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Abstract

Intuitionistic linear temporal logic (iLTL) has been studied
since at least the 1990s, with renewed interest in the last
decade. It enjoys natural semantics over intuitionistic Kripke
frames equipped with an order-preserving function represent-
ing the temporal dynamics, known as expanding models. This
leads to a logic that is known to be decidable but whose ax-
iomatisation has long remained open.
We propose an extension of iLTL with the co-implication con-
nective of Heyting–Brouwer logic and call it bi-intuitionistic
linear temporal logic (biLTL). We establish that this exten-
sion is still decidable for the class of expanding models. We
moreover give a sound and complete Hilbert-style calculus
for it, the first for any logic extending iLTL. As a corollary,
the topological semantics for intuitionistic propositional logic
cannot be extended to a topological semantics for Heyting–
Brouwer logic, which thus establishes co-implication as a dis-
tinctive feature of the Kripke semantics for bi-intuitionistic
logic.

1 Introduction
Constructive logics (Dalen 1986; Mints 2000) and tempo-
ral logics (Pnueli 1977) have long ago established their util-
ity for modelling various aspects of computation, making
it clear that a well-behaved combination of the two would
be of the utmost value. In fact, there are two seemingly
unrelated applications that independently led to the devel-
opment of intuitionistic temporal logics: the first involves
an extension of the Curry–Howard correspondence (Howard
1980) to account for user interaction in software (Kamide
and Wansing 2010), and the second to logical modelling and
automated theorem proving in the field of dynamical sys-
tems (Fernández-Duque 2018). In the latter, intuitionistic
logic is interpreted according to its topological semantics
over a typically infinite space X (where X may be e.g. the
real line or the plane) and the temporal dynamics is mod-
elled via a function f : X → X , which, in order to interact
well with the intuitionistic semantics, is assumed continu-
ous. The pair (X, f) is a dynamical system, and may be used
to model change over time in disciplines as diverse as biol-
ogy, economics, and theoretical computer science. In addi-
tion to propositional variables and connectives, intuitionistic
linear temporal logic (iLTL) includes the temporal modali-
ties #, 3, and 2. These are interpreted using the function f :

# is read as ‘next’ and #φ holds at x if φ holds at f(x), 3
is read as ‘eventually’ and 3φ holds at x if φ holds at fn(x)
for some n, and 2 is read as ‘henceforth’ and 2φ holds at x
if x has a neighbourhood U such that for every y ∈ U and
every natural number n, φ holds at fn(y).

Since intuitionistic logic also has a Kripke semantics
based on partial orders, a bird’s-eye-view representation of
X may be provided using a finite Kripke model, allow-
ing us to employ tools from knowledge representation and
reasoning (KRR) for reasoning about topological dynam-
ics.1 This idea, while fruitful, does come with a caveat—
namely, it is known that there are formulas valid over the
class of Kripke models that are not valid over the class of
topological models, such as the Rodrı́guez–Vidal formula
RV := 2(p ∨ q) → 3p ∨2q (see Example 2).

This has led to a separate study of intuitionistic linear tem-
poral logic over Kripke models, with a complete axiomati-
sation remaining a challenging open problem (Balbiani et
al. 2020). The situation mirrors that of dynamic topological
logic (DTL)—the ‘classical’ precursor of intuitionistic lin-
ear temporal logic (Artëmov, Davoren, and Nerode 1997)—
where an axiomatisation for the DTL of Kripke models was
proposed (Kremer and Mints 2007) but was later proven
incomplete (Fernández-Duque 2014), with only an infini-
tary axiomatisation ever being found more than a decade
later (Chopoghloo and Moniri 2022). The logic iLTL was
proposed as an alternative to DTL in large part due to the fact
that iLTL is decidable (Fernández-Duque 2018) but DTL is
not (Konev et al. 2006). But the problem of finding a com-
plete axiomatisation has proven equally elusive (once again
with the exception of an infinitary axiomatisation (Cho-
poghloo and Moniri 2021)). In fact, the axiomatisation we
provide in this paper relies on a novel insight that should also
shed light on axiomatising DTL. Namely, in order to prop-
erly reason about Kripke models in a dynamic setting, it is
necessary to look not only ‘upward’, but also ‘downward’!

Intuitionistic logic differs from classical logic in how im-
plication is treated. Classically, φ → ψ is read as material
implication: either φ is false or ψ is true. This is often con-
sidered to be at odds with a natural language reading of im-

1Intuitionistic Kripke models may be seen as a special case of
topological models, based on Aleksandroff topologies (Aleksan-
droff 1937).
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plication in which φ → ψ means something like ‘If φ were
true, then ψ would also be true’. In the Kripke semantics
of intuitionistic logic, this means that any ‘possible world’
where φ is true also makes ψ true, where a ‘possible world’
is any world lying above the current world with respect to
a given partial order, i.e. models are provided with a par-
tial order ≤ and φ → ψ holds at a world w if the material
implication holds at every v ≥ w.

In the standard intuitionistic language, worlds can only
ever see ‘upward’: if, say, v < w, then v is in no
way involved in the evaluation of formulas at w. This
situation is ‘remedied’ by co-implication, where φ ψ
holds at w if there is v ≤ w that makes φ true but ψ
false. Intuitionistic logic expanded with co-implication—
known as bi-intuitionistic or Heyting–Brouwer logic—was
first extensively studied by Rauszer in the 1970s (Rauszer
1974a; Rauszer 1974b; Rauszer 1977). A deductive cal-
culus for propositional bi-intuitionistic was proven sound
and complete in (Rauszer 1974b), although (Drobyshevich,
Odintsov, and Wansing 2022) note that an equivalent sys-
tem was presented as early as (Moisil 1942), albeit without
any discussion of soundness or completeness. See (Droby-
shevich, Odintsov, and Wansing 2022) for many more refer-
ences on the study and use of bi-intuitionistic logic.

There are various reasons to consider co-implication in
intuitionistic reasoning. It is argued in (Fernández-Duque,
McLean, and Zenger 2023) that for KRR tasks, where iLTL
allows reasoning about acquiring resources in a temporal
context, adding co-implication allows also reasoning about
losing or relinquishing resources. Applicable areas therefore
include expert systems, automated planning, and temporal
logic programming.

Example 1. In sensitive healthcare applications such as
personalised cancer treatment, decisions must be made by
considering various factors, including the type and stage of
cancer and the patient’s genetic profile. KRR systems can
aid in integrating such data from various sources, possibly
including some that are more reliable than others or even
mutually contradictory.

A KRR system might analyse a patient’s data and predict
that chemotherapy should shrink the tumour significantly.
However, some of the data is inconclusive and, should it be
incorrect, there could be a substantial chance of severe side
effects.

In order to model this within our temporal logic frame-
work, let us use the atom c to mean that chemotherapy is
applied, r that the tumour is reduced and h that the patient
is healthy. The expression (c → 3r) ∧ (c 2h) then ex-
presses the situation we have described: the intuitionistic
implication tells us that, according to our current state of
knowledge, chemotherapy will produce a reduction in the
tumour, but co-implication tells us that should we relinquish
some of this information, there is a risk of the patient be-
coming unhealthy. By using bi-intuitionistic logic as a basis
for temporal reasoning, such considerations regarding un-
certainty are directly built directly into the core of our KRR
framework.

In applications such as the above, information is typically

discrete and hence best modelled using Kripke semantics.
Whether some natural topological analogue to can be de-
fined remains open, but as we will see, the existence of co-
implication satisfying propositional Heyting–Brouwer logic
is a defining feature of Kripke, as opposed to the more gen-
eral topological, models.

This is reinforced by our axiomatisation (Section 3). For-
mulas such as 2(p ∨ q) → 3p ∨2q are nowhere to be seen
(although derivable; see Example 4). Instead, by simply
combining the natural axioms and rules for iLTL with stan-
dard axioms for , our axioms ‘magically’ become com-
plete. In technical parlance, our axiomatisation is not con-
servative over its -free fragment. This might seem surpris-
ing, but a possible explanation is that interactions between

and the unbounded temporal modalities implicitly arise
when axioms for unbounded temporal modalities are applied
to formulas that involve . As an unexpected corollary, no
notion of co-implication is definable in a topological setting
validating bi-intuitionistic logic (Corollary 3).

2 Syntax and Semantics
Let us set up our formal system for bi-intuitionistic temporal
logic. For this, we first fix a countable set of atomic variables
Prop.

Definition 1. The language LbiLTL of bi-intuitionistic lin-
ear temporal logic is defined by the following grammar in
Backus–Naur form (where p ∈ Prop):

φ,ψ ::= p | φ∧ψ | φ∨ψ | φ→ ψ | φ ψ | #φ | 3φ | 2φ

The connective is called co-implication. The modali-
ties #, 3 and 2 are read as ‘next’, ‘eventually’ and ‘hence-
forth’, respectively. We denote by L# the 3- and 2-free
fragment of LbiLTL.

Define inductively #0φ := φ and #n+1φ := ##nφ. Fur-
thermore, define ⊤ := p → p and ⊥ := p p (where p is
an arbitrary variable), ¬φ := φ → ⊥, and ∼ φ := ⊤ φ.
We call ¬ strong negation and ∼ weak negation.

Definition 2. An expanding model is a tuple M = (W,≤,
f, V ), where

• W is a set whose elements are called worlds.

• ≤ is a partial order on W .

• f :W →W is an order-preserving function:

w ≤ v =⇒ f(w) ≤ f(v).

• V : W → P(Prop) is a valuation function that is mono-
tone in ≤:

w ≤ v =⇒ V (w) ⊆ V (v).

For the remainder of this paper we will usually call ex-
panding models simply models.

The satisfaction relation M, w |= φ between worlds of a
model and formulas is defined by structural induction on φ
as follows.
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Figure 1: A model based on the real line.

M, w |= p ⇔ p ∈ V (w)
M, w |= φ ∧ ψ ⇔ M, w |= φ and M, w |= ψ
M, w |= φ ∨ ψ ⇔ M, w |= φ or M, w |= ψ
M, w |= φ→ ψ ⇔ ∀v ≥ w (M, v |= φ

⇒ M, v |= ψ)
M, w |= φ ψ ⇔ ∃v ≤ w : M, v |= φ

and M, v ̸|= ψ
M, w |= #φ ⇔ M, f(w) |= φ
M, w |= 3φ ⇔ ∃n ∈ N : M, fn(w) |= φ
M, w |= 2φ ⇔ ∀n ∈ N : M, fn(w) |= φ

If M, w |= φ we say that φ is true at w. A formula φ
is satisfiable if there exists an expanding model M and a
world w such that M, w |= φ. A formula φ is falsifiable
if there exists an expanding model M and a world w such
that M, w ̸|= φ. A formula φ is valid if it is not falsifiable.
Given a set of formulas Γ, a model M, and a world w, we
write M, w |= Γ if M, w |= φ for all φ ∈ Γ. A formula φ is
a (local) semantic consequence of Γ, written Γ |= φ, if for
each model M and worldw, if M, w |= Γ, then M, w |= φ.

The proof the following lemma is by a straightforward
induction on the structure of φ, where the order-preservation
of f is used for the temporal cases.
Lemma 1 (monotonicity). Let M = (W,≤, f, V ) be an
expanding model, w ∈ W , and φ be a formula. If M, w |=
φ and w ≤ v, then M, v |= φ.

We will not review topological semantics in detail here
(see (Boudou et al. 2021) for formal definitions), but an ex-
ample will be instructive.
Example 2. Figure 1 shows that the formula RV = 2(p ∨
q) → 3p ∨ 2q is not valid over the real line. For this dis-
cussion, it suffices to note that for a formula φ to be true at
a point x ∈ R, topological semantics requires that φ be true
in a neighbourhood of x, i.e. in every point of some interval
(x− ε, x+ ε).

Define a model M = (R,≤, f, V ) on R, with the usual
ordering and f(x) = 2x, V (p) = (−∞, 1), and V (q) =
(0,∞). Clearly p ∨ q is true on all of R, so 2(p ∨ q) is true
on R as well.

Let us see that M, 0 ̸|= RV. Since M, 0 |= 2(p ∨ q),
it suffices to show that M, 0 ̸|= 2p ∨3q. It is clear that
M, 0 ̸|= 3q simply because fn(0) = 0 ̸∈ V (q) for all
n. Meanwhile, we cannot have M, 0 |= 2p since for every
x > 0 there is n with fn(x) > 1, and hence M, x ̸|= p,
which in turn implies that there can be no neighbourhood
of 0 satisfying 2p, and thus, by the topological semantics,
M, 0 ̸|= 2p. We conclude that M, 0 ̸|= RV.

3 A Hilbert-style Proof System
This section introduces the Hilbert-style proof system biLTL
that captures LbiLTL-validities over expanding models. The
system consists of the following axioms:

biInt all bi-intuitionistic tautologies
D ¬#⊥
Dist #(φ ∨ ψ) → (#φ ∨#ψ)
K #(φ→ ψ) → (#φ→ #ψ)
Fix3 φ ∨#3φ→ 3φ
Fix2 2φ→ φ ∧#2φ

and the following rules:

Sub substitutions MP
φ φ→ ψ

ψ

Nec
φ
#φ DN

φ
¬∼φ

Mon3

φ→ ψ

3φ→ 3ψ Mon2

φ→ ψ

2φ→ 2ψ

Ind3

#φ→ φ
3φ→ φ Ind2

φ→ #φ
φ→ 2φ

The system biLTL# is the restriction of the system biLTL
to L# (i.e., only formulas of L# may appear in biLTL#
derivations). We write ⊢ φ if there exists a proof of φ;
whether derivability is in biLTL# or biLTL will be clear from
context. A proof with assumptions in Γ is defined as usual,
with the restriction that only the rule MP may be applied to
formulas φ for which ̸⊢ φ holds. We write Γ ⊢ φ if φ is
derivable with assumptions in Γ.

(Goré and Shillito 2020) prove a deduction theorem for
bi-intuitionistic logic by a standard induction on the length
of proofs. It is straightforward to extend their result to the
language L#.
Theorem 1 (Deduction Theorem). For any set of L#-
formulas Γ and any L#-formulas φ and ψ, we have that
Γ, φ ⊢ ψ if and only if Γ ⊢ φ→ ψ.

Furthermore, the following lemma holds (see (Goré and
Shillito 2020), Proposition 7.2).
Lemma 2. For arbitrary formulas in LbiLTL the following
hold:

1. ⊢ φ→ (ψ ∨ χ) ⇐⇒ ⊢ (φ ψ) → χ.
2. If ⊢ φ→ φ′ and ⊢ ψ′ → ψ, then ⊢ (φ ψ) → (φ′ ψ′).

We conclude this section with two instructive examples
that show how the calculus interacts with co-implication.
Example 3. The formula (#φ #ψ) → #(φ ψ) is
derivable in biLTL#. To see this, we use the bi-intuitionistic
tautology φ → (ψ ∨ (φ ψ)). Applying necessitation and
distribution, we see that #φ→ (#ψ ∨#(φ ψ)) is deriv-
able. By Lemma 2, this shows that (#φ #ψ) → #(φ ψ)
is derivable as well.
Example 4. The formula RV, i.e. 2(φ ∨ ψ) → 3φ ∨ 2ψ,
is derivable in biLTL. To see this, note that 2(φ ∨ ψ) →
(3φ ∨ (2(φ ∨ ψ) 3φ)) is a substitution instance of a
bi-intuitionistic tautology, so it suffices to check that (2(φ∨
ψ) 3φ) → 2ψ is derivable. Since 2(φ∨ψ) → #2(φ∨
ψ) and #3φ → 3φ are derivable, so is (2(φ ∨ ψ)
3φ) → (#2(φ ∨ ψ) #3φ)) by Lemma 2. Hence by
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Example 3, (2(φ ∨ ψ) 3φ) → #(2(φ ∨ ψ) 3φ)
is derivable. By Ind2, we obtain (2(φ ∨ ψ) 3φ) →
2(2(φ∨ψ) 3φ), and thus it suffices to show that (2(φ∨
ψ) 3φ) → ψ is derivable.

Now, since 2(φ∨ψ) → φ∨ψ and φ→ 3φ are derivable,
so is (2(φ∨ψ) 3φ) → ((φ∨ψ) φ). But ((φ∨ψ)
φ) → ψ is a bi-intuitionistic tautology; hence (2(φ∨ψ)
3φ) → ψ is derivable, as desired.

4 Soundness of biLTL and Completeness of
biLTL#

In this section we first remark that biLTL is sound (with
respect to the class of expanding models), i.e. if a LbiLTL-
formula φ is biLTL-provable, then it is valid. Afterwards
we show that biLTL# is complete, i.e. if a L#-formula φ is
valid, then it is biLTL#-provable.
Lemma 3 ((Boudou et al. 2021)). The axioms of biLTL are
valid over the class of expanding models and the rules pre-
serve validity.

Using Lemma 3 and induction on the length of proofs, we
obtain soundness of biLTL.
Theorem 2. If a formula φ is biLTL-provable, then φ is
valid over the class of expanding models.

For completeness of biLTL#, we employ a canonical
model construction. As the canonical model is also used
later on in the completeness proof of biLTL, the following
definitions and lemmas apply to both LbiLTL and L#.
Definition 3. A prime theory is a set of L-formulas Γ, where
L is either LbiLTL or L#, such that the following hold:

1. Γ is deductively closed: if Γ ⊢ φ, then φ ∈ Γ;
2. Γ satisfies the disjunction property: if φ ∨ ψ ∈ Γ, then
φ ∈ Γ or ψ ∈ Γ, and

3. Γ is consistent: Γ ̸⊢ ⊥.

Given a set of formulas Γ, define

#−1Γ := {φ | #φ ∈ Γ}.

Lemma 4. If Γ is a prime theory, then #−1Γ is a prime
theory as well.

It is the axiom Dist that ensures #−1Γ satisfies the dis-
junction property.

We are now ready to define the canonical models for
LbiLTL and L#.
Definition 4. Let L be either L# or LbiLTL. The canonical
model for L is defined to be Mc = (Wc,≤c, fc, Vc) where

• Wc = {Γ ⊆ L | Γ is a prime theory},
• Γ ≤c Γ

′ ⇐⇒ Γ ⊆ Γ′,
• fc(Γ) = #−1Γ,
• Vc(Γ) = {p ∈ Prop | p ∈ Γ}.

The proof of the following lemma is standard and omit-
ted (see (Boudou, Diéguez, and Fernández-Duque 2017;
Boudou, Diéguez, and Fernández-Duque 2022)).
Lemma 5. The canonical model for either L# or LbiLTL is
an expanding model.

For the remainder of this section we work exclusively in
the language L# and show that biLTL# is complete. The
following lemma establishes that every consistent set of L#-
formulas can be extended to a prime theory. The proof is
standard, see e.g. (Goré and Shillito 2020).

Lemma 6 (Lindenbaum lemma). Suppose Γ ̸⊢ χ. Then
there exists a prime theory ∆ with Γ ⊆ ∆ and ∆ ̸⊢ χ.

Lemma 7 (truth lemma). Let Mc be the canonical model
for L#. For every Γ ∈ Wc and any L#-formula φ, it holds
that

φ ∈ Γ ⇐⇒ Mc,Γ |= φ.

Theorem 3. If a L#-formula φ is valid over the class of
expanding models, then φ is biLTL#-provable.

Proof. Suppose φ is not biLTL#-provable, i.e. ∅ ̸⊢ φ. By
Lemma 6 there exists a prime theory Γ with Γ ̸⊢ φ. Hence
φ ̸∈ Γ, and so by Lemma 7, we have Mc,Γ ̸|= φ. We
conclude that φ is not valid.

5 Proof Strategy for the Full Language
In the remainder of the article, we prove that full biLTL
is complete for the class of expanding models. Unlike for
biLTL#, we do not have a truth lemma for the canonical
model, since it may be for example that 3φ ∈ Γ, but there
is no n such that φ ∈ fnc (Γ).

2

A similar situation occurs for classical LTL, but one can
then pass to a filtration Mc/Σ of Mc, i.e. the quotient of Mc

modulo the equivalence relation Γ ∼ Γ′ ⇐⇒ Γ ∩ Σ =
Γ′ ∩ Σ. Assuming Σ is finite, the equivalence class of each
prime theory Γ is determined by its characteristic formula
χ(Γ) :=

∧
(Γ ∩ Σ). The filtrated model does respect the se-

mantics of 3. More precisely, Mc/Σ satisfies a version of the
truth lemma restricted to formulas of Σ. The tradeoff is that
Mc/Σ is no longer equipped with a function, as the quotient
may assign more than one temporal successor to a single
prime theory, since Γ ∼ Γ′ does not imply fc(Γ) ∼ fc(Γ

′).
However, this is not a problem, since in a later phase one can
choose a path Γ0,Γ1,Γ2, . . . that constitutes a genuine LTL
model. In particular, if φ is not derivable, we can choose Σ
to be the set of subformulas of φ and their negations and Γ0

so that φ ̸∈ Γ0, thereby obtaining a model falsifying φ.
We wish to adapt this strategy, but there is an issue: filtra-

tion in general does not conserve order-preservation of the
temporal dynamics (i.e. w ≤ v implies f(w) ≤ f(v)), so
we must define Mc/Σ differently. This structure should be a
quasimodel, which is similar to a model except that the tem-
poral transition function is replaced by a non-deterministic
relation. Each point in a quasimodel is assigned a type,
which is similar to a prime theory except that a type only
decides a finite set of formulas; i.e., a type is a pair Φ =
(Φ+,Φ−) of (usually) finite sets of formulas for which a
‘truth lemma’ should hold. Quasimodels are designed so
that they can be ‘unwound’ into a genuine model, much like

2This is because 3φ ⊢
∨

i<n #iφ is not derivable for any spe-
cific n, and derivations are finite. Hence it is possible for 3φ to
hold but each individual #nφ to fail in a prime theory.
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for the filtrated model of classical LTL. Types, quasimod-
els, and the more general labelled systems are introduced in
Section 6, and Section 7 describes the unwinding procedure.

To construct Mc/Σ in the bi-intuitionistic setting, we first
construct a structure UΣ that is finite but still ‘too large’, as
it may contain points that do not correspond to any prime
theory. The structure UΣ is defined in (Fernández-Duque,
McLean, and Zenger 2023) in a general modal setting, but
we readily apply it to biLTL by simply regarding # as a
modal operator. While a full construction is out of the scope
of this paper, roughly speaking UΣ consists of the set of
all finite, ‘acyclic’ posets with points labelled by types and
bounded in size by some large enough natural number.

In a standard filtration, each prime theory maps to a single
equivalence class. Here, however, we have a binary relation
E∗ between UΣ and Mc, where there are one or more points
of UΣ linked to each prime theory in Mc. The relation E∗
is what we call a dynamic simulation (Definition 15), and
further is ‘exhaustive’. Then Mc/Σ is defined to be the re-
striction of UΣ to the domain of E∗. The relation E∗ can be
thought of as a relational version of the filtration quotient.

Much as the characteristic formula χ(Γ) determines the
equivalence class of Γ in the classical setting, we can char-
acterise which points of UΣ are E∗-related to a given prime
theory Γ using simulation formulas (Definition 17). Un-
like the classical setting, we need two distinct formulas, χ+

and χ−, to capture respectively the ‘positive’ and ‘negative’
information determining a simulation. Section 8 discusses
(dynamic) simulations, while Section 9 defines the formu-
las χ+ and χ− and establishes their basic properties. These
simulation formulas enable us to prove that Mc/Σ is indeed
a quasimodel (Corollary 1).

At the end of Section 10 we put all the ingredients to-
gether to show that biLTL is indeed complete for the class of
expanding posets: the argument is that if φ is not derivable
then we can find a prime theory Γ with φ ∈ Γ−. By choos-
ing a point w of UΣ with w E∗ Γ, we see that φ is falsified
on Mc/Σ. By applying the unwinding procedure to Mc/Σ,
we obtain a genuine model falsifying φ. Thus every for-
mula that is not derivable can be falsified in some expanding
model, i.e. biLTL is complete, our main result (Theorem 5).

6 Types, Labelled Posets, and Quasimodels
From now on, Σ denotes a set of LbiLTL-formulas closed un-
der subformulas.

Definition 5. Let Φ+,Φ− ⊆ Σ. A Σ-type is a pair Φ =
(Φ+,Φ−) of disjoint subsets of Σ with the following proper-
ties:

∧+. If φ ∧ ψ ∈ Φ+, then φ,ψ ∈ Φ+.
∧−. If φ ∧ ψ ∈ Φ−, then φ ∈ Φ− or ψ ∈ Φ−.
∨+. If φ ∨ ψ ∈ Φ+, then φ ∈ Φ+ or ψ ∈ Φ+.
∨−. If φ ∨ ψ ∈ Φ−, then φ,ψ ∈ Φ−.
→+. If φ→ ψ ∈ Φ+, then φ ∈ Φ− or ψ ∈ Φ+.
→−. If φ→ ψ ∈ Φ−, then ψ ∈ Φ−.

+. If φ ψ ∈ Φ+, then φ ∈ Φ+.
−. If φ ψ ∈ Φ−, then φ ∈ Φ− or ψ ∈ Φ+.

≤ ≤

R

forth–down

R

≤ ≤

R

forth–up

R

Figure 2: Forward confluence conditions

2+. If 2φ ∈ Φ+, then φ ∈ Φ+.
3−. If 3φ ∈ Φ−, then φ ∈ Φ−.
It is not necessary that Φ+ ∪ Φ− = Σ. Thus our types are
‘partial’.3 The set of all Σ-types is denoted by TΣ.

To compare types, we define two partial orders on TΣ:
1. Φ ≤T Ψ if and only if Φ+ ⊆ Ψ+ and Ψ− ⊆ Φ− (corre-

sponding to the intuitionistic partial order).
2. Φ ⊆T Ψ if and only if Φ+ ⊆ Ψ+ and Φ− ⊆ Ψ− (so Ψ

‘asserts’ more than Φ, both positively and negatively).
Definition 6. Let Φ be a Σ-type.

1. A formula φ → ψ is a defect of Φ if φ → ψ ∈ Φ−, but
φ ̸∈ Φ+.

2. A formula φ ψ is a defect of Φ if φ ψ ∈ Φ+, but
ψ ̸∈ Φ−.

The set of all defects of Φ is denoted by δΦ.
In the following, we define labelled posets and quasimod-

els. We first define labelled posets, which are partial orders
whose nodes are labelled by types.
Definition 7. A Σ-labelled poset is a tuple X = (X,≤, ℓ)
where (X ≤) is a partial order, and ℓ : X → TΣ is a
labelling function such that the following hold.

1. If x ≤ y, then ℓ(x) ≤T ℓ(y).
2. Ifφ→ ψ ∈ δℓ(x), then there exists y ≥ xwithφ ∈ ℓ(y)+

and ψ ∈ ℓ(y)−.
3. If φ ψ ∈ δℓ(x), then there exists y ≤ x with φ ∈ ℓ(y)+

and ψ ∈ ℓ(y)−.
If χ ∈ δ(ℓ(x)) and y is the world from the above defi-

nition, then we say that the defect χ is resolved at y. We
will usually assume that Σ is finite, and thus that labelled
posets are labelled with finite types. Given a labelled poset
X = (X,≤, ℓ), a relation R ⊆ X × X is called forward
confluent if it satisfies the following two properties (see Fig-
ure 2).
Forth–up: If x ≤ x′ and x R y then ∃y′ ≥ y with x′ R y′.
Forth–down: If x ≤ x′ and x′ R y′ then ∃y ≤ y′ with
x R y.

Definition 8. Let Φ,Ψ be Σ-types. The pair (Φ,Ψ) is called
sensible if the following conditions hold.

3The need to consider partial types will not be too evident in the
current work, but it is needed to import results from (Fernández-
Duque, McLean, and Zenger 2023). See Footnote 5 for a pointer
to why they are needed.
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1. If #φ ∈ Φ+, then φ ∈ Ψ+.
2. If #φ ∈ Φ−, then φ ∈ Ψ−.
3. If 3φ ∈ Φ+, then φ ∈ Φ+ or 3φ ∈ Ψ+.
4. If 3φ ∈ Φ−, then φ ∈ Φ− and 3φ ∈ Ψ−.
5. If 2φ ∈ Φ+, then φ ∈ Φ+ and 2φ ∈ Ψ+.
6. If 2φ ∈ Φ−, then φ ∈ Φ− or 2φ ∈ Ψ−.

Given a Σ-labelled poset X = (X,≤, ℓ), a pair (x, y) ∈
X×X is called sensible if (ℓ(x), ℓ(y)) is sensible. A relation
R ⊆ X × X is called sensible if every pair (x, y) ∈ R is
sensible.

Definition 9. Given a Σ-labelled poset X = (X,≤, ℓ), a
sensible relation R ⊆ X × X is called ω-sensible if the
following hold.

1. If 3φ ∈ ℓ(x)+, then there are n ∈ N and y ∈ X such
that x Rn y and φ ∈ ℓ(y)+.

2. If 2φ ∈ ℓ(x)−, then there are n ∈ N and y ∈ X such
that x Rn y and φ ∈ ℓ(y)−.

Recall: a relation R ⊆ X × Y is total if for each x ∈ X
there exists y ∈ Y with x R y. If in addition X = Y , then
we say R is serial.

Definition 10. A Σ-labelled system is a tuple X = (X,≤, ℓ,
R) consisting of a labelled poset equipped with a forward-
confluent sensible relation R ⊆ X × X . If moreover R is
serial and ω-sensible, then X is a Σ-quasimodel.

We may write simply labelled system or quasimodel when
Σ is clear from context. A formula φ is falsified at world x
of a Σ-quasimodel X = (X,≤, ℓ, R) if φ ∈ ℓ(x)−, and
satisfied if φ ∈ ℓ(x)+. A formula φ is falsifiable over the
class of Σ-quasimodels if there exists a Σ-quasimodel X =
(X,≤, ℓ, R) and a world x ∈ X such that φ is falsified at
x. Note that it is possible that a formula φ ∈ Σ is neither
satisfied nor falsified at a world x ∈ X .

Observe that every expanding model can be regarded as
a Σ-quasimodel by simply labelling each world with those
formulas in Σ that are true or false respectively. Thus we
obtain the following result.

Lemma 8. If φ ∈ Σ is falsifiable over the class of expanding
models, then φ is falsifiable over the class of Σ-quasimodels.

The converse of Lemma 8 is also true, but establishing it
requires some work. This will be done in the next section.
However, we can already state the result for a particular sub-
class of quasimodels.

Definition 11. A Σ-quasimodel X = (X,≤, ℓ, R) is func-
tional if R ⊆ X ×X is a function.

Lemma 9. If a formula is falsifiable over the class of func-
tional Σ-quasimodels, then it is falsifiable over the class of
expanding models.

Proof. Let X = (X,≤, ℓ, f) be a functional Σ-quasimodel,
x ∈ X , and φ a formula such that φ ∈ ℓ(x)−. Define M :=
(X,≤, f, V ) where V (y) := ℓ(y)+ ∩ Prop. It is routine to
check that M is an expanding model, and M, x ̸|= φ.

7 From Quasimodels to Expanding Models
It will be useful to observe that forward confluence can be it-
erated, thereby yielding the following variant for finite paths.

Lemma 10. Let X = (X,≤, ℓ, R) be a quasimodel. Sup-
pose that w0 R w1 R . . . R wn.

• If w0 ≤ u0 then there exist u0 R u1 R . . . R un such that
wi ≤ ui for all i ≤ n.

• If u0 ≤ w0 then there exist u0 R u1 R . . . R un such that
ui ≤ wi for all i ≤ n.

Proof. Inductively find ui using the forward confluence of
R.

For the remainder of this section let X = (X,≤, ℓ, R) be
a fixed Σ-quasimodel. Suppose that X falsifies some for-
mula φ ∈ Σ. We are going to show how to construct from
X a functional Σ-quasimodel falsifying φ. Combining this
construction with Lemma 9 then yields the construction of
an expanding model falsifying φ.

Given a partial function f we write ∃f(s) if f(s) is de-
fined and ∄f(s) otherwise.

For a partial order ≤, the element y covers x if x ≤ y
and there is no x < w < y. We say that ≤ is acyclic if the
undirected graph induced by its covering relation is acyclic.

Definition 12. An X -induced structure is a tuple I =
(I,≤I , ℓI , fI) together with a map π : I → X where:

1. I is finite,
2. ≤I is acyclic and if w ≤I v then π(w) ≤ π(v),
3. ℓI = ℓX ◦ π, and
4. fI : I → I is a partial function such that:

(a) If ∃fI(x), then π(x) R π(fI(x)).
(b) If x ≤I y then ∃f(x) ⇐⇒ ∃f(y).
(c) If x ≤I y and ∃f(x), then fI(x) ≤I fI(y).
(d) For each x ∈ I there is a maximal k such that ∃fk(x).

It is instructive to view induced structures as being ‘tem-
porally stratified’. In view of (4d) and the assumption that
I is finite, there is a maximal k such that fk(x) is defined
for any x ∈ I , and hence we may define Wi to be the set
of x ∈ I such that fk−i(x) is defined but fk−i+1(x) is not.
This partitions I into sets W0, . . . ,Wk, and it is easy to see
that x ≤I y implies that x, y ∈Wi for some i, and moreover
f [Wi] ⊆Wi+1 for all i.

A defect of an X -induced structure records that a claim
made by its labelling ℓI lacks a witness.

Definition 13. Let I be an X -induced structure.

1. A →-defect is a pair (x, φ → ψ) where x ∈ I and φ →
ψ ∈ ℓI(x)

−, but there is no y ≥I x with φ ∈ ℓI(y)
+ and

ψ ∈ ℓI(y)
−.

2. A -defect is a pair (x, φ ψ) where x ∈ I and φ ψ ∈
ℓI(x)

+, but there is no y ≤I x with φ ∈ ℓI(y)
+ and

ψ ∈ ℓI(y)
−.

3. A #-defect is a world x ∈ I with ∄fI(x).
4. A 3-defect is a pair (x,3φ) where x ∈ I , ∄fI(x), and

3φ ∈ ℓI(x)
+, but φ ̸∈ ℓI(x)

+.
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5. A 2-defect is a pair (x,2φ) where x ∈ I , ∄fI(x), and
2φ ∈ ℓI(x)

−, but φ ̸∈ ℓI(x)
−.

Let x ∈ X be such that φ ∈ ℓ(x)−. We build a functional
Σ-quasimodel falsifying φ in stages. We start with an X -
induced structure I0 consisting of a single world and then
construct in the step n+ 1 an X -induced structure In+1 ex-
tending In. We make use of a first-in-first-out queue D that
stores the defects of the current X -induced structure. Ob-
serve that for any X -induced structure, the set of defects of
said structure is always finite (since the structure and Σ are
finite) and non-empty (due to #-defects). The X -induced
structure In is defined by induction on n as follows.

For the base case, define I0 = (I0,≤0, ℓ0, f0), where
I0 = {x′} (it is not important what x′ is), ≤0 = {(x′, x′)},
ℓ0(x

′) = ℓ(x), f0 = ∅, and π0(x′) = x. It is straightforward
to check that (I0, π0) is an X -induced structure. InitialiseD
with all defects of I0 in arbitrary order.

For the inductive step, suppose we have defined In =
(In,≤n, ℓn, fn) and πn, and shown that (In, πn) is an X -
induced structure. By inductive hypothesis, D currently
stores all defects of In. We first show how to define
(In+1, πn+1) and then how to update the queue D. We start
by setting In+1 = In. We only treat defects for #, →, and
3; other cases are similar.
(#-DEFECTS) Suppose the defect at the head of D is a #-
defect y ∈ In. Choose any u ∈ X with πn(y) R u.
Add a new point u′ to In+1 and define fn+1(y) = u′,
ℓn+1(u

′) = ℓ(u), and πn+1(u
′) = u. We extend fn+1

to the connected component of y by adding new worlds,
working first ‘bottom up’ starting with worlds covering y.
If y′ covers y, use forward confluence to find z ∈ X with
πn(y

′) R z. Add z′ to In+1 and define fn+1(y
′) = z′,

u′ ≤n+1 z′ and close ≤n+1 under transitivity and reflex-
ivity,4, πn+1(z

′) = z, and ℓn+1(z
′) = ℓ(z). Then for y′′

covering such y′, use forward confluence again (relative to
y′) to define fn+1(y

′′), and so on. Next repeat the process
for those worlds below {y′ | y′ ≥ y} where fn+1 is not yet
defined, this time working ‘top down’. Continue alternating
between ‘bottom up’ and ‘top down’ until fn+1 is defined
on the connected component of y.

This process terminates because the new points are not in
the connected component of y, which is finite. Thus if the
connected component of y in In is of size m, then m new
points are added.
(→-DEFECTS) Suppose the defect at the head of D is a →-
defect (y, ψ → χ). Then ψ → χ ∈ ℓn(y)

−, but there is no
z′ ∈ In with y ≤n z′, and φ ∈ ℓn(z

′)+ and ψ ∈ ℓn(z
′)−.

As X is a quasimodel, there exists πn(y) ≤ z ∈ X with ψ ∈
ℓ(z)+ and χ ∈ ℓ(z)−. Let k be maximal such that fkn(y) is
defined. Using Lemma 10, find z = z0 R z1 R . . . R zk
with πn(f in(y)) ≤ zi. Then add points z′0, . . . , z

′
k to In+1

and extend πn, ≤n, fn and ℓn by setting πn+1(z
′
i) = zi,

f in(y) ≤n+1 z
′
i, fn+1(z

′
i) = z′i+1 and ℓn+1(z

′
i) = ℓ(zi).

(3-DEFECTS) Suppose the defect at the head of D is a
3-defect (y,3ψ). Then ∄fn(y) and 3ψ ∈ ℓn(y)

+, but

4We will always close ≤n+1 under transitivity and reflexivity
and will not mention it in the following items.

ψ ̸∈ ℓn(y)
+. As X is a quasimodel we find u1, . . . , un ∈ X

with πn(y) R u1 R u2 R . . . R un and ψ ∈ ℓ(un)
+.

We add worlds u′1, . . . , u
′
n to In+1 with πn+1(u

′
i) = ui,

fn+1(y) = u′1 and fn+1(u
′
i) = u′i+1, and ℓn+1(u

′
i) = ℓ(ui).

Then we proceed as in the case of a #-defect to define fn+1

on the connected component of y, and proceed inductively
to define fn+1 on the connected component of each u′i. In
this case, we must add n-many components for some natural
number n. Hence, the construction for ‘next’-defects must
be repeated n-many times. Thus the termination of this pro-
cess is proven by induction on n, with a secondary induction
on the number of worlds in a component as in the #-defect
case.

We have shown how to construct (In+1, πn+1) from
(In, πn). Next we show how to update the queue D. First,
delete every defect from D that has been resolved in the
construction of (In+1, πn+1) (observe that in each of the
above cases it is possible that multiple defects have been
resolved at once). Then we rewrite each remaining de-
fect as follows. If the remaining defect is a →-defect or
a -defect we don’t change anything. If it is a 3-defect
(y,3ψ) we check whether ∄fn+1(y) holds. If it does we
do not change the defect. Otherwise there are u1, . . . , uk
with fn+1(y) = u1, fn+1(u1) = u2, . . . , fn+1(uk−1) = uk
and ∄fn+1(uk). By assumption 3ψ ∈ ℓn+1(uk)

+ and
ψ ̸∈ ℓn+1(uk)

+. Thus overwrite (y,3ψ) with (uk,3ψ).
The 2-defects and seriality defects are overwritten in the
same way. Finally, add all new defects of In+1 to the tail of
the queue.

By induction on n, each In is an X -induced structure.
Furthermore, by construction, each In+1 contains In as
a substructure. Define the structure Iω to be the limit
of the sequence (In)n∈N. More formally, define (Iω :=
(Iω,≤ω, ℓω, fω), πω) where

λω =
⋃
n∈N

λn

for λ ∈ {I,≤, ℓ, f, π}. Observe that x′ ∈ Iω with π(x′) = x
and therefore φ ∈ ℓω(x

′)−. Thus Iω falsifies φ. Our con-
struction guarantees that we obtained a Σ-labelled quasi-
model that is functional.
Lemma 11. Iω is a functional Σ-quasimodel falsifying φ.
Theorem 4. A formula φ is falsifiable over the class of ex-
panding models if and only if φ is falsifiable over the class
of Σ-quasimodels.

Proof. The left-to-right direction is Lemma 8. For the right-
to-left direction, suppose φ is falsifiable over the class of
Σ-quasimodels. Hence there exists a Σ-quasimodel X =
(X,≤, ℓ, R) and x ∈ X with φ ∈ ℓ(x)−. By Lemma 11
there exists a functional Σ-quasimodel falsifying φ. So
by Lemma 9 there exists an expanding model falsifying φ.
Thus φ is falsifiable over the class of expanding models.

8 Simulations
A key ingredient in our completeness proof will be to relate
worlds in a finite quasimodel to prime theories in the canon-
ical model. Unlike in a filtration quotient, this relation will
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Figure 3: The above diagram can always be completed if E ⊆
X × Y is a dynamic simulation.

not be a function, but rather given by a simulation, as defined
next.

Definition 14. Let Σ ⊆ ∆ ⊆ LbiLTL be subformula closed,
and let X = (X,≤X , ℓX ) and Y = (Y,≤Y , ℓY) be Σ-
labelled and ∆-labelled posets respectively. A binary re-
lation E ⊆ X × Y is a simulation if the following hold:

1. If x E y, then ℓX (x) ⊆T ℓY(y).
2. If x′ ≥X x E y, then there exists y′ ∈ Y such that x′ E
y′ ≥Y y.

3. If x′ ≤X x E y, then there exists y′ ∈ Y such that x′ E
y′ ≤Y y.

If there exists a simulation E such that x E y, then we write
(X , x)⇀ (Y, y).
Lemma 12. Let X , Y be labelled systems and E ⊆ X × Y
a simulation. Then X ↾E−1[Y ] is a labelled system.

Definition 15. Let X = (X,≤X , ℓX , RX ) and Y =
(Y,≤Y , ℓY , RY) be labelled systems. A dynamic simulation
between X and Y is a simulation E ⊆ X×Y satisfying the
‘back’ condition for R: namely, if x E y RY y′ then there
exists x′ such that x RX x′ E y′ (see Figure 3).

In a more general modal setting, (Fernández-Duque,
McLean, and Zenger 2023) construct a ‘universal’ finite
structure, which we denote UΣ, for a given set of formu-
las Σ, with the property that given any Σ-labelled system
M, there is a dynamic simulation E∗ between UΣ and M,
such that for every world x of M there exists a world w
of UΣ with w E∗ x and ℓU(w) = ℓM(x). We call such
an E∗ an exhaustive simulation. We can then let M be the
canonical model and consider the restriction of UΣ to the do-
main of E∗, which by Lemma 12 will be a labelled system.
For this, we identify a prime theory Γ with the LbiLTL-type
(Γ,LbiLTL \ Γ); types of this form are complete. We obtain
the following structure, which plays the role of a ‘filtration’
in our completeness proof, although we remark that this is
not a true filtration in the standard sense, as filtrations do not
interact well with confluence properties.

Proposition 1. Let Σ ⊆ LbiLTL be finite and closed under
subformulas. Then there exists a finite, acyclic5 Σ-labelled

5It is essential that Mc/Σ be partially typed in order for it to be
both finite and acyclic. Otherwise, the combination of → and
can force the existence of infinite zigzag paths which can only be
made finite by creating a cycle.

0

1

2

3

2

1

0

00
x

Figure 4: Example x-induced tree T(x), with heights

system Mc/Σ and a total, exhaustive dynamic simulation
E∗ ⊆ Mc/Σ×Wc (recall thatWc is the set of worlds of Mc).
Specifically, E∗ is the union of all simulations between the
two structures.

In fact, Mc/Σ is a quasimodel—a key ingredient in our
completeness proof. However, establishing this will require
the use of simulation formulas, as defined in the next section.

9 Simulation Formulas
As before, Σ ⊆ LbiLTL is assumed to be finite and closed
under subformulas. Let X = (X,≤X , ℓX ) be a Σ-labelled
poset, and x, y ∈ X . A zigzag path from x to y is a finite
sequence (ρ(i))i≤n of distinct worlds, such that ρ(0) = x,
ρ(n) = y, and for all 0 ≤ i < n either ρ(i) covers ρ(i + 1)
or ρ(i + 1) covers ρ(i). We may also denote a zigzag path
by (ρ(0), ρ(1), . . . , ρ(n)). If ρ = (ρ(i))i≤n, the length |ρ|
of ρ is n. Let

ZZP(x) := {ρ | ρ is a zigzag path starting at x}.

Definition 16. Let X = (X,≤X , ℓX ) be a finite, acyclic Σ-
labelled poset and x ∈ X . The x-induced tree is defined
as T(x) := (ZZP(x),<), where ρ < ρ′ if and only if ρ is a
proper initial segment of ρ′ (see Figure 4).

Observe that T(x) is a finite tree with the path (x) as root.
Given ρ ⊑ ρ′, we write ρ′ − ρ for the suffix of ρ′ after ρ.
Moreover, we write ρ↗ρ′ if each element in ρ′ − ρ covers
its predecessor in ρ′, and ρ↘ρ′ if each element in ρ′ − ρ
is covered by its predecessor in ρ′. For ρ ∈ ZZP(x), the
height of ρ is defined as h(ρ) := max{|ρ′ − ρ| | ρ ⊑ ρ′}.

We now define, for x in a finite, acyclic labelled poset, the
simulation formulas χ+(x) and χ−(x), which together en-
code all worlds accessible from x via a zigzag path. There-
fore, satisfying or falsifying χ+(x) or χ−(x) respectively at
some world y of a labelled poset is equivalent to the exis-
tence of a simulation involving x and y: see Proposition 2.

We define χ+(x) and χ−(x) by working ‘outside-in’,
i.e. recursively from the leaves of T(x) to the root, exploit-
ing the following.

(i) By asserting a formula φ ψ we can express that there
is a world below where φ holds and ψ does not.

(ii) By denying a formula φ→ ψ we can express that there is
a world above where φ holds and ψ does not.

We begin by defining for each path ρ in T(x) different from
(x) a formula φρ. The simulation formulas are then com-
posed from these formulas φρ.

Recall that by convention
∧
∅ := ⊤ and

∨
∅ := ⊥.
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Definition 17. Let X = (X,≤X , ℓX ) be a finite, acyclic
Σ-labelled poset, and x ∈ X . For each ρ = (ρ(0), . . . ,
ρ(n)) ∈ T(x) with |ρ| > 0 define the formula φρ by induc-
tion on h(ρ). Suppose φ′

ρ has been defined for each ρ′ with
h(ρ′) < h(ρ).

1. If ρ(n− 1) >X ρ(n), define

φρ :=(
∧
ℓX (ρ(n))+ ∧

∧
ρ′=ρ : ρ↘ρ′

φρ′)

(
∨
ℓX (ρ(n))− ∨

∨
ρ′=ρ : ρ↗ρ′

φρ′)

2. If ρ(n− 1) <X ρ(n), define

φρ :=(
∧
ℓX (ρ(n))+ ∧

∧
ρ′=ρ : ρ↘ρ′

φρ′) →

(
∨
ℓX (ρ(n))− ∨

∨
ρ′=ρ : ρ↗ρ′

φρ′)

Then define χ+(x) and χ−(x) as follows.

χ+(x) :=(
∧
ℓX (x)+ ∧

∧
ρ=(x) : (x)↘ρ

φρ)

(
∨
ℓX (x)− ∨

∨
ρ=(x) : (x)↗ρ

φρ)

χ−(x) :=(
∧
ℓX (x)+ ∧

∧
ρ=(x) : (x)↘ρ

φρ) →

(
∨
ℓX (x)− ∨

∨
ρ=(x) : (x)↗ρ

φρ)

Recall that Mc = (Wc,≤c, fc, Vc) is the canonical
model.

Proposition 2. Let Mc/Σ = (U,≤, R, ℓ) and E∗ ⊆ U ×Wc

be the total, exhaustive simulation provided by Proposi-
tion 1. Let w ∈ U and Γ ∈Wc. The following hold.

1. χ+(w) ∈ Γ if and only if there exists ∆ ∈ Wc with ∆ ≤c

Γ such that w E∗ ∆.
2. χ−(w) ∈ LbiLTL \ Γ if and only if there exists ∆ ∈ Wc

with Γ ≤c ∆ such that w E∗ ∆.

Next we establish some biLTL-derivable properties of χ+

and χ−. We begin with the former. These properties are es-
tablished by using Proposition 2 to see that they are present
in every prime theory in the canonical model and so deriv-
able. As before, Mc/Σ = (U,≤, R, ℓ); then the reflexive
transitive closure of R is denoted R∗.

Proposition 3. Given w ∈ U and ψ ∈ Σ:

1. If ψ ∈ ℓ(w)−, then ⊢ χ+(w) → (χ+(w) ψ).

2. If ψ ∈ ℓ(w)+, then ⊢ χ+(w) → ψ.

3. ⊢ χ+(w) → #
∨
wRv

χ+(v).

Item 2, for example, follows from the fact that if χ+(w) ∈
Γ then w E∗ ∆ for some ∆ ≤c Γ, which by the definition of
simulations implies that any ψ ∈ ℓ(w)+ must belong to ∆
and hence to Γ. Item 3 follows by similar reasoning, using
the fact that E∗ is dynamic.

The formula χ− behaves ‘dually’, as follows.
Proposition 4. Given w ∈ U and ψ ∈ Σ:

1. If ψ ∈ ℓ(w)−, then ⊢ ψ → χ−(w).
2. If ψ ∈ ℓ(w)+, then ⊢ (ψ → χ−(w)) → χ−(w).

3. ⊢ #
∧
wRv

χ−(v) → χ−(w).

10 Completeness
The simulation formulas χ± are fundamental in our com-
pleteness proof. Specifically, we will use them to show
that Mc/Σ is ω-sensible and hence a quasimodel. Since
validity over the class of quasimodels is equivalent to va-
lidity over the class of expanding models by Theorem 4,
completeness will follow. The following lemma is the first
step towards establishing ω-sensibility. As above, we write
Mc/Σ = (U,≤, R, ℓ) and R∗ for the reflexive transitive clo-
sure of R, and E∗ ⊆ U ×Wc is a total, exhaustive simula-
tion. The following readily follows from Proposition 3 and
Proposition 4.
Lemma 13. If Σ ⊆ LbiLTL is finite and closed under subfor-
mulas, and w ∈ U , then:

1. ⊢
∨

wR∗v χ
+(v) → #

∨
wR∗v χ

+(v),
2. ⊢ #

∧
wR∗v χ

−(v) →
∧

wR∗v χ
−(v).

In order to complete our proof that Mc/Σ is ω-sensible, it
suffices to apply the induction rules Ind2 and Ind3 of our
calculus to the formulas of Lemma 13.
Proposition 5.

1. If w ∈ U and 3ψ ∈ ℓ(w)+, then there exists v ∈ R∗(w)
such that ψ ∈ ℓ(v)+.

2. If w ∈ U and 2ψ ∈ ℓ(w)−, then there exists v ∈ R∗(w)
such that ψ ∈ ℓ(v)−.

Proof. We treat only the first item, as the second is anal-
ogous, using the respective rules for 2. Towards a con-
tradiction, assume that w ∈ U and 3ψ ∈ ℓ(w)+, but for
all v ∈ R∗(w), we have ψ ∈ ℓ(v)−. By Lemma 13,
⊢ #

∧
wR∗v

χ−(v) →
∧

wR∗v

χ−(v). By the Ind3 rule,

⊢ 3
∧

wR∗v

χ−(v) →
∧

wR∗v

χ−(v); in particular,

⊢ 3
∧

wR∗v

χ−(v) → χ−(w). (1)

Now let v ∈ R∗(w). By Proposition 4.1 and the assump-
tion that ψ ∈ ℓ(v)−, we have that ⊢ ψ → χ−(v), and since
v was arbitrary, ⊢ ψ →

∧
wR∗v χ

−(v). Using Mon3, we
further have that ⊢ 3ψ → 3

∧
wR∗v χ

−(v). This, along
with (1), shows that ⊢ 3ψ → χ−(w). However, by Propo-
sition 4.2 and our assumption that 3ψ ∈ ℓ(w)+, we have
that ⊢ (3ψ → χ−(w)) → χ−(w). Hence by modus po-
nens we obtain ⊢ χ−(w). Choosing Γ ∈ Wc such that
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w E∗ Γ, Proposition 2.2 yields χ−(w) /∈ Γ, but this con-
tradicts ⊢ χ−(w). We conclude that there is v ∈ R∗(w)
with ψ ∈ ℓ(v)+, as needed.

Corollary 1. If Σ ⊆ LbiLTL is finite and closed under sub-
formulas, then Mc/Σ is a quasimodel.

Proof. By Proposition 1, Mc/Σ is a labelled system (and se-
rial, since Mc is), while by Proposition 5, R is ω-sensible.
So by Definition 10, Mc/Σ is a quasimodel.

We are now ready to prove that our calculus is complete.

Theorem 5. Given φ ∈ LbiLTL, the following are equiv-
alent: (i) biLTL ⊢ φ, (ii) φ is valid over the class of
expanding models, (iii) φ is valid over the class of finite
quasimodels.

Proof. That (i) implies (ii) is Theorem 2 and that (ii) implies
(iii) is Theorem 4. We show that (iii) implies (i) by contra-
positive. Suppose φ is an unprovable formula and let Σ be
the set of subformulas of φ. Since φ is unprovable, there
exists Γ ∈ Wc with φ /∈ Γ. Since E∗ is exhaustive, there
is w ∈ U such that φ ∈ ℓ(w)− and w E∗ Γ. Hence w is a
point in a finite quasimodel falsifying φ.

Corollary 2. Derivability in biLTL is decidable.

This follows from the fact that biLTL is axiomatisable and
has a finite quasimodel property (with a computable bound
on the ‘finite’). We also obtain a second, unexpected corol-
lary: cannot be extended to the class of topological mod-
els while validating bi-intuitionistic logic, since as verified
in (Boudou et al. 2021), this would mean that the class of dy-
namic topological models would validate biLTL, and hence
validate RV, which we know by Example 4 not to be the
case.

Corollary 3. Suppose that top assigns to each topolog-
ical space (X, τ) a binary operation τ × τ → τ . (Here,
τ is the collection of opens.) Consider the semantics that
combines standard topological semantics for intuitionistic
propositional logic with top semantics for . Then the
class of topological spaces does not validate propositional
Heyting–Brouwer logic.

11 Concluding Remarks
We have solved the problem of axiomatising intuitionistic
linear temporal logic over Kripke models via a rather un-
expected method: by incorporating co-implication into our
formal language, the standard axioms automatically become
complete. This paves the road for a purely proof-theoretic
analysis of intuitionistic temporal logics with multiple nat-
ural lines of inquiry, including the existence of cut-free cal-
culi, interpolants, and automated deduction.
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