
Axiomatization of Approximate Exclusion

Matilda Häggblom
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Abstract

We define and axiomatize approximate exclusion atoms in
the team semantic setting. A team is a set of assignments,
which can be seen as a mathematical model of a uni-relational
database. We say that an approximate exclusion atom is sat-
isfied in a team if the corresponding usual exclusion atom is
satisfied in a large enough subteam. We consider the impli-
cation problem for a set of approximate exclusion atoms and
show that it is axiomatizable for consequences with a degree
of approximation that is not too large. We prove the com-
pleteness theorem for usual exclusion atoms, currently miss-
ing from the literature, and generalize it to the approximate
case. We also provide a polynomial time algorithm for the
implication problems. The results can also be applied to ex-
clusion dependencies in database theory.

1 Introduction
Team semantics was introduced in (Hodges 1997a; Hodges
1997b) and further developed in (Väänänen 2007) with the
introduction of dependence logic. Team semantics is suited
for examining expressions about relationships between vari-
ables, such as different dependencies from database theory,
since formulas are evaluated in a finite set of assignments,
called a team, instead of a single assignment. In the team se-
mantics setting, functional dependencies are captured by de-
pendence atoms (Väänänen 2007), and exclusion dependen-
cies introduced in (Casanova and Vidal 1983) were adapted
as exclusion atoms in (Galliani 2012), together with inclu-
sion atoms.

Approximate functional dependencies were defined in
(Kivinen and Mannila 1995), and later defined as approxi-
mate dependence atoms and axiomatized in (?). We define,
analogously, that an approximate exclusion atom is satisfied
in a team if there exists a large enough subteam that satis-
fies the corresponding usual exclusion atom. The definition
is motivated by dependence and exclusion atoms both being
downward closed, i.e., when a team satisfies an atom, so do
its subteams. The approximate atoms are suitable when it is
permitted that the team has some, typically small, bounded
degree of error.

We consider the following implication problem: Does a
(possibly infinite) set of approximate exclusion atoms imply
a given approximate exclusion atom? We show that the im-
plication problem is axiomatizable for consequences whose

approximation allows less than half of the team to be faulty,
and for assumption sets for which there exists a gap between
the approximations larger than the one in the consequence
and the approximation in the consequence. The former re-
striction still allows all cases where the natural interpretation
of the consequence is “almost exclusion”, and the latter is
trivially satisfied for finite assumption sets.

We define a complete set of rules for exclusion atoms,
whose explicit axiomatization is currently missing from the
literature. Some of the rules are from the system for exclu-
sion and inclusion combined introduced in (Casanova and
Vidal 1983), with a necessary additional rule. We then gen-
eralize the system and the counterexample team in the com-
pleteness proof for usual exclusion atoms to prove complete-
ness for approximate exclusion atoms. We also provide a
polynomial time algorithm showing that the finite implica-
tion problems for (approximate) exclusion atoms are decid-
able.

The results in this paper can immediately be transferred to
the database setting by reading “uni-relational database” in-
stead of “team” and “exclusion dependency” instead of “ex-
clusion atom”.

2 Exclusion Atoms
We recall basic definitions of team semantics and exclusion
atoms as defined in (Galliani 2012).

A team T is a finite set of assignments s : V −→ M ,
where V is a set of variables and M is a set of values. We
write xi, yi, . . . for individual variables and x, y, . . . for fi-
nite (possibly empty) tuples of variables. Given a tuple x,
we denote its i:th variable by xi. Let x = 〈x1, . . . , xn〉
and y = 〈y1, . . . , ym〉. We write s(x) as shorthand for
〈s(x1), . . . , s(xn)〉. The concatenation xy is the tuple
〈x1, . . . , xn, y1, . . . , ym〉. The tuples x and y are equal if
and only if they are of the same length, denoted |x| = |y|,
and x1 = y1, . . . , xn = yn. We define V ar to be a function
such that V ar(x) = {xi : 1 ≤ i ≤ |x|}.

Exclusion atoms are written as x|y, where |x| = |y|. We
recall the semantics of the usual exclusion atom:

T |= x|y iff for all s1, s2 ∈ T : s1(x) 6= s2(y).

It follows that exclusion atoms are downward closed:
T |= x|y implies that T ′ |= x|y for all subteams T ′ ⊆ T .
Exclusion atoms also have the empty team property since
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all exclusion atoms are satisfied by the empty team. We call
atoms of the form x|x contradictory since they are only sat-
isfied in the empty team.

We write x|y |= u|v if for all teams T , T |= x|y implies
T |= u|v. If both x|y |= u|v and u|v |= x|y, we say that u|v
and x|y are semantically equivalent and write x|y ≡ u|v.

We define the rules for exclusion atoms and prove that the
system they form is sound and complete.
Definition 1. The rules for exclusion atoms are:

(E1) If x|x, then y|z
(E2) If x|y, then y|x
(E3) If x|y, then xu|yv
(E4) If xuu|yvv, then xu|yv
(E5) If xyz|uvw, then xzy|uwv (|x| = |u| and |y| = |v|)
(E6) If xw|yw, then zz|xy.

Lemma 1 (Soundness). Let Σ be a set of exclusion atoms.
If Σ ` x|y, then Σ |= x|y.

Proof. The proofs are straightforward. For E6, if T |=
xw|yw, then for each s ∈ T there is no tuple a such that
s(xy) = aa. On the other hand, for all s ∈ T , s(zz) = bb
for some tuple b, so we conclude T |= zz|xy.

Let us comment on the rules in relation to the system for
exclusion and inclusion combined in (Casanova and Vidal
1983). The rules E1, E2, E3, E5 are all included in their
system and, assuming they do not distinguish between de-
pendencies like xuu|yvv and xu|yv, the rule E4 does not
apply. Rule E6 is new and we show that it is not derivable
from the rules in (Casanova and Vidal 1983). Recall the def-
inition of inclusion atoms Inc(x, y), with |x| = |y|,

T |= Inc(x, y) iff for all s ∈ T, there exists s′ ∈ T such

that s(x) = s′(y).

Remark 1. The system for inclusion and exclusion
in (Casanova and Vidal 1983) includes the rules
E1, E2, E3, E5 together with the rules below1, and is not
complete for exclusion consequences: Consider x1 6= y1,
then x1w1w2|y1w1w2 is not contradictory. We have that
x1w1w2|y1w1w2 |= z1z1|x1y1 with |x1y1| 6= |x1w1w2|,
but no rule in this system allows such a change in arity.

(IE1) Inc(x, x)

(IE2) If Inc(xyz, uvw), then Inc(xzy, uwv)
(|x| = |u| and |y| = |v|)

(IE3) If Inc(xu, yv), then Inc(x, y)

(IE4) If Inc(x, z) and Inc(z, y), then Inc(x, y)

(IE5) If x|x, then Inc(y, z)

(IE6) If Inc(x, u), Inc(y, v) and u|v, then x|y.

We define a function to identify exclusion atoms with sets
of ordered pairs, such that two exclusion atoms are identi-
fied with the same set only if they are semantically equiva-
lent. We also define sets such that for a given variable in an
exclusion atom, the set contains exactly those variables that

1In (Casanova and Vidal 1983), IE2 and IE3 correspond to
one rule.

appear on the other side of the exclusion symbol in the same
position as the given variable.

Definition 2. Let |x| = |y| = n and x|y be any exclusion
atom. Define the atom’s set representation S(x|y) by:

S(x|y) = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉}.

For each xi and yi we define the correspondence sets

Cxi
= {yj : 〈xi, yj〉 ∈ S(x|y)}

Cyi
= {xj : 〈xj , yi〉 ∈ S(x|y)}.

We give examples of these definitions for the exclusion
atom x|y = v1v1v2v3|u1u2v1u3:

S(x|y) = {〈v1, u1〉, 〈v1, u2〉, 〈v2, v1〉, 〈v3, u3〉},

Cx1
= Cx2

= {u1, u2}, Cx3
= {v1}, and Cy1

= {v1}.
Let us also define the end-constant form for atoms u|v as

the semantically equivalent atom u′c|v′c where S(u|v) =
S(u′c|v′c) and for all 〈ui, vi〉 ∈ S(u|v), if ui = vi, then
〈ui, vi〉 ∈ S(c|c) and 〈ui, vi〉 6∈ S(u′|v′).

The next lemma shows how the rules correspond to exclu-
sion atoms’ set representations. By item (i) in Lemma 2, to-
gether with soundness, it follows that if two exclusion atoms
are identified with the same set, then they are semantically
equivalent. Item (ii) gives a set representation condition in a
derivation where the rule E6 is used.

Lemma 2. Suppose that |x| = |y| = n and u 6= v. Let
uc|vc be in end-constant form.

(i) u|v `{E3,E4,E5} x|y iff S(u|v) ⊆ S(x|y).
(ii) Suppose S(uc|vc) 6⊆ S(x|y) and S(vc|uc) 6⊆ S(x|y),

then uc|vc ` x|y iff there is d ∈ {x, y} such that

S(uc|vc) ⊆
⋃

1≤i≤n

Cdi × Cdi ∪ {〈wl, wl〉 : wl ∈ V}.

Proof.(i) Immediate by the rules E3, E4 and E5.
(ii) Let |u| = |v| = m. By the assumptions and item (i),

we need to use rule E6 in the derivation. We note that
one application of rule E6 is sufficient, since after that all
variables in uv have already been moved to the same side.
We check the case when d = x and the derivation is of the
form uc|vc `{E6} zz|uv `{E3,E4,E5} x|y, the case when
d = y can be reduced to this one via rule E2.

uc|vc `{E6} zz|uv `{E3,E4,E5} x|y
⇐⇒S(zz|uv) ⊆ S(x|y) by item (i)
⇐⇒For all 1 ≤ j ≤ m, 〈zj , uj〉, 〈zj , vj〉 ∈ S(x|y)

⇐⇒For all 1 ≤ j ≤ m, 〈uj , vj〉 ∈ Cxi
× Cxi

for
some 1 ≤ i ≤ n

⇐⇒S(uc|vc) ⊆
⋃

1≤i≤n

Cxi × Cxi∪

{〈wl, wl〉 : wl ∈ V}.
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x1 . . . xn y1 . . . yn z1 z2 . . .

s1 a1 − an . . . . . .
s2 . . . a1 − an . . .

Table 1: Counterexample team for exclusion atoms.2

We are now ready to prove the completeness theorem for
exclusion atoms, by constructing a counterexample team.

Theorem 1 (Completeness). Let Σ ∪ {x|y} be a set of ex-
clusion atoms with |x| = |y| = n. If Σ |= x|y then Σ ` x|y.

Proof. We assume Σ 6` x|y and show Σ 6|= x|y. Let
X = V ar(x), Y = V ar(y) and Z = {z1, z2, . . . } be
the variables in Σ that are not in X ∪ Y . Construct a
team T = {s1, s2} with values from N as follows. De-
fine s1(x) = 〈a1, . . . , an〉 = s2(y), such that for all
i, j ∈ {1, . . . , n}, ai = aj if and only if xi = xj or yi = yj .
All other assigned values are values from N occurring only
once.

Clearly, T 6|= x|y. Let u|v ∈ Σ. First note that u|v with
u = v or S(u|v) satisfying any of the cases in Lemma 2
would allow us to prove a contradiction.

For the remaining u|v ∈ Σ, we show T |= u|v by going
through cases one by one (noting that symmetrical variants
are similar) while excluding the previous cases. First, con-
sider when V ar(uv) ∩ Z 6= ∅: If there is 〈ui, zj〉 ∈ S(u|v),
and ui 6= zj , then ui and zj have no common values in the
team. Otherwise, all variables from Z appear in the form
〈zj , zj〉 ∈ S(u|v). Then one of the following two cases
must hold.

(a) There is some 〈xi, yk〉 ∈ S(u|v) with xi 6= yk. If i =
k, xi = xk or yi = yk, there is a possible shared value for
xi and yk at s1(xi) = s2(yk), but s1(zj) 6= s2(zj).

(b) There is some 〈xi, xk〉 ∈ S(u|v) with xi 6= xk (or simi-
larly 〈yi, yk〉 ∈ S(u|v)), then also yi 6= yk by Lemma 2
(ii), so xi and xk share no values.

Now suppose that V ar(uv) ⊆ X ∪ Y . The case when
V ar(uv) ⊆ X (or similarly for Y ) is similar to item (b).

(c) If V ar(u) ⊆ X and V ar(v) ⊆ Y , then there is 〈xi, yk〉 ∈
S(u|v) with xi 6= xk and yi 6= yk (by Lemma 2 (i)), so
xi, yk have no common values.

(d) If V ar(u) ⊆ X \Y (or similarly for Y \X) and V ar(v)∩
X and V ar(v) ∩ Y are both nonempty, then there are
〈xi, xk〉, 〈xl, ym〉 ∈ S(u|v) such that xk 6∈ Y and ym 6∈
X . The only possible shared value for xl and ym is at
s1(xl) = s2(ym), but s1(xi) 6= s2(xk).

(e) If the intersections V ar(v) ∩ X,V ar(v) ∩ Y, V ar(u) ∩
X, and V ar(u) ∩ Y are all nonempty, either there are
〈xi, yk〉, 〈yl, xm〉 ∈ S(u|v) with xi 6∈ Y and yk 6∈ X .
Then the only possible shared value for xi and yk is at
s1(xi) = s2(yk), but s1(yl) 6= s2(xm). Or, there are
〈xi, xk〉, 〈yl, ym〉 ∈ S(u|v) and the only possible shared

2If xi = yj for some indices i and j, then they correspond to
one column in the team with s1(xi) = ai and s2(xi) = aj .

value for xi and xk is at s1(xi) = s1(xk), but s1(yl) 6=
s1(ym).

We show in Theorem 4 that the implication problem for
finite sets of approximate exclusion atoms is decidable by
constructing a polynomial time algorithm, from which the
corresponding result follows for usual exclusion atoms.

Theorem 2 (Decidability). Let Σ ∪ {x|y} be a finite set of
exclusion atoms. The implication problem for whether Σ `
x|y is decidable.

3 Approximate Exclusion Atoms
We define approximate exclusion atoms in an analogous way
to the approximate dependence atoms in (?).

Definition 3. Let p be a real number such that 0 ≤ p ≤ 1.
T |= x|py iff there is a subteam T ′ ⊆ T , |T ′| ≤ p · |T |, such
that T \ T ′ |= x|y.

Thus p = 0 coincides with the usual exclusion atoms,
while an approximate exclusion atom with p = 1 is always
satisfied by the empty team property. For small approxima-
tions p, a team satisfying the approximate exclusion atom
x|py corresponds to the usual exclusion atom x|y almost be-
ing satisfied in the team. Thus the statement “almost all in-
dividuals in last year’s top 50 ranking are not in this year’s
top 50 ranking” can be formalized as, e.g., x1| 3

50
y1, mean-

ing that for a team T = {s1, s2, . . . , s50} such that for all
i ∈ {1, 2, . . . , 50}, si(x1) is the name of the individual in
last year’s i:th place and si(y1) is the name of the individ-
ual in this year’s i:th place, T |= x1| 3

50
y1 holds if and only

if at most three individuals remained in this year’s top 50
ranking.

We extend the definition of contradictory atoms to include
approximate exclusion atoms of the form x|px, p < 1, since
they too are only satisfied in the empty team.3

We define the rules for approximate exclusion atoms and
show that they are sound.

Definition 4. The rules for approximate exclusion atoms
are:

(A1) For p < 1, if x|px, then y|0z
(A2) If x|py, then y|px
(A3) If x|py, then xu|pyv
(A4) If xuu|pyvv, then xu|pyv
(A5) If xyz|puvw, then xzy|puwv

(|x| = |u| and |y| = |v|)
(A6) If xw|pyw, then zz|pxy
(A7) For q ≤ p ≤ 1, if x|qy, then x|py
(A8) x|1y.

Lemma 3 (Soundness). The rules A1-A8 are sound.

3Like for approximate dependence atoms in (?), it is easy to
show that locality fails for approximate exclusion atoms.
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Proof. The rules A1-A6 are the approximate versions of the
rules E1-E6 in Definition 1, and soundness follows sim-
ilarly. For A7, if already T |= x|qy, then for p ≥ q,
T |= x|py. For A8, we have that T |= x|1y always holds by
the empty team property.

We extend the definition of the set representation to ap-
proximate exclusion atoms by defining S(x|py) = S(x|y).
Now two approximate exclusion atoms with the same de-
gree of approximation have the same set representation only
if they are semantically equivalent. We also extend the def-
inition of the end-constant form to approximate exclusion
atoms u|qv as u′c|qv′c analogously.
Lemma 4. Suppose that |x| = |y| = n, u 6= v and q ≤ p <
1. Let uc|qvc be in end-constant form.

(i) u|qv `{A3,A4,A5,A7} x|py iff S(u|qv) ⊆ S(x|py).
(ii) Suppose that S(uc|qvc) 6⊆ S(x|py) and S(vc|quc) 6⊆

S(x|py), then uc|qvc ` x|py iff there is d ∈ {x, y} such
that

S(uc|qvc) ⊆
⋃

1≤i≤n

Cdi × Cdi ∪ {〈zl, zl〉 : zl ∈ V}.

Proof.(i) Immediate by the rules A3, A4, A5 and A7.
(ii) We note that in a derivation uc|qvc ` x|py with q ≤ p,

w.l.o.g., we can let q = p, thus the proof can be reduced
to the one for Lemma 2 (ii).

Remark 2. Note that any set Σ of non-contradictory ap-
proximate exclusion atoms is satisfied by a unary team where
all variables obtain values that occur only once in the team.

Next, we generalize the counterexample team in Theorem
1 and show completeness for consequences with approxi-
mations p < 1

2 , thus the rule A8 can be omitted. We note
that the counterexample team constructed in Theorem 1 is
the most general type of team that does not satisfy the con-
sequence and does not depend on the assumption set. When
generalized to the approximate setting, we must consider the
approximations in both the consequence and the assumption
set.
Theorem 3 (Completeness). Let Σ ∪ {x|py} be a set of
approximate exclusion atoms with |x| = |y| = n, 0 ≤
p < 1

2 such that if there are u|qv ∈ Σ with q > p, then
r = min{q > p : u|qv ∈ Σ} exists.4 If Σ |= x|py then
Σ ` x|py.

Proof. Let 0 ≤ p < 1
2 and assume that Σ 6` x|py. We

show that Σ 6|= x|py. Construct a team T of size k such
that p < l

k ≤ r, where r = min{q > p : u|qv ∈ Σ},
for some positive integer l.5 Construct the team T with

4As for approximate dependence atoms in (?), we need to avoid
infinite consequences of the form {x| 1

n
y : n ∈ N} |= x|y, since

for a recursive assumption set the decidability of the logical conse-
quence allows us to encode the halting problem.

5If no atom in Σ has approximation q > p, then l = 1 and
k = 2 suffices.

x1 . . . xn y1 . . . yn z1 z2 . . .

s1 a1 − an . . . . . .
s2 b1 − bn . . . . . .
s3 . . . a1 − an . . .
s4 . . . b1 − bn . . .
s5 . . . . . . . . .

Table 2: Counterexample team for approximate exclusion atoms
where the set Σ ∪ {x|py} and r = min{q > p : u|qv ∈ Σ} are
such that p < 2

5
≤ r.

x1 x2 x3 v1 y3 z1 z2 z3 . . .

s1 a1 a1 a2 1 2 3 4 5 . . .
s2 b1 b1 b2 . . .
s3 c1 c1 c2 . . .
s4 a1 a2 . . .
s5 b1 b2 . . .
s6 c1 c2 . . .
s7 . . .
s8 . . .

Table 3: Counterexample team for the consequence
x1x2x3| 1

4
v1v1y3 and assumption set Σ with r = min{q >

p : u|qv ∈ Σ} ≥ 3
8

.

values from N occurring only once, except for s1(x) =
sl+1(y), . . . , sl(x) = s2l(y), i.e., to satisfy x|y we would
have to remove at least l lines, and for all e ∈ {1, . . . , l},
e′ ∈ {l + 1, . . . , 2l} and i, j ∈ {1, . . . , n}, se(xi) = se(xj)
and se′(yi) = se′(yj) if and only if xi = xj or yi = yj .

Clearly, T 6|= x|py. We show that T |= u|qv for all u|qv ∈
Σ. Let u|qv ∈ Σ. If u = v and 0 ≤ q < 1, then we derive a
contradiction. If S(u|qv) fulfils any of the cases in Lemma 4
and q ≤ p, then we can derive a contradiction, and if q > p,
then we are allowed to remove at least l lines, so T |= u|qv.

For all other cases, we can show similarly to the proof of
Theorem 1, that T |= u|0v |= u|qv.

As a direct consequence of the form of the complete proof
system for approximate exclusion atoms, we obtain conse-
quence compactness in a very strong sense: Let Σ ∪ {x|py}
be as in Theorem 3, if Σ |= x|pv, then there is some
u|qv ∈ Σ such that u|qv |= x|py.

We define Algorithm 1 and show that the finite implica-
tion problem for approximate exclusion atoms is decidable
in polynomial time.
Theorem 4 (Decidability). Let Σ∪{x|py}, p < 1

2 , be a finite
set of approximate exclusion atoms with |x| = |y| = n. The
implication problem for whether Σ ` x|py is decidable.

Proof. We show that Algorithm 1 is sound and complete.
First note that the algorithm halts for any input Σ ∪ {x|py},
since Σ is finite. If the algorithm returns TRUE, then
Σ ` x|py follows by the rules A1-A7 and Lemma 4. If
the algorithm returns FALSE at step 3, then by Remark 2
and Theorem 3, Σ 6` x|py. If the algorithm returns FALSE
at step 13, then by Lemma 4, Σ 6` x|py.
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Algorithm 1 Σ ` x|py?

Input: Finite set Σ ∪ {x|py} of approximate exclusion
atoms with |x| = |y| = n and 0 ≤ p < 1

2
Output: TRUE if Σ ` x|py, FALSE otherwise

1: if x|qy ∈ Σ or y|qx ∈ Σ with q ≤ p then return TRUE
2: if there exists u|qv ∈ Σ with u = v and q < 1 then

return TRUE
3: if x = y then return FALSE
4: V := {wl : wl occurs in Σ ∪ {x|py}}
5: S(x|py) := {〈x1, y1〉, . . . , 〈xn, yn〉}
6: Cxi := {yj : 〈xi, yj〉 ∈ S(x|py)} for all 1 ≤ i ≤ n
7: Cyi := {xj : 〈xj , yi〉 ∈ S(x|py)} for all 1 ≤ i ≤ n
8: for u|qv ∈ Σ with q ≤ p do
9: S(u|qv) := {〈u1, v1〉, . . . , 〈un, vn〉}

10: if S(u|qv) ⊆ S(x|py) then return TRUE
11: if S(v|qu) ⊆ S(x|py) then return TRUE
12: if S(u|qv) ⊆

⋃
1≤i≤n Cdi

× Cdi
∪ {〈wl, wl〉 :

wl ∈ V} for some d ∈ {x, y} then return TRUE
13: return FALSE

4 Conclusion and Further Research
We axiomatized exclusion atoms and showed that the finite
implication problem is decidable. First-order logic with ex-
clusion atoms (FO(|)) is expressively equivalent to depen-
dence logic, which has partial axiomatizations (Kontinen
and Väänänen 2013; Yang 2019), and one could consider
doing the same for FO(|).

On the propositional side, the expressive power of propo-
sitional logic with exclusion atoms coincides with proposi-
tional dependence logic, but its axiomatization is missing.
Furthermore, the system for exclusion atoms presented in
this paper is not complete in the propositional setting. For
instance, x1|y1, y1|z1, z1|x1 |= u|v holds when we restrict
the domain of the model to only two values.

We defined and axiomatized approximate exclusion atoms
for consequences with an approximation p < 1

2 . Axiomatiz-
ing approximate versions of other downward closed depen-
dencies such as the degenerated dependency in (Thalheim
1991) can be considered. The approximate versions of non-
downward closed dependencies, like inclusion, likely have
to be captured with a different definition.
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