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Abstract

Standpoint logic is a recently proposed modal logic frame-
work that is well-suited for multiperspective reasoning and
ontology integration. For this reason, combinations of stand-
point logic with description logics (DLs), a popular family of
logic-based ontology languages, are of special interest.
Prior work has shown that it is possible to add standpoints to
numerous decidable fragments of first-order logics – includ-
ing very expressive DLs up to SROIQbs – while preserving
their reasoning complexity, so long as standpoint modalities
are limited to the axiom level. A more expressive tighter
modal integration, where standpoint modalities are also al-
lowed to occur in concept expressions, has so far only been
investigated for the much less expressive DL EL+.
In this paper, we push this line of research showing that the
DL SHIQ allows for a tight modal integration with stand-
points without compromising its EXPTIME reasoning com-
plexity. The core insight toward this result is that any sat-
isfiable knowledge base admits a model with only polyno-
mially many worlds, an argument which requires a rather
elaborate model-theoretic construction. This allows us to
establish a polynomial equisatisfiable translation into plain
SHIQ which, beyond showing the theoretical result, enables
us to use highly optimised OWL reasoners to provide prac-
tical reasoning support for ontology languages extended by
standpoint modelling. We complement our findings with the
observation that our techniques would fail upon adding the
modeling feature of nominals to the underlying DL.

1 Introduction
Within the knowledge representation community, a key ob-
jective has been to develop methods for integrating and ef-
fectively using various knowledge sources relevant to spe-
cific tasks. A common challenge in this area arises when
dealing with multiple ontologies that overlap in content
since they frequently differ in perspective and modelling
principles. For example, in the medical domain, the concept
of Allergy might be defined in one ontology as a reaction
to exposure to a substance, while another ontology might
define it as a chronic predisposition to such reactions. Simil-
arly, the term Tumour can be used to refer either to a process
or to an abnormal piece of tissue. These issues pose well-
known challenges in the area of knowledge integration.

Standpoint logic is a recently proposed modal logic
framework intended for multi-perspective reasoning and on-

tology integration. In a similar vein to epistemic logic, pro-
positions with labelled modal operators □sϕ and ♢sϕ ex-
press information relative to the standpoint s and read, re-
spectively: “according to s, it is unequivocal/conceivable
that ϕ”. For instance, consider the following axioms form-
alising knowledge about Allergies and showcasing the dif-
ferent interpretations of a general practitioner (GP) and an
emergency department (ED), with the former describing a
sensitivity to a particular Substance, and the latter denoting
a specific reaction to it.

□GP[Allergy ⊑ =1 SensitivityTo.Substance] (F1)
□ED[Allergy ⊑ AntibodyRelease] (F2)

In the above example, axiom (F1) expresses that accord-
ing to the GP every Allergy is a sensitivity to one specific
Substance1 and axiom (F2) expresses that according to the
ED it is unequivocal that an Allegy is a bodily release of
antibodies (AntibodyRelease) in response to an event. In
addition, one may want to relate those standpoints, for in-
stance by means of the additional axiom

□ED[Allergy ⊑ ∃TriggeredBy.♢GP[Allergy]], (F3)

expressing that according to the ED, allergies are always
triggered by a certain kind of sensitivity to a substance that is
in turn conceivably an Allergy according to the GP. Finally,
we can establish hierarchies of standpoints via sharpening
statements like ED ⪯ SNOMED, which indicates that the
ED ontology is more precise than the SNOMED2 and thus
the former standpoint inherits all the axioms of the latter.
With this, the logic allows for the integrated representation
of domain knowledge relative to diverse, possibly conflict-
ing standpoints, which can be hierarchically organised, com-
bined, and related.

Description logics (DLs) (Baader et al. 2017; Rudolph
2011) are one of the most prominent and successful famil-
ies of logic-based knowledge representation formalisms and
provide the formal basis for the Web Ontology Language
OWL DL (Bao et al. 2009). Since supporting the inter-
operability of independently developed knowledge specific-
ations or ontologies is a fundamental application scenario

1In (F1), = is a shortcut for ⩾ and ⩽; the complete axiom is
□GP[Allergy ⊑(⩾1 SensitivityTo.Substance⊓ ⩽1 SensitivityTo.Substance)]

2The SNOMED CT (Donnelly 2006) is the largest healthcare
ontology, with a broad user base of clinicians, researchers, . . .
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for standpoint logic, the study of combinations of stand-
point logic with DLs is of particular interest. This goes in
line with previous work enhancing DLs to support different
forms of contextuality, for instance C-OWL (Bouquet et al.
2003), Distributed ontologies (Borgida and Serafini 2003)
and the Contextualised Knowledge Repository (Serafini and
Homola 2012; Bozzato, Eiter, and Serafini 2018).

Modal extensions of DLs in the spirit of what we propose
in this paper have been studied for years (Baader, Küsters,
and Wolter 2003). It is known that the interplay between
DL constructs and modalities is generally not well-behaved,
often endangering the decidability of reasoning tasks of ex-
tensions allowing for full modal integration (that is, for
modalised axioms, concepts and roles) or increasing their
complexity (Baader and Ohlbach 1995; Mosurović 1999;
Wolter and Zakharyaschev 1999) with high modal integra-
tion (that is, allowing for modalised axioms and concepts3).
Examples of the latter are the NEXPTIME-completeness of
the multi-modal description logic KALC (Lutz et al. 2002)
and the 2EXPTIME-completeness of ALCALC (Klarman
and Gutiérrez-Basulto 2013), also conceived as a contextual
logic framework (McCarthy and Buvac 1998).

We are especially interested in cases where one can ex-
tend a DL with the standpoint framework while preserving
the complexity of the standpoint-free DL. When choosing
such DLs as base languages, joint reasoning over the integ-
rated combination of possibly many ontologies is not funda-
mentally harder than reasoning with the ontologies in sep-
aration (beyond the difference in size) and there are prom-
ising paths toward efficient reasoning algorithms. In re-
cent work (Gómez Álvarez, Rudolph, and Strass 2023a), it
has been shown for the lightweight description logic EL+,
that standpoint-EL+ still exhibits EL’s favourable PTIME
standard reasoning while having high modal integration,
which is necessary to exploit the full modelling features of
standpoint logic.4 For the much more expressive side of
DLs up to SROIQbs, however, the results obtained so far
only consider sentential fragments, that is, the easier case
where the modal integration is limited to the axiom-level
(Gómez Álvarez, Rudolph, and Strass 2022).

In this paper, we push this line of research to show that
Standpoint-SHIQ stays in EXPTIME with high modal in-
tegration. Notice that the previous results for EL were shown
using a tableau algorithm and a saturation calculus, both
of which have the potential to be implemented into dedic-
ated “standpoint EL” solvers. Here we follow a different
approach, which consists of first showing that Standpoint
SHIQ has a small-model property, and then exploiting the
higher expressivity of the base language to establish a poly-
nomial equisatisfiable translation from Standpoint SHIQ
into plain SHIQ knowledge bases. Beyond establishing the
worst-case complexity, this technique paves the way for the
use of highly optimised OWL reasoners to provide reason-
ing support for Standpoint SHIQ ontologies.

3These are sometimes referred to in the literature as monodic
fragments (Wolter and Zakharyaschev 2001).

4Axioms like (F3), which allow us to establish alignments
between different standpoints require this higher modal integration

The rest of the paper is organised as follows. After intro-
ducing the syntax and semantics of Standpoint SHIQ and a
suitable normal form (Section 2), we establish our main res-
ult: that satisfiability of Standpoint SHIQ knowledge bases
implies the existence of small models of a particular form,
which we call tidy models (Section 3). Subsequently, we
provide a polynomial equisatisfiable translation from Stand-
point SHIQ into SHIQ by virtue of which we establish
the complexity result (Section 4). We then show how nom-
inals break this small model property (Section 5) and we
finish the paper with concluding remarks and a discussion
of future work (Section 6).

2 Syntax and Semantics
We expect the reader to be familiar with the basics of de-
scription logics and in particular the popular description lo-
gic SHIQ. We start by introducing syntax and semantics
of Standpoint SHIQ (referred to as SSHIQ) and propose a
normal form that is useful for the subsequent treatise.

2.1 Syntax
A Standpoint DL vocabulary contains a set NS of standpoint
names with ∗ ∈ NS the universal standpoint, together with a
traditional DL vocabulary consisting of sets NI of individual
names, NC of concept names, and Ns

R and Nns
R of simple

and nonsimple role names, respectively. All these sets are
pairwise disjoint. The sets Rs and Rns of simple/non-simple
roles consist of all simple/non-simple role namesR and their
inverted versions R−. A standpoint operator is of the form
♢s (“diamond”) or □s (“box”) with s ∈ NS; we use ⊙s to
refer to either, and may delimit their scope by brackets [. . .].
• Concept terms are defined via

C ::= ⊤ | ⊥ | A | ¬C | C1 ⊓ C2 | C1 ⊔ C2

| ∃R.C | ∀R.C | ⩽nS.C | ⩾nS.C | ⊙sC,

where A ∈ NC, R ∈ Rs ∪Rns, S ∈ Rs, and n ∈ N.
• A general concept inclusion (GCI) is of the form C ⊑ D,

where C and D are concept terms.
• A role inclusion (RI) is of the form S ⊑ R where
S,R ∈ Ns

R ∪Nns
R satisfying S ∈ Ns

R or R ∈ Nns
R .

• A transitivity axiom is of the form Tra(R) withR ∈ Nns
R .

• A concept assertion is of the form C(a), where C is a
concept term and a ∈ NI. A role assertion is of the form
R(a, b), with a, b ∈ NI and R ∈ NR.

• An axiom ξ is a GCI, RI, transitivity axiom, or assertion.
• A literal λ is an axiom ξ or a negated axiom ¬ξ.
• A monomial µ is a conjunction λ1 ∧ . . . ∧ λm of literals.
• A formula φ is of the form ⊙sµ for a monomial µ and
s ∈ NS.

• A sharpening statement is of the form s1 ∩ . . . ∩ sn ⪯ s
where n ≥ 1 and s1, . . . , sn, s ∈ NS ∪ {0}.5

Note that monomials can be used to express any (finite)
SHIQ knowledge base, but even allow for the occurrence
of negated axioms. Still they do not cover arbitrary Boolean
combinations of axioms – a necessary restriction for our
complexity results.

50 is used to express standpoint disjointness as in s ∩ s′ ⪯ 0.
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A SSHIQ knowledge base (KB) is a finite set of formu-
lae and possibly negated sharpening statements. We refer to
arbitrary elements of K as statements. Note that all state-
ments except sharpening statements are preceded by modal
operators (“modalised” for short).

2.2 Semantics
The semantics of SSHIQ is defined via (description lo-
gic) standpoint structures. Given a Standpoint DL vocabu-
lary ⟨NS,NI,NC,N

s
R,N

ns
R ⟩, a description logic standpoint

structure is a tuple D = ⟨∆,Π, σ, γ⟩ where:
• ∆ is a non-empty set, the domain of D;
• Π is a set, called the precisifications of D;
• σ is a function mapping standpoint names to nonempty

subsets of Π while we set σ(0) = ∅ and σ(∗) = Π;
• γ is a function mapping each precisification from Π to an

“ordinary” DL interpretation I = ⟨∆, ·I⟩ over the domain
∆, where the interpretation function ·I maps:
– any concept name A ∈ NC to a set AI ⊆ ∆,
– any role nameR∈NR to a binary relationRI ⊆∆×∆,
– any individual name a ∈ NI to an element aI ∈ ∆,
requiring aγ(π) = aγ(π

′) for all π, π′∈ Π and a ∈ NI.

By this definition, individual names (also called con-
stants) are interpreted rigidly, i.e., each individual name a
is assigned the same aγ(π) ∈ ∆ across all precisifications
π ∈ Π. We will refer to this uniform aγ(π) by aD.

For all π ∈Π, we extend the interpretation function I =

γ(π) to inverted role names byR−I
:={⟨ε, δ⟩ | ⟨δ, ε⟩∈RI}

and – inductively – to all concept terms as follows:

⊤I := ∆ (C1 ⊓ C2)
I := CI

1 ∩ CI
2

⊥I := ∅ (C1 ⊔ C2)
I := CI

1 ∪ CI
2

(¬C)I := ∆ \ CI

(∃R.C)I :=
{
δ ∈ ∆

∣∣ ⟨δ, ε⟩ ∈ RI for some ε ∈ CI}
(∀R.C)I :=

{
δ ∈ ∆

∣∣ ⟨δ, ε⟩ ∈ RI implies ε ∈ CI}
(⩽nS.C)I :=

{
δ ∈ ∆

∣∣ |{ε∈CI | ⟨δ, ε⟩∈SI}| ≤ n
}

(⩾nS.C)I :=
{
δ ∈ ∆

∣∣ |{ε∈CI | ⟨δ, ε⟩∈SI}| ≥ n
}

(♢sC)
I :=

⋃
π′∈σ(s) C

γ(π′)

(□sC)
I :=

⋂
π′∈σ(s) C

γ(π′)

We observe that precisifications are akin to worlds or points
in Kripke models6, and that modalised concepts ⊙sC are in-
terpreted uniformly across all precisifications π ∈ Π, which
allows us to denote their extensions with (⊙sC)

D. For tech-
nical reasons, we will also make use of the concept con-
structor ⩽¬, where ⩽¬nS.C is a shorthand for ⩽nS.¬C and
can be read as “all but (maximally) n S-neighbours satisfy
C”. By means of the usual concept equivalences as well as
the observation (¬♢sC)

I = (□s¬C)I , it is easy to show

6The term precisification, which comes from the supervalu-
ationist theory of natural language, is used when one models pre-
cise interpretations of the language rather than possible states of
affairs (Gómez Álvarez and Rudolph 2021).

that every concept term C can be easily transformed into an
equivalent concept term NNF (C) in negation normal form,
where all subterms using ⩽ have been rewritten into sub-
terms using ⩽¬ and negation is allowed to occur only in front
of concept names.

Satisfaction of a statement by a DL standpoint structure
D (and precisification π) is then defined as follows:

D,π |= C ⊑ D :⇐⇒ Cγ(π) ⊆ Dγ(π)

D,π |= S ⊑ R :⇐⇒ Sγ(π) ⊆ Rγ(π)

D,π |= Tra(R) :⇐⇒ Rγ(π) is transitive
D,π |= C(a) :⇐⇒ aD ∈ Cγ(π)

D,π |= R(a, b) :⇐⇒
〈
aD, bD

〉
∈ Rγ(π)

D,π |= ¬ξ :⇐⇒ D, π ̸|= ξ

D,π |= λ1 ∧ . . .∧λn :⇐⇒ D, π |= λi for all 1 ≤ i ≤ n

D |= □sµ :⇐⇒ D, π |= µ for each π ∈ σ(s)

D |= ♢sµ :⇐⇒ D, π |= µ for some π ∈ σ(s)

D |= s1∩ . . .∩ sn ⪯ s :⇐⇒ σ(s1) ∩ . . . ∩ σ(sn) ⊆ σ(s)

Finally, D is a model of a SSHIQ knowledge base K (written
D |= K) iff it satisfies every statement in K. As usual, we
call K satisfiable iff some D with D |= K exists. A SSHIQ
statement ψ is entailed by K (written K |= ψ) iff D |= ψ
holds for every model D of K.

For the sake of illustration, Figure 2 (1) depicts a model
of the SSHIQ knowledge base consisting of the axioms (F1-
3), with each point denoting the interpretation of a domain
element δ at a precisification π. The blue labels at the top
left of points represent the concepts to which δ belongs and
the green arrows represent the roles it participates in at π.

For our subsequent treatise, we will presume that the sets
∆ and Π of all considered structures are countable. This
assumption can be made without loss of generality since
SSHIQ could be reformulated as a fragment of (two-sorted)
first-order logic, so that the downward Löwenheim-Skolem
Theorem can be applied (Skolem 1929).

2.3 Normalisation
It will be convenient to work with SSHIQ knowledge bases
in normal form, as specified in the following.
Definition 1 (Normal Form of SSHIQ Knowledge Bases).
A KB K is in normal form iff it only contains statements of
the following shapes:
• sharpening statements not using 0,
• modalised GCIs of the shape □s[⊤ ⊑ C] with s ∈ NS and
C a concept term in negation normal form.

• modalised axioms of the form □sξ where ξ is any RI,
transitivity axiom, role assertion, or concept assertion
C(a) with C in negation normal form. ❑

For a given SSHIQ KB K, we can compute its normal
form by exhaustively applying the transformation rules de-
picted in Figure 1, where “rule application” means that the
statement on the left-hand side is replaced with the set of
statements on the right-hand side. This eliminates most
statements preceded by diamonds, modalised axiom sets,
and negated axioms.
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♢s[µ] −→ {v ⪯ s, □v[µ]} (1)
□s[λ1 ∧ . . . ∧ λn] −→ {□s[λ1], . . . , □s[λn]} (2)

□s[¬(C ⊑ D)] −→ {□s[A ⊑ C], □s[A ⊓D ⊑ ⊥], □s[⊤ ⊑ ∃R′.A]} (3)
□s[¬(C(a))] −→ {□s[(¬C)(a)]} (4)
□s[¬R(a, b)] −→ {□s[Aa(a)], □s[Ab(b)], □s[Aa ⊓ ∃R.Ab ⊑ ⊥]} (5)

□s[¬(S ⊑ R)] −→ {□s[⊤ ⊑ ∃R′.Aa], □s[Aa ⊓ ∃R.Ab ⊑ ⊥], □s[Aa ⊑ ∃S.Ab]} (6)

□s[¬(Tra(R)] −→ {□s[⊤ ⊑ ∃R′.Aa], □s[Aa ⊓ ∃R.Ab ⊑ ⊥], □s[Aa ⊑ ∃R.∃R.Ab]} (7)
¬(s1 ∩ . . .∩ sn ⪯ u) −→ {v ⪯ s1, . . . , v ⪯ sn, v ∩ u ⪯ 0} (8)

s1 ∩ . . . ∩ sn ⪯ 0 −→ {□s1 [⊤ ⊑ A1], . . . , □sn [⊤ ⊑ An], □∗[A1 ⊓ . . . ⊓An ⊑ ⊥]} (9)
□s[C(a)] −→ {□s[NNF (C)(a)]} (10)

□s[C ⊑ D] −→ {□s[⊤ ⊑ NNF (¬C ⊔D)]} (11)

Figure 1: Normalisation rules for SSHIQ knowledge bases. Therein, s1, . . . , sn, u ∈ NS ∪ {0}, the A,Aa, Ab denote fresh concept names,
R′ a fresh role name, and v a fresh standpoint name. The last rule is only applied if C is not ⊤ or D is not in negation normal form.

Lemma 1. Any SSHIQ KB K can be transformed into a
SSHIQ KB K′ in normal form such that:
• K′ and K are equisatisfiable,
• the size of K′ is at most linear in the size of K, and
• the transformation can be computed in PTIME.

2.4 Reasoning Problems and Reducibility
Now we briefly recap the two central reasoning tasks (know-
ledge base) satisfiability and statement entailment, which we
will investigate in this paper.

Problem: SSHIQ KNOWLEDGE BASE SATISFIABILITY
Input: SSHIQ knowledge base K.
Output: YES, if K has a model, NO otherwise.

This reasoning task is useful in itself, e.g. for know-
ledge engineers to check for grave modelling errors that turn
the specified knowledge base globally inconsistent. From
a user’s perspective, however, a more application-relevant
problem is that of statement entailment, allowing for determ-
ining consequences following from the specified knowledge:

Problem: SSHIQ STATEMENT ENTAILMENT
Input: SSHIQ knowledge base K, SSHIQ statement ϕ.
Output: YES, if K |= ϕ, NO otherwise.

Using the same techniques as described in our prior work
(Gómez Álvarez, Rudolph, and Strass 2023a), we can estab-
lish reducibility of statement entailment to KB satisfiability.
Theorem 2. There exists a PTIME Turing reduction from
SSHIQ STATEMENT ENTAILMENT to SSHIQ KNOW-
LEDGE BASE SATISFIABILITY.

3 Small Models for Standpoint SHIQ
We now proceed to show that any satisfiable SSHIQ KB
K has a model of a very specific shape, having only poly-
nomially many precisifications with respect to the size of
K. Due to Lemma 1, we will assume without loss of gen-
erality that K is in normal form. We let ST (K) denote

all the concept terms (including subterms) occurring inside
K. For any t ∈ NS, we let tK denote the smallest set of
standpoint names that (i) contains t and ∗ and (ii) for any
sharpening statement s1∩ . . .∩ sn ⪯ s from K we have that
{s1, . . . , sn} ⊆ tK implies s ∈ tK.

Definition 2. Given a SSHIQ KB K in normal form, a
model D = ⟨∆,Π, σ, γ⟩ of K is tidy, if Π consists of the
following distinct elements:
• for all s∈NS(K) a precisification πs ∈ σ(s),
• for all ♢sC∈ST (K) two precisifications π0

s,C ,π
1
s,C ∈σ(s),

• for all ♢sC ∈ ST (K) and a ∈ NI(K) a precisification
πa
s,C ∈σ(s).

Given K, let ΠK denote the specific set Π described above. ❑

In and by itself, the definition of tidiness just fixes the
set of precisifications and assigned standpoints. While the
names used for the precisifications may seem arbitrary,
they will be instantiated in the subsequent construction by
worlds witnessing (i) standpoint non-emptiness, (ii) dia-
mond concept memberships of anonymous individuals, and
(iii) diamond concept membership of named individuals. In
particular, we will make sure that our tidy model requires
just two s-precisifications – namely π0

s,C and π1
s,C – to jointly

witness local satisfaction of C simultaneously for all an-
onymous individuals from (♢sC)

D. This requirement is cru-
cial to keep the total number of precisifications polynomial
in the size of K in order to establish our wanted complexity
result. However, this requirement is not to be taken for gran-
ted nor easily achieved. To see this, consider the statement
□∗[⊤ ⊑ ♢sA], establishing that every domain individual is
in A in some s-precisification. In the worst case, a model of
this statement could be such that every domain element sat-
isfies A in a different precisification. Then, each of these –
numerous or even infinitely many – “witnessing” precisific-
ations would be essential to satisfy the above statement, i.e.,
removing any of them would destroy modelhood.

We will proceed to show that, despite these hindrances,
every satisfiable normalized SSHIQ KB has a model that is
tidy. To this end, we use the common strategy for such pur-
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𝖴𝖲𝖯𝖺𝗋𝗍𝖮𝖿 𝖯𝖺𝗋𝗍𝖮𝖿 𝖯𝖺𝗋𝗍𝖮𝖿
𝖶𝖲,𝖢𝗈𝗎𝗋𝗌𝖾 𝖶𝖲,𝖢𝗈𝗎𝗋𝗌𝖾 𝖶𝖲,𝖢𝗈𝗎𝗋𝗌𝖾

𝖢𝗈𝗎𝗋𝗌𝖾
𝖫𝖾𝖽𝖡𝗒

𝖯𝗋𝗈𝖿
𝖫𝖾𝖽𝖡𝗒

𝖯𝗋𝗈𝖿 𝖢𝗈𝗎𝗋𝗌𝖾 𝖫𝖾𝖽𝖡𝗒
𝖫𝖾𝖽𝖡𝗒
𝖢𝗈𝗎𝗋𝗌𝖾

𝖫𝖾𝖽𝖡𝗒
𝖯𝗋𝗈𝖿

𝖫𝖾𝖽𝖡𝗒
𝖯𝗋𝗈𝖿

𝖫𝖾𝖽𝖡𝗒

δ3Πo

π1

𝖴𝖪
π3

𝖴𝖲
π2

π4

π5

δ1

𝖯𝖺𝗋𝗍𝖮𝖿

δ2
𝖶𝖲,𝖢𝗈𝗎𝗋𝗌𝖾

𝖯𝗋𝗈𝖿

𝖢𝗈𝗎𝗋𝗌𝖾

Π Δ
π𝖴𝖲

𝖴𝖪

π𝖴𝖪

<δ1,1> <δ2,1> <δ3,1> <δ1,2> <δ2,2> <δ3,2> <δ1,3> <δ2,3> <δ3,3>

𝖫𝖾𝖽𝖡𝗒

𝖯𝗋𝗈𝖿

𝖫𝖾𝖽𝖡𝗒

δ4

𝖯𝗋𝗈𝖿

𝖯𝗋𝗈𝖿

Δo <δ4,1> <δ4,2> <δ4,3>

𝖫𝖾𝖽𝖡𝗒

…

π0𝖴𝖪,𝖢𝗈𝗎𝗋𝗌𝖾

π1𝖴𝖪,𝖢𝗈𝗎𝗋𝗌𝖾

δ3Πo

π1

𝖦𝖯

π3

𝖤𝖣
π2

π4

π5

δ1

𝗍𝖳𝗋𝗂𝖡𝗒

δ2
𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒

𝖲𝗎𝖻

𝖠𝗅𝗅𝖾𝗋𝗀𝗒

𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝗎𝖻

Δo

𝖲𝖾𝗇𝗌𝖳𝗈

𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒
𝗍𝖳𝗋𝗂𝖡𝗒

𝖲𝗎𝖻

𝖤𝖣
𝗍𝖳𝗋𝗂𝖡𝗒 𝗍𝖳𝗋𝗂𝖡𝗒 𝗍𝖳𝗋𝗂𝖡𝗒

𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒 𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒 𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒
𝗍𝖳𝗋𝗂𝖡𝗒

𝖠𝖱,𝖠𝗅𝗅𝖾𝗋𝗀𝗒

𝖠𝗅𝗅𝖾𝗋𝗀𝗒
𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝗎𝖻 𝖲𝗎𝖻 𝖲𝗎𝖻
𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝖾𝗇𝗌𝖳𝗈
𝖠𝗅𝗅𝖾𝗋𝗀𝗒

𝖲𝖾𝗇𝗌𝖳𝗈

𝖠𝗅𝗅𝖾𝗋𝗀𝗒
𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝗎𝖻
𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝗎𝖻
𝖲𝖾𝗇𝗌𝖳𝗈

𝖲𝗎𝖻𝖠𝗅𝗅𝖾𝗋𝗀𝗒

Π Δ
π𝖤𝖣

𝖦𝖯

π𝖦𝖯

<δ1,0> <δ2,0> <δ3,0> <δ2,1> <δ3,1> <δ1,2> <δ3,2> <δ1,3> <δ2,3><δ1,1> <δ2,2> <δ3,3>…

π0𝖦𝖯,𝖠𝗅𝗅𝖾𝗋𝗀𝗒

π1𝖦𝖯,𝖠𝗅𝗅𝖾𝗋𝗀𝗒
𝖲𝖾𝗇𝗌𝖳𝗈

(1) (2)

Figure 2: (1) illustrates a model Do of the axioms (F1-3), which we refer to as K. Each row denotes a precisification in the model, which
is associated to a standard-DL interpretation of the shared domain, in columns. (2) illustrates a K-pruning D of Do, for which the values of
the functions f and g are specified in Table 1. Notice that ∆ is an infinite sequence and the roles pointing to the outside of the figure are
associated to some domain element ⟨δ, k⟩ with k > 3.

poses: given an arbitrary model Do, we describe how to use
it to construct a tidy model D. For the reasons just discussed,
however, the tidy model can not be obtained by simply elim-
inating enough precisifications. Rather, we describe an elab-
orate construction that allows to “squeeze” all the witness-
ing precisifications into just two. In doing so, we greatly
benefit from the well-known fact that in the description lo-
gic SHIQ, the disjoint union of two or more models will be
a model again (Rudolph 2011). This observation makes sure
that several precisifications can actually “co-exist” side by
side inside one precisification without mutual interference.
What remains to be taken care of is the alignment across
precisifications, which we will have to arrange in a “pedes-
trian”, stepwise fashion. For cardinality reasons, “squeez-
ing” many witnessing precisifications into two in a bijective
fashion requires the domain ∆ of our to-be-constructed tidy
model to be infinite. Moreover, for alignment reasons, the
domain also needs to contain many “look-alike” elements.
Both of these requirements are achieved by letting ∆ consist
of countably many copies of the domain ∆o of the originally
provided model Do. This intuition should make it easier to
grasp the formal definition of our model construction.

Definition 3. Let K be a SSHIQ KB in normal form and let
Do = ⟨∆o,Πo, σo, γo⟩ be a model of K. Then, a structure
D = ⟨∆,Π, σ, γ⟩ is a K-pruning of Do if it can be construc-
ted in the following way:
• Let ∆ = ∆o × N and Π = ΠK.
• Let σ(s′) = {πs, π0

s,C , π
1
s,C , π

a
s,C ∈ ΠK | s′∈sK, s∈NS},

• aD =
〈
aD

o

, 0
〉

for all a ∈ NI(K)

• Aγ(π) = {⟨δ, k⟩ | δ ∈ Aγo(f(π,δ,k))}
• Rγ(π) contains every pair ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ ∆ × ∆ for

which f(π, δ, k) = f(π, ϵ, ℓ) and g(π, δ, k) = g(π, ϵ, ℓ)
and ⟨δ, ϵ⟩ ∈ Rγo(f(π,δ,k)).

Where f : Π × ∆o × N → Πo and g : Π × ∆o × N → N
are functions obtained as follows:
(C1) For any πs ∈ Π pick some π ∈ Πo with π ∈ σo(s),

and let f(πs, δ, k) = π and g(πs, δ, k) = k.
(C2) For any πa

s,C ∈ Π pick some π ∈ Πo with π ∈ σo(s),

and let f(πa
s,C , δ, k) = π and g(πa

s,C , δ, k) = k. In the
case where Do |= ♢s(C(a)), pick π such that it also
satisfies aD

o ∈ Cγo(π).
(C3) For πi

s,C with i ∈ {0, 1}, let Π′ = σo(s) and let ⊴ be
some order over Π′ × N induced by an enumeration7

of this set (thus, in particular, ⊴ is a linear discrete
well-order). Let π′ be an arbitrary element of Π′. For
any fixed δ ∈ ∆o, we now define the unary functions
f(πi

s,C , δ, ·) and g(πi
s,C , δ, ·) step by step, incrementing

the last argument. In case k = 0 and δ is named in
Do, we let f(πi

s,C , δ, 0) = π′ and g(πi
s,C , δ, 0) = 0.

Otherwise, we distinguish two cases:
(C3.1) Whenever δ ∈ (♢sC)

Do

and k + i is even, we let
⟨π,m⟩ be the ⊴-smallest element of Π′ × N that
(first) satisfies δ ∈ Cγo(π) and (second) is not in
{
〈
f(πi

s,C , δ, ℓ), g(π
i
s,C , δ, ℓ)

〉
| ℓ < k}. Then let

f(πi
s,C , δ, k) = π and g(πi

s,C , δ, k) = m.
(C3.2) If the above is not the case, let ⟨π,m⟩ simply be

the ⊴-smallest element of Π′×N not contained in
{
〈
f(πi

s,C , δ, ℓ), g(π
i
s,C , δ, ℓ)

〉
| ℓ < k}. Then let

f(πi
s,C , δ, k) = π and g(πi

s,C , δ, k) = m. ❑

Let us discuss Definition 3 in some more detail. First,
each precisification of the form πs ensures that the stand-
point s is non-empty. For this, in (C1) it is sufficient to pick
any precisification π in σo(s) and obtain πs as the N-fold
disjoint union of π (that is, every ⟨δ, k⟩ at πs “looks like” δ
at π). Mark that thanks to our normal form, diamonds will
only occur at the concept level and notice that any precisific-
ation π will satisfy any boxed expression both at the concept
and axiom levels.

The purpose of the rest of the precisifications in the
K-pruning is to witness diamond concept memberships of
named and unnamed individuals. For the named case, we
have precisifications of the form πa

s,C which are meant

7Recall that an enumeration of a countably infinite set S is a
bijection from N to S and that for every countably infinite set, such
an enumeration exists.
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f(π, δ, k), g(π, δ, k)

Π ∆ k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 . . .

δ1 π1, 0 π1, 1 π1, 2 π1, 3 π1, 4 π1, 5 π1, 6 π1, 7 π1, 8 π1, 9
δ2 π1, 0 π1, 1 π1, 2 π1, 3 π1, 4 π1, 5 π1, 6 π1, 7 π1, 8 π1, 9πED

δ3 π1, 0 π1, 1 π1, 2 π1, 3 π1, 4 π1, 5 π1, 6 π1, 7 π1, 8 π1, 9
δ1 π4, 0 π4, 1 π4, 2 π4, 3 π4, 4 π4, 5 π4, 6 π4, 7 π4, 8 π4, 9
δ2 π4, 0 π4, 1 π4, 2 π4, 3 π4, 4 π4, 5 π4, 6 π4, 7 π4, 8 π4, 9πGP

δ3 π4, 0 π4, 1 π4, 2 π4, 3 π4, 4 π4, 5 π4, 6 π4, 7 π4, 8 π4, 9
δ1 π3, 0 π4, 0 π5, 0 π3, 1 π4, 1 π5, 1 π3, 2 π4, 2 π5, 2 π3, 3
δ2 π3, 0 π5, 0 π4, 0 π5, 1 π3, 1 π5, 2 π4, 1 π5, 3 π3, 2 π5, 4π0

GP,Allergy
δ3 π3, 0 π4, 0 π5, 0 π3, 1 π4, 1 π5, 1 π3, 2 π4, 2 π5, 2 π3, 3
δ1 π3, 0 π4, 0 π5, 0 π3, 1 π4, 1 π5, 1 π3, 2 π4, 2 π5, 2 π3, 3
δ2 π5, 0 π3, 0 π5, 1 π4, 0 π5, 2 π3, 1 π5, 3 π4, 1 π5, 4 π3, 2π1

GP,Allergy
δ3 π3, 0 π4, 0 π5, 0 π3, 1 π4, 1 π5, 1 π3, 2 π4, 2 π5, 2 π3, 3

Table 1: Values of the functions f(π, δ, k) and g(π, δ, k) for each π ∈ Π, δ ∈ ∆o and k ∈ N, for the K-pruning in Example 1. The table
shows values up to k = 9, with the cases (C1), (C3.1) and (C3.2) from Definition 3 coloured in blue, purple and green respectively.

to witness the C-membership of named individuals a,
whenever the latter satisfy some ♢sC. In order to form such
a πa

s,C , in (C2) we pick from σo(s) any π with aD
o ∈ Cγo(π),

and again obtain πa
s,C as the N-fold disjoint union of π,

where we stipulate aD
o

= ⟨δ, 0⟩ (when taking disjoint uni-
ons of precisifications, constants must not be duplicated, so
we always place them in the first copy).

For the much more intricate unnamed case, our goal is to
let the two precisifications π0

s,C and π1
s,C together witness all

the C-memberships of all unnamed ♢sC-instances of ∆ at
once. To achieve this, in (C3) we make use of all precisifica-
tions from σo(s) for the creation of π0

s,C and π1
s,C . More spe-

cifically, each πi
s,C is composed of infinitely many copies of

each π ∈ σo(s), and the alignment with the other precisific-
ations is arranged in such a way that if δ ∈ (♢sC)

Do

then
we have ⟨δ, k⟩ ∈ Cγ(π0

s,C) for even k and ⟨δ, k⟩ ∈ Cγ(π1
s,C)

for odd k (that is π0
s,C and π1

s,C take turns at “witness duty”),
thus clearly achieving ⟨δ, k⟩ ∈ (♢sC)

D for any k. Thereby,
the two auxiliary functions f and g serve as “coordinates”
relating each ⟨δ, k⟩ ∈ ∆ at some π ∈ Π to the very copy
of the π′ ∈ Πo which we choose to serve as “blueprint”
for ⟨δ, k⟩ in terms of concept and role memberships. So
for f(πi

s,C , δ, k) = π and g(πi
s,C , δ, k) = m, the interpret-

ation of the element ⟨δ, k⟩ at the precisification πi
s,C is the

mth copy of the interpretation of δ at π. Notice that we
keep track of m to ensure that roles are copied correctly, so
⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Rγ(πi

s,C) only if ⟨δ, k⟩ and ⟨ϵ, ℓ⟩ correspond
to the same copy of the same precisification.

Example 1. Consider a knowledge base K consisting of the
set of axioms (F1-3), and its model Do in Figure 2 (1). We
show how to produce its K-pruning D. First, we have,

• Π′ = {π1} for πED,
• Π′ = {π4} for πGP,
• Π′ = {π3, π4, π5} for π0

GP,Allergy and π1
GP,Allergy.

Also, let ⊴ give rise to the enumeration ⟨π3, 0⟩, ⟨π4, 0⟩,
⟨π5, 0⟩, ⟨π3, 1⟩, ⟨π4, 1⟩, ⟨π5, 1⟩, ⟨π3, 2⟩, . . . for π0

GP,Allergy
and π1

GP,Allergy. With this, we have everything in place to
assign the values for each f(π, δ, k) and g(π, δ, k) in the way
specified in Definition 3, which we can see in Table 1. The
resulting pruning is illustrated in Figure 2 (2). ❑

In the rest of the section we introduce some intermediate
lemmas and we finish with Theorem 7, which establishes
that every satisfiable standpoint SHIQ knowledge base K
has a tidy model. The proof-sketches contain the most in-
teresting cases and the full proofs are provided in the suple-
mentary material.

First, we show that for every precisification π in D, there
is a bijective mapping between every element in ∆ and its
origin in Do. This is given by the precisification in Π′, the
associated element in ∆o, and the specific copy (in N).

Lemma 3. Let K, Do, and D as well as f and g be as in the
above definition. Let π ∈ Π and let Π′ = {f(π, ϵ, ℓ) | ϵ ∈
∆o, ℓ ∈ N}. Then, for every δ ∈ ∆o, the mapping

k 7→ ⟨f(π, δ, k), g(π, δ, k)⟩

is a bijection from N to Π′ × N. Consequently, the mapping

⟨δ, k⟩ 7→ ⟨f(π, δ, k), δ, g(π, δ, k)⟩

is a bijection from ∆ to Π′ ×∆o × N.

Proof. We prove that for every δ ∈ ∆o, the mapping k 7→
⟨f(π, δ, k), g(π, δ, k)⟩ is a bijection from N to Π′ × N.

First, we prove that the mapping is injective.
Case π is πs or πa

s,C . We recall that Π′ is a singleton, and
g(π, δ, k) = k from Definition 3. Then, it is easy to
see that if ⟨f(π, δ, k), g(π, δ, k)⟩ = ⟨f(π, δ, k′), g(π, δ, k′)⟩
then k = k′ as desired.
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Case π is πi
s,C with i ∈ {0, 1}. There are two subcases:

• If k = 0 and δ is named in Do: By Definition 3 we
have f(π, δ, k) = π′ and g(π, δ, k) = 0. For the
sake of contradiction, assume ⟨f(π, δ, k), g(π, δ, k)⟩ =
⟨f(π, δ, k′), g(π, δ, k′)⟩ but k′ > 0. Then by the definition
of f and g (Definition 3) we have a contradiction because
we cannot assign f(π, δ, k′) = π′ and g(π, δ, k′) = 0
since ⟨π′, 0⟩ ∈ {⟨f(π, δ, ℓ), g(π, δ, ℓ)⟩ | ℓ < k′}.

• Else: assume f(π, δ, k) = π′, g(π, δ, k) = m,
f(π, δ, k′) = π′, and g(π, δ, k′) = m, but k ̸= k′,
with k > k′. Then by the definition of f and g (Defin-
ition 3) we have a contradiction because we cannot as-
sign f(π, δ, k) = π′ and g(π, δ, k) = m since ⟨π′,m⟩ ∈
{⟨f(π, δ, ℓ), g(π, δ, ℓ)⟩ | ℓ < k} because k′ < k.

Then, we prove that the mapping is surjective.
Case π is πs or πa

s,C . By Definition 3, it is easy to see that
for all ⟨π′, k⟩ ∈ Π′ × N there is a mapping from k ∈ N to
⟨π′, k⟩, since g(π, δ, k) = k.

Case π is πi
s,C with i ∈ {0, 1}. Assume ⟨π′,m⟩ ∈ Π′ × N

and there is no k ∈ N such that f(π, δ, k) = π′ and
g(π, δ, k) = m. But from the order ⊴ we know that ⟨π′,m⟩
is the ith element of Π′ × N. Then, from the definition of f
and g (Definition 3), we can see that the tuple ⟨π′,m⟩ must
be assigned to some k ∈ N such that k ≤ 2i + 1 because
in the worst case, for every k > 0 and k + 1 odd, k maps
to the ⊴-smallest element of Π′ ×N that is not contained in
{⟨f(π, δ, ℓ), g(π, δ, ℓ)⟩ | ℓ < k}. ❑

It is now easier to show that for an element ⟨δ, k⟩ ∈ ∆
at some π ∈ Π, if its origin has a concept membership in
Do then ⟨δ, k⟩ has this same concept membership in π, thus
“copying” the origin’s interpretation.
Lemma 4. Let K, Do, and D as well as f be as in Defini-
tion 3. Then, for any π ∈ Π, ⟨δ, k⟩ ∈ ∆, and C ∈ ST (K),
it holds that

δ ∈ Cγo(f(π,δ,k)) =⇒ ⟨δ, k⟩ ∈ Cγ(π).

Proof Sketch. We begin by recalling that ST (K) denotes all
concept terms, including their subterms, occurring inside K.
By induction, we show that if δ belongs to Cγo(f(π,δ,k)),
then ⟨δ, k⟩ belongs to Cγ(π). We will focus on presenting
the most interesting cases.
Base case A: By Definition 3, Aγ(π) = {⟨δ, k⟩ | δ ∈
Aγo(f(π,δ,k))}
Case ¬A: By the semantics and the base case we have
¬Aγ(π) = {⟨δ, k⟩ | ⟨δ, k⟩ /∈ Aγ(π)} = {⟨δ, k⟩ | δ /∈
Aγo(f(π,δ,k))} = {⟨δ, k⟩ | δ ∈ ¬Aγo(f(π,δ,k))}
Case ∃R.C: We show that δ ∈ ∃R.Cγo(f(π,δ,k)) =⇒
⟨δ, k⟩ ∈ ∃R.Cγ(π).

(1) Let f(π, δ, k) = π′ and g(π, δ, k) = m.
(2) Assume δ ∈ ∃R.Cγo(π′).
(3) From (2) and the semantics, there is some ϵ such that

⟨δ, ϵ⟩ ∈ Rγo(π′) and ϵ ∈ Cγo(π′).
(4) By (3) and Lemma 3 there is some ℓ ∈ N such that

f(π, ϵ, ℓ) = π′ and g(π, ϵ, ℓ) = m. Notice that π′ ∈ Π′

since f(π, δ, k) = π′.

(5) By (3), (4) and the inductive hypothesis, ⟨ϵ, ℓ⟩ ∈ Cγ(π).
(6) Notice that f(π, ϵ, ℓ) = f(π, δ, k) and g(π, ϵ, ℓ) =

g(π, δ, k) from (1) and (4), and ⟨δ, ϵ⟩ ∈ Rγo(f(π,δ,k)),
from (3), hence ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Rγ(π) by Definition 3.

(7) From (5), (6) and the semantics we obtain ⟨δ, k⟩ ∈
∃R.Cγ(π) as desired.

Case ⩽¬nS.C: We show that δ ∈ ⩽¬nS.Cγo(f(π,δ,k)) =⇒
⟨δ, k⟩ ∈ ⩽¬nS.Cγ(π).

(1) Assume δ ∈ ⩽¬nS.Cγo(π′) and let f(π, δ, k) = π′ and
g(π, δ, k) = m.

(2) Also, let (¬C)δ =
{
ε /∈Cγo(π′) | ⟨δ, ε⟩∈Sγo(π′)

}
and

Cδ =
{
ε∈Cγo(π′) | ⟨δ, ε⟩∈Sγo(π′)

}
.

(3) By (1) and the semantics we have |(¬C)δ| ≤ n.
(4) By Lemma 3, for each ϵ ∈ (¬C)δ ∪ Cδ there is exactly

one ℓ ∈ N such that f(π, ϵ, ℓ) = π′ and g(π, ϵ, ℓ) = m.
(5) By Definition 3 and (4) we have that ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈

Sγ(π), and therefore we have exactly (¬C)δ ∪ Cδ =
{⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Sγ(π)}.

(6) From (4) and by the inductive hypothesis, for all ϵ ∈ Cδ

we have that ⟨ϵ, ℓ⟩ ∈ Cγ(π).
(7) Hence, from (5) and (6) we have that |Cδ| ≤

|
{
⟨ϵ, ℓ⟩∈Cγ(π) | ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Sγ(π)

}
|.

(8) Finally, from (3), (5) and (7) it must be the
case that |

{
⟨ϵ, ℓ⟩ /∈Cγ(π) | ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Sγ(π)

}
| ≤

|(¬C)δ| ≤ n, thus ⟨δ, k⟩ ∈ ⩽¬nS.Cγ(π) as desired.
Case ♢sC: We show that δ ∈ ♢sC

γo(f(π,δ,k)) =⇒ ⟨δ, k⟩ ∈
♢sC

γ(π).

- Case 1 There is a named individual such that ⟨δ, 0⟩ = aD.
(1) Assume δ ∈ ♢sC

γo(f(π,δ,0)).
(2) By (1) and Definition 3, for πa

s,C we have g(πa
s,C , δ, 0) =

0 and f(πa
s,C , δ, 0) = π′′ such that δ ∈ Cγo(π′′).

(3) By (2) and the inductive hypothesis, we obtain that if
δ ∈ Cγo(f(πa

s,C ,δ,0)) then ⟨δ, 0⟩ ∈ Cγ(πa
s,C).

(4) By (3) and the semantics we obtain ⟨δ, 0⟩ ∈ ♢sC
γ(π) as

desired.
- Case 2 Otherwise.
(1) Assume δ ∈ ♢sC

γo(f(π,δ,k)) and let i ∈ {0, 1} be such
that k + i is even.

(2) From (1) and the semantics, there is a π′ ∈ σo(s) such
that δ ∈ Cγo(π′).

(3) By Definition 3, for πi
s,C we have Π′ = σo(s).

(4) By Lemma 3, there is some m and π′′ such that
f(πi

s,C , δ, k) = π′′ and g(πi
s,C , δ, k) = m.

(5) By (1) and the construction of πi
s,C (Definition 3), π′′ is

assigned in such a way that δ ∈ Cγo(π′′), and from (2)
and (3) we know that such assignment is possible.

(6) By the inductive hypothesis, (4) and (5), we have that
since δ ∈ Cγo(f(πi

s,C ,δ,k)) then ⟨δ, k⟩ ∈ Cγ(πi
s,C).

(7) By (6) and the semantics, ⟨δ, k⟩ ∈ ♢sC
γ(π) as desired.

❑
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We now proceed to show that the construction of a K-
pruning is possible for any given model.
Lemma 5. Let K be a SSHIQ KB in normal form. For each
model Do = ⟨∆o,Πo, σo, γo⟩ of K there is a K-pruning
D = ⟨∆,Π, σ, γ⟩ of Do.

Proof. Let Do = ⟨∆o,Πo, σo, γo⟩ be a model of
K. First, observe that from Do we can con-
struct D = ⟨∆,Π, σ, γ⟩ such that ∆ = ∆o × N,
Π = ΠK, aD =

〈
aD

o

, 0
〉

for all a ∈ NI(K) and
σ(s′) = {πs, πo

s,C , π
1
s,C , π

a
s,C ∈ ΠK | s′∈sK, s∈NS}.

It is left to establish the interpretation of concepts and
roles for all precisifications in Π, for which we must be able
to define the functions f and g as per Definition 3.

For any πs ∈ Π or πa
s,C ∈ Π, there must be some π ∈ Πo

with π ∈ σo(s) to pick, which is always the case because by
the semantics standpoints are non-empty. Moreover, in case
Do |= ♢s(C(a)), we must pick π such that it also satisfies
aD

o ∈ Cγo(π). Again by the semantics if Do |= ♢s(C(a))
then there is some π ∈ σo(s) such that Do, π |= C(a) and
thus aD

o ∈ Cγo(π) as required.
For πi

s,C with i ∈ {0, 1}, we let Π′ = σo(s), which
by the semantics is nonempty. When we assign the val-
ues of f and g for some δ, we require a tuple that is not
in {

〈
f(πi

s,C , δ, ℓ), g(π
i
s,C , δ, ℓ)

〉
| ℓ < k}. Moreover, if

δ ∈ (♢sC)
Do

and k is such that k + i even, we also re-
quire that the assigned tuple ⟨π,m⟩ satisfies δ ∈ Cγo(π).
But we know by the semantics that if δ ∈ (♢sC)

Do

then
there is at least some π ∈ σo(s) such that δ ∈ Cγo(π).
Then, let m be the largest number such that ⟨π,m− 1⟩ ∈
{
〈
f(πi

s,C , δ, ℓ), g(π
i
s,C , δ, ℓ)

〉
| ℓ < k} for f(πi

s,C , δ, ℓ) = π

or 0 if the set is empty. Then, the tuple ⟨π,m⟩ could be
chosen. With f and g guaranteed to be definable as spe-
cified in Definition 3, we can then complete the construc-
tion setting Aγ(π) = {⟨δ, k⟩ | δ ∈ Aγo(f(π,δ,k))} and
Rγ(π) to contain every pair ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ ∆ × ∆ for
which f(π, δ, k) = f(π, ϵ, ℓ) and g(π, δ, k) = g(π, ϵ, ℓ) and
⟨δ, ϵ⟩ ∈ Rγo(f(π,δ,k)) as required. ❑

Finally, we show that if Do was a model of K then the
constructed pruning D is also a model.
Lemma 6. Let K be a SSHIQ KB in normal form and let
Do = ⟨∆o,Πo, σo, γo⟩ be a model of K. If a structure D =
⟨∆,Π, σ, γ⟩ is a K-pruning of Do, then D is a model of K.

Proof Sketch. Assume that Do is a model of K and recall
that D is also a model K iff it satisfies every statement in
K. Statements in K can be sharpening statements or modal-
ised axioms □sξ. We focus on presenting some of the most
interesting cases of the latter.

First, recall that D |= □sξ iff for all π ∈ σ(s) we have
D, π |= ξ. In what follows, we show (for some axiom types)
that if we have Do, πo |= ξ for all πo ∈ σo(s), then D, π |=
ξ for all π ∈ σ(s).
Case ⊤ ⊑ C . Let Π′ = {f(π, ϵ, ℓ) | ϵ ∈ ∆o, ℓ ∈ N} and
π ∈ σ(s), noticing that Π′ ⊆ σo(s) by Definition 3.
(1) By assumption, we have Do, πo |= ⊤ ⊑ C for all πo ∈

σo(s), thus δ ∈ Cγo(πo) for all δ ∈ ∆o.

(2) By Lemma 3, for each π and ⟨δ, k⟩ there is somem such
that f(π, δ, k) = πo with πo ∈ Π′ and g(π, δ, k) = m.

(3) From (1), (2) and Lemma 4, we have that since δ ∈
Cγo(f(π,δ,k)), then ⟨δ, k⟩ ∈ Cγ(π).

(4) Thus, from (3) we obtain that D, π |= ⊤ ⊑ C as desired.
Case S ⊑ R . Let Π′ = {f(π, ϵ, ℓ) | ϵ ∈ ∆o, ℓ ∈ N} and
π ∈ σ(s), noticing that Π′ ⊆ σo(s) by Definition 3.
(1) By assumption we have Do, πo |= S ⊑ R for all πo ∈

σo(s), thus if ⟨δ, ϵ⟩ ∈ Sγo(πo) then ⟨δ, ϵ⟩ ∈ Rγo(πo) for
all δ, ϵ ∈ ∆o.

(2) Assume ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈ Sγ(π).
(3) Then, from (2) and Definition 3, we obtain

f(π, δ, k) = f(π, ϵ, ℓ), g(π, δ, k) = g(π, ϵ, ℓ) and
⟨δ, ϵ⟩ ∈ Sγo(f(π,δ,k)).

(4) From (1) and (3) we have that ⟨δ, ϵ⟩ ∈ Rγo(f(π,δ,k)).
(5) From (4) and Definition 3 we have ⟨⟨δ, k⟩, ⟨ϵ, ℓ⟩⟩ ∈

Rγ(π) and thus D, π |= S ⊑ R as desired.
Case C(a) . Let Π′ = {f(π, ϵ, ℓ) | ϵ ∈ ∆o, ℓ ∈ N}, π ∈
σ(s) and δ = aD

o

, noticing that Π′ ⊆ σo(s) by Definition 3.
(1) By assumption we have Do, πo |= C(a) for all πo ∈

σo(s), thus δ ∈ Cγo(πo).
(2) By Definition 3 we have ⟨δ, 0⟩ = aD.
(3) By Definition 3 and Lemma 3, there is some πo ∈ Π′

such that f(π, δ, 0) = πo and g(π, δ, 0) = 0.
(4) From (1), (3) and Lemma 4, we have that since δ ∈

Cγo(f(π,δ,0)), then ⟨δ, 0⟩ ∈ Cγ(π).
(5) Last, from (2) and (4) we have D, π |= C(a) as desired.

So far we have shown that D is a model of K, thus it re-
mains to show that it is tidy. It is clear from Definition 2
and Definition 3 that Π = ΠK, therefore it consists of a pre-
cisification πs ∈ σ(s) for all s ∈ NS(K), a precisification
πa
s,C ∈ σ(s) for all ♢sC ∈ ST (K) and a ∈ NI(K) and

two precisifications πo
s,C ,π

1
s,C ∈ σ(s) for all ♢sC ∈ ST (K).

Hence, D is a tidy model as required. ❑

With all the lemmas in place, we are in a position to es-
tablish the main theorem.

Theorem 7. Any satisfiable SSHIQ knowledge base in neg-
ation normal form has a tidy model.

Proof. Let K be a SSHIQ knowledge base in negation nor-
mal form. If K is satisfiable then it has a model Do. By
Lemma 5, then there is a K-pruning D of Do, which by
Lemma 6 is a tidy model of K as desired. ❑

4 Translation from SSHIQ to SHIQ
The fact that in SSHIQ satisfiability coincides with satis-
fiability in a tidy model, which has a polynomially bounded
number of precisifications, allows us to develop a polytime
satisfiability-preserving translation from SSHIQ to SHIQ
knowledge bases. The underlying idea, which has been
introduced earlier for the more general setting of first-
order standpoint logic (Gómez Álvarez, Rudolph, and Strass
2022), is to “simulate” the n precisifications of the con-
sidered structure by means of a plain DL interpretation with
the same domain, but the vocabulary of concepts and roles
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copied n-fold. Then, for instance, the fact that the element
δ carries the concept A in the kth precisification of the DL
standpoint structure would be encoded in the corresponding
DL interpretation by δ carrying the kth copy of A.

We now assume a given SSHIQ knowledge base K in
NNF, and provide the formal definition of the translation.
To this end, we fix ΠK as before and, for any s ∈ NS let
Πs

K denote the subset {πt, π0
t,C , π

1
t,C , π

a
t,C ∈ ΠK | s ∈ tK}.

Our translation’s vocabulary consists of all individual names
inside K, plus, for each π ∈ ΠK, the following symbols:
• a concept name Aπ for each A ∈ NC(K);
• a simple role name Sπ for each S ∈Ns

R(K);
• a non-simple role name Rπ for each R∈Nns

R (K);
• a concept name Aπ

C for each ⊙sC occurring in K;
We first inductively specify a function trans, taking some

π ∈ ΠK and a SSHIQ concept term C in NNF as input and
producing a SHIQ concept term:

trans(π,⊤) = ⊤
trans(π,⊥) = ⊥
trans(π,A) = Aπ

trans(π,¬A) = ¬Aπ

trans(π,C ⊓D) = trans(π,C) ⊓ trans(π,D)

trans(π,C ⊔D) = trans(π,C) ⊔ trans(π,D)

trans(π, ∃R.C) = ∃Rπ.trans(π,C)

trans(π, ∀R.C) = ∀Rπ.trans(π,C)

trans(π,⩽¬nS.C) = ⩽¬nSπ.trans(π,C)

trans(π,⩾nS.C) = ⩾nSπ.trans(π,C)

trans(π,□sC) =
l

π′∈Πs
K

Aπ′

C

trans(π,♢sC) =
⊔

π′∈Πs
K

Aπ′

C

Now, we let Trans(K) denote the SHIQ knowledge base
consisting of the following axioms:
• Aπ

C ⊑ trans(π,C) for every new concept name Aπ
C and

π ∈ ΠK
• ⊤ ⊑ trans(π,C) for each □s[⊤ ⊑ C] from K and every
π ∈ Πs

K.
• Sπ ⊑ Rπ for every □s[S ⊑ R] from K and every π ∈ Πs

K.
• Tra(Rπ) for every □s[Tra(R)] from K and every π ∈
Πs

K.
• trans(π,C)(a) for each □s[C(a)] from K and every π ∈
Πs

K.
• Rπ(a, b) for each □s[R(a, b)] from K and every π ∈ Πs

K.
With all definitions in place, we obtain the desired result.

Theorem 8. Given a SSHIQ knowledge base K in NNF, the
SHIQ knowledge base Trans(K)

(i) is equisatisfiable with K,
(ii) is of polynomial size wrt. K, and

(iii) can be computed in polynomial time.

Proof Sketch. PTIME computability and the polynomial
size of the result are straightforward consequences of the
given definition, where we note that the introduction of the

concept names of the type Aπ
C is necessary to avoid an ex-

ponential blow-up that might otherwise occur through the
nesting of modal operators.

Equisatisfiability will be shown by arguing that (a) every
model of Trans(K) gives rise to a model of K and (b) every
tidy model of K gives rise to a model of Trans(K) (which is
sufficient in the light of Theorem 7).

For part (a), consider any model I =
〈
∆, ·I

〉
of

Trans(K). Then we can construct a model D⟨∆,ΠK, σ, γ⟩
by letting σ(s) = Πs

K as well as aγ(π) = aI , Aγ(π) =

(Aπ)I , and Rγ(π) = (Rπ)I . Then it can be readily checked
that modelhood of I implies modelhood of D.

For part (b), consider a tidy model D⟨∆,ΠK, σ, γ⟩ of K.
Then we can construct a model I =

〈
∆, ·I

〉
of Trans(K)

by letting aI = aD, (Aπ)I = Aγ(π), (Rπ)I = Rγ(π), and
(Aπ

C)
I = Cγ(π). Then it can be checked that modelhood of

D implies modelhood of I. ❑

Corollary 9. Satisfiability and statement entailment in
SSHIQ are EXPTIME-complete.

Proof. The two reasoning tasks are PTIME-interreducible:
By Theorem 2, statement entailment can be PTIME-reduced
to satisfiability; the reduction in the other direction is trivial
(one can check unsatisfiability by checking entailment of the
statement □∗[⊤ ⊑ ⊥]). To show EXPTIME-membership of
satisfiabiliy, we first note that any given SSHIQ knowledge
base can be normalized in polynomial time with only poly-
nomial blow-up (Lemma 1). This normalized knowledge
base can then be translated into an equisatisfiable SHIQ
knowledge base, again in polytime and with only polyno-
mial blowup (Theorem 8). Checking satisfiability of SHIQ
knowledge bases is known to be EXPTIME-complete (To-
bies 2001), which finishes the membership argument. Hard-
ness follows from the fact that satisfiability of any SHIQ
knowledge base K coincides with satisfiability of the SSHIQ
knowledge base {♢∗

∧
ξ∈K ξ}. ❑

5 Nominals Destroy the Small Model
Property

Nominals constitute an important mainstream modeling fea-
ture, present in many of today’s ontology languages. For
any individual name a, the nominal concept {a} refers to
the singleton set {aI}.

Alas, we will now show that, if we extended SSHIQ by
nominals, the “small model property” would cease to hold.
In fact, it would be violated in the strongest way possible, as
there exist satisfiable knowledge bases all of whose models
have infinitely many precisifications. This is even the case in
the absence of any role inclusion and transitivity statements
and using only the universal standpoint ∗.

Consider the knowledge base with the following axioms:

□∗[{a} ⊑ ∀R−.⊥] (12)

□∗[⊤ ⊑ ∃R.⊤ ⊓≤1R−.⊤ ⊓≤1S−.⊤] (13)
□∗[⊤ ⊑ ♢∗∃S.{a}] (14)

The first statement ensures that in any precisification,
the individual named a has no incoming R-relations. The
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second statement stipulates that, in any precisification, every
individual has at least one outgoing R-relation, at most one
incoming R, and at most one incoming S. Note that the first
two statements together can only be satisfied in a standpoint
structure where ∆ is an infinite set. The third statement en-
forces that for any element δ ∈ ∆ there is some precisifica-
tion in which δ is S-related to the individual a. On the other
hand, just as any other individual, a can have at most one in-
coming S-relation (per precisification). Consequently, each
of the infinitely many δ ∈ ∆ must be S-connected to a in a
distinct precisification, which forces Π to be infinite.

Note that this finding does not rule out the possibility that
a polynomial equisatisfiable translation from Standpoint DL
with nominals to the standpoint-free version exists. It just
would have to be established based on different principles.

6 Conclusion and Future Work
In this paper, we introduced Standpoint SHIQ, a standpoint
DL that supports the tight modal integration of knowledge
bases of higher expressivity than in previously considered
Standpoint DL extensions. We subsequently established a
small model property for Standpoint SHIQ KBs, showing
that satisfiability coincides with the existence of tidy models,
which have a polynomially bounded number of precisifica-
tions. Exploiting this result, we provided a polytime equisat-
isfiable translation from SSHIQ to SHIQ, which not only
shows that the satisfiability of SSHIQ KBs is in EXPTIME,
but also provides us with a decision procedure for standard
reasoning tasks. Finally, we demonstrated that, while sup-
porting nominals would be desirable from an expressivity
point of view, this would destroy the small model property.

As avenues for future work, we see both practical and the-
oretical contributions. On the practical side, we plan to use
the translation described in Section 4, possibly with some
optimisations, to implement reasoning in SSHIQ harness-
ing existing OWL reasoners. Despite the PTIME transla-
tion, it remains to be seen if this approach performs well in
practical cases. An alternative would be to devise a quasi-
model-based tableau algorithm along the lines of (Wolter
and Zakharyaschev 1998; Gómez Álvarez, Rudolph, and
Strass 2023b), yet this would be a challenging endeavour
since it requires the implementation of a tailored reasoner.

On the theoretical side, it seems worthwhile to investig-
ate, which modelling features can be added to SSHIQ while
maintaining the small model property, which warrants the
translation-based approach. As per Section 5, nominals do
not qualify as “well-behaved” in this sense. With a similar
argument, it should be possible to disqualify the universal
role. On the other hand, we expect several popular DL mod-
elling features to be well-behaved, including the Self con-
struct, safe boolean role constructors, and regular RBoxes.

Finally, as discussed before, expressive DLs that do use
“non well-behaved” modelling features such as SHOIQ or
SROIQ might still allow for the complexity-neutral addi-
tion of standpoints on formal grounds other than the small
model property. We consider it an important question for
future research to find out if this is the case, or if the com-
plexity increases in such cases.
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