ φ′,
Fψ def= ⊤Uψ, Gψ def= ¬F¬ψ and [[x]]φ def= ¬⟨⟨x⟩⟩ ¬φ.

The model-checking problem for SLK consists in decid-
ing, given a formula φ, an IS I, and a state s in I, whether
I,A, s |= φ for some assignment A. This problem is un-
decidable for memoryfull strategies (Berthon et al. 2021;
Dima and Tiplea 2011) and PSPACE-complete (Čermák et
al. 2018; Maubert et al. 2021) for memoryless strategies.

MCMAS (Lomuscio, Qu, and Raimondi 2017) is a
model-checking toolkit for the verification of multiagent
systems (MAS) described utilizing Interpreted Systems Pro-
gramming Language (ISPL) programs.1 A basic ISPL pro-
gram is described by: (i) local states, which are internal
states of the agents, declared using local variables, and
not observable by the other agents. The only exception is
on some local variables of the environment, which can be
specified to be visible to other agents using the keyword
Lobsvars; (ii) a local protocol, which represents how the
agents can interact with each other and the environment;
(iii) a initial state, which represents the initial assignment
of local variables; and (iv) a local evolution function, which
describes how local states change value over time. We con-
sider the MCMAS extension MCMAS-SLK, which handles
SLK with memoryless strategies (Čermák et al. 2018).

3 Translation
Given a GDL-II description G, we generate an IS I de-
scribed in ISPL. I should be equivalent to G in such a way
that every ground atom in G is mapped to some variables
in I, and each state of G is mapped to some global state
of I. As a result, if a property holds in the game model of G
under GDL-II semantics, it should also hold in I under SLK
semantics. We first introduce some auxiliary notations.

• An action history h is a (possibly empty) finite sequence
A1;A2; . . . ;Am where Ai is a joint action, for each 1 ≤
i ≤ m, and m ∈ N0.

• For an n-player GDL-II game, Q∅
h denotes the unique

game state reached after the players performed the his-
tory of legal joint actions h, andQA

h denotes that the legal
joint action A was played after the history h.

• For any state QA
h in G (A can be ∅), we use QA

h =
{f1, . . . , fk} to denote the set of ground terms that hold
at that state, and (QA

h )
true def= {true(f1)., . . . , true(fk).}

• For any state Q∅
h in G, (Q∅

h)
sees represents the set of per-

cepts of all players in the current state. (Q∅
h)

sees(r) rep-
resents the percepts of player r at the state Q∅

h. More
formally, (Q∅

∅)
sees(r) = {}, and (Q∅

h;A)
sees(r) =

{sees(r, f) | G ∪ (QA
h )

true ∪Adoes |= sees(r, f)}.

• We use h[−i] to represent the i-th last element of a list,
and h[: −i] to represent the sublist of h from the first ele-
ment up to the i-th last element of h (the list obtained by

1ISPL syntax is available at https://sail.doc.ic.ac.uk/software/
mcmas/manual.pdf

removing the final i-1 elements). We denote by h[−i](r)
the action of player r in the i-th last element of h.

When the history is empty, the (initial) game state is Q∅
∅,

and based on the last item, we have h = h[: −1]. When a
joint action A is played at state Q∅

h ∈ G, we write QA
h for

an intermediate state before updating the ground terms in
Q∅

h, and then the game evolves to Q∅
h;A where these terms

have been updated. Here h;Ameans appendingA to the end
of h. Note that only Q∅

h correspond to “real” game states
in a game G; the intermediate states are introduced for the
purpose of the IS.

Since the SLK model checker considers imperfect recall
semantics while the standard semantics for GDL-II assumes
that each player has perfect recall, we introduce the concept
of recall depth in GDL-II.

Definition 6 (Recall depth). Suppose G is an n-player
GDL-II description. A player r has recall depth D iff r can-
not distinguish any two states Q∅

h1
and Q∅

h2
in the game that

satisfy both the following properties.

• ∀1 ≤ i ≤ D, h1[−i](r) = h2[−i](r)
• ∀1 ≤ i ≤ D + 1, (Q∅

h1[:−i])
sees(r) = (Q∅

h2[:−i])
sees(r)

If i ≥ length(h), h[−i](r) = ∅, and (Q∅
h1[:−i])

sees(r) = ∅.
We say a game is playable at recall depth D iff all players
have a recall depth D, and for any two indistinguishable
states Q∅

h1
and Q∅

h2
, for any player r, if G ∪ (Q∅

h1
)true |=

legal(r, a) then G ∪ (Q∅
h2
)true |= legal(r, a).

The above definition can be understood as follows. If a
player has a recall depth of D, then at each state, they only
memorize their actions in the previous D steps, and their
percepts in the last D + 1 steps. If the game is playable at
recall depthD, each player can still derive their legal actions
at all game states under this recall depth. We call players
memoryless if they have a recall depth of 0. As an example,
the game described in Fig. 1 has been designed so as to be
playable at any recall depth.

We can now describe the conversion of a GDL-II descrip-
tion G to an IS I in the MCMAS framework (Lomuscio,
Qu, and Raimondi 2017). In the following, we assume the
game G to be playable at recall depth 0 and that all players
are memoryless; we discuss the generalization of our trans-
lation in Section 4.2.

3.1 Local variables
We define all variables in I as local variables associated to
the environment Env while letting the players observe some
local variables of Env with the keyword Lobsvars. Each
atom in G is mapped to several local variables of Env in the
translated IS I, which are defined as follows.

Definition 7 (Local variables of the Environment). Suppose
G is a grounded GDL-II description with atoms At , then the
set of local variables Var of the environment Env of I is the
union of the following sets of variables.

• Varnext = {next(f) | f ∈ Base}.
• Var true = {true(f) | f ∈ Base}.
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• Varsees = {sees(r, a) | sees(r, a) ∈ At}.
• Varseen = {seen(r, a, 0) | sees(r, a) ∈ At}.
• Vardoes = {does(r, a) | does(r, a) ∈ At}.
• Varother = Atother.
• act: a boolean variable.
• cnt: an integer between 0 and δ + 1.

Here, δ is the length of the longest chain of the atom de-
pendency graph of G. For the game described in Fig. 1,
δ = 1. The reason for introducing cnt, act, and δ will be
discussed in Section 3.3. The above definition creates an
implicit association between the atoms in G and variables
in I. The association can be explicitly described as follows.

Definition 8 (Association between atoms in G and variables
in I). Suppose G is a grounded GDL-II description with
atoms At , and I is the IS with local variables Var . For
each p ∈ Var\{act, cnt}, the corresponding atom in G is
denoted as g(p); we write g(p) = q to denote that p is asso-
ciated with the atom q in G:

• If p ∈ Var true ∪Varother ∪Vardoes, then g(p) = p.
• If p ∈ Varnext and p ∈ At , then g(p) = p.
• If p ∈ Varnext and p /∈ At , then g(p) is undefined.
• If p is of form sees(r, a), then g(p) = sees(r, a).
• If p is of form seen(r, a, 0), then g(p) = seescurr(r, a).

where seescurr is the observation token (i.e., percept) of an
agent in the current state. Conversely, we define i(q) as a
mapping from GDL-II atoms q to its corresponding variable
p ∈ Var such that i(q) = p iff g(p) = q.

Note that seescurr do not correspond to any “real” atoms
in G at a given state, they are used to describe the precepts
of the players (i.e., (Q∅

h)
sees). Some next(f) ∈ Var do

not have an associated next(f) ∈ At (e.g., next(s1) in the
game introduced in Section 2). These “redundant” atoms are
added to Var to reduce some casework in Section 3.3.

We now introduce the completion rule. This was orig-
inally introduced in GDL by Ruan, Van Der Hoek, and
Wooldridge (2009), and we adapt it to GDL-II.

Definition 9 (Completion rule). Suppose G is a grounded
GDL-II description, and I is the IS that models G, with the
local variables Var . For every p ∈ Varnext ∪ Varother ∪
Varsees, the completion rule of p is:

cp(p) ≡

⊥, if g(p) is undefined∨
r∈G,hd(r)=g(p)

∧
bd(r), otherwise.

Here, hd(r) means the atom in the head of a rule r ∈ G with
body bd(r) = {l1, . . . , ln} and

∧
bd(r) = i(l1)∧ . . .∧i(ln).

For an empty body rule, bd(r) = ⊤.

E.g. for the GDL-II description in Fig. 1, the comple-
tion cp(terminal) of terminal is given by: true(s3) ∨
true(s4) ∨ true(s7) ∨ true(s8) ∨ true(s10) ∨ true(s11).

Since we deal with imperfect-information games, we need
to define the local variables of Env that are observable by
each player in the game.

Definition 10 (Local observations of players). SupposeG is
a grounded GDL-II description, and I is the IS that models
G, then the set of local observation variables Obsr of any
player r ̸= random in I is the union of the following sets.

1. {cnt, act}
2. Legalr = {a | a ∈ Varother ∧ ∃ac. a = legal(r, ac)}
3. Seenr = {a | a ∈ Varseen ∧ ∃f. a = seen(r, f, 0)}
If r is the random player, then Obsr = V ar.

3.2 Initial State and Protocol
The initial state and protocol of the IS are defined as follows.

Definition 11 (Initial state). Suppose G is a grounded
GDL-II description with ground atoms At and initial
state Q∅

∅. For the initial state of our IS I, the variables are
initialized as follows.

• cnt = 0 and act = ⊤.
• If p ∈ Varseen ∪Vardoes, then p = ⊥.
• If p ∈ Varnext and g(p) is undefined, then p = ⊥.
• If p ∈ Varnext ∪Var true ∪Varother ∪Varsees and g(p)

is defined, then p = ⊤ if and only ifG∪(Q∅
∅)

true |= g(p).

Definition 12 (Legal actions). Suppose G is a grounded
GDL-II description, and I is the IS that models G. Sup-
pose “none” is a dummy action not in the move domain of
any player in G, then for any player r ∈ R and any state
S ∈ I , it is legal for player r to play the action a from their
move domain if legal(r, a) = ⊤ ∧ act = ⊤ ∧ cnt = 0 at
state S. If no action in the move domain is legal at a state S,
it is legal for player r to play “none.” “none” is the only
legal action for Env in all states of I.

3.3 Evolution function
The global evolution function of I describes how the values
of the local variables change after a joint action of all the
players. For each variable p ∈ Var , we use p to denote its
value in the current state and p′ its value in the next state.
The main challenge of defining the evolution function of I
is that the evolution of atoms in GDL-II is based on the stan-
dard stable model semantics while in MCMAS the values of
variables in the next state can only depend on the values of
the variables in the current state.

Example 1. Let P be a logic program with just two rules:

• a :- true(f). terminal :- a.

Initially, a = true(f) = terminal = ⊥. By forcing
true(f) = ⊤, the only stable model of the program is
a = true(f) = terminal = ⊤ in the next state. It is
tempting to model the evolution function of an IS I describ-
ing P with the completion rule as in the existing GDL to ATL
translation (Ruan, Van Der Hoek, and Wooldridge 2009).

• a′ = true(f). terminal′ = a.

The model checker Mocha (Alur et al. 1998) used in the
GDL to ATL translation can execute the first function be-
fore the second function such that after one evolution step,
a = true(f) = terminal = ⊤. However, in every
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evolution step of MCMAS, all evolution functions are ex-
ecuted simultaneously. Hence, after one evolution step,
terminal = ⊥ and true(f) = a = ⊤, which does not
match the stable model.

The issue here is that in the stable model, the value of
terminal in the next state depends on the value of a in the
next state while in MCMAS, the value of variables in the
next state should only depend on the value of variables in
the current state. We must address the simultaneous up-
date issue to enable verification of GDL games with MC-
MAS. To do so, first observe that P in the example above is
acyclic and that the length of the longest chain of the depen-
dency graph of P is 2. If we apply the completion rule to all
v ∈ Var simultaneously two or more times, the value of all
variables v will converge to true. We therefore introduce a
counter-based method to model the evolution function of I.
The structure of this IS I is illustrated in Fig. 3. We use Sc,a

h
to represent a state in I with cnt = c, act = a, and the list of
joint actions performed before this state being h. Sc,a

h cor-
responds to a “real” game state of G if and only if c = 0 and
a = ⊤. For each state not of the form S0,⊤

h , the only legal
joint action in the given state is ⟨none, . . . , none⟩. Note that
only legal joint actions performed by the players at states
with c = 0, and a = ⊤ are appended to the list h.

S0,⊤
h

S1,⊤
h;A

Sδ+1,⊤
h;AS0,⊥

h;ASδ−1,⊥
h;A

does← Action

cnt++
true← next

seen← sees
does← ⊥cnt++

act = ¬act

Figure 3: Evolution of local variables in the IS

The intended behavior of the constructed I is as fol-
lows. For each state S0,⊤

h (initial state is S0,⊤
∅ , where ∅ de-

notes empty history), if terminal ̸= ⊤, a legal joint action
A = ⟨A(r1), . . . , A(rn)⟩ is picked and we transit to S1,⊤

h;A

with all the does(ri, A(ri))′ set to true. If terminal = ⊤,
we transit to S0,⊤

h no matter what A we pick. Note that
we leave out the action of Env in A since it is “none” in
all states of I. During the evolution from Sδ+1,⊤

h;A to S0,⊥
h;A

we set all does(r, a)′ = ⊥, seen(r, f, 0)′ = sees(r, f), and
true(f)′ = next(f). To ensure that the variables in I con-
verge, at least δ many intermediate evolutions are introduced
between S1,⊤

h;A and Sδ+1,⊤
h;A , and S0,⊥

h;A and S0,⊤
h;A.

Formally, we define the global evolution function of I as
the union of the following 6 types of evolution functions.
E1. For each true(f) ∈ Var true,

true(f)′ =

{
next(f), cnt = δ + 1 ∧ act = ⊤
true(f), otherwise

E2. For each does(r, a) ∈ Vardoes,

does(r, a)′ =
⊤, cnt = 0 ∧ act ∧ ¬terminal ∧R.Action = a

⊥, cnt = δ + 1 ∧ act = ⊤
does(r, a), otherwise

E3. For each seen(r, a, 0) ∈ Varseen,

seen(r, f, 0)′ =

{
sees(r, f), cnt = δ + 1 ∧ act = ⊤
seen(r, f, 0), otherwise

E4. For the variable cnt,

cnt′ =


0, terminal = ⊤ ∧ cnt = 0

0, act = ⊤ ∧ cnt = δ + 1

0, act = ⊥ ∧ cnt = δ − 1

cnt+ 1, otherwise

E5. For the variable act,

act′ =


¬act, cnt = δ + 1 ∧ act = ⊤
¬act, cnt = δ − 1 ∧ act = ⊥
act, otherwise

E6. For each variable p ∈ Varnext ∪Varsees ∪Varother,

p′ = cp(p)

4 Correctness and Generalization
4.1 Correctness of the Translation
We prove the correctness of the mapping from a GDL-II de-
scription G to an interpreted system I, again under the as-
sumption that G is playable at a recall depth of 0 and that all
players are memoryless. We use q(QA

h ) to denote the truth
value of atom q in the state QA

h of G while p(Sc,a
h ) denotes

the value of variable p in the state Sc,a
h of I. We say atom

q(QA
h ) = ⊤ inG if and only ifG∪(Q∅

h)
true∪Adoes |= q or

q ∈ (Q∅
h)

sees. Note that if A = ∅ then ∅does = {}. We can
now define the concept of matching states between G and I.
Definition 13. SupposeG is a GDL-II description of a game
and I is the interpreted system with variables Var that mod-
els G. A state Sc,a

h1
∈ I matches a state QA

h2
∈ G, denoted

as Sc,a
h1

≃ QA
h2

, if and only if the following conditions hold.
1. h1 = h2.
2. For all p ∈ Var\Varseen, p(Sc,a

h1
) = g(p)(QA

h2
).

3. If A = ∅, for all p ∈ Varseen, p(Sc,a
h1

) = g(p)(QA
h2
).

Here, if g(p) is undefined, g(p)(QA
h ) = ⊥ for all QA

h .
The correctness of the translation under the memoryless

assumption can be proved using induction, as captured by a
series of theorems. Theorem 1 will show that the initial state
of the interpreted system S0,⊤

h matches the initial state of
the game Q∅

h. Theorem 2 will show that if a state S0,⊤
h ∈ I

matches a state Q∅
h ∈ G, then S0,⊤

h and Q∅
h have the same

set of legal joint actions. Theorem 3 will show that if we
apply the same joint action at S0,⊤

h ∈ I and Q∅
h ∈ G with

S0,⊤
h ≃ Q∅

h such that Q∅
h is not a terminal state, then the

“real” successor state of S0,⊤
h matches the successor state of

Q∅
h. The total number of intermediate states between S0,⊤

h
and the “real” successor state is 2 · δ+1, which is indepen-
dent of the legal joint action played at state S0,⊤

h . Theorem 4
will show that if S ∈ I corresponds to a “real” terminal state
of the game, any legal joint action performed at this state will
not change the values of any local variable at that state.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

425



Lemma 1. Suppose G is a grounded acyclic GDL-II de-
scription, and I is an interpreted system with local variables
Var that models G. Let Vfact ⊆ Var be the set of vari-
ables v with g(v) appearing as facts in G; Vt ⊆ Var true
be the only set of variables in Var true assigned to true; and
Vd ⊆ Vardoes be the only set of variables in Vardoes as-
signed to true. By setting all variables in Vfact ∪ Vt ∪ Vd
to be true, for an arbitrary initialization of the remaining
variables in Varother ∪ Varsees ∪ Varnext, if we apply the
completion rule to all p ∈ Varother ∪ Varsees ∪ Varnext
simultaneously δ or more times, then p = ⊤ iff G ∪ Pt ∪
Pd |= g(p). Here, Pt = {true(f).|true(f) ∈ Vt} and
Pd = {does(r, a).|does(r, a) ∈ Vd}.

Proof (Sketch). Since G is a valid grounded acyclic game
description, only atoms of the form true(f) or does(r, a) or
which appear as facts in G can have an in-degree of 0 in the
atom dependency graph of G. Hence, we have initialized all
variables p ∈ Var such that g(p) might have an in-degree of
0 in the dependency graph of G. We have initialized all p in
such a way that p = ⊤ if and only if G ∪ Pt ∪ Pd |= g(p).
We define dist(s, t) to be the length of the longest path from
atom s to t in the atom dependency graph of G, and d(t) =
maxs∈At dist(s, t). By induction on the value of d(t), we
can prove that if we apply the completion rule i times to all
p ∈ Varother∪Varsees∪Varnext, the values of all variables
with d(g(p)) ≤ i will converge. Since the longest chain of
the dependency graph of G is δ, if we apply the completion
rule to all p ∈ Varother∪Varsees∪Varnext simultaneously
δ or more times, the values of the variables will converge to
their values in the stable model of the program ofG∪Pt∪Pd

as a consequence of Clark’s completion (Clark 1977).

Theorem 1. SupposeG is a GDL-II description and I is the
interpreted system that models G, then S0,⊤

∅ ≃ Q∅
∅.

Proof. By the GDL-II semantics, (Q∅
∅)

sees = {}. The claim
then follows directly from our Definitions 11 and 13.

Theorem 2. Suppose G is a valid GDL-II description and
I is an interpreted system with local variables Var that
models G. Suppose further that h is a valid history of
joint actions of the players and S0,⊤

h ≃ Q∅
h such that

G ∪ (Q∅
h)

true ̸|= terminal. Then, A is a legal joint action
at Q∅

h iff A is a legal joint action at S0,⊤
h .

Proof. Since h is a valid history of joint actions of the play-
ers and G is a valid GDL-II game, each player has at least
one legal action in every non-terminal state. The claim then
holds by construction (Definitions 10, 12, and 13).

Theorem 3. Suppose G is a valid GDL-II description and
I is an interpreted system with local variables Var that
models G. Suppose h is a valid history of joint actions of
the players and S0,⊤

h ≃ Q∅
h such that G ∪ (Q∅

h)
true ̸|=

terminal. For any legal joint action A at Q∅
h, we have

1. Sδ+1,⊤
h;A ≃ QA

h .

2. S0,⊤
h;A ≃ Q∅

h;A.

3. The total number of intermediate states between S0,⊤
h and

S0,⊤
h;A is 2 · δ + 1.

Proof (Sketch). Since S0,⊤
h ≃ Q∅

h, we conclude A is also a
legal action at S0,⊤

h ∈ I according to Theorem 2. There-
fore, S1,⊤

h;A ∈ I , and for any p ∈ Vardoes, p(S1,⊤
h;A) =

g(p)(QA
h ) according to evolution function E2. According

to evolution function E1, for any variable p ∈ Var true,
p(S1,⊤

h;A) = p(S0,⊤
h;A). According to the evolution functions

E1–E2 and E4–E5, all Si,⊤
h (1 < i ≤ δ + 1) exist, and

for any p ∈ Var true ∪ Vardoes, p(Si,⊤
h;A) = p(Si+1,⊤

h;A ) for
all 1 < i ≤ δ. Since the completion rule (evolution func-
tion E6) is applied to all p ∈ Varsees ∪Varnext ∪Varother
simultaneously δ times, we conclude that p(Sδ+1,⊤

h;A ) =

g(p)(QA
h ) according to Lemma 1. Using Definition 13,

Sδ+1,⊤
h;A ≃ QA

h .

Since Sδ+1,⊤
h;A ≃ QA

h , for any p ∈ Varnext, we have
p(Sδ+1,⊤

h;A ) = g(p)(QA
h ) if g(p) is defined. If g(p) is un-

defined, p(Sδ+1,⊤
h;A ) = ⊥. Due to the semantics of GDL-II,

ifG∪(QA
h )

true∪Adoes |= next(f) thenG∪(Q∅
h;A)

true |=
true(f). Similarly, if G ∪ (QA

h )
true ∪ Adoes |= sees(r, f)

then seescurr(r, f) ∈ (Q∅
h;A)

sees. Considering the evolu-
tion functions E2–E3, at state S0,⊥

h;A, for all p ∈ Vardoes we
have p(S0,⊥

h;A) = ⊥; for all seen(r, f, 0) ∈ Varseen we have
seen(r, f, 0)(S0,⊥

h;A) = ⊤ iff sees(r, f)(Sδ+1,⊤
h;A ) = ⊤; and

for all true(f) ∈ Var true we have true(f)(S0,⊥
h;A) = ⊤ iff

next(Sδ+1,⊤
h;A ) = ⊤. We conclude that S0,⊤

h;A ≃ Q∅
h;A using

Definition 13 and Lemma 1.
Considering evolution function E4, we can easily verify

the number of intermediate states between S0,⊤
h and S0,⊤

h;A to
be 2 · δ + 1 for an arbitrary legal joint action A at S0,⊤

h .

Theorem 4. SupposeG is a valid GDL-II description and I
is an interpreted system with local variables Var that mod-
els G. Suppose h is a valid history of joint actions of the
players and terminal(S0,⊤

h ) = ⊤. For any legal joint ac-
tion A at S0,⊤

h , let S′ to be the successor state of S0,⊤
h after

A is applied to the system. Then, for any p ∈ Var we have
that p(S0,⊤

h ) = p(S′).

Proof. Note that at state S0,⊤
h , cnt = 0, and act = ⊤. Since

terminal(S0,⊤
h ) = ⊤, according to the evolution functions

E2 and E4, cnt and all does(r, a) ∈ Vardoes will preserve
their value in S′. The values of p ∈ Var true ∪ Varseen ∪
{act} will preserve due to evolution function E1, E3, and
E5. Finally, the values of p ∈ Varnext∪Varsees∪Varother
will preserve in S′ due to the consequence of Lemma 1.

The direct consequence of the above theorems is that for
any legal joint action history h of the game G, S0,⊤

h ≃ Q∅
h.

Thus, for any non-random player, two states Q∅
h1 and Q∅

h2
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are indistinguishable in G if and only if S0,⊤
h1 and S0,⊤

h2 are
indistinguishable in I under the memoryless assumption (cf.
Definition 6 and 10). Furthermore, for all the states in I
that are not of the form S0,⊤

h , all players can only play
the dummy action “none” (cf. Definition 12). Hence, I is
equivalent to the epistemic game model of G (cf. Defini-
tion 2) in the required sense (despite having 2 · δ + 1 inter-
mediate dummy states between S0,⊤

h and S0,⊤
h;A to ensure that

the update of the local variables in I converges).

The behavior of the random player We end the correct-
ness proof with a remark on the behavior of the random
player. In GDL-II, one can view random as a special role
with perfect information about the game state and who al-
ways chooses a random legal action with uniform probabil-
ity at each step of the game. Our translation treats the per-
cepts of the random player differently from all the other
players, by letting random observe all local variables of
Env (cf. Definition 7). Recall that in SLK, all players in the
IS can only play uniform pure strategies. In our translation,
the random player is equivalent to a player playing uniform
pure strategies under perfect information. This is the ex-
pected behavior of random since modeling mixed strategies
is beyond the expressiveness of SLK.

4.2 Relaxing the memoryless assumption
One weakness of the SLK model-checking is the memo-
ryless assumption (Čermák et al. 2018). In GDL-II, many
game-specific properties (even legality) are provable only
if the agent has a perfect recall. The translation provided
in Section 3 assumes that each player has a recall depth
of 0. We can easily generalize our translation to allow
the players to have a bounded recall of depth D in I. To
achieve this, we extend each seen(r, f, 0) ∈ Varseen to
D + 1 variables seen(r, f, 0), . . . , seen(r, f,D). We also
augment the local variables of Env with a set of variables
Vardone = {done(r, a, 1..D) | does(r, a) ∈ Vardone} that
records the action each player plays in previous rounds, with
done(r, a, i) meaning that player r performed a i steps ago.
The evolution of done can be defined as follows. For each
done(r, a, 1) ∈ Vardone:

done(r, a, 1)′=

{
does(r, a) if cnt = δ + 1 ∧ act = ⊤,
done(r, a, 1) otherwise.

And for each 2 ≤ i ≤ D, the evolution of done(r, a, i) is

done(r, a, i)′ =

{
done(r, a, i− 1) if cnt = δ + 1 ∧ act,
done(r, a, i) otherwise.

The evolution of seen(r, f, i) can be defined similarly. All
variables of the form done(r, a, i) or seen(r, f, i) should
be inserted into the set of local observation variables of
player r. Our translation can now be applied to any arbitrary
acyclic GDL-II description with finite grounding, assuming
that each player has a bounded recall depth and follows a
uniform pure strategy. Since every practical game in GGP
competitions terminates within finitely many steps, by set-
ting D as the longest valid playing sequence of a game, we
can thus model any GDL-II game that is playable under per-
fect recall.

5 Experimental Results
The overarching motivation for translating GDL-II games
into interpreted systems is that SLK is a powerful logic lan-
guage that can express many game properties. Once these
properties are represented in SLK, it is now possible to use
an SLK model checker to automatically verify any of these
properties for any given GDL-II game.

In this section, we demonstrate how to express some im-
portant properties of general n-player GDL-II games in SLK
(Section 5.1) and use the model-checker MCMAS-SLK to
verify these properties on two small games (Sections 5.2
and 5.3). The complete GDL-II descriptions of these games
and the paper’s source code are available online.2 All exper-
iments were run on a Latitude 5430 laptop.

For a GDL-II description G and an interpreted system I,
we let t represent the “real” terminal state of G in I. Here,
we use the syntax of evaluation in ISPL to define t. The
proposition t is evaluated to be true in all global states such
that terminal = ⊤ along with act = ⊤ and cnt = 0. We
use α to represent the strategy quantifier “for all uniform
strategies of all the n players”. Note that, in MCMAS we
also need to bind the environment (Env) to a strategy.

t if terminal = ⊤ && cnt = 0 && act = ⊤
α = [[x0]] [[x1]] . . . [[xn]] (Env, x0)(r1, x1) . . . (rn, xn)

We introduce the notation Id
G to represent the interpreted

system that models the GDL-II game G with each player
in G having a recall depth of d. We write I |= ψ when
I,A, s0 |= ψ for any assignment A, that is, the interpreted
system entails ψ for any assignment at the initial state.

5.1 Expressing strategic properties
Simple strategic properties Let us see how to model
some universally quantified strategic properties of GDL-II
games in SLK. Firstly, any player should know all the true
fluents for any GDL-II game G at the initial state, which is
captured by the following formula:

ψinit = α
∧
r∈R

∧
init(f)∈At

Kr true(f)

Similarly, a general property of GDL-II games is that at the
initial state, each player knows the legal actions of all the
players. This property can be modeled as follows.

L(r′,m) ≡ G ∪ (Q∅
∅)

true |= legal(r′,m)

ψl = α
∧
r∈R

∧
L(r′,m)=⊤

Krlegal(r
′,m)

In addition, for an ideal GDL-II description, all players
should know the termination of a game. This constraint can
be modeled by the formula below, which can be read as: For
all uniform strategies of all players, it is always the case that
when the game terminates, then every player knows this.

ψterminal = αG
∧
r∈R

t→ Krterminal

2https://github.com/hharryyf/gdl-ii2slk
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A similar property for an ideal GDL-II description is that
when the game terminates, every player should know the
goal value it gets. We can model this as follows.

ψg = αG
∧

goal(r,g)∈At

((t ∧ goal(r, g)) → Krgoal(r, g))

Complex strategic properties Note that most of the
game-specific properties we listed above can be expressed
not only by SLK but also by CTLK (Huang, Ruan, and
Thielscher 2013). For example, ψterminal can be stated in
CTLK as

ψ′
terminal = AG (t→

∧
r∈R

Krterminal)

The main reason for using SLK model checkers to verify
GDL-II properties is that SLK can express solution concepts
in games. We discuss two such properties: (1) Nash equilib-
rium and (2) strong winnability. Note that Nash equilibria
cannot be checked by either the GDL-II to CTLK transla-
tion (Huang, Ruan, and Thielscher 2013) or the GDL to ATL
translation (Ruan, Van Der Hoek, and Wooldridge 2009).

The existence of a uniform pure strategy Nash equilibrium
of a GDL-II game G can be expressed as follows.

ψne = γ
∧
r∈R

∨
goal(r,g)∈At

ψbr(r, g)

Where,
γ = ⟨⟨x0⟩⟩ ⟨⟨x1⟩⟩ . . . ⟨⟨xn⟩⟩ (Env, x0)(r1, x1) . . . (rn, xn)

ψdev(r, g) = [[x′r]] (r, x
′
r) F

∨
goal(r,g′)∈At,

g′≤g

t ∧ goal(r, g′)

ψbr(r, g) = (F(t ∧ goal(g, r))) ∧ ψdev(r, g)

Here, ψne is true if and only if there exists a strategy profile
such that all players achieve some goal value when the game
terminates. And all players are playing the best response to
their opponent’s strategy (i.e., ψbr(r, g)). In other words,
when any player deviates from her current strategy, and the
opponent’s strategy is unchanged, her reward at the termi-
nal state cannot exceed her current reward (i.e., ψdev(r, g)).
This is exactly the definition of Nash equilibrium under the
assumption that the players follow a uniform pure strategy.

Another solution concept is strong winnability, which
gives a lower-bound estimate of a player’s utility no mat-
ter what the other players do. This property was originally
verified in the context of GDL (Ruan, Van Der Hoek, and
Wooldridge 2009), and we adapt it to GDL-II. We denote
ψsw(ri, U) as the proposition that player ri has a uniform
pure strategy to achieve a utility of at least U for all uniform
pure strategies of all the other players. The strong winnabil-
ity property can be expressed as follows.

β = ⟨⟨xi⟩⟩ [[x0]] [[x−i]] (ri, xi)(Env, x0)(r−i, x−i)

ψsw(ri, U) = β F (t ∧
∨

goal(ri,p)∈At,
p≥U

goal(ri, p))

Here, we use (r−i, x−i) to abbreviate bounding a strategy
xk to all players except player i.

5.2 Model Checking a Simple Game
We use MCMAS-SLK to verify the above strategic proper-
ties for the GDL-II game described in Fig. 1. We assume
that both x and o have a recall depth of 3 (i.e., perfect re-
call). Since the game is small, MCMAS-SLK can verify all
the above strategic properties within 1 second. The result is
displayed below. We record the result of a strategic property
ψ as ⊤ if and only if I3

G |= ψ.

Strategic property MCMAS-SLK output
ψinit ⊤
ψl ⊤

ψterminal ⊥
ψg ⊥
ψne ⊤

ψsw(x, 7) ⊤
ψsw(x, 8) ⊥

We can see that the game in Fig. 1 satisfies I3
G |= ψinit and

I3
G |= ψl. Yet I3

G ̸|= ψterminal since player o is not able
to distinguish terminal state S4 (resp. S3) from non-terminal
state S9 (resp. S6). For similar reasons we have I3

G ̸|= ψg .
For the complex strategic properties, we obtain I3G |= ψne,
and the strategy output by the SLK model checker is player
x moves r at state S1 and l at state S6 while player o moves
l at state S5. Both players achieve a goal value of 8 at the
terminal state. It is easy to check that this strategy profile is
indeed a Nash equilibrium. For the strong winnability prop-
erty, MCMAS verifies that I3G |= ψsw(x, 7) but also that
I3G ̸|= ψsw(x, 8). This means that although in the Nash equi-
librium of the game player x can achieve a utility of 8, this
is not guaranteed if player o doesn’t know to cooperate at
state S5 and moves l. However, player x can always achieve
a utility of at least 7 by moving l at state S1 regardless of the
action of player o at S2.

5.3 Number Guessing
We conclude this section by reporting on our experimental
study with a more complicated GDL-II game called Num-
ber Guessing (Schofield and Thielscher 2015). In this game,
player o (who can be considered to play the role of Nature)
selects a hidden integer n between 1 and N (N ≥ 2). At
each round, player x can guess a number g between 1 and
N and is informed about her previous guess g and whether
g < n, g > n, or g = n. The game terminates after player
x guesses the correct number or after N + 1 rounds. If the
player guesses the correct number at round i, her utility is⌊
100·(N−i)

N−1

⌋
. The utility of player o is always 0.

For this game, the pure strategy Nash equilibrium cor-
responds to the strategy profile in which player x directly
guesses the number picked by player o. The utility of player
x under this strategy profile is 100. Note, however, that such
an equilibrium does not make sense because Nature does not
follow any strategy here. Hence, we only focus on the strong
winnability property in this game. For simplicity, let us as-
sume that player x has a recall depth of 0, which means at
each state of the game, she only observes the number she
guessed in the previous round and whether that number is
larger or smaller than the target. We use ψ(N, i) to represent
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the property that the player can always guess the number be-
tween 1 and N correctly within i rounds:

β = ⟨⟨x1⟩⟩ [[x0]] [[x2]] (x, x1)(Env, x0)(o, x2)

ψ(N, i) = β F t ∧
∨

goal(x,p)∈At∧p≥⌊ (N−i)·100
N−1 ⌋

goal(x, p)

We check ψ(N, i) for different combinations ofN and i, and
report the runtime of MCMAS in the table below.

i 1 2 3 4
ψsw(5, i) 0.81 0.81 0.82 0.85
ψsw(6, i) 4.68 4.83 4.85 5.06
ψsw(7, i) 11.66 12.26 14.42 40.73
ψsw(8, i) 13.67 14.11 144.95 killed

We record the runtime in bold if I0
G |= ψ(N, i). For

5 ≤ N ≤ 7, the model-checker can prove that the player
has a strategy to guess the number correctly within 3 rounds
no matter what number was chosen. One optimal strategy
for the number guessing game is obviously binary search,
with which the player can guess the number correctly within
⌊log2N⌋+1 rounds. Our result matches this optimal bound.
However, we were not able to verify the strong winnability
property for N ≥ 8 and i ≥ 4 because the model-checker
ran out of memory. This is due to the theoretical difficulty
of SLK model-checking and with the only publicly avail-
able system MCMAS-SLK a prototypical implementation
that just works for small GDL-II games, which motivates
future work on more efficient model checking algorithms.

6 Conclusion
We studied how to verify properties related to the strate-
gic behavior of players in GDL-II games with imperfect
information. To do so, we provided a translation from
GDL-II games to interpreted systems, which are the se-
mantical structures considered for Epistemic Strategy Logic
(SLK) and in the model checking toolkit MCMAS. We
proved correctness of the translation and showed how impor-
tant properties of general games can be expressed in SLK.

While we focused on SLK, the proposed translation can
be used with other specification languages supported by
MCMAS both for perfect and imperfect information, such
as Epistemic ATL (Lomuscio, Qu, and Raimondi 2017) and
the one goal fragment of Strategy Logic (Cermák, Lomus-
cio, and Murano 2015). For future work we intend to ex-
plore the verification of GDL games under those formalisms.
Also, we intend to extend the proposed translation to handle
public actions (Belardinelli et al. 2020), hierarchical infor-
mation (Berthon et al. 2021), and natural strategies (Jam-
roga, Malvone, and Murano 2019; Belardinelli et al. 2022),
settings in which the model checking problem for Strategy
Logic is known to be decidable even for memoryfull strate-
gies (and imperfect information).
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