Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Boundedness for Unions of Conjunctive Regular Path Queries
over Simple Regular Expressions

Diego Figueira', S. Krishna?, Om Swostik Mishra®?, Anantha Padmanabha®
1'Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France
%Indian Institute of Technology Bombay, Mumbai, India
3Indian Institute of Technology Madras, Chennai, India
diego.figueira@cnrs.fr, {krishnas, 216090022 } @iitb.ac.in, ananthap @cse.iitm.ac.in

Abstract

The problem of checking whether a recursive query can be
rewritten as query without recursion is a fundamental reason-
ing task, known as the boundedness problem. Here we study
the boundedness problem for Unions of Conjunctive Regu-
lar Path Queries (UCRPQs), a navigational query language
extensively used in ontology and graph database querying.
The boundedness problem for UCRPQs is ExpSpace-
complete. Here we focus our analysis on UCRPQs using sim-
ple regular expressions, which are of high practical relevance
and enjoy a lower reasoning complexity.

We show that the complexity for the boundedness problem for
this UCRPQs fragment is IT5-complete, and that an equiv-
alent bounded query can be produced in polynomial time
whenever possible.

When the query turns out to be unbounded, we also study
the task of finding an equivalent maximally bounded query,
which we show to be feasible in IT5. As a side result of inde-
pendent interest stemming from our developments, we study
a notion of succinct finite automata and prove that its mem-
bership problem is in NP.

1F= This pdf contains internal links: clicking on a notion
leads to its definition."

1 Introduction

Regular Path Queries (RPQ) and its extension under con-
junctions, known as Conjunctive RPQ (CRPQ) are a well-
known generalization of conjunctive queries with a mild
form of recursion, which are extensively used for querying
knowledge bases and graph-structured datasets. In particu-
lar, CRPQs are part of SPARQL, which is the W3C standard
for querying RDF data, including well known knowledge
bases such as DBpedia and Wikidata. In particular, RPQs
are extensively used according to recent studies (Bonifati,
Martens, and Timm 2019; Malyshev et al. 2018). More gen-
erally, CRPQs are basic building blocks for querying graph
databases (Angles et al. 2017; Baeza 2013).

As knowledge bases become larger, reasoning about
queries (e.g. for optimization) becomes increasingly impor-
tant. In this vein, many static analysis aspects of CRPQ
have been studied, starting with the seminal papers on
containment of CRPQs (Florescu, Levy, and Suciu 1998;

"https://ctan.org/pkg/knowledge

361

Calvanese et al. 2000) (i.e., whether the results of a query
q1 always contain those of ¢2), which spawned many subse-
quent works. In particular, for queries with recursion such as
CRPQ, a basic reasoning task is whether the recursion can
be bounded. In other words, whether a given query can be
equivalently written as a finite union of conjunctive queries
(UCQ), known as the BOUNDEDNESS problem. UCQs form
the core of most systems for data management and ontolog-
ical query answering, and, in addition, are the focus of ad-
vanced optimization techniques. The BOUNDEDNESS prob-
lem has garnered attention, in particular for Datalog pro-
grams. For ontology-mediated query answering (OMQA),
the problem is known as the “FO-rewritability” or “UCQ-
rewritability” problem, which typically takes, as ontology-
mediated query, a conjunctive query and some TBox for-
mulated in some description logic (see, e.g., (Bienvenu et
al. 2016)). In this sense, the current work can be seen
as a preliminary study for investigating FO-rewritability of
ontology-mediated CRPQ queries.

Boundedness of CRPQs has been shown to be decid-
able, ExpSpace-complete (Barceld, Figueira, and Romero
2019), that is, as hard (or easy) as the containment prob-
lem for CRPQs (Calvanese et al. 2000). This holds also for
the extension with union (UCRPQ) and two-way navigation
(UC2RPQ). Further, whenever a query is bounded the equiv-
alent UCQ may be of triply exponential size, and hence not
directly amenable to an optimization procedure.

However, the lower bounds for boundedness —and gener-
ally for most static analysis problems on CRPQ— use rather
complex regular expressions that are hardly used in practice.
This has raised the question of the status of these problems
when restricted to simpler basic regular expressions.

In fact, recent studies reveal that most CRPQ use ex-
tremely simple regular expressions of the form a* or a; +
-+ 4+ a,. Studies on query-logs (Bonifati, Martens, and
Timm 2019; Malyshev et al. 2018) show that these expres-
sions cover more than 98% of all RPQ queries made on
Wikidata and more than 46% of the queries made in DB-
pedia —see (Figueira et al. 2020a, Table 1) for more details.

A line of research was then established into understand-
ing the difficulty of treating CRPQ over such simple regular
expressions. It has been shown that over simpler expressions
the situation improves drastically for the containment prob-
lem (Figueira et al. 2020a, Table 2) and the “semantic tree-

https://ctan.org/pkg/knowledge

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

width problem”, that is, whether the query is equivalent to a
query of low tree-width (Figueira and Morvan 2023, §6).

Contributions We study the boundedness problem for
UCRPQs restricted to a class of simple regular expressions.
Such regular expressions can be either of the form w*, where
w is a word, or any regular expression which does not use
Kleene star. We even allow for “succinct exponentiation” of
the form w™ and w=" where n is encoded in binary.

For such queries we show that the boundedness problem
is IT5-complete. Both the upper and lower-bound proofs are
non-trivial, but our main technical contribution is the upper
bound (Section 5). Whenever the UCRPQ is bounded, it can
be written as a UCRPQ of polynomial size which does not
contain expressions with Kleene star.

As a necessary ingredient for the TI5 upper bound proof,
in Section 4 we introduce a notion of “succinct automata”
and use its membership checking problem, which we prove
to be in NP, to solve the boundedness problem. Succinct au-
tomata are classic finite automata extended with transitions

of the form p LN p’ to indicate a path of transitions from
p to p’ reading the word w™, where n is represented in bi-
nary. These automata could be of independent interest when
looking for succinct models of computation.

We also consider the related problem of bounding the
query “by letters”, i.e. whether the query is equivalent to
one not making any recursion on a given subset of letters
(Section 7). In this setting, the boundedness problem cor-
responds to bounding all letters occurring in the query. We
show that there is a notion of “maximally bounded” query,
i.e., a query that is bounded in a maximum number of letters
which is also computable within the IT5 bound.

Finally, in Section 6 we prove that the IT5 lower bound
holds even for CRPQs with very simple regular expressions
of the form a* or a.

Organization Section 2 describes the preliminaries
needed for the paper. Then we formally state our main re-
sults in Section 3. We dedicate Section 4 to the discussed
side result on “succinct automata” and Section 5 to the main
upper bound result. Section 6 elaborates on the lower bound.
Section 7 delves into the problem of bounding a query “by
letter”. We conclude with Section 8.

2 Preliminaries

Let A be a finite alphabet. A graph database over A is a fi-
nite edge-labelled directed graph G = (V, E) over A, where
V is a finite set of vertices and £ C V x A x V is the
set of labelled edges. We write u — o to denote an edge
(u,a,v) € E. We write Im(f) to denote the image of any
function f.

We denote A* as the set of all finite words over A and ¢
to denote the empty word. A path from u to v in a graph
database G = (V, E) over alphabet A is a (possibly empty)

sequence of edges a = vy = v1, U1 L2, V9, o, V1 R

v, where each v; Ziv, viy1 € B, v9 = u,vy = v. The
label of the path o from u to v is the word ajas ... ay of

362

edge labels seen along the path. When k£ = 0, the label of
the path is ¢; this is called the “empty path”, and there is
always an empty path from u to u, for every vertex u.

Unless otherwise stated, we assume that regular lan-
guages L. C A* are encoded via regular expressions. A
regular path query (RPQ) over A is a regular language L
given as a regular expression. The semantics of L on a graph
database G = (V, E) over A, written L(G), is the set of
pairs (u,v) € V x V such that there is a directed path from
w to v in G whose label belongs to L.

A Conjunctive RPQ (CRPQ) over A is an expression

q:=32((1 25 20) A (Y2 =2 2) Ao A (Y =25 20))

where each L; is an RPQ over A. We call each y; L—> Z;
an atom. Further, Z is a tuple of variables contained in
{y1,21,- -, Ym, 2m } and the variables of ¢ not contained in
Z are the free variables of q. A query with no free variables
is called Boolean.

To simplify the definitions and technical developments we
shall henceforth assume that all queries we deal with are
Boolean. However, all our results and bounds hold for non-
Boolean queries as well (modulo some slightly more clut-
tered definitions and proofs).

In the context of graph databases a conjunctive query
(CQ) over A can be defined as a CRPQ over A of the form
32 Ni<icm Ti Ly y; where each L; is a regular expres-
sion of the form a for some letter @ € A, which denotes the
singleton set {a}.

Given Boolean CQs q, ¢', a homomorphism from q to ¢
is a mapping h : vars(q) — vars(q’) such that for every
atom xSy of g, we have that h(x) % h(y) is an atom of
q. We wrlte q Lom, ¢’ when such homomorphism exists and
h:q Lo, q to denote that h is one such homomorphism. A
homomorphism q 2 Gona graph database G = (V,E)
is defined analogously, as a mapping h : vars(q) — V such

that for every atom = — y of ¢, we have h(x) % h(y) € E.

Expansions Any UCRPQ can be equivalently seen as an
infinite union of CQs. We define formally the shape of such
CQs, which we call expansions.

CRPQs with equality atoms are queries of the form
q(Z) = § A I, where § is a CRPQ (without equality atoms)
and [is a conjunction of equality atoms of the form x = y.
We define the binary relation =, over vars(q) to be the
reflexive-symmetric-transitive closure of the binary relation
{(z,y) | = =y isanequality atom in ¢}. In other words,
we have x =, y if the equality x = y is forced by the equal-
ity atoms of ¢q. Note that every CRPQ with equality atoms
q(Z) = 0 A1 is equivalent to a CRPQ without equality atoms
q”~, which is obtained from ¢ by collapsing each equiva-
lence class of the relation = into a single variable. This

transformation gives us a canonical renaming from vars(q)
to vars(q~). For instance, ¢ = 3Jx,y,z = EiN y Ay L
2z A (z = y) collapses to ¢~ = 3z, z x Eana Lz
For any atom z i> yofaCRPQqgandw = ajas...ax €

L, the w-expansion of x ER y is the CQ P defined as

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

a2

follows: (i) If w # ethen P = =z 25 2 Az =

Za Ao A zp1 —2 y where each z; is a fresh variable
(i) If w ¢ then P (z y). By a slight abuse

. . A~ w
of notation, we write P = x — y to denote such a w-
expansion, with w = aj - - - a; where the z; variables are

implicit. For m € N, an atom m-expansion of x L y is
a w-expansion for some w € L such that [w| < m. An
m-expansion of a CRPQ q is the CQ resulting from (i) re-
placing each atom with an atom m-expansion and (ii) re-
moving the equality atoms canonically. An atom expansion
is an atom m-expansion for some m, likewise an expansion
is an m-expansion for some m. For instance, for the atom

A=(z able,), one example of a 3-expansion would be

s 21 i> 29 N y. A does not have any 1-expansion.

Let Exp(g) denote the (possibly infinite) set of all ex-
pansions of ¢. and let Exp, (q) C Exp(q) denote the (fi-
nite) set of all m-expansions of g. A homomorphism from a
(Boolean) CRPQ ¢ to a graph database G = (V, E), is de-
fined to be any homomorphism h : vars(\) = G for some
A € Exp(q). We further say that G satisfies g, denoted by
G = g, if there is such a homomorphism. We will consider
Exp,,(q) as a query, which holds true in a graph database G
if G |= A for some A € Exp,,(q).

A union of CRPQs (UCRPQ) is of the form g
Vi<i<n @i » where each ¢; is a CRPQ. The set of expan-
sions of a UCRPQ is the union of the expansions of the CR-
PQs therein. Similarly, Unions of CQs (UCQs) are finite
unions of CQs. As mentioned earlier, we assume that UCR-
PQs/UCQs are Boolean, in the sense that they only contain
Boolean CRPQs/CQs. A graph database satisfies a union of
CRPQ (resp. CQs) if it satisfies at least one of its disjuncts.

For any syntactic object O, we write vars(O) to denote
the set of variables it contains. Let |g|, and |g|,, be the
number of atoms and variables of ¢, respectively.

Given two Boolean queries ¢ and ¢’ (which may be
(U)CQs, (U)CRPQs, Exp,,(q)-expansions, etc.), we write
g C ¢ if for every graph database G such that G |= ¢ we
have G | ¢, in which case we say that ¢ is contained in
q'. We say that g and ¢’ are equivalent, written ¢ = ¢/, if
q € ¢ and ¢’ C q. The following lemma characterizes the
containment in terms of expansions and homomorphisms.

Lemma 1 (Folklore). Given two UCRPQs q and q', we have
q € ¢ if, and only if, for every A € Exp(q) there is N e
Exp(q’) such that there exists a homomorphism X' =5 \.

A UCRPQ q is bounded if it is equivalent to some UCQ
®. The following key property characterizes boundedness in
terms of m-expansions.

Proposition 2. (Barceld, Figueira, and Romero 2019,
Proposition 3) A UCRPQ q is bounded if, and only if, q is
equivalent to Exp,,(q) for some m € N.

The BOUNDEDNESS problem for a class C C UCRPQ of
queries is the problem of, given a query ¢ € C whether ¢
is bounded. This is the main problem we will study in this
paper. While the BOUNDEDNESS problem has been shown
to be decidable for UCRPQ (as stated below), we will focus
on small fragments thereof.

363

Theorem 3. (Barceld, Figueira, and Romero 2019, The-
orem 11) BOUNDEDNESS for UCRPQs is ExpSpace-
complete. Further, the upper-bound holds also in the pres-
ence of two-way navigation, and the lower bound holds al-
ready for CRPQs.

3 Main Results

The lower bound in Theorem 3 uses regular expressions that
are rather complex. However, as explained in Section 1,
queries used in practice often contain simple regular expres-
sions. Our results focus on UCRPQs where atoms are of
the form a*, where a € A is a label, and more generally of
the form w*, where w € A*. We next formally define this
restricted class of regular expressions.

Let RE(A) denote the set of all regular expressions over
A using concatenation ((J - OJ), union (J + 0J), Kleene star
(O*) from the basic letter-expressions (a, for each a € A)
and from the symbol ¢ denoting the empty string. Let
a C RE(A) denote regular expressions of the form a € A
(atomic regular expressions) and a* denote regular expres-
sions of the form a* where a € A. We write a¥ C RE(A)
for some A C A to denote the regular expressions of the
form a* where a € A. Similarly, let w C RE(A) denote
regular expressions of the form w € A* (i.e., expressions of
the form w = ay - - - a,, with a; € A) and w* denote regular
expressions of the form w* where w € A*.

Let SF (star-free expressions) denote the set of all srar-
free regular expressions over A, that is, all expressions
formed using {¢, (a)qea, +, - }. We will further consider the
class SSF of succinct star-free expressions which are star-
free regular expressions which additionally allow for expres-
sions of the form w™ and w<", where w € A* and n is en-
coded in binary. The expressions w™ and w<=" are succinct
representations of w - --w and (¢ + w) - - - (¢ + w).

n times n times

Observation 4. Observe thata C SF C SSFand a* C w™.
However, SF and SSF are equivalent in terms of expressive
power.

The size of an SSF expression is the number of symbols
needed for its encoding, for example the size of w™ is |w| +
[log(n)]. The size of an expression w* is |w.

The size of an atom is the size of the regular expression
therein. The size of a CRPQ or CQ is the sum of sizes of all
its atoms and the size of a UCRPQ or UCQ is the sum of the
sizes of all its CRPQs or CQs.

For any given class C' of regular expressions (denot-
ing regular languages), let UCRPQ(C) be the class of
UCRPQs whose atoms contain languages specified by ex-
pressions from C. We write UCRPQ(C1, Cs) to denote
UCRPQ(C; U C5) and CRPQ(C) to denote the subclass of
UCRPQ(C) consisting of CRPQs. For instance, a query in
CRPQ(SSF, w*) can have an edge label of the form (ab)"
(where n is written in binary) or (abb)*.

The goal of the paper is to prove that BOUNDEDNESS for
UCRPQ(SSF, w*) is II5-complete and, further, that the
bounded query can be produced efficiently.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Theorem 5. BOUNDEDNESS for UCRPQ(SSF, w*) is IT5-
complete. The problem remains 115-hard for CRPQ(a, a*).
Moreover, if ¢ € UCRPQ(SSF,w*) is bounded then it is
equivalent to a query ¢' € UCRPQ(SSF) of linear size which
can be computed.

For proving Theorem 5, we will use the membership prob-
lem for non-deterministic finite automata (NFA) whose tran-

sitions may be succinctly represented as ¢ — ¢/, where n
is encoded in binary, which we call succinct-NFA. We will
show in Section 4 that the membership problem for such suc-
cinctly represented automata is still in NP, which is a result
of independent interest.

Theorem 6. The membership problem for succinct-NFA is
in NP.

If a query ¢ in UCRPQ(SSF, a*) is not bounded, then it is
natural to ask if it can be bounded “as much as possible”. In-
tuitively, we want a query ¢’ that is equivalent to ¢ where the
atoms of ¢’ are either SSF expressions or a* only for those
letters a € A that cannot be bounded in ¢. Formally, for any
given A C A, we say ¢ is A-bounded if it is equivalent to
a query from UCRPQ(SSF, a%) for A = A \ A. Observe
that such ¢ is bounded iff it is A-bounded. The problem of
checking whether ¢ € UCRPQ(SSF, a*) is A-bounded is
called the A-BOUNDEDNESS problem.

Theorem 7. For the class UCRPQ(SSF, a*) of queries:

1. The A-BOUNDEDNESS problem is 115-complete. The
problem remains 115-hard even for CRPQ(a, a*). More-
over, an equivalent query ¢' € UCRPQ(SSF, a%) of lin-
ear size can be computed.

2. There is a unique maximal A C A such that q is
A-bounded, and there is a I algorithm for finding it.

4 Succinct Automata and Succinct CQs

In this section we study a problem, of independent interest,
which will be necessary to obtain our upper bounds (more
precisely, the upper bound of Theorem 5, covered by Theo-
rem 11).

Let us define a succinct-NFA over an alphabet A as a
classical non-deterministic finite automaton (NFA) where

transitions can be of the form ¢ —— ¢’ where w € A*
and n € N is encoded in binary. More formally, a
succinct-NFA over A is a tuple (@, 6, qo, F'), where ¢ € Q
is the initial state, F C (@ is the set of final states, and
0 Chin Q@ x A* x N x @ is a finite set of succinct-transitions.

We sometimes write ¢ ot p instead of (¢, w,n,p), and n
is always encoded in binary. An accepting run of a given
succinct-NFA A is, as expected, a sequence of transitions
(p()v wy, nlvpl)v (plv wa, n27p2)7 RN (pmfla Wi,y nmvpm)
such that py is initial state, and p,, is a final state.
The word from A* associated to the accepting run is
wit---wlrm € A*. The language associated to a given
succinct-NFA A, denoted by £(A), is the set of all words
associated to accepting runs.

Given a word w = a3 - - - a,, € A* over a finite alphabet
A, we define the factor of w between ¢ and j, denoted by
wli..j], as e if j <4 or a;41 - - - a; otherwise.

364

The membership problem for succinct-NFA is the prob-
lem of, given a word v € A*, a number m € N (in binary),
and a succinct-NFA A, whether v™ € L(A). We observe
that this is somewhat close to the automata on compressed
strings of (Martens, Neven, and Schwentick 2009, §2.3), al-
though in their case, the succinct representation is not on the
NFA but only on the input word for testing membership.

Theorem 6 (Restatement). The membership problem for
succinct-NFA is in NP.

Proof. Let A be a succinct-NFA, v € A* be a word and m
be a number represented in binary. We assume w.l.0.g. that
all numbers in § are positive (i.e. there are no ¢ transitions).

We first build a new succinct-NFA A’ from A so that
v™ € L(A) iff L(A) contains a word of length m x |v].
We define it as follows. The set of states of A’ is @ x
{0,...,]v] = 1}. i §

There is a succinct-transition (¢, i) — (p, j) if (i) ¢ —
p is a succinct-transition of A, and (ii) w™ is of the form
vli..]v|] - v* - v[0..5] for some ¢ > 0, or equal to vl[i..j].
The initial state of A’ is (qgo,0) and the set of final states is
F x {0}.

Claim 8. We can build A’ in polynomial time.

Proof. If suffices to prove that checking whether w™ is of
the form v[i..|v|] - v* - v[0..5] for some ¢ > 0, or equal to
v[i..j] is indeed in polynomial time. Towards this first we
build a directed graph G having {0, ..., |v|} as vertices, and
an edge i — j if w = v[i..|v]] - v* - v[0..5] for some £.
Notice that ¢ is bounded by |w| and hence G can be built in
polynomial time.

Now in order to check if w™ is of the form v[i..|v|] - v* -
v[0..5] for some ¢ > 0, it suffices to check if there is a path
of length n from 4 to j in G. The set of all sizes of paths from
i to j in G can be seen as the Parikh-image? of an NFA over
a one-letter alphabet. Since the problem of testing member-
ship of a vector in the Parikh-image of an NFA is in poly-
nomial time as soon as the alphabet is bounded (Kopczynski
and To 2010), the statement follows.

Claim 9. v"™ € L(A) iff L(A’) contains a word of length
m X |vl.

Proof. Left-to-right implication. Assuming v € L(A)
consider an accepting run (po, w1, 11, p1), (p1, w2, N2, P2),
ooy (Dt—1,we, e, pe) on 0™, Then, for each i € {1,...,t},
we have that w]* - - - w;" is a prefix of v™ and thus can be
written as v - v[0..7;] for some j; and m;, where in partic-
ular j; = 0 and m; = m.

Hence, ((po,0), w1, n1, (p1,71)), ((P1,71), w2, n2, (P2, j2)),

ooy ((Pt—1, Jt—1), we, e, (pe, ji)) is an accepting run of A’

onv".

Right-to-left implication. ~ First observe that £(A") C
L(A) since an accepting run of A’ on a word w induces

an accepting run of A on the same word by projecting the

run onto Q.

2Remember that the Parikh-image of a language L C A* over
a one-letter alphabet A = {a}is {t € N:a" € L}.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Observe that an accepting run of A’ on a word w forces
w to be of the form v*. Since £(A’) has an accepted word
of length m x |v|, this forces £ = m, i.e., the accepted word
has to be exactly v™. Since L(A’) C L(.A) by projecting
the run onto (), we obtain v™ € L(A). O

Claim 10. Testing if L(A') contains a word of a given
length is in NP.

Proof. By replacing each transition ¢ — p in A’ with
|w|xn . « . s
p we obtain a “succinct one counter automaton”,

whose reachability problem is in NP (Haase et al. 2009,
Theorem 1). O

This concludes the proof of Theorem 6. O

4.1 Containment Problem for Succinct CQs

A succinct CQ is a CRPQ(SSF) whose every atom has an
expression of the form w” for w € A*, n € N, with
the expected semantics. Remember that we assume that
n is given in binary and that the size of each atom w" is
|w| + [log(n)], and hence that every succinct CQ has an
equivalent corresponding CQ of at most exponential size
(i.e., its only expansion). The containment problem for a
class Q of queries is the problem of, given two queries
q,q € Q, whether g C ¢'.

Theorem 11. The containment problem for succinct CQs is
in NP.

Proof. Given two succinct CQs g, ¢’ it suffices to check if
there is a homomorphism from ¢’ to ¢, where ¢’ and § are the
CQs corresponding to ¢’ and g, respectively. Towards this,
we first non-deterministically “break” some atoms z —
. . . wnl wn2
2’ of ¢ introducing new variables * —— y; A y; ——
e
w,, .
Yo A Ayk—1 —— yi where w” = wi* -~ w,* in such
a way that we introduce at most |vars(q’)| new variables.
To verify that w™ = w}" ---w,*, we can build a succinct-

ny "k
NFA of the form pg RN PLe-Pr_1 RN i With pg and
{pr} as initial and final states respectively and check if w"
is accepted by this automaton (which can be done in NP, by
Theorem 6).

This results in a succinct CQ ¢ which is equivalent to ¢
(in fact, g is still its corresponding CQ) and of polynomial
—even linear— size. We now guess a function f from the
variables of ¢’ to the variables of ¢. Finally, for each atom

x 2= y of ¢/, we check if there is a path from f(z) to f(y)
in ¢ reading w"™. For this, we can see ¢ as a succinct-NFA
whose initial state is f(z) and its set of final states is { f (y)},
and where we check if w™ belongs to its language, which is
in NP by Theorem 6. O

S Upper Bound

In this section we prove the upper bounds of Theorem 5.
Formally, we will prove the following statement.

365

Theorem 12. The BOUNDEDNESS problem for
UCRPQ(SSF,w*) is in II5. Further, an equivalent
UCRPQ(SSF) query of linear size can be computed.

The goal of this section is to prove Theorem 12. From
Observation 4, the bound applies also to UCRPQ(w, w™*) C
UCRPQ(SF, w*) C UCRPQ(SSF, w*).

For ¢ € UCRPQ(SSF,w*) and m € N, let ¢(m) €
UCRPQ(SSF) be the result of replacing each regular expres-
sion of the form w* in ¢ with w="". We begin with the fol-
lowing observation.

Observation 13. If ¢ = Exp,,(q), then ¢ = q(m). If ¢ =

q(m) then q = Exp,,.,.(q) for m' the maximum length
of a word w in an expression of the form w*. Hence, by
Proposition 2, ¢ € UCRPQ(SSF,w") is bounded if, and
only if, q is equivalent to q(¢) for some £ € N.

In view of the previous observation, we will rather work
with the more intuitive query ¢(m) rather than Exp,,(q). For
economy of space we will simply write “\ € ¢(m)” to de-
note A € Exp(gq(m)).

Recursive and non-recursive atoms. An atom of the form

x < 1y is called recursive. Let Rq € A* be the set of
all words w from the labels w* of recursive atoms of q. Let
N, € N be the maximum length of a word in a non-recursive
atom of q. We will prove Theorem 12 via the following
intermediate results.

Lemma 14. If ¢ € UCRPQ(SSF, w*) is bounded, then it is
equivalent to ¢(Z,) for Z, = |q|§, Ny - 1l var - wer, |wl.

Lemma 15. A query ¢ € UCRPQ(SSF, w*) is bounded iff
q(Z,) is equivalent to q(Z}), for Z; = |ql0- Z4 + 1.

Lemma 15 reduces the BOUNDEDNESS problem for
UCRPQ(SSF, w*) to the containment problem for succinct
CQs. The proof of Lemma 15 will use Lemma 14. Assum-
ing these two results, we will first prove Theorem 12.

Proof of Theorem 12. From Lemma 15, to test whether a
query q is bounded can be reduced to checking whether
g(n) = ¢(n') for some n,n’ € N of polynomial space (in
binary). Given that the “succinct” labels of SSF expressions
appearing in ¢ have the form w<" or w™ with m in bi-
nary, the expansions of ¢(n) and ¢(n’) are at most single-
exponential in the size of g. Moreover, every expansion of
g(n) can be expressed as a succinct CQ of polynomial size.

In order to check that ¢(n) C ¢(n') does not hold, we
first guess an n-expansion A of ¢ that is not contained in
g(n’), as a succinct CQ of polynomial size. This is possible
by the discussion above. Then we check that A C ¢q(n/)
does not hold. To check A C g(n’), it suffices to guess an
n'-expansion A of ¢, which, once again, we assume is a
succinct CQ of polynomial size, and then check that A\ C).
This is in NP by Theorem 11; thus, we have a procedure
which is in co-NP for testing A € \'.

This gives a 38 algorithm to test g(n) € g(n’), in other
words a IT5 algorithm to test g(n) C gq(n’), and thus whether
q is bounded.

Finally, the existence of the equivalent query is trivial
since ¢(Z,) can be produced in linear time. O

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Hence it is enough to prove Lemma 15 which in turn
needs Lemma 14. The next two subsections are focused on
the proofs of these two lemmas.

5.1 Proof of Lemma 14
We recall the statement of Lemma 14:

Lemma 14. If ¢ € UCRPQ(SSF, w*) is bounded, then it is
equivalent to q(Zy).

Before proving the result formally, we describe the key
ideas informally. Suppose ¢ is bounded, then by Observa-
tion 13, it is equivalent to ¢(M) for some M. Assume for
contradiction that this M is necessarily larger than Z,. This
means that there exists some A € Exp(q) such that for every
A € ¢(Z,) there is no homomorphism from X to \ but there
is some)\’ € q(M) (of minimal size) such that there is a ho-
momorphlsm h: XN 2% X, Since X ¢ q(Z,) there is some

l
atom x —> y in ¢ such that it is expanded as & — yin \
for some [> Z,. The choice of Z, is large enough such that
we can argue that using the homomorphlsm hot N2,
we can transform)" into some A" (by contracting some re-
cursive expansions) such that there is a homomorphism from
A" to A. This would contradict the minimality of \. The
main technical difficulty is then to produce A" and the ho-
momorphism from A" to \.
To prove Lemma 14 we shall need the following claim.

Claim 16. There is N € q(M) and h : N 2% X such that
the size of the image Im(h) of h is at most Z,.

We first prove that Claim 16 implies Lemma 14.

Proof of Lemma 14. By means of contradiction, suppose g
is bounded but not equivalent to g(Z,). Then, there is no
e q(Z,) such that there is a homomorphism PNy By
Claim 16 there is some N € ¢(M) and h : X' * X such
that the size of the image Im(h) of h is at most Z,. Pick a
minimal®)\’ that satisfies this property.

By assumption, X ¢ ¢(Z,). Hence, there is some re-

£

cursive atom expansion & —— Yy = I — T — - —>
ro_1 — yof X where £ > Z,.* By Claim 16 and the pi-
geonhole principle, there will be two variables x;, x; such

that h(z;) = h(z;) for some ¢ < j. But then we can
£ i

replace the atom expansion with x # y =z %

T N T; 2 Tjp1 Ao Ty_1 2 1y, ob-

taining an expansion \” € ¢(M) which is strictly smaller

than)\’ such that h restricted to \"” forms a homomorphism

B X' 2 X Moreover, since h' C h, the size of Im(h/)

is still at most Z,, contradicting the minimality of \’. O
Thus it remains to prove Claim 16.

Proof of Claim 16. Let M' be the size of ¢(M) (seen as a
UCQ). Let AT be the result of replacing each atom expan-

M/’
sion x —> y of A such that £ > Z, with = ~— y. Notice

By minimal \’ we mean in terms of the number of variables.
“Remember that a recursive atom expansion of X’ is simply an
expansion of a recursive atom of ¢ in \’.

366

.7 h
4 b =0 =0 b a
*—o
. . ba)™ ba)*
Figure 1: Consider the query x (abe) yANz (abe) z, where

(aba)™ is a SSF with n = 11 in binary (i.e., 3).. Below, we have
the corresponding coloring scheme in A* with the respective colors
according to a homomorphism h.

that A™ € Exp(g) —indeed, atom expansions of this kind
can only come from recursive atoms (because Z; is suffi-
ciently large). Now pick a \' € ¢(M) such that A’ is of
minimal size and there is a homomorphism A : \’ Zomy N+
We show the following:

() [Im(h)| < Zy;
(2) hisalso a homomorphlsm to (an isomorphic copy of)
Nie,h: N — hom X

(1) Let us start with the expansion A’ € ¢(M) such that

hom

h = XN 25 X\Tt. First, we devise a color scheme for the
variables of A ™.

Let us color with blue any variable of A™ which is the
h-image of a variable of a non-recursive atom expansion of
M. Color a variable green if it is the h-image of a variable
of ¢, and color it red if it is the h-image of a variable from
a recursive atom expansion. Of course, some variables may
be colored with multiple colors (see Figure 1).

Consider any recursive atom expansion of A* of the form

M’
x “— y. Recall that M’ is the size of the M-expansion
g(M) considered as a UCQ, and N € ¢(M). Since M’
is larger than any expansion of ¢(M) (in particular \'), the
oM’
expansion & —— y must contain some uncolored variables.
M’

Let o, ...,z be the variables of the path z —— y, in
order, with x9 = x and z;+ = y. If there is an interval
I = {Z‘i,l‘i+1,...,$j} with] — 1 = Zpg = HweRq|w|
which is purely-red (i.e., whose every variable is colored red
and by no other color), this means that the h-preimage of
1 consists of intervals of recursive atom expansions of the
form " for some 1 and k such that [0¥| = Z,.4 (note that 1
need not be a recursive atom, it could be some word in A*).
Concretely, h=1(I) = I; U --- U I, such that each I is of
the form I = {2(5,0), - - -, 2(s,2.0) } Where h(2(s1)) = @ity
for every s, t and I, forms a directed path reading some w".

Consider)" as the result of contracting these intervals I
from \': for each interval I, we remove all atoms of)\ in-
side I, and we rename 2, o) as 2(s, z,,,) (see Figure 2). Since
this operation corresponds to removing some iterations of a

3By isomorphic copy of A we mean an expansion X such that
there is a bijection f between the variables of A\ and X such that
x % yis an atom of \ iff f(x) = f(y) is an atom of \.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning

Main Track
N A\
B — \ B
g \ uncolored 5 .
e / \ \ N] uncolored region grows by |I
s L L \ variables g - g v]
\ \ c AN
\ \ \ y o RN
A @-@@—@-—@—@—@-—@—@—@-—Q—W p V & o At

recursive atom expansion of At

recursive atom expansion of A*

Figure 2: (Left) An example of a homomorphism from A’ to A* with a large purely-red interval I. In X', red (resp. blue) edges correspond
to expansions of recursive atoms (resp. non-recursive atoms), and green vertices correspond to variables of g. The h-preimage of I contains
two intervals I; and I coming from recursive atom expansions of words of length 2 and 3 respectively.

(Right) The resulting \"”. The intervals Iy, I are contracted to a single variable in the homomorphism to A™. The image of the variables
which appeared to the right of I are now shifted to the left, making the number of uncolored variables grow by || — 1.

recursive atom expansion (and only recursive atom expan-
sion since the color is exclusively red), we have X’ € q(M).

Further, note that since there is always at least one uncol-
ored variable At (which is a recursive atom expansion), we
have \ 2% AT because it suffices to shift the image of the
variables appearing of one side of I as shown in Figure 2,
in particular making the uncolored region grow. This is in

contradiction with A\’ being minimal.

M’

Hence, in an atom expansion x AN y of A, there can-
not be a purely-red interval of size Z,.;. On the other hand,
since |g|,q s the number of variables in g, there cannot be
more than |q|,,, green-colored variables. Finally, there can-
not be more than |g|,; - N, blue-colored variables.

Thus, there cannot be a colored interval of size greater
than Z.,; = |q|a - Ng - |qlvar - Zrea (as it would imply a
Zyea-sized purely-red interval). Since |g|, is the number of
atoms, there cannot be more than |g|, colored intervals of

M’
maximal size in such atom expansions 2 —— y (actually,
the number of connected components of ¢ would suffice).

How many colored variables does AT have? Since the
maximum length of a colored interval is Z,; and since there
are no more than |¢|,, intervals on any given atom expansion

of AT, there cannot be more than Z, = |‘Z|§t - Z., colored
variables in AT. Hence, |Im(h)| < Z,,.
(2) Next, we show that h is also a homomorphism to an

isomorphic copy of A. Observe that if we have an uncolored

o
interval of x “— y of size |w| we can simply contract
it obtaining some A* such that h is still a homomorphism

N 2 AE and A* € Exp(q).
Consider any recursive atom expansion from AT of the
’LUM/

M’
form 2 =— y. By construction of AT, recall that z —— y

was obtained by replacing some atom expansion & — y of

A where m > Z,. If we could find M’ — m such uncolored
M/

intervals of an atom expansion z —— y as before, we could

contract them and obtain (an isomorphic copy of) x v, Y.
Further, h would still be a valid homomorphism.
But how many such uncolored |w|-sized intervals are

367

there? The worst-case scenario in which we could not find
any such uncolored interval is the one where every pair of
colored-intervals (and there are at most |g|,; many) separated
by |w| — 1 uncolored-intervals. Since the size and number
of colored-intervals is bounded by Z,,; and |q|; respectively,
the length of such worst-case atom expansion is bounded by
Zworst = 1dlag - Zeot + (|gla +1) - (Jw] — 1). Hence, there
are at least [(M’ - |w|) — Zyorst)/|w|] uncolored-intervals
of size |w|, and since

[((M" - [w]) = Zuorst) [[]]
> M — Zyors/|w|
> M — |qlag + Zeot -]
>M' - Z,
> M —m,

(since Zg > |qlat - Zeot - |w))

(since m > Z,)
we can contract (M’ — m)-many uncolored intervals among
the available ones. If we repeat these contractions for every

M'-atom expansion, we obtain (an isomorphic copy of) A

from A", which shows A : A" 2%). O

This concludes the proof of Claim 16 and hence of
Lemma 14.

5.2 Proof of Lemma 15

We will actually prove the following statement, which en-
tails Lemma 15.

Lemma 17. For every query ¢ € UCRPQ(SSF, w™), the
following are equivalent:

(1) qis bounded,

(2) a=4q(Zy),

3) o(Z]) = a(Z,).

Proof. (2) = (1) is by definition of being bounded.
(1)=(3) By the previous Lemma 14, if g is bounded
then it is equivalent to ¢(Z,), and hence also to ¢(Z;") since
z5 > 7,

(3) = (2) We show the contrapositive statement, namely
that ¢ Z q(Z,) implies q(Z;) Z q(Z,). Assume that ¢ £

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

q(Z,). Then there is some expansion A € Exp(q) such that
X Z q(Z,). Observe that the size of every expansion from
q(Z,) is strictly bounded by Z/ = |q|g-Z,+1. Consider the
expansion)\’ as the result of replacing each atom expansion

z+
¢ % y of A such that ¢ > Z, with = 2~ y. Clearly,
Neq(z]).
We want to show that \' Z ¢(Z,). By means of contra-
diction, assume that there is an expansion A € ¢(Z,) such

that b : A 2% N, Then, each replaced atom expansion
z+
r 2 y of A’ must contain at least one vertex which is not
14
in the image of h. Then, we can expand it back® to z —— y

hom

still results in a homomorphism. Therefore, A ~2% X im-
plies A 2% X; and since A € q(Z,), we have N Z q(Z,).
Hence, ¢ Z q(Z,) implies ¢(Z.) Z q(Z,).

6 Lower Bound

Here we show that even for the simplest fragment, namely
CRPQ where the regular expressions are of the form a* or
just a, the BOUNDEDNESS problem is already II5-hard.

Theorem 18. The BOUNDEDNESS
CRPQ(a,a*) is I15-hard.

The proof goes by reduction from V3-QBF satisfiability.
Consider an instance of V3-QBF

@:le,..

problem for

S Y1)
(1)

where ¢ is quantifier free and in 3-CNF. We define Boolean
CRPQ(a,a*) queries q; and g2 on the alphabet A
{b,a,s,j,x1,...,Zn,Y1,...,4} as depicted in Figures 3
and 4 respectively. Note that ¢; does not depend on the
structure of ¢ and go encodes every clause occurring in ¢
as a disjoint gadget. We will prove that ® is satisfiable iff
the CRPQ ¢; A ¢ is bounded.

The construction is similar to the proof of (Figueira et al.
2020a, Theorem 4.3). However, the context is different since
the cited theorem proves II5-hardness for the containment
problem for the fragment of CRPQs where disjunctions of
letters (i.e., expressions like “a + 0”) are allowed.

'axnayla"wyl <P($17-~-a33n7y17-~-

Claim 19. The Boolean query ¢ = y < x b wis
bounded. More precisely, ¢ = Exp,(q), i.e. q is equivalent
.. . b a b a
to the disjunction of patterns @ < e — e and ® < e < e,
Note that this query ¢ in Claim 19 is attached as a ‘tail’

for each of the x; variable in the D gadget of ¢;. As a con-
sequence we have the following.

Claim 20. ¢ is bounded.
Theorem 18 is a consequence of the following lemma.

Lemma 21. Let ® be an instance of V3-OBF and q, and g2
as described. Then the following are equivalent: (1) ® is
satisfiable, (2) q1 C q2, and (3) q1 A g2 is bounded.

SRemember that £ > Z,j and we can add sufficiently many new
vertices in the neighborhood of the vertex that is not in the image

14
of h to obtain z = .

368

q1:

Yi,f Yie Yef Yer

Y1, Yit

Ye,f Yet

Figure 3: Query ¢; used in the proof of Theorem 18. Variables with
identical y; . label of the gadgets D and E (across all E) represent
the same variable (e.g., y1,5 in D and E are the same variable).

Proof. (1) & (2) (Proof sketch.)’” This follows by an

adaptation of the proof of Theorem 4.3 of (Figueira et al.
2020a). ® The proof goes by reduction from V3-QBF satis-
fiability. Given a V3-QBF formula & as in (1), we construct
queries ¢q; and g» as depicted in Figures 3 and 4. The query
g2 consists of gadgets as in Figure 4 per clause, while ¢; is
defined in Figure 3.

The “tail parts” of the edges labeled x; in the D gadget
allows any assignment to the variable x;, that is, the a* in

. b
D can be expanded for a ‘true’ assignment @ < e <~ e or

shrunk for a ‘false’ assignment e & o % o. The valuation
for the y; variables comes from g9 (as in Figure 4): the y; ;f
node in g embeds uniquely into one of the ¥; ; or y; r nodes
of ¢ to witness the containment.

When the formula is satisfiable, there exists a valuation
for all the y; variables for any valuation of the x; variables.
The D gadgets allows the choice of any true/false assign-
ments for x; variables, and we can embed the y_ ; y nodes of
g2 into exactly one of the y_ ;, y_ ; nodes of ¢; (depending
on whether the y; takes on true or false to make the formula
true). Thus, this gives the containment of ¢; in go.

For the converse, assume the containment. Then we have
an embedding of each clause of ¢ into the given graph
database for a given choice of “tail parts” of the x; labeled
edges of D. In particular, we can always map a literal in each

"For a formal proof along similar lines, we refer the reader to
(Figueira et al. 2020b, Theorem 3)
8Indeed, it suffices to reproduce the cited proof by replacing

t . b

each occurrence of @ — e with @ <~ e <= e, and each occurrence
i . b

ofoL>ow1tho<—oi>o.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Cll €2 b o a o
qz

c3: ool oo

3 0 lireel 0 Treyu;

Figure 4: An example for query g2, used in the proof of Theo-
rem 18, for the clause (z2 V —x5 V —y4). There will be one such
gadget for every clause of the formula in g2. Variables having iden-
tical y;, s-label represent the same variable. Only the final variable
of paths representing y;-variables from ® may have a y; ,-label.

clause of g2 to D: this ensures satisfiability of the formula.

(2) < (3) For the left-to-right direction, suppose ¢1 C ¢a.
Note that we always have ¢; A g2 C ¢; and since ¢; C g2 we
also have ¢; C ¢1 A go. Thus, ¢1 A g2 = ¢1. From Claim 20,
q1 1s bounded and hence ¢; A g2 is also bounded.

For the right-to-left direction, assume @) QN qe
is bounded. In view of Proposition 2, it is equivalent to
Exp,,(Q), for some m. We show that this implies ¢; C go.
By contradiction, assume there is an expansion A\ of g; such
that for all expansions Ao of g2, Ao does not homomorphi-
cally map to A;.

Now consider the expansion A\s of go in which all s*

atoms are expanded exactly m + 1 times —i.e., —— o
is replaced with an s™*!-path and hence we get a loop on
s™12 at each ‘base’ node in go.

Let A = A1 A Ao, which is an expansion of). Since
@ is equivalent to Exp,,(Q), we have A C Exp,(Q). In

other words, there is an expansion A of Exp, (@) and a ho-

momorphlsm h: A 2% X. Note that A must be of the form
A=)\1 A)\2, where)\1 is an expanswn of ¢; and)\2 is an ex-
pansion of g2 where every s-cycle in Ao is of length at most
m+ 1. .

But then Ay 2%), is not possible by the choice of A;.
This implies that we have ;\2 LN Ao which means that an s-
cycle of length < m-+1 is homomorphically mapped to an s-
cycle of length m + 2, which is not possible. Hence, no such
homomorphism & can exist, which is a contradiction. O

7 Boundedness by Letter

If a query ¢ in UCRPQ(SSF, a*) is not bounded, we can
still try to bound it in as many atoms as possible, this is
the object of the A-BOUNDEDNESS problem. Recall that
g € UCRPQ(a,a*) is A-bounded if it is equivalent to a
UCRPQ(a, a%) query, with A = A\ A.

For A C A and m € N, let ¢(A, m) be the result of
replacing each a* s.t. a € A with a=™. We still have the
characterization along the lines of Proposition 2.

Proposition 22. ¢ € CRPQ(SSF, a*) is A-bounded if, and
only if, q is equivalent to q(A, m) for some m € N.

In fact, there is a unique maximal A C A such that ¢ is
A-bounded because of the following property.

369

Theorem 23. If a query ¢ € UCRPQ(a, a*) is A-bounded
and B-bounded then q is also (A U B)-bounded.

Proofidea. For any A C A, n € N and UCRPQ(a,a*)
query ¢, let g[A — n] be the result of replacing in ¢ every

* <n
2 with 2 for every a € A. Hence, by Proposition 22,
q is A-bounded if it is equivalent to ¢g[A — n] for some n.
Let g[A — n, B — m] denote (¢q[A — n])[B — m].

From Proposition 22 let ¢ be equivalent to both ¢(A,n)
and ¢(B,m) and let N, = max(n,m). Since ¢ is
A-bounded and B-bounded, we have ¢[A — Ny| = ¢[B —
N,] = ¢. It suffices to show that ¢ is contained in ¢[A —
Ny, B — Ny - |q|q]. We will show that for every expansion
A of g there is an expansion X' of g[A — Ny, B — Ng-|q|4]
that maps homomorphically to A.

Take then such \. Since A is contained in ¢[B — N,
there is an expansion Ap of ¢[B — ;] which maps to .
Since ¢[B +— N, is contained in ¢[A — N,], there is an
expansion A4 of g[A — N,] which maps homomorphically
to Ag. Pick such a A4 of mlnlmal size. Hence, we have the
homomorphisms 1 : Aa ~2% Ap and ho : Ap -2 A.

We next show that A4 is in fact an expansion of ¢g[A —
Ny, B — Ny - |q|4], which would already prove the state-
ment. By means of contradiction, if it is not the case, there
is some B-atom expansion of length m > N - |q|4 in Aa.

This means that the h;-image of such a B-atom expan-
sion induces a cycle in Ag. We can then “cut out” the cycle
producing another expansion X\, of g[A — N,] which is
strictly smaller than A 4 and which still maps homomorphi-
cally to A\p via hq (restricted to \'y). This contradicts the
minimality of A4. O

Towards proving the upper bound of Theorem 7,
Lemma 14 and Lemma 15 can be generalized trivially:

Lemma 24. Let ¢ € UCRPQ(a,a*) and A C A. Ifqis
A-bounded, then it is equivalent to q(A, Z,) for Z, = |q|3;-
N ’ |(J‘var'Hw€R |w‘

Lemma 25. Let ¢ € UCRPQ(a,a*) and A C A
q is A-bounded iff q(A, Z,) is equivalent to q(A, Z

Zq = |Q|at ! Z‘I + L.

The proofs of both statements follow along the same lines
as those of Lemma 14 and Lemma 15 respectively, except
that we need to work with ¢(A, m) expansions instead of
g(m). Note that in the proof, the operations of extending
and contracting of paths in the recursive atom expansions
are done only for only those a* atoms such that a € A. For
all b ¢ A we keep the atom expansion paths unaltered and
hence the arguments continue to hold. Together, the two
statements above give us the following upper bound.

Theorem 26. The A-BOUNDEDNESS problem for
UCRPQ(a,a*) is in II5. Further, an equivalent
UCRPQ(a,a%) query of linear size can be computed,

with A = A\ A

Then
) for

Proof of Theorem 7. Ttem (1) The upper bound follows
from Theorem 26 and lower bound from Theorem 18.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Item (2) The existence of a unique maximal A follows

from Theorem 23. In order to find it, a I} algorithm can
check if g is {a}-bounded for every a € A, and we know,
thanks to Theorem 23, that the maximal A will be the set of
all the a’s for which ¢ turned out to be {a}-bounded. The
equivalent A-bounded query is then g(A, Z). O

8 Conclusion

We have shown that the BOUNDEDNESS problem for UCR-
PQs with simple recursion of the form a* is ITI5-complete.
This is in line with the complexity for the containment prob-
lem of similar fragments (Figueira et al. 2020a).

Constants and free variables. While we have focused
our study on Boolean queries without constants, our upper
bounds also extend to queries containing constants and free
variables via the classical notion of homomorphism between
conjunctive queries with constants and free variables. For
the case of free variables, one can use a standard reduction to
Boolean queries: For any formula with free variables, con-
sider replacing each free variable x with a bound variable

Y, and adding a self-loop v, LN Y, Where a, is a fresh
alphabet symbol depending on x. It follows that the original
query is bounded iff the modified Boolean query is bounded.

Less trivial recursion. Instead of allowing just for one
word or one letter to appear under a Kleene star, as in a*, one
could also consider the case of a set of letters appearing un-
der a Kleene star, as in (a+b+c¢)*. The simplest class of reg-
ular expressions containing such behavior, namely the one
containing only the regular expression a for each a € A and
A* for any set A C A, is denoted by (a, A*) in (Figueira et
al. 2020a). The containment problem for CRPQ(a, A*) does
not enjoy a better complexity than the containment problem
for general CRPQ, that is, it is ExpSpace-complete.

We would expect a similar behaviour for the BOUND-
EDNESS problem of UCRPQ(SSF, A*) but the complexity
checking if such a query is bounded is open. The ExpSpace
upper bound follows from Theorem 3, but no matching
lower bound is known. We can also generalize this ques-
tion to UCRPQ(SSF, W*) where W* denotes the regular
expressions of the form (wq + ... + wg)*.

Open problem 27. What is the complexity for the
BOUNDEDNESS problem for UCRPQ(SSF, A*) and
UCRPQ(SSF, W*)?

Rewritability of ontology-mediated CRPQs. CRPQs
can also be considered in the presence of an ontology (see,
e.g., (Baget et al. 2017; Gutiérrez-Basulto, Ibafiez-Garcia,
and Jung 2018)). In such a context, an ontology-mediated
query (OMQ) (7', q) admits a rewriting in a language £ if
there is a query ¢’ € L such that for every ABox A we have
that A, T entails ¢ if, and only if, A = ¢’. For Horn de-
scription logics such as ELHT | , the resulting OMQs (T, q)
(where T € ELHT | and g € CRPQ) is closed under homo-
morphisms. In these cases the OMQ is FO-rewritable iff it is
UCQ-rewritable. Hence, our positive complexity result can
be seen as a first step towards investigating the rewritability
of OMQs with CRPQs as query langauges.

370

Acknowledgements

Diego Figueira is partially supported by ANR Al Chair IN-
TENDED, grant ANR-19-CHIA-0014.

References

Angles, R.; Arenas, M.; Barceld, P;; Hogan, A.; Reutter,
J.L.; and Vrgoc, D. 2017. Foundations of modern query lan-
guages for graph databases. ACM Comput. Surv. 50(5):68:1—
68:40.

Baeza, P. B. 2013. Querying graph databases. In ACM Sym-
posium on Principles of Database Systems (PODS), 175—
188. ACM Press.

Baget, J.; Bienvenu, M.; Mugnier, M.; and Thomazo, M.
2017. Answering conjunctive regular path queries over

guarded existential rules. In International Joint Conference
on Artificial Intelligence (IJCAI), 793-799. ijcai.org.

Barceld, P.; Figueira, D.; and Romero, M. 2019. Bound-
edness of conjunctive regular path queries. In Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), volume 132 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), 104:1-104:15. Leibniz-
Zentrum fiir Informatik.

Bienvenu, M.; Hansen, P.; Lutz, C.; and Wolter, F. 2016.
First order-rewritability and containment of conjunctive
queries in horn description logics. In International Joint
Conference on Artificial Intelligence (IJCAI), 965-971. 1J-
CAI/AAATI Press.

Bonifati, A.; Martens, W.; and Timm, T. 2019. Navigating
the maze of wikidata query logs. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, 127-138. ACM.

Calvanese, D.; Giacomo, G. D.; Lenzerini, M.; and Vardi,
M. Y. 2000. Containment of conjunctive regular path queries
with inverse. In Principles of Knowledge Representation
and Reasoning (KR), 176-185.

Figueira, D., and Morvan, R. 2023. Approximation and
semantic tree-width of conjunctive regular path queries. In
International Conference on Database Theory (ICDT), vol-
ume 255 of Leibniz International Proceedings in Infor-
matics (LIPIcs), 15:1-15:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik.

Figueira, D.; Godbole, A.; Krishna, S.; Martens, W.; Niew-
erth, M.; and Trautner, T. 2020a. Containment of simple
conjunctive regular path queries. In Principles of Knowl-
edge Representation and Reasoning (KR), 371-380.
Figueira, D.; Godbole, A.; Krishna, S.; Martens, W.; Niew-
erth, M.; and Trautner, T. 2020b. Containment of simple
regular path queries. CoRR abs/2003.04411.

Florescu, D.; Levy, A. Y.; and Suciu, D. 1998. Query
containment for conjunctive queries with regular expres-
sions. In ACM Symposium on Principles of Database Sys-
tems (PODS), 139-148. ACM Press.

Gutiérrez-Basulto, V.; Ibanez-Garcia, Y. A.; and Jung, J. C.
2018. Answering regular path queries over SQ ontolo-
gies. In Proceedings of AAAI Conference on Artificial In-
telligence, 1845-1852. AAAI Press.

Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Haase, C.; Kreutzer, S.; Ouaknine, J.; and Worrell, J. 2009.
Reachability in succinct and parametric one-counter au-
tomata. In International Conference on Concurrency The-
ory (CONCUR), volume 5710 of Lecture Notes in Computer
Science, 369-383. Springer.

Kopczynski, E., and To, A. W. 2010. Parikh images of
grammars: Complexity and applications. In Annual Sympo-
sium on Logic in Computer Science (LICS), 80-89. IEEE
Computer Society Press.

Malyshev, S.; Krotzsch, M.; Gonzdlez, L.; Gonsior, J.; and
Bielefeldt, A. 2018. Getting the most out of wikidata: Se-
mantic technology usage in wikipedia’s knowledge graph.
In The Semantic Web - ISWC 2018 - 17th International Se-
mantic Web Conference, Monterey, CA, USA, October 8-12,
2018, Proceedings, Part II, volume 11137 of Lecture Notes
in Computer Science, 376-394. Springer.

Martens, W.; Neven, F.; and Schwentick, T. 2009. Complex-
ity of decision problems for XML schemas and chain regular
expressions. SIAM Journal on computing 39(4):1486—1530.

371

	Introduction
	Preliminaries
	Main Results
	Succinct Automata and Succinct CQs
	Containment Problem for Succinct CQs

	Upper Bound
	Proof of lem:new:qequivq(n)
	Proof of lem:new:generatingalgopi2p

	Lower Bound
	Boundedness by Letter
	Conclusion

